
This is the of the journal article:

Peña, Elionora [et al.]. «Role of the FKBP5 polymorphism rs1360780, age, sex, and type of surgery in weight loss after bariatric surgery : a follow-up study». *Surgery for Obesity and Related Diseases*, Vol. 16, Num. 4 (2020), p. 581-589 DOI 10.1016/j.soard.2019.12.002, PMID 32005614

This version is available at <https://ddd.uab.cat/record/324484>

under the terms of the license.

ABSTRACT:

Background: Emerging evidence suggests that the FK506 binding protein 51 (FKBP5/FKBP51), encoded by the *FKBP5* gene, influences weight and metabolic regulation. The T-allele of a functional polymorphism in *FKBP5* (rs1360780), has 5 been associated with the expression of FKBP51 and weight loss after bariatric surgery.

Objective: To examine the role of the *FKBP5* rs1360780 polymorphism in relation to age, sex and type of surgery in weight loss after bariatric surgery in patients with severe obesity.

10 **Setting:** University Hospital in Spain

Methods: A cohort of 151 obese patients submitted to Roux-en-Y Gastric Bypass (RYGB) (62.3%) and Sleeve Gastrectomy (SG) (37.7%) were followed-up during 24-months (t_{24m} ; loss to follow-up: 0%). During the post-operative period body mass 15 index (BMI), percentage of excess and total weight loss (%EWL and %TWL) were evaluated.

Results: The BMI analysis showed an effect of the interaction *FKBP5* genotype by sex ($p = 0.0004$) and a tendency to the interaction genotype by surgery (p -value = 0.048), so that men carrying the T-allele had higher BMI at t_{24m} than those without the T-allele, and T-allele carriers that underwent SG had higher BMI at t_{24m} than the 20 non-carriers. Additionally, we found an interaction between *FKBP5* and age for the %EWL and BMI (p -value = 0.0005 and p -value = 1.5 e-7, respectively), whereby individuals older than 48 years with the T-allele displayed significant differences for the analyzed variables at t_{24m} compared with the homozygotes for the alternate C-allele showing lower weight loss.

25 **Conclusion:** *FKBP5* rs1360780 genotype has specific effects on weight loss outcomes after bariatric surgery depending on sex, age and type of surgery, suggesting worse results in older males carrying the T allele who have undergone SG.

Keywords: obesity, bariatric surgery, weight loss outcomes, BMI, follow-up, gender, 30 age, *FKBP5* gene, rs1360780.

INTRODUCTION

Bariatric surgery is currently the most effective long-term treatment for severely obese patients. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) are 35 the most common bariatric procedures. However, there is considerable inter-individual variation in surgery outcome and particularly in relation to weight loss, clinical benefits, and in reductions in morbidity and mortality [1]. Given the costs and dangers surrounding bariatric surgery, there is an urgent need to identify predictors of response, i.e. which individuals are most likely to respond well to the intervention, 40 and those who may respond better to alternative treatments.

Studies to date have suggested a variety of complex factors as moderating weight loss outcomes, including clinical, psychological, demographic, and biological factors. Specifically, previous studies have revealed age, sex, pre-operative weight and body mass index (BMI), physical activity, T2D or other obesity associated disorders (e.g.: 45 anxiety or depression) as moderators of bariatric surgery outcomes [1,2].

Regarding age, some studies have revealed that RYGB is less effective at inducing weight loss in those over the age of 45 [3,4], whilst others have revealed no differences [5]. In relation to sex, it is well known that men and women differ in terms of fat storage and metabolism [6] and studies indicate that bariatric surgery may be 50 more effective in men than women [7,8].

About 3-4% of the cases of obesity are monogenic with early onset, abnormal feeding behavior and neuroendocrine disorders, mainly caused by mutations in genes implicated in the Leptin/melanocortin pathway [9]. However, most of the cases arise from the interplay of many genes of minor effect and environmental factors.

55 Biological factors should be also taken into account when studying weight loss outcomes after surgery [10]. Hatoum and colleagues (2011) described a high concordance after RYGB within pairs of first-degree relatives, compared to cohabitating or unrelated individuals, suggesting weight loss response to surgery is also heritable [11]. In this regard, the study of candidate genes on the outcomes of
60 bariatric surgery suggests that specific variants in genes such as the *fat mass and obesity-associated* gene (*FTO*), *insulin induced gene 2* (*INSIG2*), *melanocortin 4 receptor* gene (*MC4R*) and *proprotein convertase subtilisin/kexin type 1* gene (*PCSK1*), play a role in the poorer weight loss outcomes after surgery [12].

A recent study investigated the association of the *FK506 binding protein-5* gene (FKBP5), which encodes for the protein FKBP51 in the hypothalamic-pituitary-adrenal (HPA) axis, and the outcome after bariatric surgery in obese patients [13].
65 FKBP5 is well recognized for its ability to be induced by exposure to psychological stress, inhibiting the glucocorticoid receptor (GR) activity and ultimately leading to the reduction of the HPA axis activation [14,15]. Animal models demonstrated that
70 *FKBP51* knockout mouse embryonic fibroblasts showed reduced lipid accumulation and expression of adipogenic genes compared to wild-type animals [16]. Additionally, higher levels of hypothalamic FKBP5 expression were related to increased body weight gain [17].

Interestingly, the T allele of a functional polymorphism (rs1360780) in the *FKBP5* gene is associated with a greater induction of the *FKBP5* gene [18]. Hartmann and
75 colleagues (2016) found in a sample of 42 obese patients that carriers of the T allele (i.e.: individuals with TT and CT genotype) had nearly 20% less excess weight loss and 10% less total weight loss compared with homozygotes of the alternate C allele over the 26-week follow-up period after surgery [13]. Consequently, these findings

80 provide evidence that a functional variant of the *FKBP5* gene moderates the clinical
response of severe obesity to bariatric surgery. The aim of our study was to examine
the role of *FKBP5* polymorphism (rs1360780) in a cohort of 151 obese patients
submitted to bariatric surgery (RYGB or SG) and followed-up during 24-months. In
addition to the genetic effect, we also aimed to explore the effect of other variables
85 such as type of surgery, sex and age that could have an impact on the outcome of
surgery on weight loss.

MATERIAL AND METHODS

Participants

90 The study recruited 151 morbidly obese patients awaiting for bariatric surgery in the
Hospital Universitari Parc Taulí, Sabadell, Spain. All the patients were 18 years or
older, with $\text{BMI} \geq 35 \text{ kg/m}^2$, and underwent either Roux-en-Y- gastric bypass (RYGB)
or Sleeve gastrectomy (SG) bariatric surgery between 2008 and 2015. All subjects
fulfilled the eligibility criteria for bariatric surgery and the type of technique was
chosen according to European guidelines [19].

95 This cohort was evaluated pre-, peri and postoperatively by a multidisciplinary team
(endocrinologists, clinical nurses, surgeons, dietitians and psychiatrists) in
consecutive visits over a 2-year timespan according to the local protocol. This period
was divided as follows: t_0 : before surgery; t_{1m} : 1 month after surgery; t_{3m} : 3 months
after surgery; t_{6m} : 6 months after surgery; t_{12m} : 12 months after surgery and t_{24m} : 24
100 months after surgery.

Anthropometric assessment

Measurements of weight, height and waist circumference were obtained from
physical examination along the evaluated period.

To report weight loss we calculated for all the assessments (from t_0 to t_{24m}): i) Body
105 Mass Index (BMI), ii) percentage of excess weight loss (%EWL), and iii) percentage
of total weight loss (% TWL). The 151 patients completed all the assessments.

BMI was calculated in Kg/m^2 according to the formula : weight (Kg) / height (m^2). The
%EWL was calculated as $[(\text{weight loss} / \text{excess weight}) \times 100]$, where excess weight
was taken as the weight in kilograms above the weight corresponding to the BMI for
110 24.9 kg/m^2 . The %TWL was calculated as $[(\text{weight loss} / \text{weight at } t_0) \times 100]$.

Ethics

All subjects were informed about our study and invited to participate in this
prospective cohort. Informed consent was obtained from all participants included in
the study. The Institutional Ethics Committee of Hospital Universitari Parc Taulí
115 approved the protocol, and all investigations complied with the Helsinki Declaration.

Laboratory analysis:

Blood samples were collected from all patients and genomic DNA from blood was
extracted using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany).
Genotyping of the *FKBP5* polymorphism (rs1360780) was performed using TaqMan
120 allelic discrimination assay from Life Technologies (Thermo Fisher Scientific,
California, USA). The assay was run in a 384-well plate on the ABI PRISM 7900HT
Fast Real-Time PCR System (Applied Biosystems, California, USA) using standard
conditions. The final volume of each well was 5 μl , which contained 5 ng of genomic
DNA, 2.5 μl of TaqMan Master Mix and 0.125 of 40x genotyping assay. SDS v.2.4
125 software was used for the data analysis of the genotypes. Testing for validity and
accuracy of genotyping, we retested a 20% random sample. In all cases, genotypes
were reproducible.

Statistical analysis

Variables are reported as mean \pm SDs or percentages. The baseline characteristics
130 of the sample were analyzed using the Pearson Chi-Square test for contingency
tables or the non-parametric Mann-Whitney U test for continuous variables. Hardy-
Weinberg equilibrium (HWE) for genotype frequencies in patients was calculated
using chi-square tests (OEGE; Rodriguez, Gaunt, & Day, 2009). As the present
study consisted in a prospective analysis of the variation of excess weight loss
135 (%EWL), total weight loss (%TWL) and body mass index (BMI) changes in a follow-
up of 24 months after bariatric surgery, generalized estimating equation models
(GEE) were considered. The factors used in the models were time, *FKBP5*
genotype, surgical technique, age, sex, T2D and the interactions *time x surgery*,
FKBP5 genotype x sex, *FKBP5 genotype x surgery*, *FKBP5 genotype x age*, and *sex*
140 *x surgery x FKBP5 genotype*. Furthermore, the effect of the age was also studied
considering EGG models with age as dichotomous variable using the value of the
median to determine the two groups of age. The comparison between the four
groups of patients determined by their genotype and the age groups, was performed
using the Kruskal-Wallis test followed by Benjamini & Hochberg *post hoc* test. All
145 analyses were performed using RStudio 1.1.463 and p-values less than 0.05 were
considered to be statistically significant.

RESULTS

Baseline characteristics of the sample

The sample consisted of 151 Caucasian individuals, mainly women (78.1%). The
150 participants were aged between 21-61 years (mean age = 46.33, SD = 10.01). Males
and females differed slightly in terms of age (mean = 43.1, SD = 11.2 and, mean =
47.2, SD = 9.5, respectively, p-value = 0.04). All of them underwent either RYGB (n

= 94, 62.3%) or SG (n = 57, 37.7%), no differences on BMI were found between surgeries at baseline (Mean = 44.19, SD = 6.01 and Mean = 46.02, SD = 9.05, 155 respectively, p-value = 0.607).

The *FKBP5* genotype frequencies were: 67 CC (44.4 %); 69 CT (45.7%) and 15 TT (9.9%). No deviations from HWE in the examined SNP was detected ($\chi^2 = 0.21$, p-value = 0.65). These frequencies were similar to those found in European populations in 1000 Genomes (CC = 45%, CT = 44%, TT = 10%). Based on previous reports, we 160 assumed a dominant model and due to the low frequency of T-allele, *FKBP5* genotype was converted into a binary variable for the analyses: CC genotype and T carriers (i.e.: genotypes CT and TT). No differences were observed between genotypic frequencies (CC or T carriers), sex, surgery, age, weight, BMI, excess weight and excess of BMI at baseline (Table 1).

165 In Table 2 we report information about waist circumference, metabolic variables and co-morbidities in the patients in the pre (t0) and postoperative (t24) period according to the genotype.

Longitudinal assessment

Main Effects: The study included the three variables of interest: %EWL, %TWL and 170 BMI assessed longitudinally. The effect of time, age, sex, surgery, T2D and *FKBP5* genotype on the variables (%EWL, %TWL and BMI) was explored using a generalized equation model including the above mentioned variables and the interactions time x surgery, *FKBP5* genotype x sex, *FKBP5* genotype x surgery, *FKBP5* genotype x age, and sex x surgery x *FKBP5* genotype.

175 The test of model effects reported an effect of time on the variation of all the variables with a p-value < 2e-16 for %EWL, %TWL and BMI). The effect of surgery

and T2D was only significant on BMI (p-value = 0.01 and 0.003, respectively).

Additionally, a strong effect of age was found for the %EWL (p-value = 6.2e-09) and %TWL (p-value = 4.5e-14) but not for BMI.

180 Interaction Effects: For %EWL and %TWL we found a statistically significant interaction between *time and surgery* (p-value = 0.00089 and 0.00083, respectively).

Thus, patients submitted to a Sleeve Gastrectomy lost 8.58% and 4.01% less %EWL and %TWL respectively at t_{24m} than patients that underwent RYGB (p-value = 0.020 and 0.006, respectively) (Figure 1A and 1B). Furthermore, men with SG lost 4.52%

185 less TWL than those with RYGB at t_{12m} but not at t_{24m} (p-value = 0.034) (Figure 1E).

Regarding the interaction between *FKBP5* and sex, it was only significant for BMI (p-value = 0.0004). These results pointed out that men carrying the T allele had higher BMI at t_{24m} than those non-carriers (Figure 2F). Additionally, a marginally significant effect of the interaction *FKBP5* and surgery was found on BMI (p-value = 0.048)

190 The interaction between age and *FKBP5* genotype was significant for BMI and %EWL (p-value = 6.8e-07 and p-value = 0.0007, respectively), and the interaction

between sex, *FKBP5* and surgery for the three variables %EWL, %TWL and BMI was significant (p-values = 9.2e-05, 8.4e-05 and 0.0001, respectively). These results show significant differences in the outcome after surgery depending on *FKBP5*

195 genotype, sex of the individuals and surgery, pointing out worst results in males carrying the T allele submitted to SG.

Given the strong effect of age reported before, we tried to study the influence of this factor in more depth. To this aim as the median of age was 48 years, we generated two groups: i) individuals under 48 years (n = 74) and ii) individuals with age equal or 200 higher than 48 years (n = 77). Using the generalized estimating equation model, we

explored the effect of age using this new binary variable (i.e.: AgeD) on the %EWL, %TWL and BMI. The model included: time, surgery, *FKBP5* genotype, sex, AgeD and the interaction *FKBP5* x AgeD. According with the results previously reported, the analysis showed a strong effect of AgeD on the variables %EWL and %TWL for 205 the total sample (p-value = 3.54e-08 and 3.61e-11 respectively). Similar results were found in men (p-value = 7.97e-05 for %EWL, and p-value = 4.24e-05 for %TWL) and women (p-value = 0.0002 for %EWL, and p-value = 4.03e-08 for %TWL).

Furthermore, we found a significant interaction *FKBP5* x AgeD on the %EWL and BMI for the total sample (p-value = 0.0005 and p-value = 1.48e-07, respectively) and 210 by sex, in men (p-value = 0.0002 and p-value = 8.39e-07, respectively) and women (p-value = 0.018 and p-value = 0.0004, respectively).

In order to better understand the interaction between *FKBP5* genotype and AgeD after two years of the surgery (t_{24m}), we divided patients in four groups according to their genotype and age group: Group 1 with individuals with age under 48 and CC 215 genotype (n = 30), Group 2 with individuals with age under 48 and CT or TT genotype (i.e.: T carriers, n = 44), Group 3 with individuals older than 48 years and CC genotype (n = 37) and Group 4 with individuals older than 48 years and T carriers (n = 40). In [Table 3](#) we report mean and SD for the analyzed variables (%EWL, %TWL and BMI) for each group at 24 months (t_{24m}). For the three outcomes 220 patients of Group 4 (≥ 48 and T carriers) displayed the worse scores. These differences were statistically significant for the three variables analyzed (Table 3).

Post-hoc analysis showed for %EWL significant differences between groups 1 and 3 (p-value = 0.010) and groups 1 and 4 (p-value = 0.021). For the %TWL the differences were found between groups 1 and 3, groups 1 and 4, and groups 2 and 4

225 (p-value = 0.039, 0.016 and 0.016, respectively). Finally, for BMI differences were found between groups 1 and 3 (p-value = 0.027) (Figure 3).

DISCUSSION

Our study aimed to explore the role of different factors including type of surgery, age, sex, and *FKBP5* genotype on weight loss outcomes following bariatric surgery over
230 24 months in a sample of 151 patients with severe obesity.

The main finding was that males over 48 years old, who were T-allele carriers of *FKBP5* polymorphism (rs1360780) and had undergone sleeve gastrectomy (SG), displayed the worst weight loss outcome at 24 months after surgery.

As expected, our results seem to indicate an effect of the type of surgery on weight
235 loss during the post-operative period. In this regard, individuals submitted to Roux-en-Y Gastric Bypass (RYGB) seem to have better outcomes at t₂₄ compared with those individuals submitted to SG. These two bariatric procedures are the most commonly used in severe obese patients and are effective at promoting weight loss. Several studies have compared whether the results of these two techniques are
240 equivalent. A recent meta-analysis pointed out that both procedures result in similar % of excess weight loss (%EWL) and body mass index (BMI) reduction levels at 6 and 12 months. However, % EWL and BMI reduction were significantly greater in the RYGB group 24 months after surgery [21]. These findings seem to support the trend observed in our cohort.

245 We studied the effect of age both as a continuous and dichotomous variable. In both cases we found a strong effect of age on the analyzed variables, whereby individuals older than 48 years showed less weight loss after surgery. The implications of age on weight loss after surgery are still controversial, with some studies showing no

significant difference [22,23] and others demonstrating less excess weight loss
250 among patients older than 60 years in comparison with younger subjects [24,25]. A
later publication where the authors applied a lower age limit, as we did in our study,
reported differences in the percentage of excess BMI loss 12 months after surgery,
whereby younger patients responded better [4]. One plausible explanation for this
effect could be the impaired metabolic capacity and decrease in energy
255 requirements in the elderly compared to young individuals as well as hormonal
factors, especially in women. Only one previous study has reported a sex-specific
effect of age on weight loss after bariatric surgery. In this study, Ochner and
colleagues found that weight loss in the post-operative period was significantly
reduced in women aged 55-65 years compared to women aged 20-45, but not in
260 men [26]. In addition to metabolic rate and physical activity, the authors suggested
that the menopausal status of these women could explain these findings. However,
surprisingly, the effect of menopausal age on weight loss appeared to depend on
surgery type since significant effects were detected in women undergoing gastric
banding, but not RYGB. Unfortunately, we did not report menopausal status in our
265 cohort.

Thus, pooling all these studies together, available data so far suggest that different
types of bariatric surgery may have different effects on weight loss depending on sex
and age, shedding some light on the etiological complexity of obesity.

Our data on the variability of the *FKBP5* gene and its association with weight loss
270 after bariatric surgery did not show a direct association between genotype and the
analyzed outcomes. Only one previous study by Hartman and colleagues (2006)
have explored this hypothesis. They reported that T allele carriers at rs1360780 had
nearly 20% less EWL and 10% less TWL compared to the CC individuals after a 26-

week follow-up in a cohort of forty-two obese patients [13]. The study by Hartman
275 and colleagues is similar to ours regarding the analyzed polymorphism, age range
and mean, design, follow-up of weight loss and analyzed variables (i.e. BMI, %EWL
and %TWL). However, our study has several strengths. It includes a considerably
bigger sample (n=151 patients, loss of follow-up was 0%), with a higher proportion of
males. On the other hand, in Hartman's study all patients were submitted to RYGB
280 whereas in our study 37.7% underwent SG, allowing us to compare the effectiveness
of both surgical methods. With an expanded sample size and considering age and
type of surgery followed by the patients, we pointed out how these variables were
not independent to explain the complexity of weight loss after bariatric surgery. In
this regard, males carrying the T allele of *FKBP5* rs1360780 and submitted to SG,
285 displayed worse scores for %EWL, % TWL and BMI. Also, bariatric surgery was less
effective on older individuals (≥ 48 years). To the best of our knowledge, this is the
first study exploring this polymorphism and its interaction with determinant factors
associated with weight loss.

FKBP5 is well known for its important role as a molecular co-chaperone that inhibits
290 glucocorticoid receptors activity, and consequently suppresses stress response
[14,15]. Glucocorticoids have also systemic metabolic effects beyond the central
nervous system, in organs such as skeletal muscle and adipose tissue [27]. *FKBP5*
is expressed in peripheral and central tissues with its highest expression in adipose
and skeletal muscle [28]. Specifically, the functional variant of the gene analyzed in
295 [the present study \(rs1360780\)](#) has been associated with a higher levels of the
FKBP5 protein and a prolonged cortisol response to stress measured by reduced
cortisol suppression after different tests [29–31]. Unfortunately, we could not
measure cortisol levels in our cohort, which is a limitation of the present study.

Given the polygenic nature of obesity, cumulative minor effects of different genes
300 expressed in metabolic active tissues, either regulating *FKBP5* or other related pathways, could be implicated in the observed weight loss [32]. In our study, we have only analyzed a genetic variant in the *FKBP5* gene. However, weight loss after surgery can be attributed not only to the variability of this gene but also to other factors that could contribute to the outcome.. One interesting strategy in future 305 genetic studies should be to estimate polygenic risk scores based on biologically meaningful gene sets, which can represent functional pathways associated to weight loss, including *FKBP5* gene.

Additionally, other biological factors such as age, sex and hormones play an important role in both phenotype and response after the surgery procedure. On the 310 other hand, environmental factors such as perceived stress, which tends to increase in obese patients, should be considered a key variable in the phenotype of obesity and the study of the weight loss after bariatric surgery [33].

The findings of this study have to be taken in light of some limitations. We did not measure cortisol levels that would be interesting to correlate with genotypes. As we 315 only evaluate a single polymorphism we can not discard the effect of other genetic markers given the polygenic nature of obesity. Finally, the present study performed an exhaustive clinical assessment to discard cases of monogenic obesity. However, a genetic screening for the mutations in genes of the Leptin/Melanocortin pathway associated with these early and severe forms of obesity was not performed.

320 Future longitudinal studies with larger sample sizes, as well as a longer follow-up period, might shed some light on the role of *FKBP5* variability and its interaction with variables such as surgery, sex and stress. It might be worth using two well-

differentiated samples in terms of age (i.e.: young and old sample) like in previous studies [26]. The identification of potential predictors of success after bariatric
325 surgery will be relevant in the near future for improving patients' quality of life.

Conclusions

In summary, in our longitudinal study comparing two different bariatric surgery procedures (RYGB and SG) and considering the effect of *FKBP5* variability, age and sex on the surgical outcome, we report better results for RYGB in men with the CC
330 genotype. Our results show how age, sex and genotype have a different impact on weight loss depending on the surgical technique used. These findings provide a basis for further studies, which could include as procedure selection criteria not only BMI but also sex, age or different specific genetic variants that could have a significant impact on the surgery outcome.

335 **Disclosures**

The authors have no commercial associations that might be a conflict of interest in relation to this article.

Acknowledgements

The authors gratefully acknowledge the contribution of all the patients, without their
340 cooperation this work would have not been possible. We also thank Rocío Pareja and Marta Hurtado (Hospital Universitari Parc Taulí, Sabadell) for helping in sample and data collection and Timothy Powell (Social, Genetic and Developmental Psychiatry, King's College of London) and Martí Jiménez for their generous comments on the manuscript. This study was supported by Fundació Parc Taulí
345 (Grant CIR2016/034), the Comissionat per a Universitats i Recerca of the Generalitat

(2017SGR1577). E.Peña was funded by the fellowship for formative stays grant by the Fundació Montcelimar and Universitat de Barcelona.

References

[1] Sun X, Li P, Yang X, Li W, Qiu X, Zhu S. From genetics and epigenetics to the future of precision treatment for obesity. *Gastroenterol Rep* 2017;5:266–70. doi:10.1093/gastro/gox033.

[2] Shen N, Caixàs A, Ahlers M, Patel K, Gao Z, Dutia R, et al. Longitudinal changes of microbiome composition and microbial metabolomics after surgical weight loss in individuals with obesity. *Surg Obes Relat Dis* 2019;15:1367–73. doi:10.1016/j.soard.2019.05.038.

[3] Scozzari G, Passera R, Benvenga R, Toppino M, Morino M. Age as a Long-Term Prognostic Factor in Bariatric Surgery. *Ann Surg* 2012;256:724–9. doi:10.1097/SLA.0b013e3182734113.

[4] Contreras JE, Santander C, Court I, Bravo J. Correlation Between Age and Weight Loss after Bariatric Surgery. *Obes Surg* 2013;23:1286–9. doi:10.1007/s11695-013-0905-3.

[5] Singhal R, Kitchen M, Bridgwater S, Super P. Age \geq 50 does not influence outcome in laparoscopic gastric banding. *Obes Surg* 2009;19:418–21. doi:10.1007/s11695-008-9617-5.

[6] Fitzgerald SJ, Janorkar AV, Barnes A, Maranon RO. A new approach to study the sex differences in adipose tissue. *J Biomed Sci* 2018;25:89. doi:10.1186/s12929-018-0488-3.

[7] Andersen JR, Aadland E, Nilsen RM, Våge V. Predictors of weight loss are

different in men and women after sleeve gastrectomy. *Obes Surg* 370 2014;24:594–8. doi:10.1007/s11695-013-1124-7.

[8] Perrone F, Bianciardi E, Benavoli D, Tognoni V, Niolu C, Siracusano A, et al. Gender Influence on Long-Term Weight Loss and Comorbidities After Laparoscopic Sleeve Gastrectomy and Roux-en-Y Gastric Bypass: a Prospective Study With a 5-Year Follow-up. *Obes Surg* 2016;26:276–81. 375 doi:10.1007/s11695-015-1746-z.

[9] Baxter J, Armijo PR, Flores L, Krause C, Samreen S, Tanner T, et al. Updates on Monogenic Obesity in a Multifactorial Disease 2019.

[10] Hunt SC, Hasstedt SJ, Xin Y, Dalley BK, Milash BA, Yakobson E, et al. 380 Polymorphisms in the NPY2R Gene Show Significant Associations With BMI That Are Additive to FTO, MC4R, and NPFFR2 Gene Effects. *Obesity* 2011;19:2241–7. doi:10.1038/oby.2011.239.

[11] Hatoum IJ, Greenawalt DM, Cotsapas C, Reitman ML, Daly MJ, Kaplan LM. Heritability of the Weight Loss Response to Gastric Bypass Surgery. *J Clin Endocrinol Metab* 2011;96:E1630–3. doi:10.1210/jc.2011-1130.

385 [12] Still CD, Wood GC, Chu X, Erdman R, Manney CH, Benotti PN, et al. High allelic burden of four obesity SNPs is associated with poorer weight loss outcomes following gastric bypass surgery. *Obesity (Silver Spring)* 2011;19:1676–83. doi:10.1038/oby.2011.3.

[13] Hartmann IB, Fries GR, Bücker J, Scotton E, von Diemen L, Kauer-Sant'Anna 390 M. The FKBP5 polymorphism rs1360780 is associated with lower weight loss after bariatric surgery: 26 months of follow-up. *Surg Obes Relat Dis* 2016;12:1554–60. doi:10.1016/j.soard.2016.04.016.

[14] Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. 395 Psychoneuroendocrinology 2009;34 Suppl 1:S186-95. doi:10.1016/j.psyneuen.2009.05.021.

[15] Zannas AS, Balsevich G, Gassen NC. The emerging role of FKBP5 in the regulation of metabolism and body weight. Surg Obes Relat Dis 2016;12:1560–1. doi:10.1016/j.soard.2016.05.016.

400 [16] Stechschulte LA, Hinds TD, Khuder SS, Shou W, Najjar SM, Sanchez ER. FKBP51 Controls Cellular Adipogenesis through p38 Kinase-Mediated Phosphorylation of GR α and PPAR γ . Mol Endocrinol 2014;28:1265–75. doi:10.1210/me.2014-1022.

[17] Balsevich G, Uribe A, Wagner K V., Hartmann J, Santarelli S, Labermaier C, et 405 al. Interplay between diet-induced obesity and chronic stress in mice: Potential role of FKBP51. J Endocrinol 2014;222:15–26. doi:10.1530/JOE-14-0129.

[18] Zannas AS, Wiechmann T, Gassen NC, Binder EB. Gene–Stress–Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016;41:261–74. doi:10.1038/npp.2015.235.

410 [19] Fried M, Yumuk V, Oppert JM, Scopinaro N, Torres A, Weiner R, et al. [Interdisciplinary European guidelines on metabolic and bariatric surgery]. Rozhl Chir 2014;93:366–78.

[20] Rodriguez S, Gaunt TR, Day IN. Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Mendelian Randomization Studies. Am J 415 Epidemiol 2009;169:505–14. doi:10.1093/aje/kwn359.

[21] Magouliotis DE, Tasiopoulou VS, Svokos AA, Svokos KA, Sioka E, Zacharoulis D. Roux-En-Y Gastric Bypass versus Sleeve Gastrectomy as Revisional Procedure after Adjustable Gastric Band: a Systematic Review and Meta-Analysis. *Obes Surg* 2017;27:1365–73. doi:10.1007/s11695-017-2644-3.

420 [22] Wool D, Bellatorre N, Wren S, Eisenberg D. Male Patients Above Age 60 have as Good Outcomes as Male Patients 50–59 Years Old at 1-Year Follow-up After Bariatric Surgery. *Obes Surg* 2009;19:18–21. doi:10.1007/s11695-008-9734-1.

425 [23] Sosa JL, Pombo H, Pallavicini H, Ruiz-Rodriguez M. Laparoscopic gastric bypass beyond age 60. *Obes Surg* 2004;14:1398–401. doi:10.1381/0960892042583833.

[24] Sugerman HJ, DeMaria EJ, Kellum JM, Sugerman EL, Meador JG, Wolfe LG. Effects of Bariatric Surgery in Older Patients. *Ann Surg* 2004;240:243–7. doi:10.1097/01.sla.0000133361.68436.da.

430 [25] St Peter SD, Craft RO, Tiede JL, Swain JM. Impact of Advanced Age on Weight Loss and Health Benefits After Laparoscopic Gastric Bypass. *Arch Surg* 2005;140:165. doi:10.1001/archsurg.140.2.165.

[26] Ochner CN, Teixeira J, Geary N, Asarian L. Greater Short-Term Weight Loss in Women 20–45 versus 55–65 Years of Age Following Bariatric Surgery. 435 *Obes Surg* 2013;23:1650–4. doi:10.1007/s11695-013-0984-1.

[27] Henneicke H, Gasparini SJ, Brennan-Speranza TC, Zhou H, Seibel MJ. Glucocorticoids and bone: local effects and systemic implications. *Trends Endocrinol Metab* 2014;25:197–211. doi:10.1016/j.tem.2013.12.006.

[28] Sidibeh CO, Pereira MJ, Abalo XM, J. Boersma G, Skrtic S, Lundkvist P, et al. 440 FKBP5 expression in human adipose tissue: potential role in glucose and lipid metabolism, adipogenesis and type 2 diabetes. *Endocrine* 2018;62:116–28. doi:10.1007/s12020-018-1674-5.

[29] Ising M, Depping A-M, Siebertz A, Lucae S, Unschuld PG, Kloiber S, et al. 445 Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. *Eur J Neurosci* 2008;28:389–98. doi:10.1111/j.1460-9568.2008.06332.x.

[30] Ising M, Maccarrone G, Brückl T, Scheuer S, Hennings J, Holsboer F, et al. 450 FKBP5 gene expression predicts antidepressant treatment outcome in depression. *Int J Mol Sci* 2019;20:1–12. doi:10.3390/ijms20030485.

[31] Ferrer A, Costas J, Labad J, Salvat-Pujol N, Segalàs C, Urretavizcaya M, et al. 455 FKBP5 polymorphisms and hypothalamic-pituitary-adrenal axis negative feedback in major depression and obsessive-compulsive disorder. *J Psychiatr Res* 2018;104:227–34. doi:10.1016/j.jpsychires.2018.08.003.

[32] Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. 460 Genetic studies of body mass index yield new insights for obesity biology. *Nature* 2015;518:197–206. doi:10.1038/nature14177.

[33] Abraham SB, Rubino D, Sinaii N, Ramsey S, Nieman LK. Cortisol, obesity, and the metabolic syndrome: A cross-sectional study of obese subjects and review of the literature. *Obesity* 2013;21:E105–17. doi:10.1002/oby.20083.

Figure 1. Evolution of the three analyzed variables (%EWL, %TWL and BMI) over time and according to surgery (RYGB vs SG) in the total sample and by sex.

465 Figure 2. Evolution of the three analyzed variables (%EWL, %TWL and BMI) over time and according to genotype (CC or T carriers) in the total sample and by sex.

Figure 3. Evolution of the three analyzed variables (%EWL, %TWL and BMI) over time and according to age group (< 48 and \geq 48) and genotype (CC and T carriers).

The groups correspond to Group 1: < 48 + CC; Group 2: < 48 + T carriers; Group 3: \geq 48 + CC and Group 4: \geq 48 + T carriers.

470

475

480

485

Table 2. Anthropometric and metabolic variables and comorbidities of the sample according to

Variables	Pre-operative (t0)		Post-operative (t24)	
	CC (n = 67)	CT/TT (n = 84)	CC (n = 67)	CT/TT (n = 84)
WC (cm)	132.5 (14.53)	132.71 (13.48)	102.59 (13.14)	102.31 (10.98)
FPG (mg/dL)	104.66 (31.82)	113.30 (39.15)	88.44 (27.19)	88.76 (25.23)
Insulin (μ UI/mL)	21.41 (18.46)	22.87 (16.03)	6.63 (3.46)	7.45 (3.13)
HbA1c (%)	6.16 (1.05)	6.29 (1.27)	7.11 (12.76)	5.53 (0.76)
Comorbidities, n (%)				
HTA				
No- HTA	26 (39.4%)	28 (33.7%)	45 (71.4%)	58 (71.6%)
Yes- HTA	40 (60.4%)	55 (66.3%)	18 (28.6%)	23 (28.4%)
DLP				
No-DLP	39 (59.1%)	41 (49.4%)	53 (84.1%)	68 (84%)
Yes-DLP	27 (40.9%)	42 (50.6%)	10 (15.9%)	13 (16%)
T2D				
No-T2D	49 (73.1%)	52 (61.9%)	63 (94%)	77 (91.7%)
Yes-T2D	18 (26.9%)	32 (38.1%)	4 (6%)	7 (8.3%)

FKBP5 genotype in the Pre (t0) and post-operative (t24) period.

WC: Waist Circumference; FPG : Fasting Plasma Glucose; Insulin; HbA1c: Hemoglobin A1c; HTA: Hypertension; DLP: dyslipoproteinemia; T2D: type 2 diabetes.

490

495