

1 **External ear canal mycobiome of some rabbit breeds.**

2 Leyna Díaz¹, Gemma Castellá^{1*}, M. Rosa Bragulat¹, Jaume Martorell², Andreu Paytuví-
3 Gallart³, Walter Sanseverino³, F. Javier Cabañes¹

4 ¹ Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat
5 Autònoma de Barcelona, Bellaterra, Catalonia, Spain.

6 ² Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona,
7 Bellaterra, Catalonia, Spain.

8 ³ Sequentia Biotech SL, Barcelona, Catalonia, Spain.

9

10 *Corresponding author:

11 Gemma Castellá

12 Grup de Micologia Veterinària

13 Departament de Sanitat i d'Anatomia Animals

14 Facultat de Veterinària, Universitat Autònoma de Barcelona

15 08193 Bellaterra (Barcelona), Spain.

16 Tel: +34 93 5811089

17 Fax: +34 93 5812006

18 e-mail: Gemma.Castella@uab.cat

19 **Abstract**

20 The genus *Malassezia* is part of the normal skin mycobiota of a wide range of warm-
21 blooded animals. In this genus, *M. cuniculi* is the only species described from rabbits.
22 However, *Malassezia* species are rarely studied in lagomorphs. In the present study, the
23 presence of *Malassezia* was assessed in samples from the external ear canal of healthy
24 rabbits of different breeds. Cytological and culture techniques, Sanger sequencing and
25 Next generation sequencing (NGS) were used to describe the ear mycobiota in the
26 samples. Although no growth was observed in the cultured plates, cytological
27 examination revealed the presence of round cells similar to those of *Malassezia* yeasts.
28 For metagenomics analysis the D1/D2 domain of the large subunit of the ribosomal DNA
29 (LSU rDNA) was PCR amplified and the resulting reads were mapped against a custom-
30 made cured database of 26S fungal sequences. NGS analysis revealed that *Basidiomycota*
31 was the most abundant phylum in all the samples followed by *Ascomycota*. *Malassezia*
32 was the most common genus presenting the highest abundance in the external ear canal.
33 *Malassezia* phylotype 131 and *M. cuniculi* were the main sequences detected in the
34 external auditory canal of rabbits. The study included both lop-eared and erect-eared
35 rabbits and no differences were observed in the results when comparing both groups. This
36 is the first attempt to study the external ear canal mycobiome of rabbits of different breeds
37 using NGS.

38

39

40 Keywords: *Malassezia*, *M. cuniculi*, phylotype 131, NGS, ear mycobiome, rabbits.

41

42 **Lay Summary**

43 In the present study, the presence of *Malassezia* was assessed in samples from the external
44 ear canal of healthy rabbits of different breeds. Cytological and culture techniques, Sanger
45 sequencing and Next generation sequencing (NGS) were used to describe the ear
46 mycobiota in the samples.

47 **1. Introduction**

48 Yeasts of the genus *Malassezia* belong to the normal skin microbiota of a wide range of
49 warm-blooded animal species. The genus *Malassezia* includes, at the present, 18 species
50 that have been mostly isolated from different wild and domestic animals but also from
51 human hosts^{1,2,3}. Some *Malassezia* yeasts, appear to have a broad host range, while others
52 are more host-specific with a close adaptation to the cutaneous ecosystem of a single
53 animal species or a group of phylogenetically related animals like *M. cuniculi* which has
54 only been isolated from rabbits⁴. While *M. caprae* and *M. equina* are recovered from
55 ruminants and horses⁵, *M. pachydermatis* is the main species in dogs and *M. nana* is
56 commonly isolated from cats^{6,7}. In parrots, *M. brasiliensis* and *M. psittaci* have been
57 described⁸ and *M. vespertilionis* was recently described in bats^{2,9}. However, *Malassezia*
58 species are rarely isolated and studied in lagomorphs¹⁰. Since the description of *M.*
59 *cuniculi*⁴, a few more studies have been conducted in rabbits^{11,12}. At the present, this is
60 the first attempt to study *Malassezia* and the mycobiome in rabbits using advanced
61 molecular techniques like NGS.

62

63 Members of the genus *Malassezia* are lipophilic and lipid-dependent yeasts that require
64 specific media with a specific lipid composition for laboratory growth, such as Leeming
65 & Notman agar (LNA)¹³ and modified Dixon agar (mDA)¹⁴. Because of their lack of
66 genes involved in carbohydrate metabolism and the genes encoding for the fatty acid
67 synthase they are unable to synthesize long-chained fatty acids (C14 or C16) *de novo*
68 thus, they rely on the host as an exogenous source of fatty acids^{15,16}. They have a
69 predilection for seborrheic skin sites such as the external ear canal, the scalp, the trunk,
70 and the perianal, inguinal and submandibular areas¹⁷. *Malassezia pachydermatis* is the
71 only member that is able to grow on Sabouraud's glucose agar (SGA) even though they

72 lack the same genes, is uniquely able to utilize lipid fractions within the peptone
73 component of SGA^{16,18,19}.

74

75 These growth requirements could be the result of a host adaptation phenomenon among
76 *Malassezia* species. In healthy conditions, the distribution of *Malassezia* species, the
77 proportion of colonization and its density may vary according to the animal host and even
78 between anatomic sites on the host. This likely is a result of the cutaneous lipid
79 composition and the competition of different types of microorganisms. Many other
80 factors like environmental conditions, age and gender of the host could influence the
81 distribution of *Malassezia* spp.¹⁰. In rabbits, a lop-eared morphology is suggested as a
82 predisposing factor for *Malassezia* overgrowth. This morphology causes a stenosis of the
83 ear canal that produces a reduction of the expulsion of cerumen. Therefore, an
84 accumulation of cerumen at the base of the ear occurs¹¹.

85

86 *Malassezia* species are identified based on morphological, ultrastructural, physiological,
87 and molecular analyses²⁰. Members of the genus *Malassezia* share similar morphological
88 and biochemical characteristics, so differentiating between species based solely on
89 phenotypic features could cause ambiguity, it is time-consuming, and it cannot be used
90 to describe new species. Molecular techniques are the most reliable for the identification
91 of *Malassezia*¹⁰. DNA sequencing has become a widely used method to identify
92 *Malassezia*. In particular, sequencing the domains D1/D2 of the large subunit of the
93 ribosomal DNA (LSU rDNA), internal transcribed spacer region 1 and 2 (ITS), β -tubulin
94 and chitin synthase 2 (CHS2) genes has become a useful method to identify and
95 differentiate species within the genus *Malassezia*^{10, 21, 22}.

96

97 Next generation sequencing (NGS) platforms perform sequencing of millions of small
98 fragments of DNA in parallel, then bioinformatics analyses are needed to piece together
99 these fragments by mapping the individual reads to the reference database. NGS provided
100 a culture-independent method to obtain microorganisms' genome information with high
101 sensitivity at a lower cost. Culturable microorganisms represent only a small fraction of
102 the microbial diversity. NGS represents a useful tool to fully investigate and understand
103 microbial diversity without the need to culture the samples. This method can be used to
104 explore the genetic diversity, population structures and interactions of microbial
105 communities in their ecosystems^{23,24,25,26}. Several regions of the fungal rRNA genes have
106 been used in NGS to study fungal taxonomy and diversity, including the small subunit
107 (SSU) and the large-subunit (LSU) rRNA genes and the internal transcribed spacer
108 (ITS)^{27,28}. Few metagenomic studies have been conducted in fungi due to the complexity
109 of their genomes, which are generally larger than the prokaryotic genomes because they
110 contain large amounts of non-coding and repetitive DNA, and the lack of validated
111 databases cataloguing enough diversity^{29,30}.

112
113 The aim of this work was to study the external ear canal *Malassezia* population in
114 different rabbit breeds using culture and non-culture based techniques, including NGS,
115 and to identify the presence of non-culturable *Malassezia* yeasts in the skin of these
116 animals.

117

118 **2. Materials and methods**

119 **2.1. Animals, sampling, and culture media used**

120 A total of 60 rabbits were sampled including pet and farmed rabbits (Table 1,
121 Supplementary Table 1). All pet rabbits (n= 44) presented to the Exotic Pets Service of

122 the Veterinary Teaching Hospital of the Universitat Autònoma de Barcelona (UAB,
123 Cerdanyola del Vallès, Spain) from 2017-2019, were considered for the study regardless
124 of the presenting reason for consultation. Farmed rabbits (n=16) were housed on the
125 Experimental Farm Service of the UAB. In all cases, the criterion for inclusion was the
126 absence of history and clinical signs of otitis externa, confirmed by otoscopic
127 examination. Both lop-eared breeds such as Belier and Toy, and erect-eared breeds such
128 as Rex and New Zealand were included in this study.

129

130 Samples were collected from the external ear canals of both ears by using a swab soaked
131 in the wash fluid i.e., 0.075 mol/l phosphate-buffered physiological saline, pH 7.9
132 containing 0.1% Tween 80. Samples were obtained following procedures approved by
133 Ethics Committee on Animal and Human Experimentation from UAB and Generalitat de
134 Catalunya (approval CEEAH 4600).

135

136 Two samples from each ear were taken by gently inserting a sterile cotton swab into the
137 external part of the ear canal and rotating fully for 30 seconds. One swab was used for
138 *Malassezia* culture and cytological examination. Briefly, one side of the swab was
139 streaked onto the following media: SGA (Oxoid), mDA (36g malt extract, 6g peptone,
140 20g desiccated ox-bile, 10ml Tween 40, 2ml glycerol, 2ml oleic acid and 12 g agar per
141 litre, pH 6.0)¹⁴ and LNA (10g peptone, 5g glucose, 0.1g yeast extract, 4g desiccated ox-
142 bile, 1ml glycerol, 0.5g glycerol monostearate, 0.5ml Tween 60, 10ml whole-fat cow's
143 milk and 12g agar per litre, pH 6.2)¹³. All media contained 0.05% of chloramphenicol
144 and 0.05% of cycloheximide. Plates were incubated at 32°C and examined daily for 20
145 days. For the cytological examination smears from the cotton swabs were stained with

146 Diff-Quick stain and the presence of typical *Malassezia* cells was microscopically
147 determined. The other swab was maintained at -20°C and used for PCR and NGS.

148

149 **2.2. DNA extraction**

150 Six ear samples cytologically positive for *Malassezia* yeasts like cells and from different
151 pet rabbit breeds were selected for Sanger sequencing studies (Supplementary Table 1).
152 We used Sanger sequencing in these few samples to obtain the complete sequence of the
153 D1D2 and ITS regions in order to get a good identification with BLAST and a suitable
154 sequence for inferring accurate phylogenetic relationships. DNA was extracted from
155 swabs using the DNeasy PowerSoil Kit (Qiagen, Madrid, Spain) according to
156 manufacturer's instructions with two modifications. At the first lysis step, the swab tip
157 was cut and placed in the bead tube, and an incubation step at 65° C for 10 minutes
158 following addition of Solution C1. The final elution step was performed on 50 µL of C6
159 instead of 100 µL to obtain a higher DNA concentration. A sterile swab was processed
160 under the same conditions as the external ear canal samples in order to control cross-
161 contamination. DNA was stored at -20°C until used as template in the PCR for Sanger
162 sequencing and NGS.

163

164 **2.3. Sanger sequencing**

165 The variable D1/D2 region of the 26S rRNA gene and the ITS-5.8S rRNA gene were
166 amplified and sequenced, using the primers and the protocols described previously²¹.
167 Sequence alignments were carried out using MUSCLE implemented in MEGA X
168 software³¹. Maximum likelihood analysis of the individual genes was conducted using
169 MEGA 6 software with 1000 bootstrap replicates. A suitable substitution model was
170 determined for each gene. The initial tree for heuristic search was obtained by applying

171 the Neighbour-Joining method to a matrix of pairwise distances estimated using the
172 Maximum Composite Likelihood (MCL) approach. Clades that were supported by
173 bootstrap values (bs) of $\geq 70\%$ were regarded as strongly supported. Sequences of
174 *Cryptococcus neoformans* CBS 132 were selected as outgroup for the tree construction.

175

176 **2.4. NGS and data analysis**

177 A total of 4 ear samples were subjected to metagenomics NGS of fungal 26S rRNA genes.
178 Three samples were previously selected for Sanger sequencing and a sample of a farmed
179 rabbit cytologically positive to *Malassezia* yeasts like cells was also included
180 (Supplementary Table 1). The samples covered animals from four different breeds: New
181 Zealand (farmed rabbit), Rex, Belier and Toy (pet rabbits). All the animals showed no
182 clinical signs and were free from otitis externa. Both lop (Belier and Toy) and erect-eared
183 (Rex, New Zealand) were included. DNA was extracted as previously described and a
184 positive PCR for D1D2 region was obtained before library preparation.

185

186 Quality control was performed at IGA Technology. DNA concentration was evaluated by
187 using a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA). Amplicon-seq libraries of
188 D1/D2 regions of the fungal 26S rRNA gene were obtained from each sample by
189 following 16S Metagenomic Sequencing Library Preparation protocol with minor
190 modifications. Briefly, a composite pair of primers: the forward primer (NL1) 5'-
191 GCATATCAATAAGCGGAGGAAAAG-3' and the reverse primer (NL4) 5'-
192 GGTCCGTGTTCAAGACGG-3³² containing Illumina overhang sequences necessary
193 for the compatibility with Illumina index and sequencing adapters were used for the first
194 PCR amplification under the following conditions: 95°C for 3 minutes; 28 cycles of: 95°C
195 for 30 seconds, 55°C for 30 seconds, 72°C for 30 seconds; 72°C for 5 minutes; hold at

196 4°C. Upon the clean-up, the second PCR was performed under the following conditions:
197 95°C for 3 minutes; 9 cycles of: 95°C for 30 seconds, 55°C for 30 seconds, 72°C for 30
198 seconds; 72°C for 5 minutes; hold at 4°C. Relevant flow-cell binding domains and unique
199 indices (NexteraXT Index Kit, FC-131-1001/FC-131-1002) were integrated to the
200 amplicon target. Libraries were normalized by Qubit 2.0 Fluorometer, pooled and
201 sequenced on MiSeq using paired 300-bp reads, and MiSeq v3 reagents (Illumina, San
202 Diego). Sequence reads were analysed in the cloud bioinformatics platform GAIA
203 (metagenomics.sequentiabiotech.com)³³. Sequencing quality was assessed using FastQC
204 (bioinformatics.babraham.ac.uk/projects/fastqc/) and BBduk (jgi.doe.gov/data-and-tools/bbtools/), setting a minim length of 35bp and a minimum Phred-quality score of 25.
206

207 The resulting high-quality reads were mapped against a custom-made cured database of
208 26S fungal sequences from NCBI. To have the dataset as complete as possible for the
209 analysis, all the sequences were downloaded from GenBank with the queries "28S rRNA"
210 or "28S ribosomal RNA" not "uncultured" not "fungal endophyte" not "fungal sp." Also,
211 our dataset included a sequence for every *Malassezia* species even the non-culturable
212 ones. The database included only fungal sequences due to the aim of this study. For
213 taxonomic classification, the mapping-based approach against the database with the
214 BWA mapper³⁴ is followed by an in house Lowest Common Ancestor (LCA) algorithm.
215 The minimum identity thresholds applied to classify the reads into different taxonomic
216 levels were species (99%), genus (98%), family (96%), order (94%), class (92%), and
217 phylum (90%) following the limits proposed by GAIA software. Those taxa with an
218 abundance below 0.01% considering its mean across the different samples within an
219 experimental group were filtered out before further analysis. DESeq2 (v1.26)³⁵ was used
220 to carry out differential abundance analyses.

221
222 GAIA also assesses the diversity within (alpha-diversity) and between (beta-diversity)
223 samples. Alpha-diversity measures the richness (number of OTUs) and evenness (the
224 relative abundance of OTUs) in samples. On the other hand, beta-diversity measures the
225 distance or dissimilarity between pairs of samples. Alpha and beta diversities are
226 calculated using the R package phyloseq³⁶.

227

228 **3. Results**

229 **3.1. Culture and Cytological examination**

230 The presence of spherical *Malassezia* yeast like cells was identified on 33 out of the 60
231 rabbits (Table 1, Supplementary Table 1). The cells observed were spherical with buds in
232 a monopolar pattern on a narrowed base that in some cases were elongated but remained
233 more narrow than the bud (Figure 1). No growth was observed in any of the culture media
234 used after 20 days of incubation at 32°C (Supplementary Table 1).

235

236 **3.2. Sanger sequencing**

237 D1/D2 region was successfully amplified and sequenced for five swabs (Supplementary
238 Table 1) resulting in a product of 603 bp. The sequences were nearly identical showing
239 only a base pair difference.

240

241 A BLAST search against the NCBI database revealed that this sequence had a percent
242 identity of 100% to an uncultured Basidiomycota clone 131³⁷ with a query coverage of
243 74%, and 91% to the sequence GU733708 belonging to *M. cuniculi* CBS 11721 type
244 strain, which was the closest match. Our sequences differed from the sequence of *M.*
245 *cuniculi* at 56-57 positions (dissimilarity 9%).

246

247 ITS-5.8S rRNA was successfully amplified and sequenced for five swabs (Supplementary
248 Table 1), resulting in a product of 807 base pairs. These sequences obtained were
249 identical. A search on GenBank database revealed that this sequence had a percent
250 identity of 80.74% to *M. cuniculi* CBS11721 type material (NR_137752).

251

252 The sequences generate have been deposited at the GenBank database under accession
253 numbers MT812469, MT812503, MT812504.

254

255 Maximum likelihood analysis of the D1/D2 and ITS-5.8S rRNA sequences are shown in
256 Fig. 2 and Fig. 3, respectively. With both genes, the sequences obtained clustered close
257 to *M. cuniculi* CBS11721.

258

259 **3.3. NGS data analysis**

260 All samples were correctly sequenced, and the generated fastq files reported an average
261 value of 52,886 reads passing filter. The number of generated sequences reads of each
262 sample is described in Table 2. The raw sequencing data is available at the NCBI
263 database, SRA accession PRJNA649860.

264

265 To characterize the diversity of species in each sample we used the Shannon diversity
266 index (Table 2) which increases as both the richness and the evenness of the community
267 increase. We obtained an average of 120 species and a diversity of 2.43. Sample from
268 Rex rabbit was the most diverse among the group and sample from New Zealand rabbit
269 showed the least diversity.

270

271 We investigated the taxonomic compositions of all samples at various taxonomic levels.
272 Fungi from three different phyla were identified (Figure 4). The most abundant fungal
273 phyla across all samples was *Basidiomycota* with a median relative abundance of 56.29%
274 (range, 43.77-83.49 %) followed by *Ascomycota* (median= 17.32% ; range, 2.68-27.91%)
275 and *Mucoromycota* (median= 0.25%; range, 0.09-0.38 %).

276

277 When analysed at class (Figure 5), order (Figure 6) and family level (Figure 7),
278 *Malasseziomycetes* (51.89%), *Malasseziales* (51.77%), and *Malasseziaceae* (51.39%)
279 represented the highest abundance. As shown in Figure 8, within the phylum
280 *Basidiomycota*, the most common genus was *Malassezia* (30.56-78.63%;
281 median=48.55%), followed by *Filobasidium* (0.04-0.79%; median=0.37%) and
282 *Vishniacozyma* (0.06-1.75%; median=0.21%) in much smaller percentage. Within the
283 phylum *Ascomycota* the three most common genera were *Cladosporium* (0.65-7.39 %;
284 median=3.25%), *Fusarium* (0.00-1.25 %; median=0.55%) and *Alternaria* (0.21-0.98 %;
285 median=0.40%). Within the phylum *Mucoromycota* not enough reads were classified at
286 the level of genera.

287

288 Different fungal taxa were identified in the samples as shown in Figure 9. *Malassezia*
289 phylotype 131 was detected in all samples and it was the predominant taxa (median=
290 41.45%; range, 26.08-69.13%). This study identified other *Malassezia* species (Figure
291 10). *Malassezia cuniculi* was also detected from all samples but in lower abundance
292 (median=0.02%; range, 0.01-0.03%). *Malassezia pachydermatis* and *M. restricta* were
293 only present in two samples corresponding to the Rex and New Zealand rabbits. An
294 average of 10.09% of the *Malassezia* sequences were not identified to species level.
295 Within this percentage, the majority of sequences were marked as unknown because a

296 match with enough coverage and identity was not found in our database for them. Within
297 this group of unknown, 7.20% were identified to genus level, 2.50% to family level, and
298 0.36% and 0.16% to order and class level, respectively. A small percentage of the
299 sequences (0.036%) were considered ambiguous because their sequence matched with
300 two different *Malassezia* species sequences.

301

302 Neither *Malassezia* phylotype 131 nor *M. cuniculi* were present in the sterile cotton swab
303 used as control. In this swab, *M. globosa*, *M. pachydermatis* and *M. restricta* were
304 detected at percentage between 0.52-1.94%.

305

306 No significant differences were observed in the amount of *Malassezia* sequences detected
307 between lop and erect-eared rabbits.

308

309 **4. Discussion**

310 The presence of *Malassezia* in the samples was determined by both cytological
311 examination and Sanger sequencing. On direct microscopic exam the presence of round
312 yeast cells with unipolar budding was detected in more than 50% of the samples. The
313 morphology of the yeast cells observed suggested a *Malassezia* species different from *M.*
314 *pachydermatis* and similar to *M. cuniculi*. When attempted to recover this organism in
315 culture, no growth was observed in any of the culture media used including LNA from
316 which *M. cuniculi* was isolated for the first time⁴. Some *Malassezia* species are fastidious
317 yeasts that have specific nutritional requirements to grow. For example, *M. cuniculi* is
318 only able to grow after 7 days of incubation on LNA and grows better at 37-40°C. At
319 32°C the colonies are smaller than the ones cultured between 37-40°C⁴.

320

321 In this study the sequences D1/D2 of the 26S rRNA gene and the ITS rRNA genes of the
322 samples were sequenced by Sanger sequencing. The main sequence obtained was
323 coincident with that of *Malassezia* phylotype 131, a non-described *Malassezia* yeast
324 detected in the external auditory ear canal of humans³⁷. This phylotype has not yet been
325 cultured, and would explain the lack of growth observed in our study.

326

327 The phylogenetic trees inferred from the maximum likelihood analysis of both the D1D2
328 and the ITS sequences obtained in this study show that *Malassezia* phylotype 131
329 clustered close but with a significant distance to *M. cuniculi*. These results agree with the
330 study conducted by Zhang *et al.* (2012) in which the phylotype 131 was described.

331

332 The D1/D2 region of the fungal 26S rRNA gene was selected in this study for the
333 metagenomics analysis of the samples instead of the widely extended ITS region. The
334 26S rRNA gene is part of the LSU that has been used extensively for fungal phylogeny
335 and taxonomic placement³⁸. The ITS region is considered the universal barcode for
336 fungi³⁹. However, the extent of the ITS sequence length variability among the different
337 fungal species and genera does not allow for robust sequence alignment⁴⁰ and may lead
338 to preferential amplification and sequencing. Also, an incorrect estimation of the
339 abundance of population may occur²⁸. Thus, in this study the LSU region was considered
340 the most reliable because this region provides a molecular marker placement of new
341 fungal lineages or for analysis of fungal lineages^{40,41,42}, especially in *Malassezia* genus²¹.

342 A study comparing NGS results using both ITS and 26S as targeted genes, Mota-
343 Gutiérrez and co-workers suggested that 26S as a target gene showed a greater
344 biodiversity in biological samples compared with the universal primer ITS⁴³. Currently
345 the LSU has shown to work better in species discrimination for yeasts than for

346 filamentous fungi⁴⁴. A study conducted by Vu *et al.* demonstrated that while ITS worked
347 better in species discrimination in *Ascomycota*⁴⁴, the LSU outperformed in
348 *Basidiomycota*. Finally, a study conducted by Hoggard *et al.* comparing the results
349 obtained in NGS using three different genes (ITS, LSU and SSU) demonstrated that
350 *Malassezia* spp. are markedly under-represented using ITS⁴⁵.

351

352 It has been demonstrated by previous authors that strains of yeasts species show less than
353 1% of dissimilarity in LSU regions^{40,41,42}. Therefore, an identity threshold of 99% for
354 taxonomic classification at the level of species was applied in this study.

355

356 *Basidiomycota* was the main phylum identified in the ear samples of healthy rabbits,
357 followed by *Ascomycota*. Within *Ascomycota*, *Cladosporium*, *Fusarium* and *Alternaria*
358 were the three most common fungal genera detected. These genera are commonly isolated
359 from environmental samples and they are considered transient mycobiota. Within
360 *Basidiomycota*, *Malassezia* was the main genus present in the samples from healthy
361 rabbits as it is a common member of the mycobiota of the skin and the external ear canal
362 of rabbits. These results differ from those obtained in studies of the ear mycobiota of
363 healthy dogs and cats^{46,47}. In the ear canal of both dogs and cats the main phylum
364 identified was *Ascomycota*. Within the *Basidiomycota*, *Cryptococcus* was the main genus
365 in dogs and cats, followed by *Malassezia* in dogs^{46,47}. Two comparative studies of the ear
366 mycobiota of healthy and dogs with otitis externa conducted by Korbelik *et al.* and
367 Bradley *et al.* agreed with the results obtained by previous authors^{48,49}. *Ascomycota* was
368 the main phylum followed by *Basidiomycota* in healthy dogs. The samples from allergic
369 dogs and dogs with otitis showed less fungal diversity and richness in both studies^{46,48}. In
370 dogs with affected ears *Basidiomycota* was the most abundant phylum and *M.*

371 *pachydermatis* the most abundant species^{48,49}. Neither *M. cuniculi* nor phylotype 131
372 were detected in the samples of dogs and cats^{46,47,48,49}. In those studies, the ITS region
373 was selected to be amplified and the Findley *et al.* and the UNITE fungi databases were
374 used⁵⁰.

375

376 In humans, *M. slooffiae* and *M. restricta* were the predominant *Malassezia* species in the
377 external ear canal³⁷. Therefore, *Malassezia* was the predominant genus in the external ear
378 canal of humans and thus *Basidiomycota* the main phylum. *Malassezia cuniculi* was not
379 detected in the samples of humans³⁷.

380

381 The presence of a small amount of *M. pachydermatis* and *M. restricta* was detected in
382 two of the samples corresponding with the New Zealand and Rex breeds. Both *M.*
383 *pachydermatis* and *M. restricta* were also detected in the sterile swab used as negative
384 control. The inclusion of control is indispensable in multiple steps of NGS-based studies
385 due to the greater detection ratio compared to traditional technics^{51,52}. In our study a sterile
386 swab was included as a negative control and processed in parallel with the other samples.

387 Controls must be treated identically to other samples during the whole process. Currently
388 there is no consensus in how to handle the sequences recovered from the negative
389 controls. One approach could be to simply eliminate from all the samples any OTUs that
390 appeared in negative controls. This approach could eliminate some of the most abundant
391 OTUs. To avoid eliminating OTUs that could be relevant to the study another approach
392 could be to subtract the number of sequences of each OTU present in the negative control
393 from the abundance of that OTU found in the samples⁵¹. In this case, neither *M.*
394 *pachydermatis* nor *M. restricta* would be present in the rabbit samples. The presence of
395 these OTUs in the negative control could be the result of contamination during the

396 manipulation of the samples (sampling, storage, DNA extraction, PCR...) but also it
397 could be the result of primer cross-contamination at any stages from oligonucleotide
398 manufacturing to PCR⁵¹.

399

400 Although the ear morphology has been suggested as a factor that could affect the diversity
401 of the ear mycobiota, our study did not identify a significant difference in the abundance
402 of *Malassezia* between lop and ear-erected rabbits. This lack of significant difference
403 could be as a result of the fairly small sample size in our study. However, our results agree
404 with the findings of previous studies of the increased predisposition of lop-eared rabbit
405 to aural and dental problems and of the external auditory meatus in healthy domestic
406 rabbits^{11,12}. *Malassezia* being part of the normal microbiota of the ear canal of rabbits, as
407 it is in other species such as dogs or cats, could explain this lack of statistical difference
408 between lop and erect-eared rabbits^{11,12,53}.

409

410 **Conclusions**

411 Although no growth was observed in any of the culture media used, the presence of
412 *Malassezia* fungal taxa was detected in more than a half of the external ear canal of the
413 rabbits by cytology. *Malassezia* was also detected by Sanger sequencing and NGS in all
414 selected samples. Regarding NGS, the use of the LSU as a target gene allowed us the
415 description of fungal diversity and the taxonomic classification of several *Malassezia*
416 species. *Malassezia* phylotype 131 and *M. cuniculi* were detected in all the samples.
417 Among all the fungal taxa detected in this study, *Malassezia* phylotype 131 showed the
418 highest abundance in all the samples. Further studies would be needed to isolate and
419 characterize the *Malassezia* phylotype 131 and to know its role in the external ear canal
420 mycobiome of rabbits and human beings.

421

422 **Acknowledgments**

423 The authors thank Carolina Gómez from the Veterinary Mycology Group of Universitat
424 Autònoma de Barcelona (UAB) for valuable technical assistance. We also thank to all the
425 staff of the Exotic Pets Service of the Veterinary Teaching Hospital of UAB.

426

427 **Funding**

428 Financial support came from Servei Veterinari de Bacteriologia i Micologia from the
429 UAB.

430

431 **Conflict of Interest Statement**

432 Walter Sanseverino and Andreu Paytuví-Gallart were employed by company Sequentia
433 Biotech S.L. All other authors declare no competing interests.

434

435 **References**

- 436 1. Cabañes FJ. *Malassezia* yeasts: how many species infect humans and animals?.
437 *PLoS Pathog.* 2014; 10. doi:10.1371/journal.ppat.1003892.
- 438 2. Cabañes FJ. Diversity and adaptation within the genus *Malassezia*: Bats already
439 have their species. *Rev Iberoam Micol.* 2020. doi: 10.1016/j.riam.2019.12.001.
- 440 3. Guillot J, Bond R. *Malassezia* yeasts in veterinary dermatology: an updated
441 overview. *Front Cell Infect Microbiol.* 2020; 10: 79.
- 442 4. Cabañes FJ, Vega S, Castellá G. *Malassezia cuniculi* sp. nov., a novel yeast
443 species isolated from rabbit skin. *Med Mycol.* 2011; 49: 40-48.
- 444 5. Cabañes FJ. Yeast pathogens of domestic animals. In: Ashbee R, Bignell EM, eds.
445 *Pathogenic Yeasts*, 1st edn. Place: Springer, Berlin, Heidelberg, 2009: 253-279.

446 6. Hirai A, Kano R, Makimura K, *et al.* *Malassezia nana* sp. nov., a novel lipid-
447 dependent yeast species isolated from animals. *Int J Syst Evol Microbiol.* 2004;
448 54: 623-627.

449 7. Bond R, Guillot J, Cabañes FJ. *Malassezia* yeasts in animal disease. In: Boekhout
450 T, Guého-Kellerman E, Mayser P, eds. *Malassezia And The Skin*, 1st edn. Place:
451 Springer, Berlin, Heidelberg, 2010: 271-299.

452 8. Cabañes FJ, Coutinho SD, Puig L, Bragulat MR, Castellá G. New lipid-dependent
453 *Malassezia* species from parrots. *Rev Iberoam Micol.* 2016; 33: 92-99.

454 9. Lorch JM, Palmer JM, Vanderwolf KJ, *et al.* *Malassezia vespertilionis* sp. nov.: a
455 new cold-tolerant species of yeast isolated from bats. *Persoonia.* 2018; 41: 56-70.

456 10. Sugita T, Boekhout T, Velegraki A, Guillot J, Hadjina S, Cabañes FJ.
457 Epidemiology of *Malassezia*-related skin diseases. In: Boekhout T, Guého-
458 Kellerman E, Mayser P, eds. *Malassezia And The Skin*, 1st edn. Place: Springer,
459 Berlin, Heidelberg, 2010: 65-119.

460 11. Johnson JC, Burn CC. Lop-eared rabbits have more aural and dental problems
461 than erect-eared rabbits: a rescue population study. *Vet Rec.* 2019; 185: 758.

462 12. Quinton JF, François M, Laprais A, Prelaud P. Cytology of the external auditory
463 meatus in healthy domestic pet rabbits (*Oryctolagus cuniculus*). *Rev Méd Vét.*
464 2014; 165: 263-266.

465 13. Leeming JP, Notman FH. Improved methods for isolation and enumeration of
466 *Malassezia furfur* from human skin. *J Clin Microbiol.* 1987; 25: 2017-2019.

467 14. Guého E, Midgley G, Guillot J. The genus *Malassezia* with description of four
468 new species. *Antonie Van Leeuwenhoek.* 1996; 69: 337-355.

469 15. Xu J, Saunders CW, Hu P, *et al.* Dandruff-associated *Malassezia* genomes reveal
470 convergent and divergent virulence traits shared with plant and human fungal
471 pathogens. *Proc Natl Acad Sci U S A.* 2007; 104: 18730-18735.

472 16. Wu G, Zhao H, Li C, *et al.* Genus-wide comparative genomics of *Malassezia*
473 delineates its phylogeny, physiology, and niche adaptation on human skin. *PLoS*
474 *Genet.* 2015; 11: 1-26.

475 17. Hay RJ, Midgley G. Introduction: *Malassezia* yeasts from a historical perspective.
476 In: Boekhout T, Guého-Kellerman E, Mayser P, eds. *Malassezia And The Skin*,
477 1st edn. Place: Springer, Berlin, Heidelberg, 2010: 1-16.

478 18. Puig L, Bragulat MR, Castellá G, Cabañes FJ. Characterization of the species
479 *Malassezia pachydermatis* and re-evaluation of its lipid dependence using a
480 synthetic agar medium. *PLoS ONE.* 2017; 12: e0179148.

481 19. Cabañes FJ. *Malassezia pachydermatis*: To be, or not to be lipid-dependent. *Rev*
482 *Iberoam Micol.* 2020; 37: 3-4.

483 20. Guého-Kellerman E, Boekhout T, Begerow D. Biodiversity, phylogeny and
484 ultrastructure. In: Boekhout T, Guého-Kellerman E, Mayser P, eds. *Malassezia*
485 *And The Skin*, 1st edn. Place: Springer, Berlin, Heidelberg, 2010:17-63.

486 21. Castellá G, Coutinho SD, Cabañes FJ. Phylogenetic relationships of *Malassezia*
487 species based on multilocus sequence analysis. *Med Mycol.* 2014; 52: 99-105.

488 22. Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson TL.
489 *Malassezia* ecology, pathophysiology, and treatment. *Med Mycol.* 2018; 56: 10-
490 25.

491 23. Forde BM, O'Toole PW. Next-generation sequencing technologies and their
492 impact on microbial genomics. *Brief Funct Genomics.* 2013; 12: 440-453.

493 24. Kulski J (eds). *Next Generation Sequencing: Advances, Applications And*
494 *Challenges*, 1st ed. Place: *IntechOpen*, 2016.

495 25. Forbes JD, Knox NC, Ronholm J, Pagotto F, Reimer A. Metagenomics: the next
496 culture-independent game changer. *Front Microbiol.* 2017; 8: 1069.

497 26. Lücking R, Hawksworth DL. Formal description of sequence-based voucherless
498 Fungi: promises and pitfalls, and how to resolve them. *IMA Fungus.* 2018; 9: 143-
499 166.

500 27. Wilkening S, Tekkedil MM, Lin G, *et al.* Genotyping 1,000 yeast strains by next-
501 generation sequencing. *BMC Genomics.* 2013; 14: 90.

502 28. De Filippis F, Laiola M, Blaiotta G, Ercolini D. Different amplicon targets for
503 fungal sequencing-based studies of fungal diversity. *Appl Environ Microbiol.*
504 2017: 83. doi:10.1128/AEM.00905-17.

505 29. Mohanta TK, Bae H. The diversity of fungal genome. *Biological procedures*
506 *online.* 2015; 17: 8.

507 30. Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B. Genomics of the fungal
508 kingdom: insights into eukaryotic biology. *Genome Res.* 2005; 15: 1620-1631.

509 31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. Mega X: molecular evolutionary
510 genetics analysis across computing platforms. *Mol Biol Evol.* 2018; 35: 1547-
511 1549.

512 32. Reynolds DR, Taylor JW. *The Fungal Holomorph: Mitotic, Meiotic and*
513 *Pleomorphic Speciation In Fungal Systematics*, 1st edn. Place: CAB international,
514 1993.

515 33. Paytuví-Gallart A, Battista E, Scippaccerola F, Aiese Cigliano R, Sanseverino W.
516 GAIA: an integrated metagenomics suite. *bioRxiv.* 2019; 804690. doi:
517 10.1101/804690.

518 34. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler
519 transform. *Bioinformatics*. 2010; 26: 589-595.

520 35. Love MI, Huber W, Anders S. Moderated estimation of fold change and
521 dispersion for RNA-seq data with DESeq2. *Genome Biol.* 2014; 15: 550.

522 36. McMurdie PJ, Holmes S. phyloseq: An R Package for reproducible interactive
523 analysis and graphics of microbiome census data. *PLoS ONE*. 2013; 8: e61217.

524 37. Zhang E, Tanaka T, Tsuboi R, Makimura K, Nishikawa A, Sugita T.
525 Characterization of *Malassezia* microbiota in the human external auditory canal
526 and on the sole of the foot. *Microbiol Immunol*. 2012; 56: 238-244.

527 38. Vu D, Groenewald M, de Vries M, *et al*. Large-scale generation and analysis of
528 filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals
529 thresholds for fungal species and higher taxon delimitation. *Stud Mycol*. 2019; 92:
530 135-154.

531 39. Schoch CL, Seifert KA, Hunhdorf S, *et al*. Nuclear ribosomal trancribed spacer
532 (ITS) region as a universal DNA barcode marker for Fungi. *Proc Natl Acad Sci U
533 S A*. 2012; 109: 6241-6246.

534 40. Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A. Systematics of
535 basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal
536 transcribed spacer rDNA regions. *FEMS Yeast Res*. 2002; 2: 495-517.

537 41. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A. Biodiversity
538 and systematics of basidiomycetous yeasts as determined by large-subunit rDNA
539 D1/D2 domain sequence analysis. *Int J Syst Evol Microbiol*. 2000; 50: 1351-1371.

540 42. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts
541 from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences.
542 *Antonie Van Leeuwenhoek*. 1998; 73: 331-371.

543 43. Mota-Gutierrez J, Ferrocino I, Rantsiou K, Cocolin L. Metataxonomic
544 comparison between internal transcribed spacer and 26S ribosomal large subunit
545 (LSU) rDNA gene. *Int J Food Microbiol.* 2019; 290: 132-140.

546 44. Vu D, Groenewald M, Szöke S, *et al.* DNA barcoding analysis of more than 9,
547 000 yeast isolates contributes to quantitative thresholds for yeast species and
548 genera delimitation. *Stud Mycol.* 2016; 85: 91-105.

549 45. Hoggard M, Vesty A, Wong G, *et al.* Characterizing the Human Mycobiota: A
550 Comparison of Small Subunit rRNA, ITS1, ITS2, and Large Subunit rRNA
551 Genomic Targets. *Front microbial.* 2018; 9: 2208.

552 46. Meason-Smith C, Diesel A, Patterson AP, *et al.* What is living on your dog's skin?
553 Characterization of the canine cutaneous mycobiota and fungal dysbiosis in
554 canine allergic dermatitis. *FEMS Microbiol Ecol.* 2015; 91: 139.

555 47. Meason-Smith C, Diesel A, Patterson AP, *et al.* Characterization of the cutaneous
556 mycobiota in healthy and allergic cats using next generation sequencing. *Vet
557 Dermatol.* 2017; 28: 71.

558 48. Korbelik J, Singh A, Rousseau J, Weese S. Analysis of the otic mycobiota in dogs
559 with otitis externa compared to healthy individuals. *Vet Dermatol.* 2018; 29: 417
560 e138.

561 49. Bradley CW, Lee FF, Rankin SC, *et al.* The otic microbiota and mycobiota in a
562 referral population of dogs in eastern USA with otitis externa. *Vet Dermatol.*
563 2020; 31: 225-249.

564 50. Findley K, Oh J, Yang J, *et al.* Topographic diversity of fungal and bacterial
565 communities in human skin. *Nature.* 2013; 498: 367-370.

566 51. Nguyen NH, Smith D, Peay K, Kennedy P. Parsing ecological signal from noise
567 in next generation amplicon sequencing. *New Phytol.* 2015; 205: 1389-1393.

568 52. Palmer JM, Jusino MA, Banik MT, Lindner DL. Non-biological synthetic spike-
569 in controls and the AMPtk software pipeline improve mycobiome data. *PeerJ*.
570 2018; 6: e4925.

571 53. Campbell JJ, Coyner KS, Rankin SC, Lewis TP, Schick AE, Shumaker AK.
572 Evaluation of fungal flora in normal and diseased canine ears. *Vet Dermatol*.
573 2010; 21: 619-25.

574 **Figure captions**

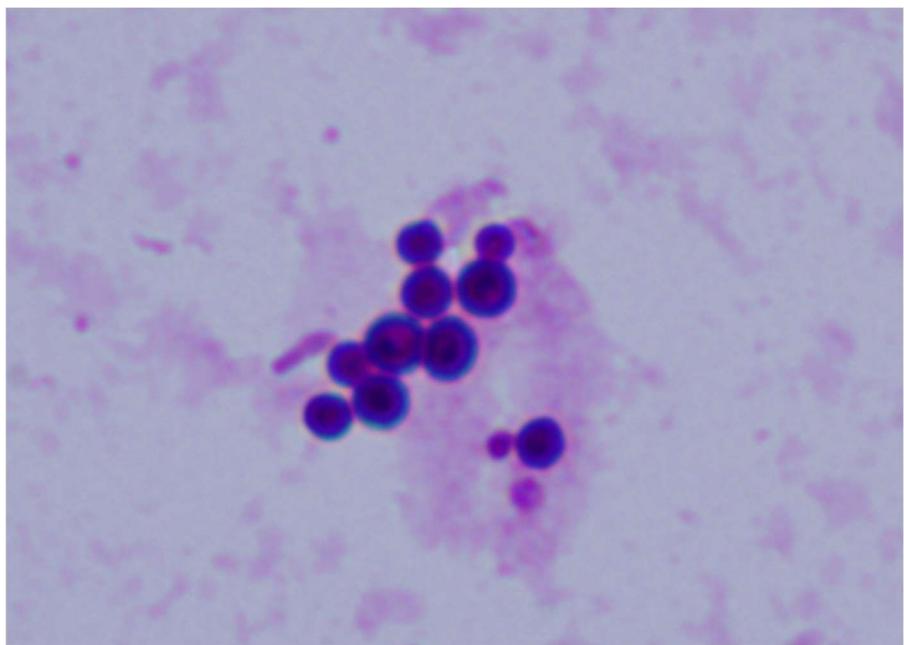
575 **Figure 1.** Diff-Quick stain of a smear from an otic swab of a rabbit showing the presence
576 of spherical yeasts cells, possibly of *Malassezia* phylotype 131 (2-2.5 μ m in diameter).

577 **Figure 2.** Molecular phylogenetic tree inferred from maximum likelihood analysis of
578 D1D2 sequences of members of the genus *Malassezia*. Bootstrap values > 70% in 1000
579 replications are shown at the nodes. Sequences of *Ustilago maydis* ATCC MYA-4924
580 and *Cryptococcus neoformans* CBS 132 were selected as outgroup for the tree
581 construction.

582 **Figure 3.** Molecular phylogenetic tree inferred from maximum likelihood analysis of ITS
583 sequences of members of the genus *Malassezia*. Bootstrap values > 70% in 1000
584 replications are shown at the nodes. Sequence of *Cryptococcus neoformans* CBS 132 was
585 selected as outgroup for the tree construction.

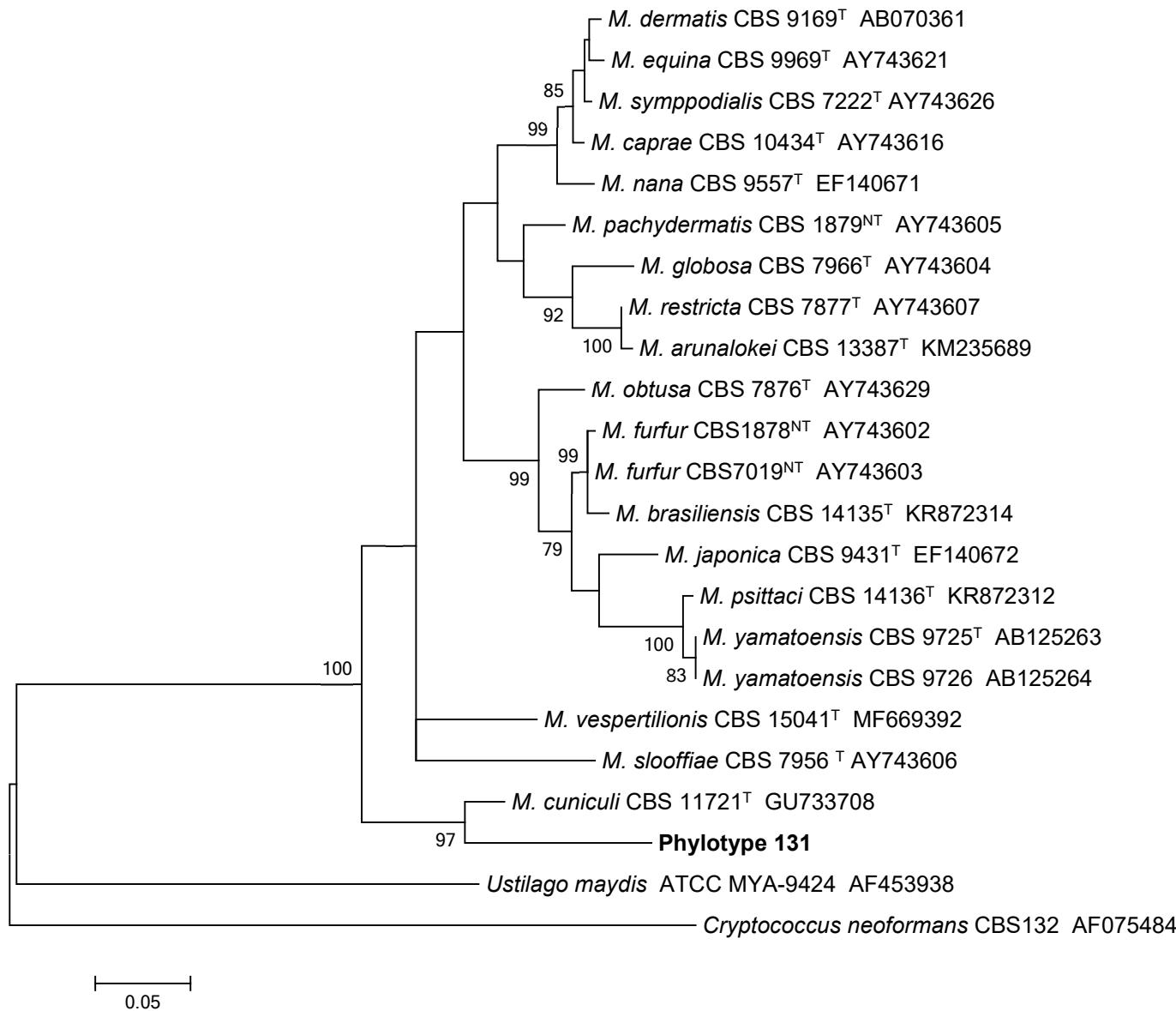
586 **Figure 4.** Average relative abundance of fungal phyla across the different rabbit breeds.

587 **Figure 5.** Average relative abundance of fungal classes across the different rabbit breeds.

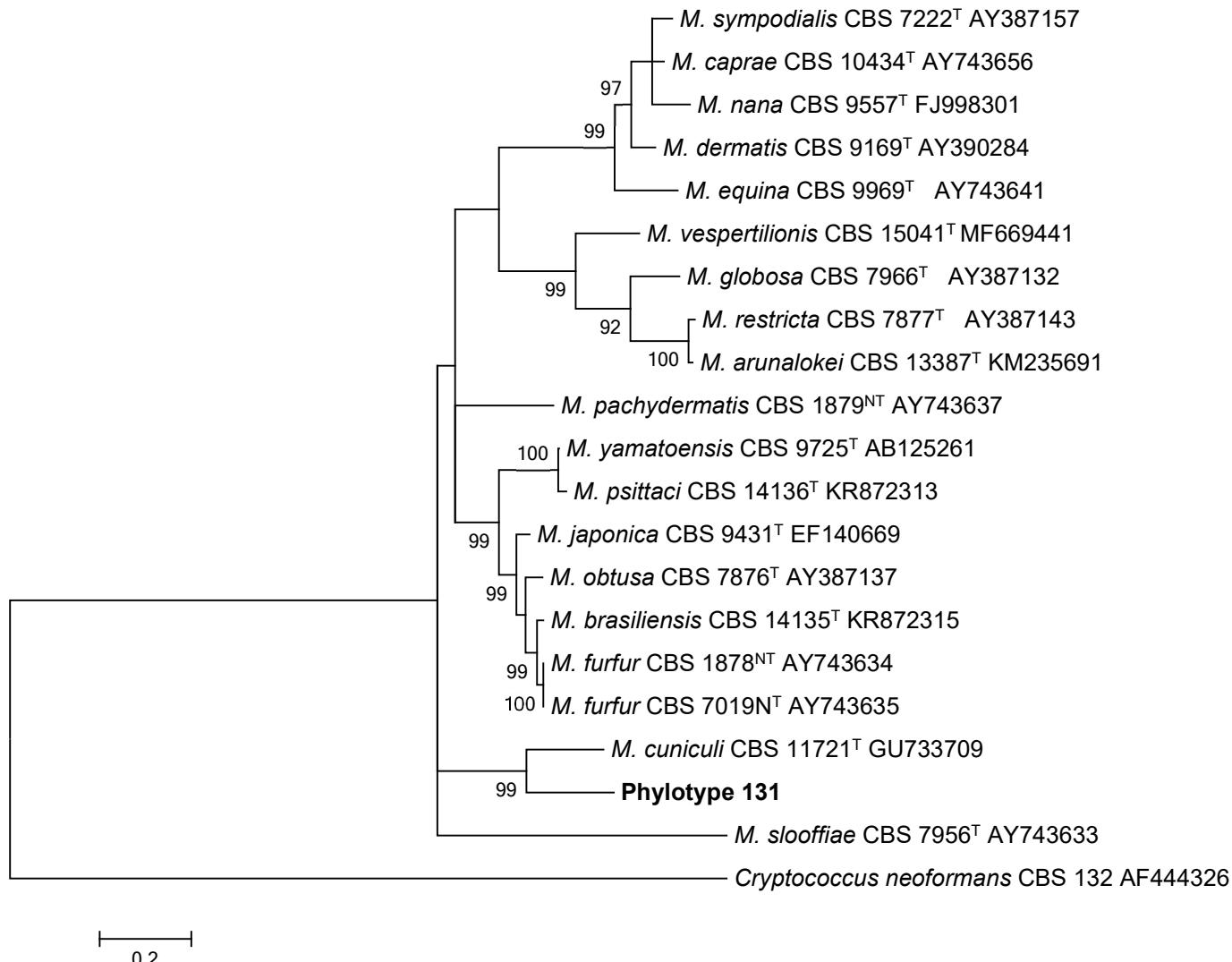

588 **Figure 6.** Average relative abundance of fungal orders across the different rabbit breeds.

589 **Figure 7.** Average relative abundance of fungal families across the different rabbit
590 breeds.

591 **Figure 8.** Average relative abundance of fungal genera across the different rabbit breeds.

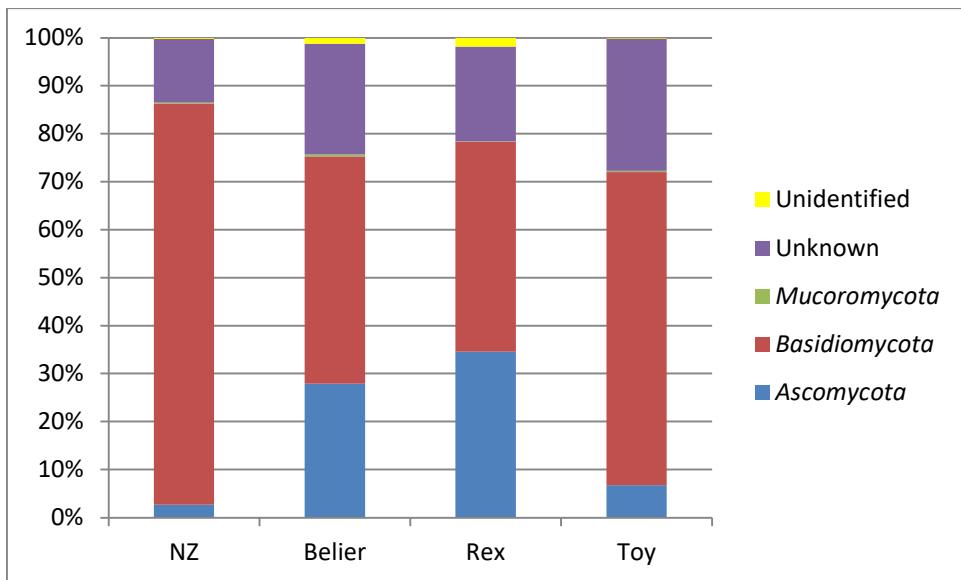

592 **Figure 9.** Average relative abundance of fungal species across the different rabbit breeds.

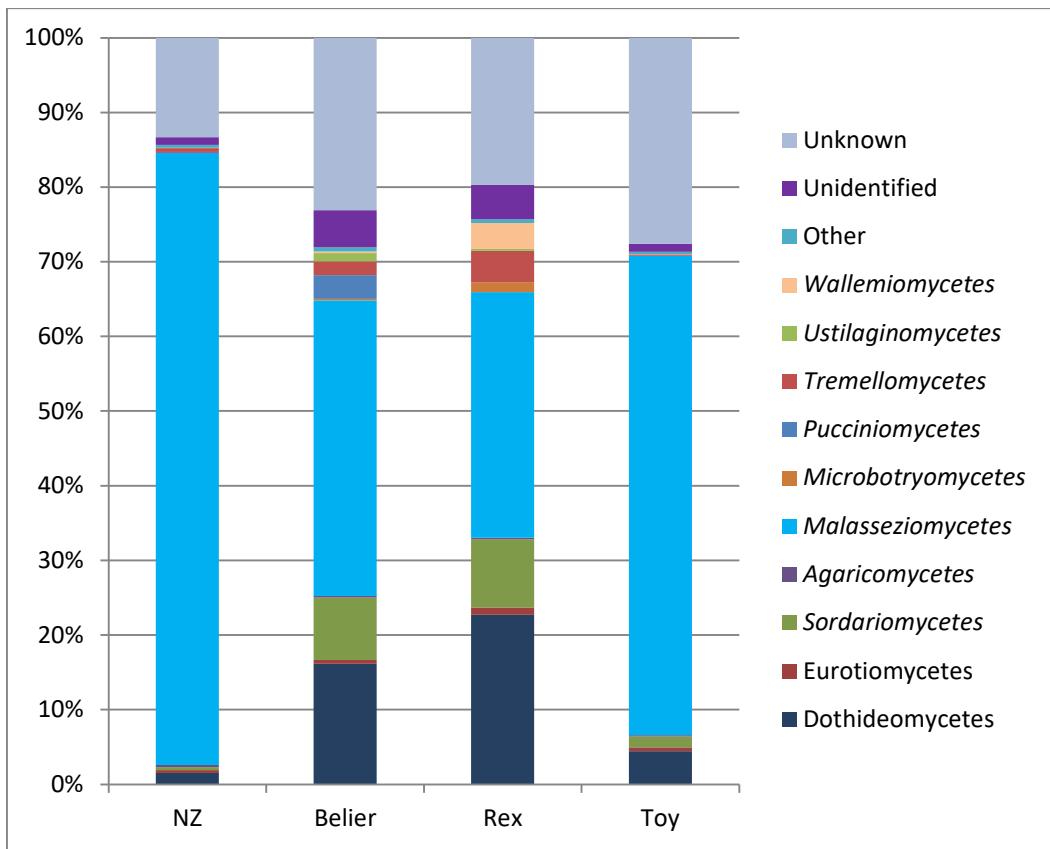
593 **Figure 10.** Average relative abundance of *Malassezia* taxa across the different rabbit
594 breeds. (A) Taxa with a percentage greater than 1%. (B) Taxa with a percentage lower
595 than 1%.

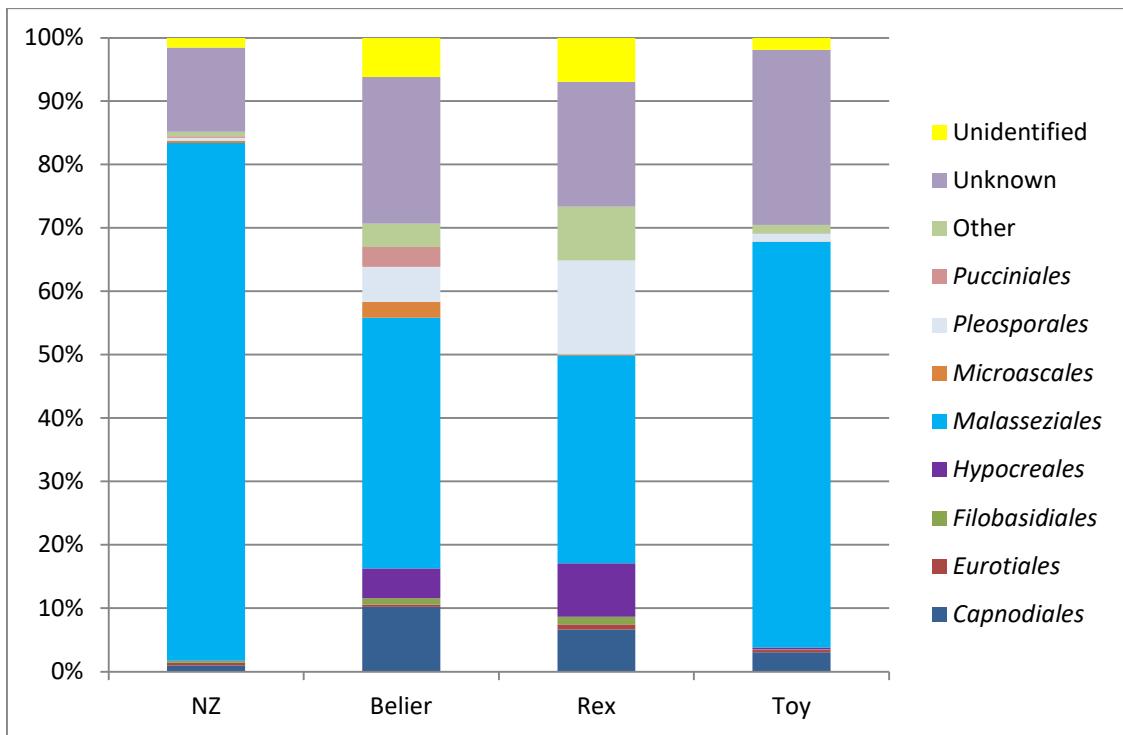


596

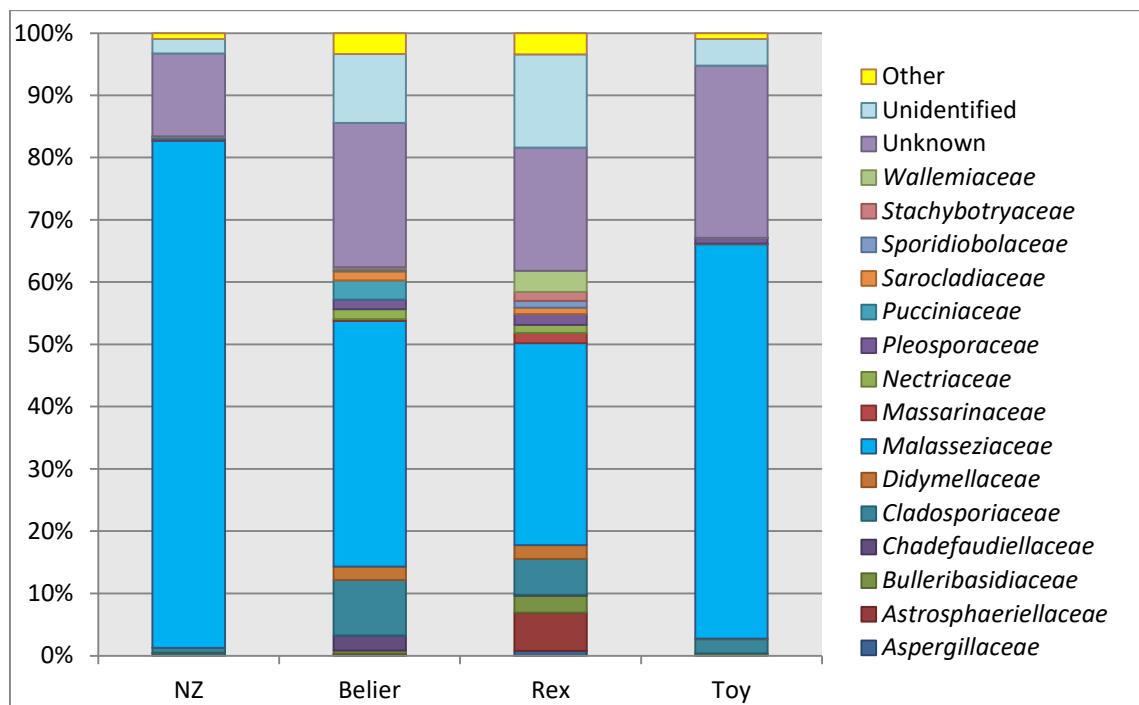
597 **Figure 1.**



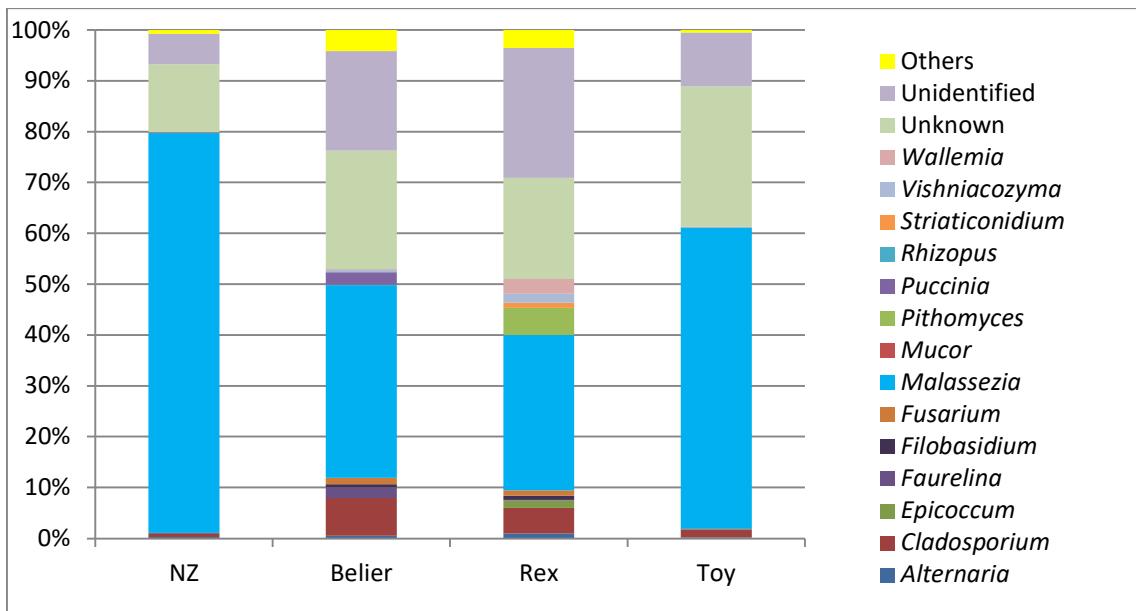

598 **Figure 2.**

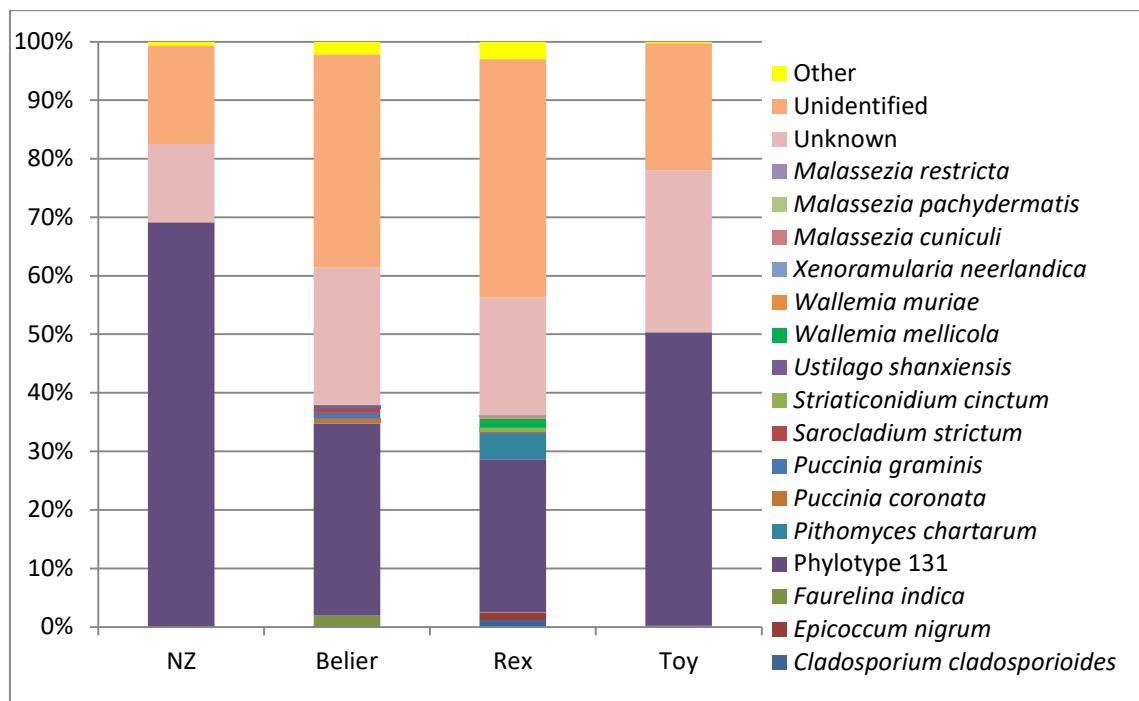

599

600 **Figure 3.**



604
605 **Figure 5.**
606

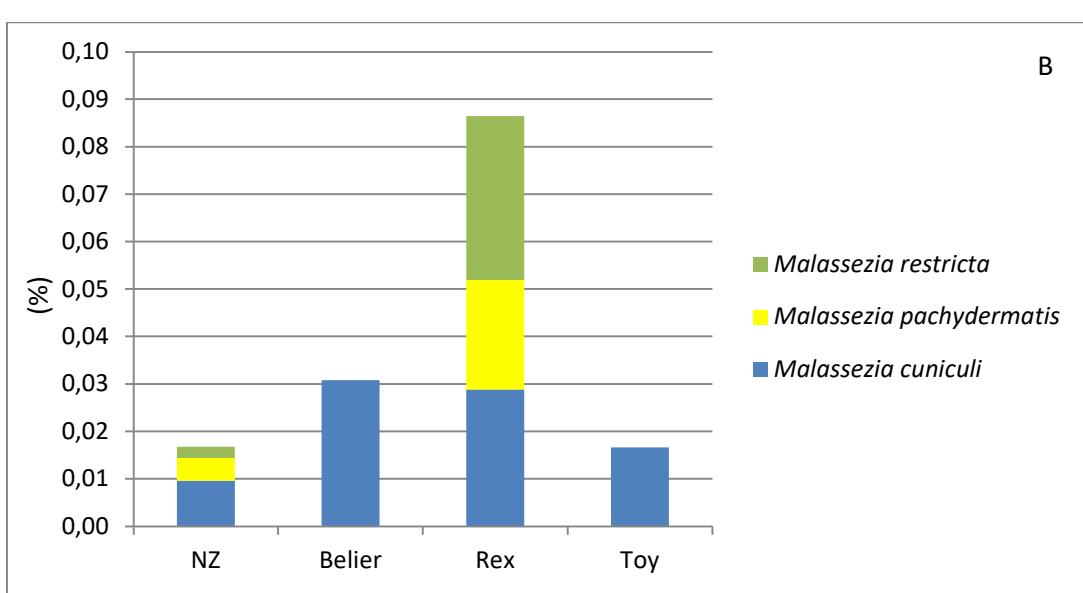
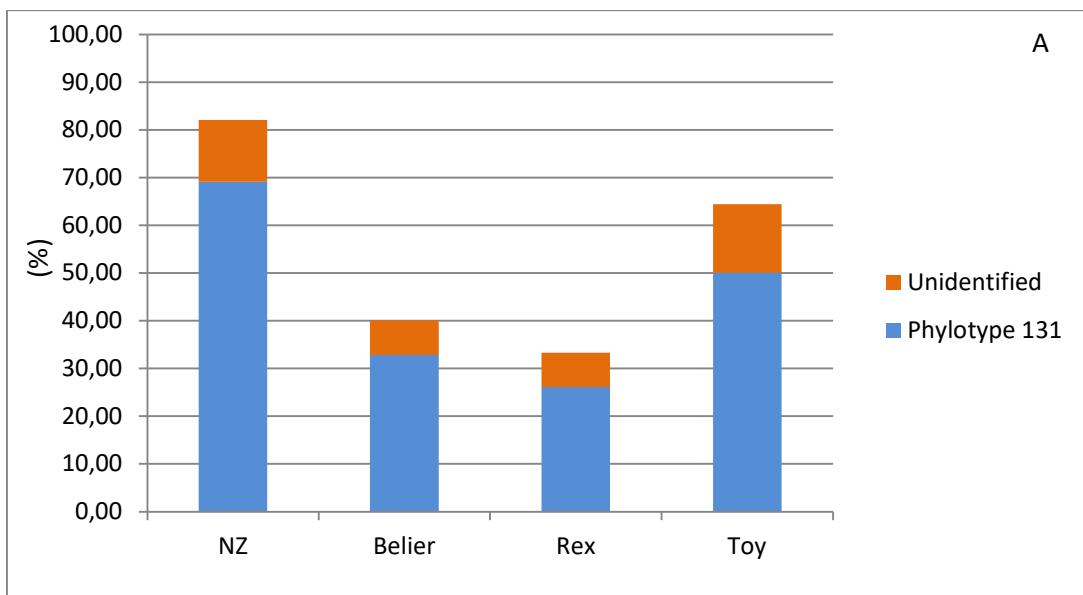

607
608 **Figure 6.**
609
610



611

612 **Figure 7.**

613

617

618 **Figure 9.**

619

626

627

Table 1. Animals per breed included in this study and results of the cytological examination.

Pet rabbits (n=44)			Farmed rabbits (n=16)		
Breed	nº of animals	positive cytology	Breed	nº of animals	positive cytology
New Zealand	8	6	New Zealand	13	13
Belier	10	5	Belier	-	-
Rex	3	2	Rex	3	1
Toy	21	5	Toy	-	-
Mixed breed	2	1	Mixed breed	-	-
Total	44	19		16	14

628

629 **Table 2. NGS reads after filter and biodiversity data obtained from metagenomics analysis.**

Sample	Number reads		Shannon species diversity	Number of species identified
	after quality processing	% reads classified to genus		
New Zealand	41,913	80.67	1.20	116
Belier	46,162	57.24	2.82	184
Rex	52,886	54.55	3.26	176
Toy	54,285	61.79	1.59	120
Average	52,886	59.51	2.43	120

630