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Abstract 

A thorough knowledge of the atomic structure of nanomaterials is of high importance 

to understand their properties. This requires developing nanoparticle models, which is 

not always straightforward, particularly in the case of non-pure metallic systems. The 

Bulk Cut Nanoparticle Models (BCN-M) computational tool generates Wulff-like models 

for binary materials with controlled stoichiometry automatically with none or little need 

for further manipulation from the user. The models are obtained exclusively by 

introducing the structure of the bulk material, its symmetry, the surface energies of the 

most representative surfaces and information about surface termination as input data. 

The algorithm produces different structural model sets and the quality of these models 

is evaluated using different criteria: i) the deviation from ideal Wulff shape; ii) the global 

coordination of surface metal atoms and iii) the polarity of the model. BCN-M has been 

applied to fifteen different materials leading to a variety of models that cover the most 

relevant binary ionic structures and symmetries (cubic, tetragonal, hexagonal and 

monoclinic). The resulting models can be used for structure analysis of ideal systems as 

well as their simulation. BCN-M is available as a free web platform 

(https://bcnm.qf.uab.cat) or as a downloadable utility and it is expected to be an 

important tool for the design of future nanomaterials. 
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Introduction 

The interest of the scientific community in nanochemistry has exponentially grown over 

the last decade.1–4 One of the key features of nanomaterials is exhibiting properties that 

significantly differ from those of the bulk material. A variety of nanostructured materials 

such as graphene-based sheets (2D), carbon nanotubes (1D), metal and semiconductor 

nanoparticles (0D), within others, have been synthesized and engineered in order to 

have potential applications in several fields as wide as optoelectronics,5–7 biomedicine8–

12  and catalysis.13–21 

In the last years, great progress has been done in terms of characterization of 

nanostructured materials by means of experimental techniques, even at an atomistic 

level.22,23 This characterization allows establishing relationships between the structure 

of the nanomaterials and their chemical properties. As a powerful complementary tool, 

computational chemistry is usually used for stablishing these relationships. Indeed, 

combination of both computational modeling and experimental data has been 

demonstrated to be a successful strategy to obtain detailed and accurate information of 

nanoparticles (NPs) and their properties.24–26 

Unfortunately, computational modeling of NPs is not trivial, mainly because of the large 

variety of NP sizes and shapes that can be synthesized for any particular material. There 

are two main strategies for designing realistic structural NP models: i) the bottom-up27–

30 and ii) the top-down approaches.29,31–34 The bottom-up procedure builds up NPs by 

joining atomic/molecular/cluster sized entities and it is useful when one aims to work in 

the lowest limits of the nanoworld. In this approach the most stable atomic structure is 

not constrained to be bulk-like and accordingly many combinatorial possibilities can be 
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low-energy structures. Thus, a confident theoretical study must unravel the rich energy 

landscape including all the NP isomers. This is commonly performed with global 

optimization algorithms.35–39 

In contrast, the top-down approach starts from the bulk structure. It does not explore 

all possible isomers but it is suitable for exploring larger nanosized materials.29,31–34 The 

NP model is obtained by reducing the size from the bulk material to the nanoscale. For 

monocrystalline systems, the size reduction results in NP morphologies that are linked 

to the thermodynamic equilibrium crystal shape of the bulk system, which depends on 

the energy cost of forming the different surfaces, edges and vertices as well as strain 

effects. In this context, in absence of strain effects, the nanoparticle is large enough and 

monocrystalline, the edge and vertices effects are negligible and the usual way to define 

the crystal morphology is by using the Wulff construction, which is based on the Gibbs-

Wulff theorem.34,40–45 The Gibbs-Wulff theorem postulates that under thermodynamic 

equilibrium, a crystal acquires the structure that satisfies the requirement of minimum 

total surface energy. Thus, the surface contribution can be estimated by a vector 

perpendicular to the surface, (i) from the center of a crystallite, whose length (l) is 

proportional to its surface free energy (γi): 

𝑙! = 𝑐!𝛾! 

Accordingly, the surfaces presenting the shortest vectors are predominant. The Wulff 

construction results in a polyhedron that depends only on the ratios between surface 

energies and symmetry point group.46,47 Therefore, the higher the number of 

crystallographic facets used to construct the Wulff shape, the higher the difficulty in 

building it. The range of validity of the NPs based on the Wulff construction method has 
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been largely discussed and it is usually accepted for NPs sizes larger than 2-3 nm 

depending on the material.29,36 

There are several available codes capable of building Wulff construction plots from the 

surface energy ratios and the symmetry group of the material.48–50 Some tools allow 

obtaining atomistic models for single component materials. As an example, the suite of 

Python tools implemented in the Atomic Simulation Environment (ASE) allows 

generating Wulff shaped nanoparticle models of metals.51 Moreover, multicomponent 

nanoparticle models for some materials where stoichiometry is obtained without 

further manipulation can be generated with some other pieces of software.52–54 

However, the procedure is not general for all binary systems, since in most cases, post-

processing is mandatory to obtain stoichiometric and charge electroneutral models. The 

most usual post-processing operation is the hand cleaning, i.e., the removal of the 

excess atoms or the addition of missing ones to reach the desired structure. As a 

consequence, the success on obtaining a realistic model strongly depends on the user 

abilities and subjectivity and accordingly, the models can easily suffer from human bias 

and mistakes are likely to happen.  

At this point, it is worth mentioning that there are several other aspects to take into 

consideration. Two of them are: i) the presence of singly coordinated atoms in the final 

nanoparticle model, and ii) the contribution of polar surfaces. Singly coordinated atoms 

are sometimes mandatory to reach stoichiometric and electroneutral models. However, 

they are usually highly unstable and thus, at least for some particular cases, nanoparticle 

models derived from metal reduction or oxidation, by removal of singly coordinated 

species, are probably more realistic. This redox process maintains electroneutrality, but 
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the resulting model is not stoichiometric. On the other hand, polar surfaces are also 

highly unstable, and their formation is generally accompanied by an important surface 

reconstruction to reduce the polarity.55–58 Three main kinds of reconstruction are 

possible, the occurrence of which depends on the material and the synthetic conditions: 

i) generation of some metal and/or non-metal vacancies in a few of the outermost 

layers, which maintains  the stoichiometry of the material, ii) redistribution of the 

electron density at the outermost layers due to redox processes, which leads to neutral 

non-stoichiometric surfaces (anion- or metal-rich), and iii) incorporation of external 

groups present in the media such as hydrides or hydroxyls. While the former is too 

specific of the material under study (hence requiring further manipulation by the user), 

the other two can be partially included in the automatic nanoparticle generation 

process.    

In this contribution, we present the computational user-friendly tool entitled Bulk Cut 

Nanoparticle Models (BCN-M), which is supported in the form of a free web platform 

(https://bcnm.qf.uab.cat) and as a downloadable utility. BCN-M is able to generate 

atomistic Wulff-like NPs with controlled stoichiometry in a systematic and reproducible 

way for a large variety of ionic binary compounds, including the most representative 

metal oxides and metal chalcogenides. In particular, we tested the performance of the 

BCN-M computational tool by constructing NP models of fifteen systems as test cases 

that cover the most common cubic (MgO (rock salt structure), CeO2 (fluorite structure), 

Li2O (antifluorite structure) and In2O3 (Bixbyite structure)), tetragonal (TiO2 anatase and 

MO2 rutile) and hexagonal (Wurtzite like metal chalcogenides) ionic systems, as well as 

materials involving either polar and non-polar surfaces in the Wulff construction. Several 

different kinds of models can be obtained depending on the material under study and 
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user specifications: i) stoichiometric and electroneutral nanoparticles; ii) nanoparticle 

models without singly coordinated atoms and an excess of the less abundant ion and iii) 

models involving polar surfaces that can either be metal or non-metal rich or saturated 

with H or OH groups. It is noteworthy that automation is intended to save time for the 

user and remove the bias introduced by the manual modification. However, we are 

aware that this cannot substitute the scientific rigor of the user who should carefully 

validate the models and have a thorough knowledge of the material under 

consideration.  

Methodology  

Computational details. The Gibbs surface energies required to build the Wulff 

construction are approximated to the total electronic surface energy arising from 

density functional theory (DFT) calculations, already reported in the literature.59–77 

Moreover, in order to analyze the differences and similarities between the isomers of a 

given nanoparticle model, DFT calculations are carried out on the (RuO2)33 isomers. As 

in our previous works with RuO2,62,63 we use the PBE78 functional as implemented in the 

VASP code.79,80 Grimme (D2) empirical correction is added to account for dispersion 

interactions.81 Noticeably, PBE-D2 leads to lattice parameters that are in better 

agreement with experimental data than when using PBE-D3.62,82 The core electrons are 

described by ultrasoft pseudopotential and the external ones by plane wave basis set, 

with a kinetic energy cutoff of 500 eV. With the aim of minimizing replica interactions, a 

cubic cell of 25 Å is employed. The k point grid includes the G point only.  

Computational platform algorithm. BCN-M is a computational tool written in Python 

and uses standard and scientific Python libraries (NumPy,83 SciPy,84 ASE,51 pymatgen85 
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and PyYAML86). Its algorithm can be divided in four sections: i) initial nanoparticle 

generation, ii) nanoparticle symmetry and chemical evaluation, iii) nanoparticle 

refinement and iv) quality indices. The nanoparticle refinement includes the generation 

of the different types of nanoparticles (stoichiometric, without singly coordinated atoms 

and with contribution of polar surfaces). A description of each section is provided below. 

The flow chart of BCN-M is shown in Figure 1.  

Initial nanoparticle generation. The input data required for the generation of the final 

nanoparticle models (NPF) is: i) the irreducible atoms, types and positions in fractional 

coordinates; ii) the conventional cell parameters; iii) the space group number of the 

crystal (1-230); iv) the Miller indices of the planes constituting the NP and the related 

surface energies; v) the size of the desired NP in Å, defined with a central value, a range 

around this size and a step size; and vi) the type of surface termination that the final 

model should have. According to our experience, we suggest starting by exploring the 

NPs between 1.0 and 2.0 nm with a step size of 1.0 Å. This will result in at least one NP 

model. With this initial model, the user will be able to estimate the size of the 

subsequent realistic models and identify the most relevant center for the material. This 

would reduce the computational time specially when trying to construct large 

nanoparticle models. In relation to the nanoparticle center, the user can optionally set 

the center of the nanoparticle. However, by default, the tool explores three different 

types of nanoparticle centers: i) the positions of the irreducible atoms, ii) the origin of 

coordinates and iii) several special positions that present the lower symmetry 

multiplicity in the unit cell (See table S2 of the Supporting Information for the centers 

considered for each symmetry group). Within all tested examples, these centers 

guarantee obtaining at least one set of nanoparticle models.  
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Figure 1. BCN-M flow chart. AnBm material formula. NP0 initial nanoparticle. 
NPF Final nanoparticle model. The flow chart of the nanoparticle without 

dangling atoms and the nanoparticle with polar surfaces generation can be 
found in Figure S1 and S2. 

 

With this input data, BCN-M analyzes if any of the surfaces included in the input data is 

polar and then it constructs n initial NP models, which are called NPs0. The polarity of 

the surface is evaluated by the pymatgen library.87 If one polar surface is found, but the 
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user has not specified that there are polar surfaces, BCN-M warns the user. The NPs0 

are built by replicating the unit cell along the planes selected by the user. The number 

of cells in this bulk expansion is estimated by the size of the nanoparticle and the surface 

energy in each direction. The final cut is performed by the proportional distance in each 

direction, adopting a shape as close as possible to the Wulff morphology. In order to 

achieve this goal, ASE is used to apply the symmetry operators to the irreducible atoms 

and to identify the directions that are equivalent by symmetry.88   

Symmetry and chemical nanoparticle evaluation. The characterization and evaluation 

module is called to analyze the suitability of the generated NP0 through the following 

criteria: i) contribution of equivalent faces, ii) Wulff-like structure, and iii) absence of 

undercoordinated most abundant ions. If the NP0 does not fulfill one of these criteria 

the model is discarded, and other centers and sizes are explored. Next, a detailed 

description of each criterion is reported.  

Contribution of equivalent faces. Surfaces that are equivalent by symmetry have the 

same surface energy. Therefore, they should all present the same surface area in the 

final Wulff-like model. This is evaluated by determining the surface area from the length 

of the normal vector of each facet. The length of these vectors is computed as the largest 

distances between the center of the nanoparticle and the outermost atoms of the 

surfaces. This allows obtaining the ratio of each facet in the total surface area and 

evaluate the equivalence of the facets related by symmetry. BCN-M considers that 

equivalent facets contribute equally if the area difference is smaller than 5%.  

Wulff-like structure. The different families of surfaces in a nanoparticle model should 

contribute to the global shape with the same (or very similar) area ratio than the one 
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predicted by the Wulff construction. This is verified by computing the distance between 

the nanoparticle center and the equimolar Gibbs surface41,44 in each direction.89 With 

these distances, BCN-M computes the contribution of each family of surfaces to the 

nanoparticle model applying the Wulff-Gibbs theorem and compares it to that obtained 

with the usual Wulff construction procedure. If the percentage of presence of each 

individual facet does not follow the same order with the two methods, the model is 

discarded.  

Absence of undercoordinated less abundant centers. The presence of undercoordinated 

atoms is usually associated with less stable structures and thus they should be avoided 

in the construction of the NP models. As a consequence, the less abundant ions (e. g. Ti 

in TiO2 and O in Cu2O) are classified as “reasonably coordinated” and 

“undercoordinated” centers. The default threshold criterion chosen to identify the so-

called undercoordinated atoms is two vacancies of the maximum coordination (max. 

coord – 2). This means, for example, that in a system where the maximum coordination 

for the less abundant atom is six (e.g., the case of TiO2), each center whose coordination 

is three or lower will be considered undercoordinated. The presence of a single 

undercoordinated center is sufficient for the tool to discard the model. It is worth 

mentioning that, for some materials, the default threshold is too strict and thus, no 

nanoparticle models are obtained. This is, for example, the case of MgO, where corners 

are tricoordinated and Cu2O, where the maximum coordination of oxygen is 2. For these 

and similar cases, the user can modify the undercoordinated atom threshold to half of 

the maximum coordination. 
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Nanoparticle refinement. The accepted NP0 models are Wulff-like and do not present 

undercoordinated more abundant centers. However, surface termination has not yet 

been analyzed. The nanoparticle refinement section is the responsible for achieving 

more realistic structures. Four potential terminations are possible: i) stoichiometric 

nanoparticles, ii) nanoparticles without singly coordinated atoms, iii) models involving 

polar surfaces that are either metal- or non-metal-rich, and iv) models involving polar 

surfaces whose polarity is compensated by the addition of H or OH groups. The 

suitability of each termination depends on the material and synthesis procedure, thus 

the user should have thorough knowledge on the material. These different possibilities 

are achieved through three different procedures, which are described below. 

Stoichiometric nanoparticles. The key issue in this procedure is to ensure that the 

material stoichiometry is respected in the final model. Therefore, for each generated 

NP0 the stoichiometry of the model is verified. Models presenting an excess of the less 

abundant ion in the general formula are discarded. For instance, all TiO2 models where 

the O/Ti ratio is smaller than 2 are discarded, while for Cu2O, the discarded models 

present less Cu+ cations than twice the number of O2- atoms. If the model is non-

stoichiometric because of an excess of the most abundant element, the extra atoms are 

removed in the “Remove ion excess loop” (see supplementary information). In this loop, 

only dangling ions are eliminated. For systems with a 1:1 stoichiometry, atoms in excess 

in the NP0 are the ones that are removed, regardless of their nature.  

In this cleaning process, two scenarios can happen: either the number of ions to delete 

matches the number of dangling ions of the NP0, or only a fraction of the dangling ions 

must be removed in order to achieve stoichiometry. The first case will only lead to one 
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final NP, whereas the second one leads to many different models because several 

combinations exist for the removal of atoms. With the aim of obtaining models with 

larger global coordination numbers, the cleaning process starts eliminating those 

dangling atoms linked to the most coordinated sites. This is done iteratively until 

stoichiometry is achieved. If in any of these steps the number of sites exceeds the 

number of dangling atoms to remove, the program assumes a random procedure that 

is repeated 1000 times (see Supporting Information for further details). While this 

should be enough to obtain a set of models containing the most representative 

structures, the user can modify this parameter for a more exhaustive sampling.  

It should be noted that some of the models obtained may be equivalent by symmetry 

and thus, only one structure should be kept. For models below 2 nm, BCN Model 

recognizes these equivalent structures by using the Social Permutation Invariant 

Coordinates (SPRINT), which are a kind of topological coordinates that reflect the 

connectivity between atoms (see below). These coordinates are used in several other 

computational tools/simulations for the same purpose90,91 and are based on the 

principal eigenvalue and eigenvector of the adjacency matrix of chemical bonds.91 The 

major advantage of the SPRINT coordinates is that they are rotationally and 

translationally invariant. Overall, two models presenting the same SPRINT coordinates 

are equally connected and are considered equivalent, and therefore one of the two 

models is discarded.  

Nanoparticle models without singly coordinated ions. As already mentioned above, the 

generation of stoichiometric models frequently leads to singly coordinated atoms on the 

surface. However, these structures are likely unstable and thus, at least for some 
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particular cases, metal reduction or oxidation to avoid the presence of singly 

coordinated species are energetically more favorable. In this context, BCN-M is able to 

generate models without dangling atoms, if this is specified by the user. This is done by 

following the same described procedure for the generation of stoichiometric 

nanoparticles except the “Remove Ion Excess Loop”, since, in this case, BCN-M removes 

all singly coordinated ions, regardless of whether stoichiometry is preserved or not.  

Nanoparticles involving polar surfaces. Polar surfaces are usually highly energetic and 

only contribute to the Wulff construction in some particular cases. Due to the instability 

of polar surfaces, surface reconstruction usually takes place.55–58 BCN-M is able to 

include some common terminations of polar surfaces, i.e., metal-terminated, anion-

terminated and addition of H or OH groups. The nanoparticle refinement for models 

including polar surfaces is called with the appropriate keyword. A NP0 can present one 

or more non-equivalent facets, in which at least one of these families of facets is polar. 

BCN-M computes the stoichiometry of the outermost plane and determines if it is metal- 

or anion-rich. If the ions in excess match with the required termination, BCN-M assumes 

that the NP0 polar surfaces do not require further refinements. In the case that the ions 

in excess do not match with the required termination, the NP0 is increased in several 

steps in this polar direction until the required termination is achieved, the maximum 

displacement being the largest interatomic distance between the different irreducible 

atoms. Once, the polar surface satisfies this requirement, BCN-M removes all dangling 

atoms of the remaining non-polar surfaces. Finally, if the user specifies having an OH 

terminated surface, BCN-M constructs first the metal rich nanoparticle and then adds 

the H or OH groups to the polar surface.   
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Quality indices. The characterization and evaluation module is again called to compute 

the Wulff-like index, the distribution coefficient and the global coordination quality 

indices to guide the users in selecting the most relevant model for their particular 

application. The distribution coefficient index is associated with the dipole moment of 

the generated NPs, while the global coordination is used to identify the most saturated 

models. These quality indices are briefly described below. 

Wulff-like quality index.  This index is computed as the sum of the deviations of each 

surface family from the ideal Wulff polyhedron (see above), in terms of absolute 

differences between percentages. 

Distribution coefficient. The distribution coefficient (DC) index is used to roughly 

evaluate the dipole moment of the nanoparticle model and is calculated as the standard 

deviation of the center of mass of the metals (CMM) and that of the anions (CMA). If the 

distribution coefficient is 0, the anions are distributed homogeneously around cations 

of the NP. The rule of thumb is: the larger the DC, the more heterogeneous the ions 

distribution and thus, the larger the polarity of the model. At this point, it is worth 

mentioning that two models can have the same DC but can differ in their structure. 

Global coordination. Similarly to the absence of undercoordinated cations criterion, the 

global coordination index is used to distinguish between models with a different 

percentage of less coordinated ions. The reported value is the sum of all cation and 

anion coordination numbers. 

The final outputs are XYZ format files so that they can be opened with a wide variety of 

visualization programs. The comment line of the XYZ output includes the distribution 
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coefficient, the center of the nanoparticle model, the global coordination and the Wulff 

like criterion. 

Results and discussion 

In this section we present a series of NP models obtained with the BCN-M tool. The 

systems used as a test case cover the most representative binary ionic compounds with 

different symmetries. These include cubic, tetragonal, hexagonal and monoclinic 

crystallographic systems (Table 1). Moreover, they have been selected to explore the 

suitability of BCN-M in generating stoichiometric nanoparticles with and without 

dangling atoms, non-stoichiometric models without dangling atoms, and models 

involving polar surfaces. It is worth noting that the generated models arise from cutting 

the bulk without any further manipulations. Consequently, surface reconstruction is not 

taken into account explicitly. In practice, the resulting models are thought to be used as 

a starting point for further simulations or to analyze ideal structures. Indeed, similarly 

to what have been done with fully metallic systems,92 BCN-M models can be used to 

determine the number of different active sites (tips, corners, edges, surfaces, etc.) as a 

function of the nanoparticle size and thus, deduce the optimal ideal size for one 

particular catalytic process. The section is organized in different subsections: i) 

presentation of the obtained models, ii) Influence of the optional parameters in the 

generated models and iii) electronic structure analysis of the isomers obtained for 

(RuO2)33.  

Models. Fifteen different test examples have been considered to ensure the 

performance of the here described algorithm. Table S3 of the Supporting Information 

reports the parameters (fractional coordinates, cell parameters, space group, Miller 

indices, surface energies) to be introduced in BCN-M as input data.  
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Table 1. Test cases explored in this contribution 

Non-polar surfaces 

Material  Space group 

MgO (rock salt) Cubic 𝐹𝑚3$𝑚	(225) 

CeO2 (Fluorite) Cubic 𝐹𝑚3$𝑚	(225) 

Li2O (anti-fluorite) Cubic 𝐹𝑚3$𝑚	(225) 

Cu2O  Cubic 𝑃𝑚3$𝑛	(224) 

In2O3 (Bixbyite) Cubic 𝐼𝑎3$	(206) 

TiO2 (Anatase) Tetragonal 𝐼4!/𝑎𝑚𝑑	(141) 

MO2 (M=Ti, Ru, Ir) (Rutile) Tetragonal 𝑃4"/𝑚𝑛𝑚	(136) 

CuO  Monoclinic 𝐶2/𝑐	(16) 

Polar Surfaces 

Material  Space group 

ReO3 Cubic 𝑃𝑚3$𝑚	(221) 

PdO Tetragonal 𝑃4"𝑚𝑚𝑐	(131) 

ZnO, ZnS, CdSe (Wurzite) Hexagonal 𝑃6#𝑚𝑐	(186) 
 

Tables 2 and 3 summarize the main features of the obtained models. Table 2 is focused 

on materials whose polar surfaces do not contribute to the Wulff structure. Table 3 is 

devoted to models with at least one polar surface. In each case, the nanoparticle center, 

stoichiometry, size and number of isomers are reported. For each center we only report 

two models. Models up to 5nm can be found in the Supporting Information (Table S4 

and S5). Figure 2 shows two models per example without polar surfaces (stoichiometric 

nanoparticle and nanoparticle without dangling atoms) and Figure 3 reports two models 

for the materials including polar surfaces (metal or non-metal rich and with additional H 

or OH groups). It should be noted that the size difference between two contiguous 

models with the same center corresponds approximately to the twice of the interlayer 

distance in the direction defining the size of the model.  
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The models reported here range between 1 and 5 nm and aim to illustrate the output 

arising from BCN-M. The 1 to 5 nm range corresponds to the lower limit of the 

nanoworld and, for most of the cases, the provided nanoparticle models fall below the 

limit for which Wulff-like models are the thermodynamic preferred structure. However, 

we believe that several of the reported models can be used in further simulations as 

models for larger nanoparticles, in a similar manner to what is done in surface modelling, 

in which slab thickness rarely exceeds 1.5 nm.  

 
Table 2. Selected NP models without polar surfaces obtained with BCN-M. Two possible centers 
(1 and 2) are reported. For each one, the size of the NP model and total number of isomers after 
removing equivalent structures are shown.  

Material Center Formulaa Formulab Sizec Isomers 
MgO (0.25,0.25,0.25) (MgO)32,(MgO)108 N/A 1.0,1.7 1, 1 
CeO2 Cation (CeO2)19,(CeO2)85 Ce19O32,Ce85O160 1.1, 2.2 1, 1000 

(0.5,0.0,0.0) (CeO2)44, (CeO2)146 Ce44O80,Ce146O280 1.6, 2.7 2,1 
Li2O Anion (Li2O)19,(Li2O)85 Li32O19, Li160O85 1.2, 2.1 1,999 

(0.5,0.0,0.0) (Li2O)44, (Li2O)146 Li80O44, Li280O146 1.6,2.5 2,999 
Cu2O Cation (Cu2O)40,(Cu2O)112 Cu55O40, Cu175O112 1.7, 2.6 12,1000 
In2O3 (0.5, 0.0, 0.0) (In2O3)22, (In2O3)73 In44O60, In146O210 1.5, 2.6 1, 29 

N/A N/A N/A N/A N/A 
RuO2

e (0.5, 0.5, 0.0) (RuO2)24,(RuO2)90,  Ru24O42,Ru90O170 0.9, 1.5 19, 1000 
Cation (RuO2)33,(RuO2)115 Ru33O60,Ru115O220 1.2, 1.9 7, 7 

IrO2
e (0.5, 0.5, 0.0) (IrO2)24,(IrO2)90 Ir24O42,Ir90O170 0.9, 1.5 19, 986 

Cation (IrO2)33,(IrO2)115 Ir33O60,Ir115O220 1.2, 1.8 7, 644 
TiO2

e (0.5, 0.5, 0.0) (TiO2)60,d (TiO2)240 Ti60O114,Ti240O470 2.1, 3.3 19, 1000 
 Cation (TiO2)69,d (TiO2)215 Ti69O132,Ti215O420 2.4, 3.0 7,1000 
TiO2

d (0.0, 0.0, 0.5) (TiO2)10, (TiO2)84 N/A 1.0, 2.9 1, 1 
Cation (TiO2)35, (TiO2)165 N/A 2.0, 3.9 1, 1 

CuO Anion (CuO)40,(CuO)110 Cu40O36, Cu110O105 1.6, 2.4 429,1000 
  a Stoichiometric nanoparticle b Nanoparticle model without dangling atoms c In nm, measured 
as the largest distance between cations, d Anatase, e Rutile, f two smaller models ((TiO2)42 and 
(TiO2)51) are also obtained and their Cartesian Coordinates reported in the ESI. 

 



 19 

 

Figure 2. Selected NP models of the test cases that do not include polar surfaces 

 
 

Table 3. Selected NP models containing polar surfaces obtained with BCN-M. Two possible 
centers (1 and 2) are reported.  

Material Center Formulaa Formulab Sizec 
ReO3 Cation Re27O108,Re125O450 H54Re27O108,H150Re125O450 1.3, 2.6 

(0.5, 0.5, 0.5) Re64O240,Re216O756 H96Re64O240,H216Re216O756 1.9, 3.2 
PdO anion Pd28O35,Pd40O49 N/A 1.4, 1.9 
ZnO d (0.0, 0.0, 0.0) Zn60O72, Zn216O243 H24Zn60O72,H54Zn216O243 1.4, 2.5 
ZnSd (0.0, 0.0, 0.0) Zn108S96,Zn324S297  2.8, 3.9 
CdSed (0.0, 0.0, 0.0) Cd108Se120,Cd210Se231 H24Cd108Se120,H42Cd210Se231 3.1, 3.7 

  a Formula of models with either metal or non-metal reach termination, b formula of 
models with additional OH groups, c In nm, measured as the largest distance between 
cations, d Wurtzite  
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Figure 3. Selected NP models of the test cases that include polar surfaces. 

 
Optional parameters. Nanoparticle center. The position of the center of the 

nanoparticle for the Wulff construction is a key issue in the nanoparticle model 

generation and it allows obtaining different families of models (See Table 2). By default, 

BCN-M considers three types of centers: i) the atomic positions of the irreducible atoms, 

ii) the origin of coordinates of the irreducible unit cell, and iii) several special positions 

with low symmetry multiplicity, with the aim of exploring the center of the motifs that 

are being repeated in the crystal structure. Noticeably, the first type of center usually 

leads to models with an odd number of AXBY units, while the other two usually leads to 

an even number of AXBY units. However, for some particular cases only one set of centers 

generates stoichiometric nanoparticles.  
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Figure 4a shows two RuO2 nanoparticle models as an illustrative example of the 

importance of nanoparticle center. When the center of the Wulff construction is set at 

a cation position, models with an odd number of MO2 units are obtained. In contrast, 

when the center is located between two cations of the central row of the nanoparticle 

model (i.e., fractional coordinates of 0.5, 0.5, 0.0), another set of Wulff-like NP models, 

which are characterized by the presence of an even number of MO2 units, is obtained. 

The models with an even number of MO2 units present a larger portion of the {110} 

family of facets than the models with an odd number of units, the Wulff-like criterion 

suggesting that models the former are closer to the Wulff morphology for IrO2 and RuO2.  

Overall, our experience suggests that exploring these three center types for the Wulff 

construction is sufficient to ensure the generation of realistic and stoichiometric models. 

However, deciding which one of them is more appropriate in each case is not 

straightforward.  

Polar surface termination. Polar surfaces are generally highly unstable and thus, they 

are less common than non-polar ones. However, for some particular nanoparticles their 

presence is mandatory to achieve the Wulff morphology. The formation of polar 

surfaces is usually accompanied by an important surface reconstruction that reduces the 

polarity. As mentioned,  three main reconstructions can occur:55–58 i) generation of 

metal and/or non-metal vacancies in the outermost layers, ii) electron density 

redistribution to achieve neutral non-stoichiometric surfaces (anion or metal reach), and 

iii) incorporation of new surface groups such as hydrides or hydroxyls. The computed 

surface energies for polar facets are usually associated with either a metal or an anion 

termination and consequently, the final model obtained with these surface energies 

cannot be stoichiometric.  
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Figure 4. a) Selected examples of RuO2 nanoparticle obtained with different centers. b) Selected 
examples of ZnO nanoparticles showing the three possible terminations in polar surfaces metal 
rich, anion rich or OH-terminated. c) Three models of (IrO2)33 that are considered equivalent by 
the SPRINT Coordinates. Atoms in blue correspond to the dangling oxygen atoms. 

 

Wurzite-like zinc oxide is a paradigmatic example. Experimental evidences suggest the 

presence of terraces and/or OH groups when synthetizing films involving the (001) 

surface depending on the conditions.56,57,93,94 Calculations for ZnO predict that the most 

stable termination of the polar basal (001) surface implies a shell of zinc atoms at the 

outermost layer in oxygen-poor environments and an oxygen termination in oxygen-rich 

conditions.65 As already mentioned, BCN-M is able to distinguish the presence of polar 

surfaces and treat them differently. Three different terminations are possible: i) metal-

rich; ii) non-metal-rich, and iii) OH terminated. Generating models with BCN-M that 

include terraces and other large reconstructions described in the literature is at present 
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not possible. This kind of reconstructions highly depend on the material and synthetic 

conditions and thus, their modeling can hardly be automatized. Experienced users can 

construct this kind of models by using any of the three resulting models as starting points 

by removing/adding atoms. Figure 4b reports three models associated with a relatively 

small nanoparticle. The nanoparticle morphology depends on the ratio between the 

surface energy of the polar (001) surface and that of the stoichiometric (100) one. Since 

the surface energy for the (001) facet depends on the termination, while that of the 

(100) does not, the O-terminated and Zn-terminated nanoparticles present different 

morphologies. Moreover, the OH groups are added perpendicularly to the (001) facet. 

This leads to M-O-H bond angles of 180º, which are unrealistic. However, the most 

stable structure is difficult to determine a priori due the large number of H-bonding 

possibilities and thus, the OH terminated structures should be taken as preliminary 

models.  

Redundant structures. The “Remove ion excess loop” removes dangling ions until 

stoichiometry is achieved. When the number of dangling ions is larger than the number 

of atoms to be removed, several isomers can be generated, and equivalent models have 

to be identified. Figure 4c shows the representative example of (MO2)33 by showing 

three illustrative species that the SPRINT coordinates identify as identical structures. For 

this system the program generates 28 models, which are reduced to only 7 with different 

connectivity after using the SPRINT coordinates. However, it is worth mentioning that 

for nanoparticles larger than 2 nm, the number of potential isomers is so large (following 

a binomial coefficient of the number of dangling atoms in the last step of the “remove 

ion excess loop” and the number of atoms to be removed) that few equivalent models 

are usually generated from the statistical distribution. Thus, and since the computation 
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of the SPRINT coordinates would become very expensive for models larger than 2 nm, 

BCN-M turns off the SPRINT command 

Electronic structure of the different isomers. As a final test, the similarities/differences 

among the isomers generated by the BCN-M algorithm are analyzed by performing DFT 

calculations on the seven (RuO2)33 NPf isomers. (RuO2)33 has been taken as 

representative example due to the limited number of isomers and its reduced size. We 

expect that conclusions can be extrapolated to the other systems. The seven (RuO2)33 

isomers have the same global coordination and Wulff-like quality criterion value and 

only differ on the distribution coefficient.  

Figure 6 shows the optimized geometries for the seven models and the relative energies 

of the optimized structures with respect to the most stable isomer (in kJ mol-1). Figure 7 

displays: a) the distribution of the Ru-O distance and O-Ru-O angle corresponding to 

atoms at the surface, and b) the projected Density of States (PDOS) associated with the 

d orbitals of surface Ru atoms and the p orbitals of the surface oxygen atoms of two 

selected isomers. The PDOS of all other (RuO2)33 species can be found in Figure S3 of the 

Supporting Information.  

The initial structures obtained with the BCN-M algorithm shows six dangling O atoms. 

Four of these dangling atoms are located at the four tetracoordinated Ru centers of the 

intersection between two surfaces of the {011} family and one surface of the {110} 

family. The other two are located at pentacoordinated Ru centers of the intersection of 

two surfaces of the {110} family and one of the {011}. Thus, the different isomers arise 

from the different distribution of the two oxygens in these eight sites.  
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Figure 6. Optimized structures of the seven (RuO2)33 isomers, distribution coefficient (DC) in pm 
and relative energies with respect to the most stable isomer in kJ mol-1. The values in parenthesis 
correspond to the relative energies per RuO2 unit. Dangling oxygen atoms are represented in 
blue. 
 

During the DFT optimizations, the seven isomers behave similarly. No surface 

reconstruction is observed, but a larger reorganization than that observed on surfaces 

takes place.63 In general, the Ru-O distances are shorter than those of the bulk, which 

are 1.942 Å (apical) and 1.998 Å (equatorial),  and the effect is more pronounced for the 

Ru-O bond trans to a vacancy (at least 0.06 Å). The ruthenium center exposed on the 

(110) surface also moves inside the nanoparticle enlarging the Oax-Ru-Oeq angle up to 

around 1000 for most cases, as compared to the 900 of the bulk. The major 

reorganization is observed on ruthenium centers presenting dangling atoms. The Ru-

Odangling distance is even shorter (1.67-1.68 Å in the tetracoordinated centers and 1.70 Å 

in the pentacoordinated ones), which suggests the formation of a Ru=Oxo species to 
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maintain ruthenium formal oxidation state to +4. Moreover, the coordination 

environment of these ruthenium centers becomes a distorted trigonal bipyramid for 

pentacoordinated ones and a distorted tetrahedron for the tetracoordinated ones. This 

implies several angles between 1500 and 1050 as can be seen in Figure 8a. This 

reorganization occurs for all the isomers considered, regardless of the position of the 

dangling oxygen atoms in the NP. As a consequence, the largest energy difference 

between two isomers is rather small (27.3 kJ mol-1 or 0.8 kJ mol-1 per RuO2 unit), the 

relative stabilities between isomers arising mainly from subtle reconstruction 

differences between the seven nanoparticles.  

 

 

Figure 7. a) Ru-O distance and O-Ru-O angle distribution of the atoms on the nanoparticle 
surface. b) Projected Density of States of the most stable nanoparticle isomer (4) and the 
highest in energy one (6) 

 

The Projected Density Of States (PDOS) of the valence Ru d orbitals and O p orbitals of 

surface atoms are also very close for all isomers. All of them present two different bands. 
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The first one appears between -9.0/-8.8 eV and -2.1/-1.9 eV and the second one spreads 

between -2.1/-1.9 and +4.9/+5.1 eV.  Main contribution to the former comes from 

ruthenium d orbitals (74-75%, see Table S6 of the Supporting Information) whereas the 

major contribution to the second band comes from the p orbitals of oxygen (65 – 67 %). 

For the two bands, several distinctive peaks can be distinguished, the highest ones 

appearing at very similar values and presenting similar shapes. Overall, the seven 

structures generated by BCN-M have similar geometric and electronic structure, 

pointing out they all could behave similarly.  

 

 

Conclusions 

Construction of atomistic nanoparticle models of binary ionic compounds is not always 

straightforward because it usually involves post-processing to obtain stoichiometric and 

charge electroneutral systems. This implies manual modification of the NP structures, 

which is under user subjectivity and bias. Bulk Cut Nanoparticle Models (BCN-M) is a 

computational tool delivered as a free web platform (http://bcnm.qf.uab.cat) and 

downloadable utility able to generate Wulff like nanoparticle models with controlled 

stoichiometry and surface termination. Models are constructed from the 

crystallographic data of the selected material (cell parameters of the conventional unit 

cell, space group symmetry and fractional coordinates of the irreducible atoms), the 

surface energies of the main crystallographic facets and information about the desired 

surface termination. BCN-M explores several different nanoparticle centers to ensure 

different sets of nanoparticles usually covering even and odd number of AXBY units. 

Moreover, the quality of the resulting models is analysed with: i) the Wulff-like criterion, 
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which measures the deviation from ideal Wulff shape; ii) the global coordination of the 

atoms of the model and iii) the Distribution Coefficient, which evaluates the polarity of 

the model. BCN-M has been tested and applied to fifteen cases covering the most 

representative cubic, tetragonal, hexagonal and monoclinic crystallographic systems as 

well as systems involving only non-polar surfaces or a combination of both polar and 

non-polar ones. The resulting models are listed, and their Cartesian Coordinates 

reported for further uses.  

BCN-M models are generated from cutting the bulk structure, and accordingly they do 

not take into account the most likely surface reconstruction events. In this context, these 

models can be used as starting points for further simulations or structure analysis of 

ideal systems. Because of its user-friendly handling, BCN-M can facilitate the 

developments of structure – property relationships in nanoscience i.e. atomistic models 

of nanoparticles can provide information on the number and nature of surface active 

sites, thereby relating their size and shape with its surface properties. In addition, BCN-

M tool can help evaluating how changes in the relative surface energies, which can be 

modified through capping agents, can influence the nanoparticle shape and surface 

properties, assisting in the design of new catalysts. 
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