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TOPOLOGICAL MODULI SPACE
FOR GERMS OF HOLOMORPHIC FOLIATIONS

DAVID MARIN, JEAN-FRANCOIS MATTEI AND ELIANE SALEM

ABSTRACT. This work deals with the topological classification of germs
of singular foliations on (C?,0). Working in a suitable class of folia-
tions we fix the topological invariants given by the separatrix set, the
Camacho-Sad indices and the projective holonomy representations and
we compute the moduli space of topological classes in terms of the coho-
mology of a new algebraic object that we call group-graph. This moduli
space may be an infinite dimensional functional space but under generic
conditions we prove that it has finite dimension and we describe its
algebraic and topological structure.
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1. INTRODUCTION

This work deals with the topological classification of germs of singular fo-
liations on (C2,0). To every (possibly dicritical) foliation F we can associate
the separatrix set Sepz, that is the collection of all germs at 0 € C? of in-
variant irreducible analytic curves, called separatrices, its minimal reduction
map Er : (Mr,Ex) — (C2,0), cf. [5], and the marked exceptional divisor

EF = (&7, 2F,1F),

where ¥ := Sing(F*) is the finite set consisting of the singular points of
the foliation F*:= E%F and 15 is the intersection pairing of £ = E}l(O)
in Mrz. The topological class of Sepr is clearly a topological invariant of
F. In this paper we will assume that F is a generalized curve, i.e. F* has
no saddle-node singularities. The topological class [£%] of £% (as a marked
intrinsic curve) is then a topological invariant of F because in this situation
Er is also the minimal desingularization map of Sepz, cf. [3].

We know [18] that under some assumptions the Camacho-Sad indices of
F*¥ at the points of ¥ and the holonomy representations (up to inner auto-
morphisms) of every component of £x are also topological invariants of the
germ F at 0 € C?. Our purpose in this work is to describe the set of all other
topological invariants and highlight its geometric and algebraic structure.

MAIN RESULT. Under generic conditions,

(a) there exists an analytic family of foliations parametrized by a fi-
nite dimensional space which gives all the topological types once
we fix the topological class of the marked exceptional divisor, the
Camacho-Sad indices and the holonomy representations;

(b) the quotient of this complete family by the topological equivalence
relation is naturally isomorphic to the abelian group

(Fo B, (C'/af) & (C))/ 2,

where a; € C*, F' 1s a finite abelian group, Z is a finite subgroup,
B is a direct sum of [ totally disconnected subgroups of the uni-
tary group U(1) and the natural numbers 5, \,v only depend on
the (combinatorics of the) local types of the singularities inside the
exceptional divisor.

We will also give an explicit characterization of those foliations satisfying
Assertion (a) in the main result above, that we will call finite type foliations.

We thank the anonymous reviewers for their careful reading of our man-
uscript and their many useful comments and suggestions.
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2. STATEMENT OF RESULTS

2.1. Marking of a foliation. To give a precise sense to our problem let
us call marked divisor any collection £° = (£, %,1) consisting of a compact
curve with normal crossings & whose irreducible components are biholomor-
phic to P!, a finite subset ¥ of £ and a symmetric map 2 : Comp(£)? — Z,
Comp(€) denoting the set of irreducible components of £. We will denote
by £% C & the union of the irreducible components of £ that do not contain
any point of X; we call them dicritical components.

A marking of a foliation F by £° will be a homeomorphism f : &€ — £
sending Y onto X r compatible with the intersection pairing:

wr(f(D), f(D)) = (D, D).

In this way, the holonomy representations and the Camacho-Sad indices of
all pairs F° := (F, f) can now be associated to two common sets of indices:

the set Cgo := Comp(& \ £%) of irreducible components of £ \ £ and the set
Igo := {(D,S) € Cgo X X ‘ s € D}

Indeed, we define
CST" = (CS(F°, D, 5))(psjereer  CS(F°, D, ) := CS(F*, f(D), f(s)),

H = (M) )pecoer MDY :=Hip) o fr + m(D\Z,) — Diff(C,0),

where Hff(ﬁD) is the F*-holonomy representation of m(f(D)\ £z,-) in the
group Diff (C, 0) of germs of holomorphic automorphisms of (C, 0), ’Hﬁo is its
class up to inner automorphisms, f, is the isomorphism induced by f at the
fundamental groups level and CS(F*, f(D), f(s)) is the Camacho-Sad index
of F* along f(D) at f(s).

Let us denote by Fol(£°) the set of germs of generalized curves F at 0 € C?
for which there exists a marking f : £ — £ of F by £°. Our general goal is
to describe a generic subset of the quotient set

[Fol(£%)]co

of the set Fol(£°) by the equivalence relation:
o F~co G if F and G are topologically equivalent as germs at 0 € C2.

2.2. Globalization of topological equivalences. Consider now the equiv-
alence relation:

o F ~g G if F¥ and G! are topologically conjugated, as germs along
the exceptional divisors, by a germ of a homeomorphism (Mrz, Er) —
(Mg, Eg) which is holomorphic at each point of Xz \ NCr,

NCx denoting the subset of the singular points of £, called nodal cor-
ners, where the Camacho-Sad index of F¥ is a strictly positive real number.
Clearly relation ~¢ is stronger than ~co, but they will coincide on a generic
class of foliations when £ fulfills the following condition
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(TC) The closure of each connected component of €\ € contains an irre-
ducible component D with card(DNY) # 2, i.e. there is no connected

component of £\ £ as in Figure 1.

S/ Sl/

FIGURE 1. The only situation excluded by Condition (TC).
Every divisor is non-dicritical and the elements of ¥ are s/,
s” and the intersection points of the divisors; dicritical com-
ponents may intersect any component.

To specify the notion of genericity let us call cut-component of £ any
closure C of a connected component of Ex \ (ELUNCx); if card(DNE) < 2
for each D € Comp(C) we will say that C is exceptional. Now consider the
following transverse rigidity condition:

(TR) Any non-exceptional cut-component of Ex contains an irreducible
component with topologically rigid' holonomy group.

The Krull-open density in Fol(€°) of the subset Foly(E°) consisting of the
foliations F fulfilling Condition (TR) is proven in [10].

Theorem A. If E° satisfies condition (TC) then the relations ~g and ~co
are equal on Foly (E°).

In other words
[Foler(£°)]¢ = [Foler(E9)]eo C [Fol(E7)]co

[X]¢ and [X].0 denoting the quotient of a subset X C Fol(£°) by the relations
~g and ~co respectively. This result, proven in Appendix (Theorem 11.4),
is an extended version of Main Theorem of [18].

Remark 2.1. Theorem A implies that under the hypothesis (TR) and (TC)
the collection of Camacho-Sad indices at the singular points of F* is a topo-
logical invariant of the germ of F at 0. The topological classification of
logarithmic foliations obtained by E. Paul shows [28, Théoréme 3.5 that
Condition (TR) is necessary for this. When Condition (TC) is not sat-
isfied it is easy to construct topologically conjugated foliations with same
separatrices but different Camacho-Sad indices. Indeed, on a neighborhood
of a cut-component described in Figure 1, all the foliations with non-real
Camacho-Sad indices are topologically conjugated. O

IWe recall that a subgroup G of the group Diff(C, 0) of germs of biholomorphisms of C
at 0 is called topologically rigid if every topological conjugation between GG and another
subgroup G’ C Diff(C,0) is necessarily conformal. This class contains the non-solvable
groups [25] and the non-abelian groups with dense linear part [7, Théoréme 2].
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2.3. The Teichmiiller space of foliations. In order to describe [Foli(£°)]q0
we consider the set MFol(E°) of marked by £° foliations F° = (F, f) and we
adapt the equivalence relation ~¢ in Fol(£°) to MFol(£°) by means of
o (F,f)~o(G,g) if there is a germ of homeomorphism ® : (Mr,Ex) —
(Mg, Eg) that conjugates F* and G¥, is holomorphic at each point of
SF\NCF and its restriction to E is isotopic to go f~1 by an isotopy
fixing Xr.

We define the (topological) Teichmiiller space as the quotient set
Mod(&°) := MFol(E°) /~s
so that the Forgetful map
Mod(&°) — [Fol(€%)]co »  [F, f] = [Fleo
is well defined. We consider the action
o [F fl:=[F. fop ], ¢eMcg(€), (F,[)eMFol(),

on Mod(&£°) of the Mapping Class Group Mcg(£°) of £° defined as the group?
of isotopy classes of CY-automorphisms of £ leaving the set ¥ and the inter-
section form ¢ invariant.

A direct consequence of Theorem A is:

Corollary 2.2. If £° satisfies condition (TC) then the fibers of the Forgetful
map over Foly(E°) are exactly the orbits of the action of the mapping class
group Mcg(E°). Thus

[Foler ()] co >~ Mod(E°)/Mcg(E°) ,
where Mod, (E°) := {[F, f] € Mod(E°) | F € Fol(E°)}.

2.4. Topological moduli space of a marked foliation. In order to de-
scribe [Foli (£°)]co we are led to study Mody,(€°). In fact, we give a descrip-
tion of the whole Mod(£°¢) without the assumption (T'C) on £°. We obtain
it by fixing the Camacho-Sad indices and the holonomy representations. In
other words we give a description of each nonempty fiber of the well-defined
map

H :=CS x H : Mod(£°) — Cle* x Reo,  [F°] = (CST°, 7T7),
where Reo is the set of conjugacy classes of group morphisms from the free

product of the groups 71 (D \ %, -) for all D € Cgo with values in Diff(C, 0).

Definition 2.3. We call topological moduli space of [F°] € Mod(E°) the
fiber of H above H([F°]), that is the set

Mod([7°]) := { [°] € Mod(£°) | 087" = 8%, #7" =#"} .

Here the term topological does not refer to the C%-equivalence of folia-
tions but to the equivalence relation ~, on the marked foliations. Indeed,
as we have seen in Remark 2.1, if £ does not satisfy (TC) or F € Fol(E°)
does not satisfy Condition (TR) then there may exist G € Fol(£°) such that
F ~co G and [F, f] # |G, g] for any markings f, g. However, the descriptions

°In fact, it is an extension of a finite group by a direct product of pure Artin groups.
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of Mod([F°]) given in the following results do not assume conditions (TR)
or (TC) anymore.

We will consider in Section 3 a new algebraic notion, which we call group-
graph, that will be the key tool in the whole paper. It allows us, by com-
bining Theorems 4.9 and 5.14, to obtain a bijection between this moduli
space Mod([F°]) and the cohomology of a suitable group-graph defined in
Section 5, namely the symmetry group-graph Sym]: °. If we call Fo-cut-
component of £ any inverse image f~!(C) of a cut-component C of £ and
if we denote by Aro the dual graph of the disjoint union of all the F°-cut-
components of £, then one can prove:

Theorem B. If F° € MFol(€°) then we have a natural bijection
Mod([F°]) =5 H (Ars, Sym”).

Without any other assumption the computation of this cohomological
space is difficult and the usefulness of this result is essentially theoreti-
cal. However it will allow us in Section 8 to construct examples for which
Mod([F°]) is an infinite dimensional functional space. To get finiteness we
shall need to restrict to some Krull open dense subsets of Fol(£°) by requir-
ing conditions on H”* depending only on a finite jet® of a differential 1-form
defining F.

2.5. The generic case: non-degenerate foliations. Let us call singular
chain* of the dual graph of £ any sequence Dy, ..., Dy, £ > 1, of invariant
irreducible components of £x such that:

a) Dy and Dy contain at least 3 singular points of F,
b) D;NYr= {87;,81'+1} withs; =D, 1ND;, if 1 <¢ <0 —1.

At all the points s;, 1 < i < ¢—1, F* has the same property of normalization
and we will say that the chain is linearizable, resonant normalizable or non-
normalizable, non-resonant, if F¥ fulfills this property at these points s;.

Definition 2.4. A germ of a foliation F is called non-degenerate if it sat-
isfies the following properties:

(i) the holonomy group Im(?—lgn) of any invariant component D of Ex with
card(DNXx) > 3, is non-abelian;

(ii) for any singular chain Dy, ..., Dy in EF, the local holonomies of F* at
the singular points s; = D;_1 N D;, i =1,...,¢, are non-periodic.

The subset of Fol(E°) of all non-degenerate foliations will be denoted by
Folng(E°).

31t is well known that for p large enough all the foliations defined by a 1-form sharing
the same p-jet have the same reduction map, the same singular points on the exceptional
divisor, the same Camacho-Sad indices and the same dicritical components.

4Notice that a singular chain may not correspond to a chain of the dual graph of £, in
the usual sense. Indeed the interior vertices D;, 0 < i < ¢, may meet dicritical components
and the number of their adjacent edges can be greater than two, and also Dy or D, may
have only two adjacent edges. Conversely a chain of the dual graph of £ may not be a
singular chain because there may exist points of 3 outside the singular locus of £.
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Remark 2.5. Theorem 6.2.1 of [24] claims the Krull open density, in the
set of formal 1-forms defining foliations of second kind (in particular non-
dicritical generalized curves), of the set of 1-forms defining foliations fulfilling
conditions (i) and (ii) of Definition 2.4. The proof, which is given in the
formal non-dicritical context, remains valid for all holomorphic foliations
that are generalized curves. U

Theorem C. Let F° = (F, f) € MFol(£°) be a marked foliation with F
non-degenerate. Then we have an identification:

Mod([F7]) = (F & B®)_, (C*/af) @ (C)") /2,

where o € C*, Fis a finite abelian group, Z is a finite subgroup, B is a direct
sum of B totally disconnected subgroups of the unitary group U(1) and A\, v
and B are respectively the number of linearizable, resonant normalizable and
non-resonant non-linearizable singular chains contained in cut-components
of Ex, the factor F' corresponding to resonant non-normalizable chains. In
particular, A+ v is equal to the codimension Tx of F given in Definition 6.9.

The naturality of this identification will be explained by Assertion (b) in
Theorem D below.

2.6. Foliations of finite topological type. We have seen that Mod([F°])
is endowed with a very specific structure of topological group of finite dimen-
sion if F € Fol,4(E°). However this finiteness property continues to be valid
for a larger class of foliations that we shall call finite type foliations. The set
Folg (E°) D Folag(£°) of these foliations is defined in Section 6 and it is opti-
mal for finiteness as Example 3 in Section 8 shows. Furthermore we obtain
complete families of marked foliations parametrized by finite dimensional
spaces, completeness meaning that the family contains all the topological
types of marked foliations by £° with prescribed Camacho-Sad indices and
holonomies. Such a family of marked foliations is called SL-equisingular de-
formation, where SL stands for semi-local. We will give a precise formulation
of this notion in Definition 10.2, Step (vi) of Section 10.

Theorem D. Let F° = (F, f) € MFol(E°) be a marked foliation with F of
finite type. Then Mod([F°]) admits an abelian group structure with identity
element [F°] such that:

(a) there is an exact sequence
7P — C7 A Mod([F°)) 5 D — 0 (1)

where D is a totally disconnected topological abelian group and Tr s the
codimension of F given by Definition 6.9;

(b) given a section i — [F;, fi] € T71(i) of T, there is a family parametrized
by i € D of SL-equisingular deformations (Ff,)iect= of Fi such that
for allt € C™7 we have [F7y, f)] = A(t) - [Fi, fil, ff, being the marking

induced by f; and the dot - denoting the operation in the group Mod([F°]).

The superscript ¢ in the deformation stands for complete. The group D will
be specified in the proof (Step (i) of Section 10): it is a quotient of a product
of a finite family of totally discontinuous subgroups of U(1), that can be
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uncountable. However, let us highlight that D is “generically finite” in the
following sense:

- there is a subset N of zero measure in the algebraic subset CS(Mod(E°))
of Clee such that if CS([F°]) € N, the formally linearizable singularities
of F¥ are holomorphically linearizable, and in this case we can prove that
D is finite.

As a direct consequence of the proof we can see that if H([F°]) = H([G°])
then the sets Mod([F°]) and Mod(|G°]) coincide. However their respective

abelian group structures are related by the map p — yu where v = [G°] €
Mod([F?]).

The paper is organized as follows. Section 3 is devoted to general notions
about group-graphs and their cohomology. In Section 4 we introduce our first
group-graph Aut” ® over Aze and we construct a natural bijection between
Mod([F°]) and H'(Aze, Aut”"). In Section 5 we introduce a simpler group-
graph Sym?” ® over Azo having the same cohomology as Aut” ‘) obtaining in
this way Theorem B. In Section 6 we prove that the group-graph Sym” ‘s
abelian over a subgraph Rz C Azo. Then the cohomology H' (R, Sym” <>)
is an abelian group. We also prove Theorem 6.8 asserting that under finite
type hypothesis the cohomology of Sym” ° over Aro and Rro coincide. The-
orem C is proven in Section 7. Some applications of Theorems B and C are
discussed in Section 8. In Section 9 we introduce the group-graphs Exp” ¢
and Dis”* which allow us to compute the continuous and discrete parts of
the cohomology group of Sym”" in Section 10. This computation jointly
with Theorem B will conclude the proof of Theorem D. Finally, Theorem A
is a direct consequence of Theorem 11.4 proven in Appendix.

3. GROUP-GRAPHS

In this section we will introduce and study the algebraic notion of group-
graph which differs in an essential way from the notion of graph of groups
introduced by Serre in [34] and that will be a key tool of this work.

Let A be a finite graph with vertex set Vea and edge set Eda. In all
the paper the graph we consider will be without loops, i.e. without edges
e € Edp with de = {v} for some v € Vep. Denote by

Ip = {(U,@) € Vea x Edp ‘ (NS 86}
the set of oriented edges of A.

Definition 3.1. A group-graph G over A is the data of groups G, and G,
for each vertexr v € Vea and each edge e € Edp, and of group morphisms
05 Gy — Ge for each (v,e) € In which are called restriction maps. A
morphim « : F — G between group-graphs over the same graph A is given
by group morphisms ., : F, = G, and ae : Fe — G, such that the diagram

F, 25 G,

s 15
F, 2% G,
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commutes for each (v,e) € In. A group-graph G is called abelian if all the
groups G, and G, are abelian.

1 = 0 = o Gy, Ge, G, Ge, G,
- | )

L 29N LI Geg G s

G, G,

FIGURE 2. Dual tree of the desingularization of the curve
(y? — 23)?2 — 2%y = 0 in the sense of Definition 4.1 and a
group-graph G over it.

Remark 3.2. One can define in a natural way the notions of image and
kernel of a group-graph morphism « : F' — G, which are group-graphs over
the same graph. In the abelian case the cokernel can also be defined as a
group-graph. We also have an obvious notion of restriction of a group-graph
over a graph to a subgraph. U

Definition 3.3. Let G be a group-graph over a graph A. The cochain com-
plex of G consists of

CO(A’ G) = H Gy and Cl (Aa G) = H Gv,ea Gv,e = Ge7

vEVep (’U,B)GIA
jointly with the right action C°(A, G) x CY(A,G) — CH(A,G) given by
(90) % (gv.e) = (P5(90) " gu.erlr(907))

where e = {v,v'}.

The set of 0-cocycles is the subset H(A,G) of C°(A, G) of all elements
(gv) satisfying the relations p§(gy) = pS(gy) whenever de = {v,v'}. Let us
consider the set of 1-cocycles

Zl(A, G) = {(gve) € Cl(A,G) | gv,e9r.e = 1 when de = {v,v'}} C C’l(A, G)

which is invariant by the action of C°(A, G) and its quotient, the 1-cohomology
set:
HY(A,G) = ZY(A,G)/C°(A,G).

Remark 3.4. The sets of cochains C°(A,G) and C*(A,G) are groups but

in general HY(A,G) and H'(A,G) are merely sets (although Z!(A,G) is in

bijection with [[ G, which is a group). However, if the group-graph G
ecEda

is abelian then we can consider the group C?(A,G) := [] G. and the
eeEdA

morphisms 9° : C°(A,G) — CY(A,G) and 9' : C1(A,G) — C%(A,G) given
by

& (g0) = (90) ¥ (1) = (p5(90) ™' (90))  and ' (gve) = (Gu.egvre)
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whenever de = {v,v'}. It turns out that 3'0d° = 1 and we obtain a complex

x 0 N A1 9t 2
C*(A,G):C°(A,G) = C(A,G) = C*(A,G) = 1
whose cohomology is HY(C*(A,G)) = H°(A,G) = kerd°, HY(C*(A, Q))
HY(A,G) = ZY(A,G)/0°C°(A,G) and H?(C*(A,G)) = 1 because Z1 (A, G)
ker 9! and coker 9' = 1.

mi

The following result is straightforward.

Lemma 3.5 (Functoriality). Every morphism o : F' — G of group-graphs
over the same graph A induces well-defined maps o; : H'(A, F) — H'(A, G),
fori=20,1, given by

ao(gv) = (aw(gy)) and al([gue]) = [ae(gv,e)]-

Moreover, if F' and G are abelian then o; are morphisms.

A short sequence 1 — F % G ﬁ) J — 1 of morphisms of group-graphs
over the same graph A is exact if for all a € Vep U Eda the corresponding

short sequence of groups 1 — F, X Ga &3 Jo — 1 is exact. In the abelian
case the complexes of abelian groups considered in Remark 3.4 fit into a short
exact sequence 1 — C*(A, F) — C*(A,G) — C*(A,J) — 1. The following
results are classical.

Lemma 3.6 (Long exact sequence). If 1 - F — G — J — 1 is a short
exact sequence of abelian group-graphs over the same graph A, then there is a
long exact sequence 1 — HY(A,F) — HY(A,G) — H°(A,J) — HY(A,F) —
HY(A,G) — HYA,J) — 1.

Lemma 3.7 (Mayer-Vietoris). Let G be an abelian group-graph over a graph A.
If Ag and Ay are subgraphs of A such that A = AgUA1 then there is an exact
sequence 1 — HY(A,G) — HY(Ag,G) ® H°(A1,G) — H°(Ag N A,G) —
HI(A, G) — Hl(Ao, G)® Hl(Al, G) — Hl(AO NALG) — 1.

Proof. We have a short exact sequence of complexes of abelian groups
1= C*(AG) = C*(Ag,G) ® C*(A1,G) = C*(AcNAL,G) — 1
and we consider the long exact sequence of cohomology. U

Definition 3.8. The valency in A or the A-valency of a vertex v of A is
the cardinality vala(v) of the set {e € Edp ; v € de}. We say that v is an
extremity of A if vala(v) = 1; in that case we will write v € JA.

A partial dead branch (M, vg) of A is the data of a vertex vy of A called
attaching point and a connected subgraph M of A such that:

e M contains an extremity vj, of A,
e all its vertices are of valency 2 in A, except possibly its extremities
that are v, and vp.

Notice that M is always a chain. When M # A and vala(vg) > 3 one says
that M is a dead branch of A. We define a total order <,, on the sets of
its vertices Vey := {vo,...,v; := v} and of its edges Edy := {e1,...,es}
with de; = {vj_1,v;}, by setting vg <, -+ <,, v¢ and e <, --- <, €
j=1,...,0
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Definition 3.9. For a group-graph G, we say that a partial dead branch M
is G-repulsive if the morphisms pS, : G, = Ge are surjective for all e € Edy
such that 0e = {v,v'} and v <, v.

Now we will give a process that will allow us to restrict a group-graph to
a subgraph without changing its cohomology.

Definition 3.10. If (M, vg) is a partial dead branch of A, the pruning A of
M in A, at the attaching point vy, is the subgraph A = (A\ M) U {vo}.

Theorem 3.11 (Pruning). Let G be a (not necessarily abelian) group-graph
over A and M a G-repulsive partial dead branch of A then there is a natural
bijection H'(A, G)L>H1(A, é) where A is the pruning of M in A and G
is the restriction of G to A. Moreover, if G is abelian, this bijection is an
isomorphism of groups.

Before giving the proof let us notice that the natural projections pr’ :
Ci(A,G) — CYA,G), i = 0,1, are group morphisms commuting with the
actions xg and % and inducing a natural map prl: HY(A G) — H! (A, é)

On the other hand, we have an "extension by 1”7 map ext : Cl(A,é) —
CY(A,G) such that pr! o ext is the identity map, ext(Z1(A, G)) c ZY(A,G)
and

. if (v,e)ela\l
ext Oprl((g%e)) - (g;,e)v with g;,e - { 911,6 if Ev 6; c I:/I\ M

Proof of Theorem 3.11. First we will see that the morphism ext induces a
map exty : Hl(A, é) — H'(A,G) that satisfies pr} o ext, is the identity of
HY(A,@). Indeed, by G-repulsivity of M we have the following diagram of
groups and morphisms

eq e e ey
p’ul °2 p'U2 pvi71 p’Ug

G 8 G G G Gy Gy, 5 Ge, G,
Let ht = (7Lv o) and §' = (§y.) be two cohomologous elements in Z'(A, G):
e = 05 0) ™ e ) B0 1= () € CO(A, G
We will determine h? := (h,) € CO(A, G) such that hO x¢ ext(h') = ext(g}).

We define h, = ;LU if v € Ve ;. For v ¢ Ve ; it is sufficient to solve the system
of ¢ equations:

I = pgé(hvo)_l -1 pfﬁ (hvl)7 h'Ul € GUl

1 = pgﬁ,l(hve—l)_l -1 p%(hve)v hy, € Gy,

This can be easily done using the surjectivity of the maps pf,?, i=1,...,L
This shows that the map ext, : H(A,G) — H'(A,G) is well defined. As
pr! o ext is the identity map on C* (A, é) we deduce that prl o ext, is the
identity of H'(A,G).

Using again the G-repulsivity of M we now check that ext, o prl is the
identity of H'(A,G). To do that we prove that for each (g,.) € Z*(A,G)
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there is (g,) € CY(A, G) such that:

ext o pr' ((gue)) = (p5(90) ™" Guse P5 (9ur)) -

We define g, = 1 when v € Ve, so that in particular g,, = 1 and therefore
05 (gve) = 1. As the maps pf,e,;, 1 < j < /¢, are surjective, the following system

of ¢ equations has a solution with g,, € Gy,,...,gu, € Gy,
I = Pqe;(l) (gvo)ii Guo,er Pfﬁ (9@1)
I = Pfﬁ (gm)i Guy,eo Piﬁ (gvg)
U= 05 (o)™ Gursee 5 (90,)

This proves that ext, o prl is the identity of H'(A,G). The two maps ext,
and prl are inverses one of the other and therefore bijections.

When G is abelian the maps prl and ext, are group morphisms, one the
inverse of the other, and the map H'(A,G)-~»H'(A,G) induced by prl is
trivially an isomorphism. O

Remark 3.12. By repeating this process we obtain a subtree A, of A
such that the restriction G, of G to Ay, has no G -repulsive partial dead
branches and the map ext : Z'(Ap, Gpr) = Z1(A,G) of extension by 1,
induces an isomorphism H(A,;, Gpr)—HY(A,G). In particular if all the
morphisms p§, : G, — G are surjective, the subtree A, is reduced to a single
vertex and H'(A, G) is trivial. O

4. AUTOMORPHISM GROUP-GRAPH

Let us fix once for all a marked divisor £° = (£,%,1) and a marked foli-
ation F° = (F, f) € MFol(£°). We recall that £ is the union of dicritical
components D of £°,i.e. DNYX =, cf. Section 2.1.

As usual, the combinatorics of the reduction is encoded by the dual tree:

Definition 4.1. The dual tree A¢ of & is the graph having Comp(E) and
Sing(€) as sets Vea, of vertices and Edp, of edges respectively, with 0s =
{D, D'} whenever DN D' = s.

On the other hand, the dynamics of the marked foliation is organized
along the following new subgraph of the dual tree:

Definition 4.2. The subgraph of Ag obtained by removing the vertices associ-
ated to £%, the edges attached with these vertices and the edges corresponding
by f to nodal corners of F*, is called the cut-graph of F°. We denote it by
Aro, or more simply by A when there is not ambiguity. It is a finite graph
without loops.

The cut-graph of F° only depends on the class [F°] of F° by the equiv-
alence relation ~,. In fact, it is constant along the fiber CS™!(CS([F?]))
Mod(&°) that contains Mod([F°]). This graph is a disjoint union of trees,
denoted by Aém, or more simply by A’, that can be considered as the dual
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trees of the F°-cut-components of £ defined in Section 2.4. Notice that if G
is a group-graph on A then

H'(Ar,G) = [[ H' (A%, Gi)

where G; is the restriction of G to Aifo.

Definition 4.3 (The group-graph Aut}w). For s € Eda,, and D € Vea .,
let us denote by

° AutﬁE<> the group of germs at f(s) of holomorphic automorphisms of F,

° Autg<> the group of germs along f(D) of continuous automorphisms of F*
preserving Ex, that are holomorphic at each singular point of F* that is not
a nodal corner (cf. Section 2.2) and whose restriction to f(D) \ Sing(F*)
is homotopic to the identity.

We define by these data the automorphism group-graph Aut” ° over A Fo, the
morphisms p},, s € D, being just the restriction maps.

Remark 4.4. If D is not dicritical, the elements of Aut},” are transversely
holomorphic at each point of f(D)\ Xz, with £z := Sing(F*), because they
are holomorphic on an open set whose saturation by F* is a neighborhood
of f(D)\ X, cf. [19, Theorem A] or [4, Theorem 2]. O

Now we will assign to each topological class g € Mod([F°]) a cohomology
class iro(g) € H' (Aze,Aut”"). To do that we fix a representative (G, g)
of g.

Definition 4.5. A good fibration along an invariant component g(D) of Eg
is a germ along g(D) of a C*-submersion from a neighborhood of g(D) to
g(D), that is holomorphic at each singular point of G¥, equal to the identity on
g(D), constant on each component adjacent to g(D) and coincides with the
projection given by linearizing holomorphic coordinates at nodal singularities.

Clearly good fibrations along invariant components always exist and their
fibers, except the adjacent components of g(D), are transverse to the leaves
of the foliation G* on a neighborhood of g(D) thanks to the reducedness of
the singularities of Gt

Fix D € Cgo, a regular point op € D and good fibrations along f(D) and
g(D). Since [G,g] € Mod([F, f]), cf. Definition 2.3, there is a biholomor-
phism ¥ A between the fibers A and A’ of the good fibrations over the points
flop) and g(op) conjugating the holonomy representations H]D:Q and ’H%}.

Lemma 4.6 (Lifting path method). Up to performing an isotopy on f and
g there is a unique germ of a transversely holomorphic homeomorphism

¥p : (Mr, f(D)) = (Mg,g(D)), ¥p(F*) =G*,

that conjugates the good fibrations and the foliations such that the restriction
to f(D) is gof~1 and the restriction to A is . Moreoverp is holomorphic

at Xr N f(D).

Proof. We proceed in three steps. First, we extend A to a neighborhood of
f(D\ X) by the classical method of lifting to the leaves paths in D\ ¥ thus
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obtaining a transversely holomorphic conjugation 1p, see for instance [21]
and [14].

Next, in order to extend ¢ p to the fibers over X = f(X) we must pre-
viously make an isotopy on f and g such that they become holomorphic
at ¥. Hence g o f~! is holomorphic at X #. Since the good fibrations are
holomorphic at f(X) and ¢g(X) and ¢p is transversely holomorphic we de-
duce that v¢p is holomorphic on a neighborhood of f(X) minus the adjacent
components to f(D). Using that the Camacho-Sad indices of F* and G at
the singular points corresponding by g o f~! are the same, the holomorphic
extension of ¥p to the adjacent components of f(D) follows by [21] if the
corresponding singular points are non-nodal.

Finally, at the nodal singularities f(s) and g(s) the good fibrations coin-
cide with the projections given by linearizing holomorphic coordinates of the
nodes and we can perform an isotopy on f and g such that the expression
of go f~! in the linearizing coordinates of the nodes is the identity. Thus,
on the common linear model yz=*, A € Rt \ Q, we have an automorphism
which is the identity on |z| = 1. Since it commutes with the linear holonomy
y — ye?™ we deduce that it is linear on the fibers and it extends to |z| < 1
by linearity. O

Thus, for each edge s € Eda ., the germs at f(s)

¢ps =vp otp, @ps=tvp ovp, DND =s,

are holomorphic automorphisms of F* and the 1-cocycle ¢! := (¢p,s), with
(D,s) € In,., is an element of ZY(Axo, Aut™).

Definition 4.7. The cohomology class of this cocycle ¢ = (¢pp,s) is denoted
by ire(g).

Lemma 4.8. The cohomology class ire(g) does not depend on the choice of
a representative of the class g nor on the good fibrations associated to it.

Proof. If we choose another element (é, g) in g, and good fibrations for g,
taking in the same way homeomorphisms

Up : (Mz, f(D)) = (Mg, §(D)), ¥p(F*) =G,

we obtain another 1-cocycle
¢ = (Bps) = (Up' o) € Z'(Are, Aut”").

Since (G, g) ~o (G, g) there is a homeomorphism ® between neighborhoods
of the exceptional divisors £ and £y of the reductions of these foliations

that conjugates G and Gt and is holomorphic at the singular points of G¥,
except perhaps at the nodal corners; moreover, when restricted to &g, ® is
isotopic to §o g .

Let us denote by ®p the germs of & along the invariant components
D of £&. One easily checks that the 0-cochain c? = (zpBI o @Bl o1p) €
CO(Aze, Aut” <>) fulfills ¢ « ¢! = é!. This proves that the cohomology class
of ¢! does not depend on the choice of the representative of the class g nor

on the good fibrations used to define it. O
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Theorem 4.9. The map
iro : Mod([F°]) = H'(Ars, Aut”") (2)
is bijective. Moreover, iro([F°]) = [(id)].

Proof. Let us recall that Are is the common cut-graph to all marked folia-
tions (G, g) with [G, g] € Mod([F°]); in this proof we will denote it by A and
by A’ its connected components. Let us show first the injectivity of iro. If

i7o(1,9]) = [(en,s)] = [(¢p.s)] = ire([G. 7))
then for each D € Cgo there exists £p € Aut},” such that

-1 v
§p °¢D,s 0D = PDs-

Writing ¢p s = ¢Bl opr and Yp s = 15151 o@Zv)D/, with s = DN D', we deduce
that

Y —1 =1 _ 7 1 =1

Yp oy oYy =1pro&p oy,
defines conjugations ®; : W; — W; between the foliations G* and G¥ restricted
to some tubular neighborhoods W; and W; of &; := |J DeVe,, g(D) C & and

U DeVe, g(D) C &g respectively. By composing ®; with suitable automor-

phisms of G isotopic to the identity along the leaves and whose supports are
disjoint from the singular locus of G¥, we can assume that ®; respects the
attaching points of the adjacent dicritical components.

On the other hand, since the self-intersections of g(D) and g(D) coincide
for each dicritical component D C £, there is a conjugation ®p between
the foliations G! and éﬁ restricted to some tubular neighborhoods Wp and
Wp of g(D) and §(D) whose restriction to g(D) is §o g~ *.

In order to glue the conjugations ®; and ®p we use the following trick:
For each 0 < € < 1, any germ of biholomorphism of (C2,0) preserving
the fibration (x,y) — x and the curve {y = 0} can be represented by
a Cl-diffeomorphism F from Dy x D1 onto a neighborhood of (0,0)
preserving the fibration and the curve with support in {|x| < €}, where
Dy is the open unit disc of C.

This implies that there is an automorphism Fp on a neighborhood of g(D)
preserving g(D) and G*, which is equal to @Bl o ®; in a neighborhood of the
attaching point g(D) N 5& with support a polydisc centered at this point.
Shrinking the domain of definition of ®p o Fp we obtain a conjugation of
the pairs (G¥, g(D)) and (G, §(D)) which can be glued with ®;.

The gluing of ®; and ®; at the nodal corners is made by using linearizing
coordinates for (G, g(s)) and (G, §(s)) as in [18, §8.5]. In this way we obtain
a global conjugation ® : Mg — Mg between the foliations G* and G! which
is holomorphic at the singular points.

By definition of Autfo, the restrictions of £p to the divisor are isotopic to
the identity. Hence the restriction of ® to &5 is isotopic to go g~ ', Therefore
6,91 =19, 4]

To prove the surjectivity of ire we consider a cocycle ¢ = (¢ps) in a
given class of H'(Aze, Aut”"). We define pp s = id when f(s) is a nodal
corner or an attaching point of a dicritical component. By gluing open
neighborhoods Up of f(D) using the local biholomorphisms ¢p s we obtain
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a complex manifold M. endowed with a foliation F¢, a divisor & and a
biholomorphism between £ and £ sending the singular locus of F¢ onto ¥ x.
There is a composition of blow-ups E' : M’ — (C%,0) and a biholomorphism
g : M¢ — M’ sending & onto the exceptional divisor E'~1(0), see for instance
[20, p. 306]. We obtain a foliation 7' = (E’ o g)(F¢) on (C2,0) and a
biholomorphism h : £ — £ satisfying h(Xr) = Xz. We define [’ :=
ho f:& — Ex. By construction ize ([F', f]) = [c]. O

5. SYMMETRY GROUP-GRAPH

We keep the notations and the fixed data of the previous section. In order
to define the remaining group-graph associated to F°, we moreover fix for
each D € Cgo a regular point op € D and a transverse section Ap to f(D)
passing through f(op).

Definition 5.1. For s € Eda ., we say that ¢ € Autsf<> fixes the leaves of F*
if for every neighborhood V' of f(s) there is a neighborhood V' of f(s) such
that (V') C V and for all p € V' the points p and ¢(p) belong to the same
leaf of .7-"|ﬁv We denote by Fixsf<> the (normal) subgroup of AutﬁE<> of these
automorphisms.

Remark 5.2. It is easy to see that an example of element of Fixsf ° is pro-
vided by ¢ € Aut] such that ¢|py = ids(p) and F, 0 ¢ = F, for any local
first integral F}, at every point p € f(D \ ¥) in a neighborhood of f(s). The
diffeomorphisms of the flow of a vector field tangent to the foliation fulfill
this property for small times and, by composition, all the diffeomorphisms
of the flow are in Fix?". O

Remark 5.3. For a fundamental system (V) of open neighborhoods of f(s)
let us denote by Q{,’; the leaf space of the restriction of the foliation F ! to
Vo \ €x. The inclusion relation on the leaves induces an inverse system of
continuous maps Q7" (s) := (Q7, e Q{;ﬁ WscVa. Every ¢ € Aut?” defines
an automgrphism5 of this inverse system ¢ € Aut(NQ]: °(s)) and the map

¢ 1y > 7 is a group morphism. It turns out that v is the identity if and
only if ¢ € FixgC ° i.e. we have an exact sequence:

1 - Fix?” — Awt?” —*5 Aut(Q7°(s)).

Definition 5.4. For s € Eda,, and D € Vea,, we consider the groups
Sym?” := Aut?” /Fix”
and
C(HD) if Valg(D) Z 3,
Sym?, :=
C(Hp)/Hp if valy(D) <2,

% The system Q7 ° (s) is an element of the category Top of pro-objects associated to the

category of topological spaces and continuous maps. The objects of this category are the
inverse families of topological spaces and Aut(Q” ° (s)) is the group of invertible elements
of @Bhgaco(g@, Qv,), cf. [8, §2.8] or [18, §3.1].
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where Hp C Diff(Ap, f(op)) is the holonomy group of F* along f(D),
C(Hp) is its centralizer inside Diff(Ap, f(op)) and valy(D), called here
singular valency of D, is the number of elements of D N 3.

Notice that if valy (D) < 2 then 71 (D\X) is abelian and so is the holonomy
group Hp. Thus, in this case we have C(Hp) D Hp.

In order to define maps pj, : Sym“g<> — Sym? ° s e D, we will need the
following result:

Lemma 5.5. If¢ € Autg<> satisfies Yyp(py = idy(p)y and Y|a, =1ida,, then
the germ of ¢ at f(s) belongs to Fix!" .

Proof. For each p € f(D) \ Sing(F*) we choose a local holomorphic first
integral I, of F defined in a neighborhood of p. The set

Q:={p € f(D)\Sing(F*)| F, 0 ¢ = F}

is open and closed in f(D) \ Sing(F*) and it contains f(op) = Ap N f(D).
Hence Q = f(D) \ Sing(F*) and we conclude thanks to Remark 5.2. O

By applying Lemma 4.6, with F° = G°, we obtain that each element ¢ of
C(Hp) can be extended to an element of Aut},”. Thanks to Lemma 5.5, the
class modulo Fixf ® of the germ at f (s) of this extension does not depend on
the way the extension is made and hence on the choice of the good fibrations.
We define p},(¢) as this class in case valy (D) > 3.

Before defining pf, for D with valy(D) < 2, we must make some prelimi-
nary considerations. Let us fix for each point s € X N D the image K; of a
holomorphic embedding of the closed unit disc D; into D sending 0 to s and 1
to op and satisfying XN = {s}. The simple loops 75 that parametrize 0/,
with the natural positive orientation, form a system of generators of the fun-
damental group 71 (D\3, 0p). Hence the holonomies hp s € Diff(Ap, f(op))
of the foliation F* along f o~s, s € ¥ N D, generate Hp.

Definition 5.6. The collection (Ks)sepns of such embedded discs is called
appropriate compact discs system and the maps hp s are called the local
holonomies associated to it.

Let us denote K, := f(K;) and fix a good fibration 7p : Wp — f(D)
associated to F defined on an open neighborhood Wp of f(D). The same
arguments used in the proof of Lemma 4.6, with F° = G°, imply that any
element ¢ of the centralizer C'(hp ) of hp s in Diff(Ap, f(op)) has a unique
extension ¢! as a germ along K, of a homeomorphism that leaves invariant
the foliation F* and each fiber of the fibration. Moreover ¢*** is necessarily
holomorphic at f(s), as it is shown in Lemma 4.6. Taking its germ at f(s)
we obtain a map

ext : C(hps) — Autf<> . P (3)

and the property of uniqueness of the extensions implies that this map is a
group morphism.

Let us consider the inverse system Q7 (Kj) = (vaa — Qﬁ/ﬁ)wﬁcw&,
where (W) is the fundamental system of neighborhoods of K and QVfVa
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o
is the leaf space of the restriction of the foliation to W, \ £x. Let V, C K
be a small open disc centered at f(s). Over K\ V, the foliation F* is a
product foliation; thus we have an isomorphism of inverse systems (i.e. an
isomorphism of the category T(_‘o_p)

07" (5)-=5 07" (Ky) . (4)

s

We also consider the orbit spaces QZD" of the pseudogroup defined by

the restriction of hp s to Ap N Wy,; they form an inverse system Qhps =

( ZD = QZD *)wscw,. We can choose each W, such that there are retrac-

tions along the leaves from W, \ Ex on (W, \ £7) N7}, (OK;), mp being the
good fibration fixed above; moreover we can require that W, N 7r51 (0Ks) is
a set of suspension type, i.e. the union of all paths with origin in Ap N W,
obtained by lifting via 7p the loop 0K, to the leaves of F*, cf. [16, Defini-
tion 3.1.1]. This property implies that the leaf space of the restriction of the
foliation to this set can be identified to the orbit space QZD ** of the restriction
of hp s to Ap N W,. Hence using (4), the retractions induce isomorphisms

7: Q7 ()50 and 7, : Aut(Q7 (5)) =S Aut(Q"P) | T (p) = Topor !,

the inverse of 7 being given by the inclusion relations of the orbits of hp s
in the leaves of the foliation on neighborhoods of Kj.

Each element ¢ of C(hp ) induces an automorphism £(¢) := 7. (¢(¢™*))
of Q"P.s and the map & : C(hps) — Aut(Q"P+) is a group morphism.

Lemma 5.7. The kernel of the morphism £ is the cyclic group generated
by hD,s~

Proof. Let us take ¢ € ker(§). This means that for each open neighborhood
U of f(op) in Ap there is an open set V' O U such that for each z € U, z and
¢(z) are in the same V-orbit of hp s. The V-orbit of z is the set of points 2’
of V such that either there exists n € N fulfilling either ¢(2),...,¢"(z) € V
and ¢"(2) = 2/, or ¢ 1(2),...,07"(2) € V and ¢ "(z) = 2’. Let us denote
A = hp (flop)) and p = ¢'(f(op)). If [A] # 1 there is a holomorphic
coordinate z such that hp s(z) = Az and ¢(z) = pz. Hence ¢(z) = pz =
PP hVD(;)(z) implies v(z) is constant. To see that, let V,, be the set
of points z € U such that hgs(z) € V for each k = 0,...,n. There is an
uncountable set K invariant by hp s such that for all n € Z it is contained
in the connected component of V}, containing f(op). If hp s is linearizable
(conjugated to a rotation) then we can take an invariant conformal disc as
K. If hp s is resonant non-linearizable then K is a union of petals contained
in U. If hp, is non-resonant non-linearizable we take as K the hedgehog
associated to U, cf. [30].

For each z € K there is an integer v(z) such that ¢(z) = hlgzs)(z). Thus,
there is n € Z such that ¢ and hf, , coincide on an uncountable subset of K
and by isolated-zero principle the}’f coincide on the connected component of
V,, containing f(op). Then the germs of ¢ and h, ; at f(op) are equal, that

achieves the proof. O
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Corollary 5.8. The extension map (3) induces an isomorphism:
lext] : C(hp,s)/(hp,s) = Sym] " .

Proof. By construction the following diagram is commutative

1 — Fix/" —— Aut?’ s Aut(Q7° (s))

1 —— (hpy) —> C(hp.s) — Aut(Q"p»)

Thanks to Remark (5.3) and Lemma (5.7) the lines are exact. Because 7 is
an isomorphism, ext induces an isomorphism between C(hps)/(hps) and
Aut?’ /Fix?” = Sym?”. O

Remark 5.9. Suppose that there are local coordinates uq, us at s for which
F% is defined by a linear differential 1-form w = pusdu; — uidus and Dy =
{ua = 0}, Dy = {u; = 0} are the components of £r. On the transversals
{u; = 1} the local holonomies are hp, s(uz) = e*™ uy and hp,s(u1) =

omi L . . . . .
e“™uuy and their centralizers are formed by the linear automorphisms in

the coordinates u;, C(hp, s) = C*u;. Therefore we have isomorphisms
C(hD1,s) ~ : C i> Symf—o & : C - ~ C(ths)
(hDys) 21i(Z + uZ) 2mi(Z + EZ) (hDy.s)

To describe 75 Lo 7 let us remark that the automorphisms (ug,ug) +—
(e'uy, eftuy), t € C are elements of Fix!" . Thus the automorphisms (u1, ug) —
(€'uy,uz) and (uy,us) — (u1, e us) in Autsfo<> that extend hp, s and hp, s
respectively, define the same element of Symsf . It follows:

1 . 1.
5 tor 2 C/2mi(Z 4 pZ) — C/2mi(Z + ;Z), t— —pt.

Remark 5.10. If valy (D) > 3, then [ext] ™! o p3, is the quotient map
Sym}, = C(Hp) < C(hps) — C(hps)/(hp,s) -

For D containing at most two singular points of F* we define
ph = [ext]: Symp” = C(hps)/(hp,s) = Sym] .

Definition 5.11. We call symmetry group-graph and we denote by Symfo
the group-graph consisting of the groups Symg}, Sym‘f}, with D € Vea .,
s € BEda,, and the morphisms pp,, s € D.

Now, we are going to define a group-graph morphism o : Aut” = Sym” °
which will induce an isomorphism on the 1-cohomology of Azo. If s € Eda .,
we define « as the quotient map AutﬁE g Symsf ‘. IfDe Vep .., we define
ap : Auth’ — Sym?’ as follows. Fix ® € Aut},’ and take an homotopy ¢; :
f(D \ Z) — f(D \ Z), t e [0, 1], between (Z)O = (I)\f(D\E) and d)l = idf(D\E)7
which exists by definition of Aut}’ . Consider the path 3(t) = ¢;(op) and
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the holonomy map hg : (P(Ap), P(op)) = (Ap,op) associated to it. Since
¢o induces the identity on 7 (D \ ) we have that hg o ®|a, belongs to
C(Hp). If D has singular valency vals;(D) > 3, the group consisting of the
homeomorphisms of f(D \ ) which are homotopic to the identity is simply
connected [36]; consequently hg does not depend on the chosen homotopy
¢ and we can put ap(®) := hgo ®. Finally, if v(D) < 2 then only the class
[hg o @5 ,] of hg o @A, modulo Hp is well-defined and we put ap(®) :=

[hﬁ (e) <I>|AD].
Lemma 5.12. o : Aut”" — Sym”" is a group-graph morphism.

Proof. We must see that the following diagram is commutative:

Autf’ P Sym £

ff"bi ip%

o Qg o
Aut?” > Sym?”

where p7,, resp. pf), denote the restriction maps of the group-graphs Aut”’,
resp. Sym” °. Let us consider two cases, depending on the singular valency
valy (D). First let us assume valy(D) > 3 and let us fix ¢ € Aut}’ . Then
ap(¢) = hg o ¢ja,, With hg : ¢(Ap) — Ap the holonomy along a path 3.
There exists ¢ € Autg<> with compact support outside f(D) N Sing(F*)
whose restriction to Ap coincides with hg. Indeed ¢’ can be constructed by
composition of flows of tangent vector fields whose supports intersect the di-
visor f(D) in holomorphically embedded discs disjoint from the singularities
and which cover the image of 3. Thus ap(¢) = ¢' o ¢|a,, and p}(ap(¢))
coincides with the class modulo Fix/ ° of the germ of ¢/ o ¢ at f (s) thanks
to Lemma 5.5. This germ is just the germ of ¢ at f(s) because the sup-
port of ¢ does not intersect the singularities. This achieves the proof in
the case valy (D) > 3. If valy(D) < 2, the only difference is that only the
class of hg o ¢|a,, modulo Hp = (hp ;) is well-defined; but we can proceed
analogously choosing arbitrarily hg. O

Proposition 5.13 (Extension). Let W be a neighborhood of f(s), s € Eda .,

then each germ ¢ € Fixfo can be extended to a germ ® € Aut][g<> along f(D),
whose support fulfills supp(®) N f(D) C W.

Proof. At the point f(s) let us fix local holomorphic coordinates (u,v),
u(f(s)) = v(f(s)) = 0 such that the axes are invariant by the foliation,
and v = 0 is a local equation of f(D). We consider a holomorphic vector
field tangent to the foliation of the form Z = u% + vB(u, U)%.

First, we will see that each germ of biholomorphism ¢ : (f(D), f(s)) —
(f(D), f(s)) can be extended as an element g of Aut}’ whose germ at f(s)
belongs to Fixs]: ° and whose support intersect f(D) inside W. This is easy
to prove when ( is embedded in the flow () of a vector field a(u)ug—u, ie.
¢ = 1. Indeed in this case, let us consider the real vector field Y whose flow
is the flow of aZ, but with real times. Let us take a real smooth function
p equal to 1 on an open neighborhood of f(s), such that supp(p) N f(D)
is contained in W and in the domain of definition of Y. Then pY extends
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by zero along f(D) and the elements ¥, of its flow induce homeomorphisms
defined on neighborhoods of f(D). Their supports are contained in the
support of p and their germs at f(s) are element of Fix?~, c¢f. Remark 5.2.
Clearly the restriction of ¥; to f(D) is equal to ¢ near f(s). Now, when ( is
not embedded in a flow, we decompose ¢ = (; o (2, with |¢](0)], |¢5(0)] # 1.
Both ¢; and (2 are linearizable. Thus they can both be embedded in a flow
and have convenient extensions. Their composition extends ¢ along f(D),
and fulfills the required properties.

By replacing ¢ by ¢og~! where g is the above extension of ¢ := é\f(p) We
can suppose that the restriction of the germ ¢ to f(D) is the identity. Let us
choose £ > 0 such that the compact disc Dy, C f(D) defined by |u| < 2e, is
contained in W and in a definition domain of ¢. Denote by C the compact
annulus contained in Dy given by e < |u| < 2¢. By the implicit function
theorem, there is a holomorphic function 7 defined in an open neighborhood
Q of C, that verifies:

(wo@)(m)=uo®?  (m) and Typ) =0,

(m)

®7 being the flow of the previous vector field Z. Let us take a C* function
a: f(D) — R with compact support in QN f(D), that is equal to 1 on a
neighborhood of C. The map

§:mi— é(m) = (I)ch(u(m))T(m) (m)

is a C*°-diffeomorphism, because its restriction to f(D) is the identity and
moreover it is a local diffeomorphism. Indeed using coordinates (u, z) at each
point of f(D), with z a local first integral of the foliation, we easily see that
the jacobian matrix of ¢ is the identity. Clearly x := ¢ o £€~! coincides with
¢ on a neighborhood of f(s), it preserves the foliation and it leaves invariant
each fiber of w:
A.={u=c}, e<]|d<2e.

Thus the restriction x5, of x to A. leaves invariant the orbits of the ho-
lonomy map of F* around f(s) represented on A, -which is equal to the
restriction of ®%_to A.. By Lemma 5.7, X|A,. 1s an iteration of this holo-
nomy map. Therefore, there exists an integer p € Z such that x coincides
with CDQZmp on a neighborhood of C.

Let us now take a continuous function o : [0,2¢] — R vanishing on
[0,e] and being equal to 1 on [%z—:, 2¢]. The homeomorphism © : m
@;ﬂpo(‘u(m)‘) (m) is the identity on a neighborhood of f(s), it coincides with x
for 3¢ < |u| < 2¢ and it leaves F* invariant. To end the proof, we define
the required diffeomorpism ® as the germ along f(D) of the diffeomorphism
equal to ©~1 o x when |u| < 2¢ and equal to the identity otherwise. O

Theorem 5.14. The morphism of group-graphs « : Aut’ — Symfo mn-
duces a natural bijection

a1t HY (Azo, Aut™) 3 HY(Aze, Sym”"). (5)
Proof. The surjectivity of «y follows easily from the surjectivity of ay :

Aut!" — Sym’”. For this we fix an orientation < of the union of trees
Are and for (cps) € Zl(A}‘O,Sym}—O), we choose for each edge s with
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ds ={D,D'}, D < D', an element ¢p ¢ such that as(¢ps) = cp,s and we
set ppr s 1= goBls. Clearly the family (pp s) is an element of Z!(Ax, Autp)
defining a lift of (cpys)-

To prove the injectivity of oy we consider [¢p 5], [ggpﬁ] € HY (Aro, Aut”")
such that a1([¢ps]) = [as(ép,s)] = [as(ép,s)] = a1([¢p,s]). Then there is
(9p) € CO(Ars,Sym”") such that

as(éps) = ph(gp) ™ 0 as(dp.s) 0 piy(gpr) € Sym?”

where s = DN D'. Let ¢p € Aut}, be extensions of gp € Sym},~ and let us
denote by (¢p)s € Aut?" their germs at s. Then

as((gD,s) = CKS((QOE)l)S) o a8(¢D7S) 0 as((‘PD’>S)

and there is F € Fixfo such that qu,s = (80151)5 o ¢pso(pp)so Fs. Now
we choose a map & : Eda,, — Vea,. such that s € d(s) for each s € Eda .,
and we define Fip as the composition over the set {s € Edazo | §(s) = D} of
extensions of Fs to a neighborhood of d(s) with disjoint supports given by
Proposition 5.13. Finally putting ¢p = ¢p o Fp € Autg<> we have that

$p.s = Pp 0 ¢p,s 0 Py € Aut]
Le. [¢D,8] = [gD,s] in H' (A}‘O,Aut]:o). 0

Proof of Theorem B. It follows immediately from Theorem 4.9 and Theo-
rem 5.14. U

6. FOLIATIONS OF FINITE TYPE

In this section we introduce the optimal condition on a germ of singular
foliation F in order to have a finite dimensional moduli space Mod([F°]).
We keep all the notations of previous sections.

Given a marked foliation F° = (F, f) and a sheaf @) defined on a neighbor-
hood of £ in the ambient space Mz of F¥, we can associate a group-graph,
denoted by Q7°, over the cut-graph Aro as follows: if s € Eda,. then QT ¢
is the stalk of @ at f(s) and if D € Vea,.,, then

C)D<> = Ho(f(D)v L;(D)Q)a

t¢(py being the inclusion map of f(D) in Mx and for s € D the morphism
Ph Q]; — Q7 ° being the canonical restriction.

Definition 6.1. We call group-graph of transverse infinitesimal symmetries
of F the group-graph T7° associated to the sheaf TF = B]:ﬁ//"(]Eﬁ on Mx
equal to the quotient of the sheaf B of Fi-basic® holomorphic vector fields

tangent to the Ft-invariant components of Ex, by the sheaf xF of holomor-
phic vector fields tangent to F*.

6i.e. whose flow leaves F! invariant.
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Remark 6.2. For each (D,s) € Igo let us consider the local holonomies
hp,s as in Definition 5.6. There are linear isomorphisms, depending on the
choice of an appropriate compact discs system,
TD]:<> ;THD ) 7;]:0 ;>771D,s )

where Ty, (resp. Ty, ) is the vector space of germs at f(op) of vector fields
on the transversal disc Ap which are invariant by the holonomy group Hp
of F* along f(D) (resp. invariant by hp ), see [13, 24]. Moreover, if XRD
denotes the set of germs of vector fields on (Ap, f(op)) vanishing at f(op),
then the exponential map exp : XRD — Diff(Ap, f(op)) sends Ty, into
C(hD75) and THD into C(HD) O

Now we define a coloring on Aro by saying:
(1) D € Vea,. is green if the holonomy group Hp is finite,
(2) s € Eda,. is green if for each D € Os the holonomy map hp s is
pertodic,

(3) D € Vea,, ors € Eda,, are red otherwise.
Let us denote by J7 ° the group-graph of holomorphic first integrals asso-
ciated to the sheaf of germs of holomorphic first integrals of F*. Because
F* does not have saddle-node singularities, an element a € Vena ., U Eda .
is green iff 77" # C, see [21]. Notice that if an edge s = D N D’ of Aro is
red then the vertices D and D’ are also red. We can therefore consider the
following:

Definition 6.3. The set of red elements of Are is a subgraph called red
graph of F° and denoted by Rro.

Proposition 6.4. Let s and D € Os be a green edge and a green vertex of
Axro. Then the following properties are equivalent:

(1) the holonomy group Hp is generated by hp s;
(2) T — JFe is surjective;

(3) T5" — T is surjective;

(4) Sym?}, — Sym?" is surjective.

Proof. Let D be a green vertex of Aro and let z : (Ap, f(op)) — C be
a linearizing coordinate of the holonomy group Hp C Diff(C,0) which is
finite. For each singular point s of D (necessarily a green edge of Axo) there
is np,s € N such that the local holonomies hp s given in Definition 5.6 are
hps(z) = (p,sz for some primitive np s-root of unity {p . Let us denote
by np € N the least common multiple of {nps | s € DN X} and by (p a
primitive np-root of unity. Because a first integral is completely determined
by its restriction to the transversal Ap, we can consider J, Df  as subrings of
C{z}. In the same way, by extending the elements of 77 “ along the compact
discs used in Definition 5.6 to define hp s, we can also consider jf “as a
subring of C{z}. With these identifications and using Remark 6.2, we have
the following well known equalities and isomorphisms:

T =C{z"Y, TS ~ Ty, = T3 20., C(Hp) = {z(a+MNp)|a € C*},
JI =z}, T = Thy, = T 20, Clhps) = {2(a+M) |a € T},
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with Mtp C J Df  and N, C js]: ‘ being the maximal ideals. Furthermore Hp
is cyclic, generated by (p z. The required equivalences follow immediately.
O

If B is a nonempty connected subgraph of a connected component Aif0
of Are, then for every vertex D ¢ B of Aém or D € 0B there is a unique
geodesic [D, B] C A%, joining D to 0B. We define the following pre-order
relation on the set of vertices of the closure of Az, \ B by means of

D'<D«<= D'€D,B|.

Definition 6.5. We say that B is repulsive in A, if for each edge s = DND’
of Az \ B with D' < D, the restriction map Sym][s<> — Symsf<> 18 surjective.

Remark 6.6. Notice that when B is repulsive there is a filtration By =
B C By C--- C By = A% such that B;_; is obtained from B; by pruning a
Symfo—repulsive partial dead branch Mj of Bj, cf. Definitions 3.9 and 3.10.

O

A change of marking induces an isomorphism of colored graphs compatible
with the repulsiveness property that gives sense to the following definition:

Definition 6.7. The foliation F s of finite type if for each connected com-
ponent Al of Are we have: either the subgraph AZ}_-Q N Rre s monempty,
connected and repulsive, or it is empty and there exists a green repulsive
vertex in Aé_—o.

As we have already pointed out, this finiteness property does not depend on
the marking. In fact thanks to Theorem 11.4 of Appendix, under (TR) and
(TC) conditions, it only depends on the topological class of the germ F at
0 € C? and it is fulfilled by all the foliations G with [G°] € Mod([F°]) as

soon as it holds for one of them.

Theorem 6.8. If F is of finite type then the extension by 1 map
ZY(Rre,Sym”™ ) — Z'(Aro, Sym”")

induces a bijection
H'(Ars,Sym”") ~ H'(Rzo, Sym”™).. (6)

Proof. We apply Pruning Theorem 3.11 to each partial dead branch M;
considered in Remark 6.6, see also Remark 3.12. U

When the foliation F is of finite type let us now give the precise value of
the integer 7r in the statement of Theorem D in Section 2.6. Let us consider
the following subgraph R(}-o whose

e vertices correspond by f to the invariant irreducible components of
Er whose holonomy groups do not leave invariant a non-trivial vector
field,

e cdges correspond by f to the resonant non-normalizable or non-
resonant non-linearizable singularities of F*.

As before changes of marking induce isomorphisms between the graphs Rg_-o;
that allows us to put:
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Definition 6.9. If F is of finite type we call codimension of F the integer
75 = rank Hy (Rro /R%s, Z),

where Rxo/ Rof<> 18 the quotient graph obtained from Rxro by collapsing Rofo
to a single vertex.

We will highlight now a group structure on H'(Rzs,Sym?” <>) when F is
of finite type. Let us choose an arbitrary map s — D; from Edg ., to Ver,,

with D, € ds. Since H'(Rze, Sym” ") is the quotient of

o o C hDS’s
ZY(Rze,Sym”") ~ @ Sym?!" ~ @ <§1>)
SEEdR]__(> SEEdR]__O Ds,s

by C°(Rze, Sym” <>) = & Symgo, we must pay attention to the central-
DGVeR]__<>

izers C'(h) of the local holonomy transformations h = hp s € Diff(Ap, f(op)).
Trivially h is of one and only one following type:
(P) periodic;

(L") linearizable and non-periodic;

(L°) formally linearizable but non-linearizable;

(R") resonant non-linearizable but normalizable;

(R%) resonant non-linearizable and non-normalizable.

Classically, in the first three cases there exists a (only formal, in the case (L°))
local coordinate u on (Ap, f(op)), such that uw o h = au, with a € C*. In
these situations h = exp X , with X := log(a)ud,. In the resonant cases (R")
and (R!) there exists a coordinate u on Ap, only formal in the case (R"),
such that h = f"oexptp X, X = ff%@u, where p+1 is the contact order of
h* with the identity when A’(0)* = 1, £ is the formal diffeomorphism defined
by wo l = e2™/Py, b/(0) = e2™/P r € {0,1,...,p—1}, A€ C, ty € C* and
we can choose tg = 1, (remark that ¢ and exp X commute). In all cases u is
unique up to multiplication by an element of C*. -

Let us denote by 6(h) the centralizer of h inside the group Diff(Ap, f(op))
of formal diffeomorphisms of (A, f(op)). Clearly C(h) = C(R)NDiff(Ap, f(op)).
As in Remark 6.2 let us denote by 7, the space of germs of holomorphic vec-
tor fields on (A, f(op)) invariant by h. The following result contains several
well-known facts.

Proposition 6.10. According to the type of h € Diff (Ap, f(op)) we have:
(P) C(h)={g € Diff(Ap, f(op)) |uog =u(la+ F(u?)), a € C*, F €
uC{u}}; C(h)/({h) ~ Diff(C,0); T = C{ud}ud,;
(L) C(h)={g € Diff(Ap, f(op)) | uog = Ag, A € C*} = expCX ~ C*;
(R) C(h)={froexptX, n€ Z/pZ, t € C} = () HexpCX ~ Z/pZ®C.
Moreover:
(LYY Tp=CX and C(h)/exp T, = {1};
(R') Tn=CX, C(h)/exp Ty ~Z/pZ and C(h)/{h,expTp) ~ Z/(p,7);
(L% T, = {0}; C(h) = {g € Diff(Ap, f(op)) | uog = Iu,\ € D} ~
D, where D := {\ € C* | u=! o (\u) is convergent} is a totally
discontinuous subgroup of U(1), that can be uncountable |29];
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(R%) Tp, = {0}, there exists m € N* such that the sequence

0—>Zi>C(h)i>Z/pZ, a(t)—exp X Blg) = ﬂlogg(())

is exact and C(h)/(h) is finite.

Proof. The periodic case has already been described in the proof of Proposi-
tion 6.4 except the isomorphism C'(h)/(h) ~ Diff(C,0) which follows eas-
ily from the fact that every g € Diff(C,0) commuting with a rotation
2 — ¥4 is equal to (gb(zq))% for a unique ¢’ € Diff(C,0). The descrip-
tion of the formal centralizers is given for instance in [13, Proposition 1.3.2]
or [5, p. 150], where it is also shown that C(h) = C(h) in the normaliz-
able cases (L') and (R'). In addition, in the case (L'), Tj, = Cu% and
exp : T, = C(h) can be canonically identified to the surjective morphism
C — C* given by p + et. In the case (R!), Ty, is equal to CX and

C(h)/{(h,expCX) ~(Z/pZ®C)/(r & 1,00 C) ~Z/{p,r),

where 7 is the class of r modulo p. Thanks to the description of C (h), in the
case (R”) the kernel of 3 consists of the convergent elements of the flow of X
and by the Ecalle-Liverpool Theorem, see for instance [13, Corollary 2.8.2] or
[11, Theorem 4] and [1, Theorems 7 and 10], it is equal to «(Z) for a suitable
m € N*. Indeed, Theorem 7 of [1] claims that if exptX is convergent for
|t| < p then exptX is bounded in [t| < p and |z| < p; consequently in
this case X = %‘tzo exp(tX) would be convergent. Thus, the set {t € C :
exptX is convergent}, which contains Z, is different from C. By Theorem 10
of [1] this set is a lattice whose dimension is necessarily 1 by Theorem 4
of [11].

Finally in the case (L°), let g be an element of C'(k) = C(h) N Diff(C, 0).
Then uwo g = Au with |[A\| = 1. Indeed if |A| # 1, g would be linearizable
in a convergent coordinate and h, that commutes with g, would be also lin-
earizable in the same coordinate, contradicting the assumption (R%). On the
other hand, D is a totally discontinuous subgroup of U(1) because otherwise
D =U(1) and h would be linearizable. O

It follows from this proposition and from Remark 3.4,
Theorem 6.11. Gwen a € Vea,, UEda,, we have the equivalences:
a is red <= Sym? " is abelian <= dim¢ 77 < oo
a € Vegy UEdgy, <= T =0.

Furthermore the abelian structure of the group-graph Sym over Rre in-
duces an abelian group structure on H'(Rxo, Symf ).

Remark 6.12. By following the natural bijections (2), (5) and (6) provided
by Theorems 4.9, 5.14 and 6.8 respectively, one can check that if H([F°]) =
H([G°]) then Mod([F°]) and Mod([G°]) coincide as sets, but their respective
abelian group structures are related by the map p — yu where v = [G°] €
Mod([F°]). Indeed, the bijection (2) is given by ire which sends [F°] to
[(id)] € H'(AFs, Aut”™). 0
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We end this section by proving some properties of centralizers which will
be useful in the sequel.

Lemma 6.13. If g and h are non-periodic and g € C(h), then C(g) = C(h).

Proof. The group C(h) in case (L) only depends on the formal coordinate
u that linearizes h. Similarly in case (R) all the non-periodic elements of
C(h) have the same invariants p and A, and if we fix these invariants, the
centralizers of resonant diffeomorphisms only depend on the normalizing
coordinate u. Thus the lemma follows from the fact that in both cases all
the non-periodic elements of a centralizer can be linearized or normalized by
using the same coordinate. U

Lemma 6.14. Let H be a finitely generated subgroup of Diff (C,0). Suppose
that H and its centralizer are infinite. Then H 1is abelian, it contains a
non-periodic element h and H C C(H) = C(h).

Proof. We will first prove that H is abelian by contradiction. Take a non-
trivial element f € [H, H] which is tangent to the identity: f(z) = z4cp2"+

- with & > 2 and ¢; # 0. Then f"(z) = z+ncpz" +-- - is the identity only
for n = 0. Thus f is non-periodic and C(H) C C(f). By the description
of C(f) given in Proposition 6.10 there is a non-periodic element g in the
infinite subgroup C(H) C C(f). The fact that g € C(H) is equivalent to the
inclusion H C C(g). As C(g) € C(g) is abelian by Proposition 6.10 we get
a contradiction. Since H = (hq,...,hy) is abelian, there is a non-periodic
generator h;, otherwise H would be finite. Let h € H be any non-periodic
element. By Proposition 6.10, the group C(h) C C(h) is abelian. Since
H is abelian we have H C C(H) C C(h). Since C(h) is abelian every
element of C'(h) commutes with H and consequently C'(h) C C(H). Hence
H c C(H)=C(h). O

It follows immediately:
Proposition 6.15. Under the hypothesis of the previous lemma, all the non-
periodic elements of H are of the same type (L'), (L°), (R') or (RY).
7. NON-DEGENERATE FOLIATIONS

A FC-singular chain C of £ is a sequence Dy, ..., Dy, of irreducible com-

ponents of £ defining a connected subgraph

C

81 Ste

(C) ®Dg ®Dy

®Dy, (7)

of Are such that the singular valency (cf. Definition 5.4) of its extremities
Dy and Dy, is at least three, and that of the others, called interior vertices,

is exactly two. If ¢o = 1, then C consists of only two adjacent divisors of
S1

singular valency at least three: ep, ep, . The image by the marking
map f of a F°-singular chain of £ is a singular chain of £ as considered in

Section 2.5.

Proposition 7.1. Let F° be a non-degenerate marked foliation. Then F
is of finite type. Moreover, the union Rre of all F°-singular chains of €
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is a subgraph of Rro such that for each connected component Aém of Aro,
Rre N Aif<> 18 connected and repulsive in Rpo. Hence

Hl(R]:o, Symfo) >~ Hl(ﬁj:o, Symfo) .

In order to simplify the notations in the two proofs below, we will write
R, R, Sym, instead of Rro, Rxo, Sym]'-o.

Proof of Proposition 7.1. Clearly R is connected in each connected compo-
nent A’ of the cut-graph A and the closure of R\ RinRis exactly the union of
all connected subgraphs C denoted as in (7) but with singular valencies sat-
isfying valy,(Dg) > 3, valy(D;) = 2 for 0 < j < {¢ and valy(Dy,) = 1
or 2. By definition of the group-graph Sym, for 7 > 1 the morphisms
p%j : Syij — Symsj are bijective and R is repulsive in R. Since F is
non-degenerate all the vertices and edges of R are red; thus RN A? is also re-
pulsive and connected. By using Pruning Theorem 3.11 we obtain the group
isomorphism H'(R,Sym) ~ H'(R, Sym). O

Proof of Theorem C. To have uniqueness of the numbering in the notation
(7) of a singular chain C, we fix in the sequel an extremity D of R and we
prescript that Dg belongs to the geodesic joining Dy, to D. We will say that
Dy, resp. sy, is the initial vertex, resp. terminal edge of C.
For an interior vertex D; of C the morphisms pgj and pg;fl are bijective
and by composition they induce isomorphisms
Ep; : Symy, =~ Syij , §s; * Symy, ~ Symsj , O0<j<ie.
Let us consider the subgroups:
° El(lv?, Sym) C Z(R,Sym) of the 1-cocycles (¢D,a)(D,a)eI§ such that
®p,a = 1 if a is not the terminal edge of some singular chain,
e C°(R,Sym) C CO(R,Sym) of the O-cochains (#D)Deve, such that
¢op =E&po pleO (¢p,) for all interior vertices D of any singular chain,
Dy denoting its initial vertex.
Notice that the coboundary morphism 0° defined in Remark 3.4 maps 50(FVQ, Sym)
into Z!(R, Sym), allowing us to define the group

H'(R,Sym) := coker(8° : C°(R,Sym) — Z'(R,Sym)).
We easily see that eich element of H 1(Ifi,Sym) can be represented by a
cocycle belonging to Z 1(Iv?7 Sym). We deduce that the morphism
7: H'(R,Sym) — H'(R,Sym)

induced by the inclusion Z'(R,Sym) ¢ Z'(R,Sym) is surjective. On the
other hand if a cochain ¢ := (éD)Deve, € CY(R,Sym) satisfies 9°(c?) €
Zl(ﬁ, Sym), then for each singular chain C of lenght ¢z > 2 denoted as in
(7) we have the equalities

B (00,) = ph, (dp,,), i<lc.

It follows that ¢® € CO(R,Sym). Therefore ker(r) is trivial and 7 is an
isomorphism. To achieve the proof of Theorem C, let us first notice that
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the group éo(ﬁ, Sym) is finite. Indeed it is isomorphic to the direct sum
of all centralizers of holonomy groups associated to the vertices of R having
singular valency at least three. These holonomy groups being non-abelian
by the non-degeneracy assumption, thanks to Lemma 6.14 their centralizers
are finite. On the other hand, Proposition 6.10 gives a decomposition of
Z'(R,Sym) as F & B @;‘:1 ((C*/ajz) @ (C*)¥; that completes the proof of
Theorem C. O

8. EXAMPLES

Before proving Theorem D in full generality let us motivate its statement
by computing the moduli space of some non-trivial examples using the iden-
tification Mod([F°]) ~ H(Rzo,Sym”").

e Example 0: a logarithmic generic multicusp
Let £ be the germ at 0 € C? of the logarithmic foliation defined by the
meromorphic form
P

. d(y* + a;x3) (22 + biy?)
w.—;al y? + ;a3 o Zﬂl 22 +biy®
with a;, b; € C mutually distinct. We normalize the coefficients «;, 8;,6 € C*
by requiring 6 +23%_ (a; + ;) = 1. To simplify the exposition we suppose
that &£ is equal to the exceptional divisor £, ¥ = Sing(L£#), the marking
being the identity map and £° = (L£,idg.). Clearly £ is formed by five
irreducible components, its dual tree is equal to the cut-graph Apo

/ / " 7
Soo SO SO S

(AEO) o LIl L Jp) LIp Y4 s [ Jol
valy(C') = valg(C") =1, valg(D') =valg(D") =p+2, wvalg(D)=3,
where valy; is the singular valency introduced in Definition 5.4. The cut
graph Age decomposes into one singular chain that is the red part Rge of
the graph

So S0
(R[:o) .D/ .D .D”
’ 7

S
e and epw

and two dead branches e¢r e necessarily green.
Thus the restriction morphisms Symg — Symf,;, Syméf, — Symf,; are
surjective and by Pruning Theorem 3.11, the group H'(Ao, Sym*’) is iso-
morphic to H'(Rge, Sym*”). On R = Rzo the morphism 8° defined in Re-
mark 3.4 decomposes, with additive notations on abelian groups, as

CO(R, Sym*") =

NN

Z\(R, Symﬁo) = Sym Sym

HDN)

8°(c1 @ c2 @ e3) = (E1(c1) + Ea(c2)) B (Ea(ca) + &alea)) -
On the other hand, Sing(£*) N D’, resp. Sing(ﬁﬁ) ﬂ D" is formed by s., s(,
resp. sk, s(, and the attaching points s}, resp. s/, of the strict transforms
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of the curve {y? + a;2® = 0}, resp. {22 +by® = 0}, i = 1,...,p; and
Sing(£F) N D is formed by s, s and the attaching point s; of the strict
transform of {y —x = 0}. The Camacho Sad indices of L* at these points
are

CS(D',sL.) =CS(D",s%)=—-1/2, CS(D,s;)=-d, CS(D',s;)=—a,
CS(D",sp) =B, CS(D',s;)=—aja, CS(D"s))=-p;8,

with @ := (1+ 32, a)71/2, 8:= (1+ 32, 8)~/2. Assuming that p > 3,
we choose «;, §; and § sufficiently generic so that no Camacho-Sad index is
a real number, except at the points s, and s” . All the singularities of Lt
are linearizable and according to Proposition 6.10 the centralizers C(Hpy),
C(Hp), C(Hpr) are isomorphic to C* = C/2miZ. Using Remark 5.9 we
obtain:

C C C
IRV & 2l & I

C/2im(Z + aZ) @ C/2im(Z + BZ)

moreover & and {3 are induced by the identity map, but & is induced by
2z — z/a and & by z — z/3. It immediately follows that 9° is surjective
and H'(R, Sym*’) = 0. We conclude that Mod([£°]) = {[£°]}. Thus, £ is
topologically SL-rigid which means that if a foliation F has the same separa-
trices, Camacho-Sad indices and holonomies than £ then F is topologically
conjugated to £. It is worth to notice that the converse is not true, as |28,
Théoréme 3.5] shows, because condition (TR) is not satisfied.

Next Examples 1-4 will be suitable perturbations of this logarithmic foli-
ation £ that we have considered in Example 0.

e Example 1: non-degenerate multicusps
Let F; be a foliation with the same reduction as the previous logarithmic
foliation £, same Camacho-Sad indices but such that the holonomy groups
along D, D' and D" are non-abelian. Such a foliation can be obtained by
perturbing the holonomy groups of D, D' and D" as in 22| and by using
the realization theorem of [15]. In this case it is well-known that F; satisfies
condition (TR) and therefore we can compute Mod([F7]) by identifying it
with H'(R,Sym”T). According to Lemma 6.14 the centralizers of Hp/, Hp
and Hpr are finite groups Fy, Fy and F} respectively, however Sym's? and

Fe . . o o . s
Sym,; remain isomorphic to Symf, and Symfu because the singularities of
0 0 0

Fiat s, and s are again lincarizable.
(C/217r Z—I—aZ C/2z7r Z—i—BZ
It follows:
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- Mod([FY]) is a finite quotient of a product of two elliptic curves.

e Example 2: partially degenerate multicusps
Let F5 be a perturbation of the logarithmic foliation £ with same Camacho-
Sad indices, with non-abelian holonomy groups along D’ and D” (having
finite centralizers Fj and FJ'), but such that there is a biholomorphism be-
tween neighborhoods of D that conjugates Fo to £. The existence of F3 is
guaranteed by the same process as in Example 1, but without perturbing
the holonomy group of D. We have

C/2inZ

\/\/

C/2in(Z + aZ) C/2in(Z + BZ)

where again £ and &3 are induced by the identity map. We easily obtain the
exact sequence

K — C/27i(Z + &Z + BZ) — Mod([F3]) — 0,

K being finite. If 1, a, 5 are Z-independent then
- Mod([F5]) is not a finite quotient of a product of elliptic curves; in
particular, in the statement of Theorem D we cannot replace ZP by a
finite group in the exact sequence (1).

e Example 3: infinite type multicusps
First we choose the coefficients «a;, §;, 4 in the expression of the 1-form w,
so that CS(D’,s() € Z«o, the other Camacho-Sad indices being in C \ R,
except for the points s’ and s”.. At sj the foliation £* possesses now a
germ of holomorphic first integral, the local holonomy is a periodic rota-
tion, thus Sym ; is isomorphic to Diff(C,0). Then, as before we perform
a perturbation ]:3 of £ changing only the holonomy groups Hp, and Hp

that become non-abelian, but without changing Hp~ nor the local analytic
3

types at any singular point. For such foliation F3 the group Sym is always

isomorphic to Syms,3 ~ Diff(C,0). The group-graph Sym”? is not abelian
0

and its cohomology is no longer given by the cokernel of a morphism &°.

However

€1t Symﬁ% ~ C/2miZ — Sym;zi§> ~ C/2mi(Z + BZ)

is always a submersion. Thus performing a new pruning we have an isomor-
!

phism Hl(ng,Symf?f) ~ H'(R,Sym”) with R’ := ep —> ep . The
centralizers of Hp, and Hp being finite by Lemma 6.14, we obtain:
- Mod([F3]) is a quotient of Diff(C,0) by the action of a finite group
and Rrg is not connected.

e Example 4: Cremer multicusps
By gluing techniques and thanks to realization Theorem [31] and Pérez
Marco’s results [29] we can build a foliation F4 with same separatrices, thus
same reduction, as in previous examples, with non-abelian holonomy groups
Hp/, Hp, Hpr, but whose local holonomies at s, and s{ are Cremer with
uncountable centralizers. In this case
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- Mod([F¥]) is a finite quotient of a product of two uncountable totally
discontinuous subgroups of U(1).
e Example 5: non-degenerate foliations with a single separatrix.
For such a foliation F3, after pruning all dead branches of the dual graph
of &x;, the obtained graph is the red graph Rz which is reduced to a geo-

S1 S¢

desic segment ep, op, . All Camacho-Sad indices are ratio-

nal numbers. The singular chains in Rye are in two categories: the normaliz-
able chains whose edges s correspond to normalizable resonant singularities
of ]-'g and the non-normalizable chains. For the first one the group Symf is
isomorphic to C* and for non-normalizable chains it is isomorphic to Z/msZ
for a suitable mg € N. It follows:

- Mod([Ff]) ~ (B, Z/miZ & C*)/Z, with Z a finite subgroup, p,
resp v, the number of non-normalizable, resp. normalizable singular
chains; furthermore u+ v is equal to the number of Puiseuz pairs of
the unique separatriz.

Another specificity of this foliation F5 is that the mapping class group of
&%, is trivial because every singular point of Ex, is fixed” by Mcg(€%,) and
the pure mapping class group of P! punctured at three points is trivial [9,
Proposition 2.3]. From Corollary 2.2 we obtain that

Mod([7S]) € Mod(€%,) = [Fohs (€3 )]co

e Example 6: some topologically SL-rigid foliations.

Whenever for a marked foliation F¢ the red part of any cut-component of

Aro is reduced to one vertex, the moduli space Mod([F°]) is reduced to one

element. In particular this is the case for:

- any non-dicritical foliation reduced after only one blow-up, its separatrices
being smooth curves mutually transversal, or more generally any topolog-
ically quasi-homogeneous foliation, see [14],

- absolutely dicritical foliations of Cano-Corral [6],

- dicritical foliations that are non-singular after one blow-up, see [2] and [27].

9. EXPONENTIAL AND DISCONNECTED GROUP-GRAPHS

We keep all notations used in Section 6. For technical reasons the last
group-graphs that we must consider will be defined uniquely over the red
graph Rre C Aro. Recall that X7°, BF” and 77 denote the group-graphs
over A ro associated to the sheaves X]:u, BF and TF = B]:ﬁ//'\f']:u of tangent,
basic and transverse holomorphic vector fields for F*, respectively.

Lemma 9.1. For s € Eda,, the exponential map exp : BLZ:Q — Aut‘SF<>
induces a well-defined map exp?” : TZ" — Sym?”

Proof. We must prove that exp(Z + X) = exp(Z) modulo Fix?”~ if Z € BI”
and X € X7°. For that it suffices to show that for each neighborhood V
of f(s) there is another neighborhood U of f(s) such that for each p € U

"Each element of the mapping class group of £%, preserves dead branches so it must fix
every singular point except maybe the attaching points of the two dead branches of the
extremity divisor of singular valency 3. But these two points have different Camacho-Sad
indices, as it can be easily deduced from [12, p. 164].
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the curve a € [0,1] — exp(Z + aX)(p) is contained in a leaf of ]:\ﬂv' We

choose U C V such that the map ¢ : U x Dy x Dy — V given by ¢(p,t,a) =
exp(t(Z + aX))(p) is well-defined. Fix p € U and take a local holomorphic

first integral F' defined in a neighborhood W of p. If t is small enough then
o(p,t,a) € W and

(f; <;aF(¢(p,t, a))> = 3‘1 (;F(¢(p,t7a))>

- 8aoz ((Z 4 aX)(F) o ¢(p,t,a))

= [X(F) 0 6(p,t,0)] 5=6(p,t,0) = 0

because X is tangent to F*. Since ¢(p,0,a) = p does not depend on a we
obtain that 8%F((b(p, t,a)) = 0 for t small enough. As ¢ is holomorphic, we
conclude that the curve o — ¢(p, 1, @) is contained in a leaf of ﬂﬁv. O

Remark 9.2. It can be checked that under the identifications 7.7~ ~ Ty, D
and C(hD75>/<h?75> ~ Sym?" given by Remark 6.2 and Corollary 5.8, the
morphism exp?!" coincides with the composition of the restriction Thp,, —

C(hp,s) of the exponential map on the transverse section Ap and the quo-

tient map C(hps) = C(hps)/(hD.s)- O
Motivated by the above remark, for D € Vea ,, we define the map expg<> :

T3° — Sym3,” as the composition T3~ =~ Ty, % C(Hp) — Symp, . From
Remark 9.2 it is clear that the following diagram is commutative:

o expl’ o
T3 —= Symj, (8)

b J{ Db
O
]—'<> exp'SF

7; - Syms

O

the vertical maps being the restriction maps of the group-graphs 77 ° and
Sym” O, written with the same notation.

Although the exponential map
exp : C{z}z0, — Diff(Ap, f(op)) ~ Diff(C,0),

z: (Ap, f(op)) — (C,0) being a germ of coordinate, is not a morphism of

groups, its restriction to a subspace of complex dimension < 1 is. On the

other hand it is well-known that dime 7;7° < 1 if the stalk J7 of the sheaf

of first integrals is equal to C. Since 77 C 77" for s € D we deduce that
f@ ,FO .

expp and exp; define a morphism

exp” : T — Sym””
of abelian group-graphs over Rro.

Definition 9.3. The group-graph over Rre image of exp”  is called the
exponential group-graph of F°. We denote it by Exp” .
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At this point it is clear that the subset of Rge consisting of all a €
Ven ., UEda,, such that Expfo = 0 is just the subgraph ROJ_-<> of Rro pre-
viously defined in Section 6 and characterized by the second equivalence in
Theorem 6.11. Let us denote by R}_-o the completion of Rzro \ Rg_-o, i.e. the
minimal subgraph of Rxe containing Ryo \ Rg_-o.

Lemma 9.4. If (D,s) € Ir,, and ’TDF<> # 0, then the restriction map p'p, :
Tg R 7ff ° is an isomorphism and all the red singular points in D share the
same character resonant non-linearizable or linearizable; we will say that D is
resonant or linearizable according to the case. Furthermore, the isomorphism
class of the group Expfg<> 1s given by the following table

Exppy valg(D) < 2 | valg(D) > 3
D resonant non-linearizable C/Z C (9)
D linearizable C*/a” c*

The restriction morphism pf, : Expg<> — Expf ° s surjective and

. [ Z if valg(D)>3,
ker pp = { 0 if valg(D) < 2.

Proof. The homogeneity of singular types in D is given by Proposition 6.15.
Notice that if a basic vector field for F* defined on a connected open set
U C Mg is tangent to the foliation in a neighborhood of a point of U then
it is tangent to the foliation on the whole U. Using this fact it is easy
to see that if W is a connected subset of a Fi-invariant component of Er,
the stalk maps ’Tﬂ(W) — Tnfu, m € W are injective. Taking W = D
we deduce that the restriction map p'}, : Tg R 77 ° is injective. Since
dim 77" = dim T7° = 1, p'$, is an isomorphism. In fact, 77~ =~ 7" can be
identified to a line CX in the space of germs of vector fields on (Ap, f(op)).
Then Table (9) follows from Proposition 6.10.

On the other hand exp?” : T7° — Exp? " being surjective by definition
and the restriction map p'p being an isomorphism, it follows that p3, o
expj;<> = expl “op b is surjective. Therefore p3, is also surjective. The last
assertion follows from Remark 9.2 and the commutativity of the diagram (8).

O

Thanks to Theorem 6.11, H'(Rxo, Symfo) is an abelian group and the
natural inclusion Exp” R Sym” °isan injective morphism of abelian group-
graphs over Rro.

Definition 9.5. The quotient group-graph over Rro
Dis”" := Sym”" /Exp””

given by Disaf<> = Symaf/Expaf for every a € Ver,, UEdr,,, is called the
disconnected group-graph of F°.

Obviously, we have over Rro the short exact sequence of abelian group-
graphs:

0 — BExp” — Sym”" — Dis™" — 0. (10)
The name “disconnected” is explained by the following proposition.

Proposition 9.6. For s € Edr,, and D € Ver,, we have that
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(1) the abelian group Dis!” =~ C(hps)/(hp.s, exp(Thp.,)) is:

(a) trivial if f(s) is a linearizable (non-periodic) singularity

(b) a finite abelian group if f(s) is a resonant (non-periodic) singu-
larity, cyclic in the normalizable case;

(¢) a cyclic quotient of a totally disconnected subgroup of U(1) if f(s)
1s a non-resonant non-linearizable singularity;

(2) the abelian group Dis}) is

(a) infinite and finitely generated if Hp is abelian and all the red
singularities on f(D) are resonant non-normalizable;

(b) a cyclic quotient of a totally disconnected subgroup of U(1) if Hp
is abelian and all the red singularities on f(D) are non-resonant
non-linearizable;

(c) finite in all the remaining cases;

(3) Dis?" and Dis}y  are finite if s € Edgy, and D € Vegy

Proof. Assertions (1) result directly from Proposition 6.10.

To obtain Assertions (2) we can suppose that the singular valency of D
is at least three, otherwise DisJDE<> = Dis/ ° for s € DN'Y and Assertions (2)
result again directly from Proposition 6.10. Now let us suppose also that
Dis}’ -thus also C(Hp)- is infinite. Because D is red, Hp is infinite and
it follows from Lemmas 6.13 and 6.14 that the set H' of all non-periodic
elements of Hp is nonempty and for every h € H' we have C(Hp) = C(h),
therefore Dis},” = C(h)/exp(Ts). By Proposition 6.10 the only case where
this group is infinite is when h is resonant non-normalizable or non-resonant
non-linearizable. To see that these two possibilities correspond to the cases
(2a) and (2b) above, it is enough to notice that the local holonomies hp s,
s € DNY, that generate Hp, cannot be all periodic (otherwise by abelianity
Hp would be finite), and to use Proposition 6.15.

Assertion (3) follows immediately from Assertions (1) and (2) except for
Dis{,” when D is a common vertex of RL, and R%.. In this case although
Exp]DE<> = 0, at the meeting points s of D with components D’ of R},_-Q we
have Exp‘f ¢ =% 0 because Expg/> =% 0. Therefore D does not correspond to
case (2a) nor case (2b) and Dis?y’ is finite according to (2c). O

10. PrRoOF OF THEOREM D

In order to simplify the notations in the proofs below, we will write agaln
A, R, Aut, Sym, Exp, Dis and 7, instead of Aro, Rro, Aut]C SymF Exp”
Dis]: and 7r. We will also write Ry and Ry instead of R]_-<>7 R]_-<>

We have already shown that there are “natural” bijections:

2) (5)

Mod([F°]) 2 H'(A, Aut) 2 H'(A, Sym) % H'(R,Sym),  (11)

the bijection (6) being only valid when F is of finite type. Moreover Sym is
an abelian group-graph over R and consequently H'(R,Sym) is an abelian
group, cf. Theorem 6.11. Recall that Ry is the subgraph of R constituted by
all the vertices and edges b satisfying Exp, = 0 and R; is the completion of
R\ Rg. The rest of the proof is divided in several steps:
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(i) The abelian group H!(R,Sym) fits into an exact sequence
0 — F — H'(R,Exp) — H'(R,Sym) - D — 0,

where F' is a finite abelian group and D is a totally disconnected
topological abelian group.
(ii) We have group isomorphisms

H'(R,Exp) ~ H'(Ry, Exp) ~ @ H' (2*, Exp),
«

with Ry =: U Z® where each zone Z% is the completion of a
aemo(R\Ro)
connected component of R\ Ry = R; \ Ro.

(iii) To simplify the computation of the cohomology groups H'(Z%, Exp)
we modify each zone (not reduced to a single vertex) without changing
the number of its extremities nor its cohomology, by adding a vertex
and an edge, for each of its extremities. The modified zones fulfill the
following property:

(x) each extremity of Z is joined by its edge to a vertex of valency 2
in Z¢.

(iv) We decompose each modified zone Z as Z = Zy U Z; where Zj is
either empty or a disjoint union of n + 1 > 1 segments e D oD,
with D € Ro, D; € Ry and Zo NZ; = {Dy,...,D,}. We prove that

n

H'(Z,Exp) is trivial if Zg is empty, and it is the quotient of € Exp D;
i=1

by a finitely generated subgroup if Zg # 0.

(v) Since Expp, is isomorphic to C or C/Z ~ C* or C*/a” by Lemma 9.4,
we can construct a morphism A : C7 — Mod([F°]) with totally dis-
connected cokernel and finitely generated kernel.

(vi) We specify the notion of semi-local-equisingularity, denoted by SL-
equisingularity. This notion was introduced in [24] for germs of de-
formations and in this paper we adapt it to the context of a global
parameter space.

(vii) We construct SL-equisingular families of foliations ft(,]i satisfying The-
orem D.

Step (i). Consider the long exact sequences

.-~ — H°(R,Dis) — H'(R,Exp) & H(R,Sym) — H'(R,Dis) = 0 (12)
and

... H°(Ry,Dis) - HY(Ry, Exp) X3 H'(Ry,Sym) — H'(Ry, Dis) — 0

associated by Lemma 3.6 to the short exact sequence (10) of abelian group-
graphs. By the first part of Proposition 9.6, Z!(R, Dis) is a finite product
of totally disconnected subgroups of U(1) and H'(R,Dis) is thus a totally
disconnected abelian topological group. Moreover when all the singularities
of the foliation are resonant or linearizable, the case 1c) is excluded and
ZY(R, Dis) is finite. In order to conclude this step it only remains to prove
that ker  is finite. Let us notice that H°(RgNRy, Exp) = 0, H!(Ro, Exp) = 0
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and H'(Ryg N Ry, Exp) = 0. By applying Mayer-Vietoris Lemma 3.7 to the
union R = Ry UR; we obtain the following commutative diagram with exact
TOwWS

0 —— H'(R,Exp) 0® H'(Ry, Exp) ———=0

I o

-+ —— HY(R,Sym) —— H'(Ro, Sym) ® H'(Ry, Sym) — - -
(13)
Thus ker x is isomorphic to a subgroup of ker xy; and it is sufficient to prove
that HY(Ry, Dis”) is finite. But using the second part of Proposition 9.6 we
obtain that C°(Ry, Dis”) is finite.

Step (ii). Diagram (13), coming from the Mayer-Vietoris sequence, gives us
the isomorphism

HY(R,Exp) ~ H'(R,Exp). (14)

Clearly Ry is a finite union of zones Z%. Moreover, Z* N Z? is either empty
or a single vertex of Ryg. Therefore

H%(Z2*NZP Exp) =0 and H'(Z*nZ° Exp)=0.
By applying recursively Mayer-Vietoris Lemma 3.7 we deduce that

H'(R,Exp)~ P H(Z*,BExp), i=0,1. (15)
CVGTFO(R\RO)

Step (iii). If a zone Z% is reduced to a single vertex then H'(Z%, Exp) is
clearly trivial. If this is not the case, we modify Z% in the following way: if
v’ is an extremity of Z% and v” € Veza is the unique vertex joined to v’ by

e e’ e

an edge €', we replace the segment e, o, by e, ., o,. We
also extend the group-graph Exp to the new edges and vertices by defining

Exp,.» := Exp, := Exp, := Exp,/, Py =Py :=idgyp,,  (16)

/
1 e/

Porr =Pyt s Pt = Por -

We call this operation the blow-up of the edge ¢’. By performing these blow-

ups for each extremity of Z% we get a new graph Z% called a modified zone.
Clearly Z® fulfills property (x) of (iii).

By doing this process on each zone, we get a modified graph R endowed

with a group-graph still denoted by Exp. We define now a contraction map:

Z'(R,Exp) 2 Z (R,Exp),  c= (¢ve) > = (¢,)

where gbf}e = ¢ye if € is not produced by a blow-up, and ¢yrer 1= Gyrren e =:
e// e e/
¢;’£’ if ¢,y — e, — e, is given by the blow-up of e,» — e, It is

easy to see that this map induces group isomorphisms

H'(Z® Exp) ~ H'(Z*,Exp), H'(R,Exp)~ H'(R,Exp). (17)
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Step (iv). Fix Z = Z® a modified zone of Ri. Let Z; be the maximal
subgraph of Z with all vertices and edges b satisfying Exp, # 0. Denote by
Zo the completion of Z \ Zy. Clearly Z = Zy U Z; and Zj is either empty
or a disjoint union of n + 1 > 1 segments ep, ep with Expp = 0,
Expp # 0, D’ being an extremity of Z and valz(D) = 2. Notice that
H'(Zy, Exp) = 0. Indeed the restriction morphisms of the group-graph
Exp over Z; are surjective by Lemma 9.4. We apply recursively Pruning
Theorem 3.11 and we conclude by Remark 3.12 that H'(Z, Exp) = 0 if Zg is
empty.

Now suppose that Zg # (). We will apply Mayer-Vietoris Lemma 3.7 to
Z = ZoU Z;. Using again Lemma 9.4 we see that H'(Zy,Exp) = 0 and
H(Zy,Exp) = 0 by construction of the modified zones. We obtain the exact
sequence

H°(Zy,Exp) 22 H(Zy N Zy, Exp) 23 HY(Z, Exp) — 0, (18)

0o being the restriction map and J, the connecting map.

In the sequel we will choose one vertex Dy in Zo N Z; = {Dy,...,Dy}
and we will call the remaining vertices D1, ..., D, the active vertices of the
zone Z.

Lemma 10.1. The projection m, : H°(Z1, Exp) — HY(Dy, Exp) ~ Expp,,
(yp)D + Yp, is surjective and its kernel is a finitely generated abelian group.

Proof. From Lemma 9.4 for each (D,s) € Iz, the restriction map pj, is
surjective with kernel 0 or Z. Since Dy € Zy N Z; then valz(Dy) = 2 by
Step (iv). Let s be the edge of Z passing through Dy and let D{ be the other
vertex of so. Let s;, i = 1,...,¢, be the edges such that D € Js;. For each
Yo € Expp, there are y; € Exp,, i = 1,..., ¢, such that p7 (vi) = pJ5 (¥0),
see Figure 3. Moreover, the different choices of y; are parametrized by Z*
with £ < ¢. By induction we easily deduce that 7, is surjective and its kernel
is finitely generated. O

Denote by p : H%(Zg N Z1,Exp) — H°(Dy, Exp) ~ Expp, the projection
map. Then we have the following morphism of exact sequences

HO(Z,,Exp) > H(Zy N Z1, Exp) Lo, HY(Z,Exp) —=0

<, b |

0 ———= Expp, —— = Expp, 0

Since Zg N Z; only contains the vertices D; we have that HY(ZgNZy, Exp) =
@ Expp, and kerp is just ;. Expp,. Because m, is surjective, by
applying the snake lemma we obtain the following exact sequence:

n
ker(mq) — @EXpDi Oy H'(Z,Exp) — coker(m,). (19)

i=1
Since 7, is surjective and ker (7, ) is finitely generated, thanks to Lemma 10.1
we get that H'(Z, Exp) is a quotient of C" by a finitely generated subgroup.
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FIGURE 3. Schematic diagram for the group-graph Exp re-
stricted to Z;.

Step (v). First we notice that the number of active vertices of a modified
zone Z = 7% is equal to the rank of the homology groups Hy(Z/Zy,Z) ~
Hy(Z*/(Z*NRy), Z) of the corresponding quotient graphs. We easily deduce
that the number of all active vertices a, for all the modified zones is equal
to the rank 7 := rank H;(R/Rg, Z) introduced in Definition 6.9.

Each active vertex a,, r = 1,...,7, belonging to some modified zone, is
Sp

produced by the blow-up of an edge e, e, , v, being an extremity of
the zone. By construction, Exp, = Exp, , cf. (16). With this identification
and thanks to the isomorphisms (14), (15) and (17) it can be easily checked,
using the proof of Lemma 3.7, that the map § = ®,0, given by the con-
necting maps d,, of the Mayer-Vietoris exact sequences (18) is the surjective
morphism

gk @EXpar - @EXpST > (¢r) — [(dve)] € H'(R,Exp)
r=1 r=1

with ¢yrs, 1= ©p, Gurs, == @ Land ¢, is trivial otherwise.

Now for each r = 1,...,7 we choose a local holomorphic basic vector field
X, transverse to the foliation F* and defined on a neighborhood of f(s,) in
the ambient space of F*. We define the group morphism A : C™ — Mod([F°])
of Theorem D, as the composition

5 @B, > H (R Exp) 3 H'(R,Sym) 2 Mod([7°)),

r=1
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where £(t) = (expt1 X1, ...,expt, X, ), expt, X, denotes the class of expt, X,
in Aut,, /Fix,, = Sym,_and x is induced by the natural inclusion of group-
graphs Exp < Sym, see (10). The last bijection (11) induces an abelian
group structure on Mod([F°]). Moreover, if we define D := H!(R, Dis) and
I' : Mod([F°]) — D as the composition of the isomorphism (11) and the last
arrow in the sequence (12), then the sequence

C™ A Mod([F°)) 5D -0

is exact. It remains to check that ker A = ker(x o 0 o {) is finitely gener-
ated. Since ker x is finite by step (i) and ker 0 is finitely generated thanks to
Lemma 10.1 and (19), it suffices to see that ker¢ is also finitely generated.
In fact, we will conclude by proving that the kernel of each group morphism
& : C— Sym, , t — expt, X, is finitely generated. Since Remark 9.2 allows
us to work on a transversal, we can use Proposition 6.10 to describe ker(&;)
as the kernel of the morphism C — C(h,)/(h,) given by t — [exp tX,], which
is finitely generated thanks to Lemma 9.4.

Step (vi). Let P be a complex connected manifold and ¢y a point of P. A
deformation of F with parameter space the manifold P pointed at tg, is a
germ along all {0} x P of a 1-dimensional holomorphic singular foliation Fp
defined on an open neighborhood of {0} x P in C2 x P, which is tangent to
the fibers of the projection mp : C?> x P — P and such that F is equal to
the restriction of Fp to C? x {to}, with the identification C2—~5C? x {t,},
(gj7y) = (l’,y,to).

We say that Fp is equireducible if there exists a map Ex, : M — C? x P
obtained by composition of blow-up maps F; : M;;1 — M; fulfilling:

(1) each center of blow-up C; C M of Ej is biholomorphic to P by the
map mj :=7mpoFEyoEjo---0oE;_1: Mj = P,

(2) the singular locus of the foliation E% Fp is smooth, contained in
the exceptional divisor £, = E]f-li({O} x P) and the restriction of
mp o Er, to each of its connected component is a biholomorphism
onto P,

(3) the restriction of Ex, to M := (mpo Ex,) }(t) is exactly the min-
imal reduction map of the foliation F; on C? x {t} induced by Fp;

Notice that £, is a topological product over P, i.e. there is a homeomor-
phism ®p : My, x P-—+M such that 7p o ®p is the second projection map.
By identifying C? x {to} with C2, each marking f : & — Ery, of Fyy by £°
extends via ®p to markings f; : £ = Ex, C My of F, t € P, defining in this
way a map
P — Mod([F°]), tw[F fi].

On the other hand, given a point t' € P, for each base point op in a com-
ponent D of £ introduced at the beginning of Section 5, let us choose a
(1 + dim P)-dimensional submanifold App of M, transverse to fy(D) at
the point fy(op). The representation of Fp-holonomy of the leaf fy (D \ X)
defines a representation 7—[% p of the fundamental group 7 (D \ ¥,0p) in
the group Diff(App, fi(op)) of germs of holomorphic automorphisms of

(App, fir(op)).
Definition 10.2. We say that Fp is SL-equisingular at a point t' of P if



TOPOLOGICAL MODULI 41

(1) Fp is equireducible,

(2) fort € P sufficienty close to t' and for each (D, s) € Vea,., x Eda .,
D € 0s, the Camacho-Sad indices CS(E;Fy, ft(D), fi(s)) do not
depend on t;

(3) there is a germ of biholomorphism 1 : (App, fir(op))—(Cx P, (0,t'))
such that

(a) the composition of v with the second projection C x P — P is
equal to mp o Ex, restricted to App;

(b) for all v € m (D \ X,0p) the biholomorphism (z,t) +— 1) o
’Hﬁ;’D(fy) o ~Y(z,t) does not depend on t.

We say that Fp is SL-equisingular if it is SL-equisingular at each point of P.

Step (vii). We now do a construction similar to the one given in the proof
of Theorem 4.9 after a suitable choice of cocycles in Z!(A, Aut).

Consider the elements [F;, f;] of Mod([F°]), ¢ € D, given in the statement
of Theorem D. By isomorphism (11) they are represented by cocycles ¢’ =
(chs) € Z1(R,Sym). Now we fix an orientation < of A and as in the proof of
Theorem 5.14, we lift this cocycle to a cocycle (cplbys) € Z'(R, Aut) and we
continue to denote by s1,..., s, the edges associated to the active vertices
ai,...,ar chosen in step (v). We define then (cplb'is) € Z1(A, Aut) by setting

' id if s € Eda \ Edr,
Pha=q ¥ps it s E€Rdr\{s1,..., s},
@ZD,sOeXpthj if s=s; € {s1,...,8:},

it it N—
SOZD/7S = (@QD’s) 17

for s € Eda with s = {D, D’} and D < D’, where expt;X; is defined in
Step (v).

Using these cocycles, for each ¢ € D we glue suitable neighborhoods Wp
of D x C7 inside Mr x C” obtaining

(i) a manifold M; endowed with a submersion map m; onto C7,

(ii) a normal crossing divisor such that the restriction of m; to each irre-
ducible component is a locally trivial fibration with fiber P! and the
restriction of 7; to the singular locus of the divisor is a covering over C7,

(iii) and a foliation by curves tangent to the fibers of the submersion 7; and
to the divisor.

By the same arguments used in Theorem 4.9 we obtain an open neighborhood
of {0} x C™ in C% x C7 and on this neighborhood an holomorphic vector field
defining a one-dimensional equireducible foliation tangent to the fibers of
the projection onto C”, whose singular locus is {0} x C™. By construction,
after equireduction the exceptional divisor, as an intrinsic analytic space, is
holomorphicaly trivial over C™ and along each of its irreducible components
the reduced foliation is holomorphically trivial. Hence we have obtained a
SL-equisingular deformation F7, of F;, see [23], and biholomorphisms h;; :

& ]:ii>5]:ict, 1 € D. The superscript ¢ stands for complete. We define the
markings f7; : €;>6’J:ict by ffy:=hiio fi
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Notice that by the construction of A in step (v), A(t) is represented in
H'(A, Aut) by the following 1-cocycle with support in Ry:
id if se€Eda \ Edgr,
abhs = id if seEdr\{s1,...,5:},
expt; X; if s=s;j.

Thanks to Theorems 6.8 and 6.11 we have in H!(R, Sym) the equality
o it ; ol
(@5.0)] =[] [@h.)] -

it t ; . :
where ¢, , and &, , denote the classes of ¢ . and af, | in Sym,. The abelian

group structure on Mod([F°]) being induced by the one on H'(R,Sym”)
by (11), the previous equality proves that in Mod([F°]) we have

11. APPENDIX

Let us denote by B, C C? the closed ball {|z|? + |y|*> < r}. For a curve
S 5 0in C? let us call Milnor ball any ball B = Bp such that SN B\ {0} is
regular and meets transversely each sphere 0B, 0 < r < R. We fix a germ
F at 0 € C? of a singular holomorphic foliation.

Definition 11.1. A germ of an invariant curve S at 0 € C? will be called
F-appropriate if S is invariant by F, contains all the isolated separatrices®

and its strict transform by the reduction of F meets any dicritical component
D with card(D N Sing(Ex)) = 1.

The following incompressibility property is proved under some additional
assumptions in [16], [19] and an optimal version was obtained by L. Teyssier
in [35]:

Theorem 11.2. Let F be a generalized curve and let S be an F-appropriate
curve in a Milnor ball B. Then there exists a fundamental system (Up)nen
of open neighborhoods of S in B such that for each n € N

(1) the inclusion map U, < B induces an isomorphism between the
fundamental groups of U, \ S and B\ S;

(2) for each leaf L of the foliation Fy,\s) the inclusion map L — Up\ S
induces an injective morphism w1 (L, ) — w1 (Un \ S,-);

(8) there is a finite union of curves in Uy, \ S whose preimage § in the
universal covering ﬁn of Uy \ S is a disjoint union of holomorphically
embedded open discs o such that each leaf L of the foliation ]?n
induced by F on U, meets Q and card(L N Qy) < 1 for any «.

Remark 11.3. Two direct consequences of this result are the simple con-
nectedness of the leaves of the foliation F,, and a structure of (non-Hausdorff)

Riemann surface on the leaf space @’[Z, an atlas being given by the transver-
sals €, . O

Previous Theorem 11.2 will allow us to extend Theorem 1.6 of [18] with
weaker assumptions:

8i.e. their strict transforms meet invariant components of the exceptional divisor.
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Theorem 11.4. Let F and G be two topologically equivalent germs of folia-
tions at 0 € C? and suppose the existence of a germ of homeomorphism that
conjugates them:

¥ (C%0) — (C20), VG =F. (20)

If F is a generalized curve fulfilling Conditions (TC) and (TR) stated in
Section 2, then there exists a germ of homeomorphism ¢ : (C2,0) — (C2,0)
such that:

(1) the lifting Eg_1 o¢po Exr of ¢ through the reduction maps of F and
G extends to the exceptional divisor as a germ of homeomorphism
O (Mr,Er) = (Mg, Eg) along the exceptional divisors;

(2) ® is holomorphic at each singular point of F* := ETF which is not
a nodal corner;

(3) ® is transversely holomorphic at each point of the exceptional divisor
which is reqular for F* and not contained in a dicritical component.

The rest of this appendix is devoted to the proof of this theorem, which is
similar to that of Main Theorem of [18|. The new difficulties lie in the fact
that ¢ may not be transversely holomorphic on a whole neighborhood of 0,
and this for three reasons:

e on the union of leaves meeting a dicritical component of Ex there
are CY-automorphisms of the foliation F which are not transversally
holomorphic;

e there are also such automorphisms near nodal singular points with
support in nodal separators, cf. [18, page 406|;

e exceptional cut-components? introduced in Section 2.2 of £ are not
excluded by Condition (T'C) and at such a component C the prop-
erty (TR) is ineffective. Indeed, every irreducible component of C
contains at most two singular points, therefore its holonomy group,
being monogenous or trivial, cannot be topologically rigid.

To prove Theorem 11.4 we will proceed in five steps:

(i) we prove that the one-to-one correspondence induced by 1) between the
irreducible components of £7 and those of £g and between the singular
points of both foliations F* and G* preserves the Camacho-Sad indices;

(ii) we recall the notion of monodromy and two key results given in [18§]
that remain valid in our more general setting;

(iii) we construct a conjugation ® between F* and G* along the non-excep-
tional cut-components of £r, except at the nodal corners and at the
intersection with the dicritical components;

(iv) we construct a conjugation ®” along the exceptional cut-components,
except at the nodal corners and at the intersection with the dicritical
components;

(v) we extend and glue ® and ®” at the nodal corners and along the
dicritical components.

9which cannot exist if F is non-dicritical by Theorem 11.5 below.
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11.1. Step (i): Equality of Camacho-Sad indices. Since F and there-
fore G are generalized curves 3], there is a unique one-to-one correspondence

Dw— D" and s~ (21)

between the irreducible components of the exceptional divisors £ and &g,
the strict transforms of the isolated separatrices of F and G, and between
the points of Sing(£x) U Sing(F*) and Sing(£g) U Sing(G*), such that:
e if 5 is the intersection point of an isolated separatrix S with £r, then
s’ is the intersection point of 1(S) with &g,
e we have equalities of intersection numbers

( i,DIQ) = (Dl,Dg) for D1 — Dll, D2 — Dé (22)

Indeed the reduction map of a generalized curve foliation coincides with the
reduction map of the curve formed by all its isolated separatrices and two
dicritical separatrices for each dicritical component of the exceptional divi-
sor. Thus the above properties follow from classical topological properties
for germs of curves.

Let us point out that property (2) in Theorem 11.4 implies equality of
Camacho-Sad indices of these foliations. These equalities will be strongly
used in the proof of the above theorem and in fact we need to prove them
first. We will use the following result [4, Theorem 9 and Remark 11]:

Theorem 11.5. For any cut-component there is a strict transform of an
isolated separatriz which meets it at a non-nodal singular point.

Lemma 11.6. Under the assumptions of Theorem 11.4, F fulfilling again
Conditions (TR) and (TC), if s € D C Er and s’ € D' C &g correspond
by (21), then

CS(F*, D,s) = CS(G*, D', ). (23)

As discussed in Remark 2.1, Conditions (TR) and (TC) are necessary to get
this lemma.

Proof. The induction process given in [18, §7.3], which is based on the
Camacho-Sad Index Formula, proves that equalities (23) hold at all singu-
larities in a cut-component C if they are satisfied at every intersection point
s of the strict transform of a separatrix with C. The existence of such a point
s being assured by Theorem 11.5, we distinguish three possibilities.

a) A := CS(F* D,s) is an irrational real number. If X is positive, s is a
nodal singular point, and equality (23) was obtained by R. Rosas in [33,
Proposition 13]. Another proof is given in [19, Theorem 1.12] that remains
valid for A < 0.

b) C is non-exceptional and s is not a nodal singular point. Then by using
(TR) and thanks to an extended version [18] of the rigidity theorem in
[32], 9 is transversely holomorphic on the image by Er of a neighborhood
of C and specifically at the points of the separatrix S. In this case the
proof of equality (23) given in [18, §2] remains valid.

c) C is exceptional. Then C is a union of components of Ex, C = D1U---UDy,
¢ > 1, D; meeting D;1; in one point s;, and D; N D; = 0 if |i — j| # 1.
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Perhaps C meets several dicritical components of £x, but we only have
two possibilities fulfilling Assumption (TC):
(i) s € Dy and the other singular points of F* belonging to C are

S1,-..,8¢_1, see Figure 4;
(ii) s € D1, Dy contains a nodal singular point s; # sy_1, the other
singular points of F¥ belonging to C being s1, ..., s¢_1, see Figure 5.

Indeed, Theorem 11.5 implies that singularity s is not nodal. In case (ci)
using the classical index formula, we see that CS(F' 4 D, s) is given by a
continuous fraction whose coefficients are the self-intersections (D;, D;),
i =1,...,¢ thus (23) follows from (22). In the same way we obtain in
case (cii) that CS(F*, Dy, s) is an irrational (negative) real number, but
this case was already examined in case (a).

W -
Dy D,

D

O

FIGURE 4. Situation (ci) with two dicritical components.

W X
DQ D@

Dy

FIGURE 5. Situation (cii) with a dicritical component and a
nodal singularity sy.

Since the dicriticity of an irreducible component D can be characterized by
the vanishing of the Camacho-Sad indices along all the adjacent components
at their intersection points with D, we have:

Corollary 11.7. The image by correspondence (21) of a dicritical compo-
nent, an exceptional cut-component, a non-exceptional cut-component of F
1s respectively a dicritical component, an exceptional cut-component, a non-
exceptional cut-component of G.

11.2. Step (ii): Monodromy and holonomy. Let us now fix a F-appropr-
iate curve S, Milnor balls B and B’ for S and the G-appropriate curve
S’ :=1(S), where 9 is given by (20). Let us also fix

q:§—>B\S, q':é'—)B'\S'
universal coverings of B\ S and B’ \ S’ respectively. In all the sequel we
adopt the following conventions and notations:
(a) for A C B, resp. A C B, we write

A= YA\ S), resp. A =g HAN\S),
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(b) we suppose that B’ contains 1(B), we choose a lifting v : B — B
of ¥ and we denote the isomorphisms induced by ¥ between the deck

transformation groups of these coverings by

Py : 5T, J*(f) = Jo fo 1;_1 , I:= Autq(g) , = Autq/(él) ,
(¢) we fix fundamental systems of open neighborhoods of S in B, resp. S’

in B,

(Un)nEN ) (U;L)nEN ,  with ¢(Un) - U7{L )
fulfilling Properties (1)-(3) of Theorem 11.2, _
= U, ~ denotes the leaf space of the restriction to U, of the

d) 9, =Un/F, d he leaf f th icti Uy of th

foliation F := q*F, endowed with its structure of Riemann surface, cf.
Remark 11.3,

(e) via Er : BF — B and Eg : B; — B', the reduction maps of F and g,
we perform the following identifications

Br\S ~B\S, Bg\S ~B'\S,
S:=FE7'(9), & :=E;'(5),

(f) we consider B and B’ as universal coverings of By \ S and Bg\ &
respectively and, with these identifications, for A C Br or A" C Bg we
write:

A:=q 1 (A\S), A =g A\S).

Definition 11.8. The monodromy of F is the morphism between I' and the
group of automorphisms of inverse systems

Smg = AUtéll(éfo) C AutTOP(ég:o) ) ég—o = (é{/jn)neN )
<—

given by the actions of T' on the leaf spaces (f,L) — f(L), f €T, L e é{}—n,
with zA_n the category of pro-objects associated to the category of analytic
spaces, and ;J_fo_p the category of pro-objets associated to the category of topo-

logical spaces and continuous maps.

The monodromy zmg, TV — Aut éll(égo) of G is defined in the same way.

Remark 11.9. The lifting ¢ of ¢ fixed in (b) induces an isomorphism
h T éfo%égo
in the category T(ﬂ), given by the maps @/UTn — égé that associate to each

leaf L of ‘7?\(7”

ceptional cut-component hqg may not be A-analytic in the sense of [18, page

the leaf of 5‘6, containing ¢(L). When Er contains an ex-

416] and we must extend to our context the notion of geometric conjugation
of monodromy introduced in [18]. O

To any subset A in B meeting S we associate the following object and
morphism in the category Tﬁ):

° (Z, 00) = (Zﬂ Un)nen,
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Ty (E, o) — éfo is induced by the family of maps TZV CANU, —
éﬁn that associate to any point m in AN U,, the leaf containing m
n €N,

of the foliation }—Iﬁn’

oT Koo is the group of automorphisms f of (g, o0) such that go f = q.
For A’ C B’ meeting S’, (:Zl/’, o0), T3, and 'y o are similarly defined.
Definition 11.10. A geometric C%-conjugation between SITIg and Dﬁg, s a
pair (g, h) formed by:
o an isomorphism of groups g : T —=I" induced by the lifting
§:(B,00)5(B,0), qog=goq,
of a germ of homeomorphism along the separatices g : (B, S)—=(B’,S")
preserving the orientations of B, B', S and S’ (but not necessarily

the foliations),
e an isomorphism h : Qfo%ng in the category '(]_fg}_), such that hy o

ML = ,‘Jﬁg, o g, where hy is the group morphism
hy : AutTop(éfo) — AutTop(égo) , @ hopoh™t,
— —
We also say that (g, g, h) represents the conjugation (g, h).

Remark 11.11. The lifting {/; of 1 choosen in (b) induces a geometric C°-
conjugation (¢, h 1;) between M and 93?%,7 that is represented by (1, ¢, h J)’
with hq; as in Remark 11.9. O

Now for each invariant component D of S we will denote by &p the set

of singular points of F* belonging to D, except the nodal singularities which
are attaching points of strict transforms of separatrices. Let us choose:

e a good fibration pp transverse to D, cf. Definition 4.5; thus if m € D
is not a singular point of & we can write without ambiguity:
A = pp'(m); (24)
e a collection (Zp s)ses,, of holomorphically embedded compact discs
in D, centered at the points s, without pairwise intersection.
We also require that Zp ¢ = D when D is the strict transform of an isolated
separatrix.

Definition 11.12. The following compact sets:

(1) Zp := D\ Uscs,, Zp,s, with D an invariant component of Er,
(it) Zs = Zp, s U Zp,s, with s the intersection point of two invariant
components of S,
will be called elementary pieces of S.

We perform for G similar choices of good fibrations ppr and embedded
discs defining similarly elementary pieces Z., and Z7,, of S’
Theorem A of [17] gives immediately:

Lemma 11.13. For any geometric C°-conjugation (g,h) between 9ﬁ§ and

,‘mg, there exists a representation (g,g,h) and a choice of elementary pieces
of S and 8’ such that:
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(1) g lifts through the reduction maps Er and Eg to a germ of homeomor-
phism ¢* : (Br,S) — (Bg,S'), i.e. Eg ogf =goEr,

and, for any elementary piece Zp, D € Comp(Ex) invariant, and Zs, s €

Sing(S), it satisfies:

(2) ¢*(Zp) = Z;u(D) and g* is compatible with the transverse fibrations over
Zp, i.e. (pg’i(D) o gﬁ)\pBI(ZD) — (gtt o pD)\PBI(ZD)’

(3) gﬁ(ZS) = Z;u(s)’ g" is holomorphic on a neigborhood of Zs and is com-
patible with the good fibration over 0Zs.

Definition 11.14. Let V. C (B\ S) and V' C (B'\ ') be subsets whose
closures meet respectively S and S'. A C-realization of (g, h) over V and V'
is the data (x,X) of a homeomorphism x : V. — V' and a lifting of it (in the
category T&))

X:(V,00)5(VV,00), ¢ oX=x04,
such that the following diagrams commute:

(V,00) —= (V', 00) ——T¢
| R
OF h oY A v

When x can be lifted via Ex and Eg to an open neighborhood of a subset Z
of Ex, we will say that (x,X) is a CO-realization of (g,h) along Z.

Remark 11.15. If V is an open set then the commutativity of the first
diagram implies that x conjugates the foliations Fy, and Gy U

We now fix a geometric C’-conjugation (g, h) between the monodromies
MZ and zmg, and a representation (g,g,h) of it fulfilling Assertion (1) of
Lemma 11.13. Let D be an invariant component of S and let mg € D\
Sing(F*). We will use the notations:

D' := ¢*(D), m}) := g*(mg), D*:= D\Sing(F*), D'* := D'\ Sing(G*).

Let us fix now (A,myg), resp. (A';m(), a germ at mg, resp. my, of an
holomorphically embedded disc transversal to the foliation. We also denote
by

" (D, mo) — Diff(A,mo),  HSy : mi (D', mb) — Diff (A, mj),
the holonomy representations of the foliation F*, resp. G¥, associated to the
leaves D* and D’*.

Theorem 11.16. Let x : (A mo) — (A',my) be a germ of homeomor-
phism and Y : (A,oo) (A’ o) be a lifting of it, such that (x,X) is a
realization over A and A of the geometric C°-conjugation (g, h) between the
monodromies im!; and ,‘mg,. Then x and the group isomorphism gﬁ from
w1 (D*, mo) to 7r1(D’*,m6) induced by ¢* define a conjugation between 7—[]5n
and ’HD,,

1 (gE () = x o HE () ox™', € m(D*, my).
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Proof. The proof of [18, Theorem 4.3.1] remains literally valid for this C°-
version. O

Let us assume now that the previously fixed representation (g,q,h) of
(g, h) satisfies all the properties (1)-(3) of Lemma 11.13 and that the point mg
is in the boundary 0Z of an elementary piece Z such that either Z = Zp with
D an invariant component of £, or Z = Z; with s a non-nodal singularity.
We can suppose that A = A,,, and A’ = A;n,o, cf. Notation (24).

Lemma 11.17. With the notations introduced above and under the hypoth-
esis of Theorem 11.16, let us also suppose that the following additional as-
sumptions are satisfied:

e ¥ and § induce the same map from wo(A) to mo(A'),

e x is holomorphic,

o if 7 = Zg, the Camacho-Sad indices of F* at s along D and of G* at
g*(s) along g*(D) are equal.

Then there exists a CO-realization (®,®),
VoV, &:(V,00) = (V/,00),
of (g,h) along Z, such that:
(1) the restriction of ® to ErNV is equal to g*, its restriction to (A, mg)
is equal to x and that of ® to (A, 00) is equal to X,
(2) on a neighborhood of 0Z NEx, ® is compatible!® with the good fibra-
tions previously choosen; moreover the restriction of ® to each fiber
Ay, m € 0Z N Ex, is holomorphic, cf. Notation (24);
(8) for every m € 0Z N Ex, the restrictions <I>‘5m and §|5m induce the

same map mo(Ap) — Fo(Algu(m)).

Proof. Tt is literally the same proof as that of |18, Lemma 8.3.2] but using
Theorem 11.16 above instead of |18, Theorem 4.3.1]. O

11.3. Step (iii): Conjugation at non-exceptional cut-components.
We keep the notations and conventions (a)-(f) introduced at the beginning
of Section 11.2. We will also use the notation A, resp. A/ ,, introduced at
(24) for the fibers of the good fibrations at regular points of S, resp. S'.

Using Theorem 11.5, in each non-exceptional cut-component C C &,
let us choose a non-nodal singular point s¢ € Sing(F*) where the strict
transform X¢ of an isolated separatrix meets C. Let us consider the following
filtration of S:

CocCi---CCpyCS

defined by:

e () is the union of all elementary pieces Z. for any cut-component
Cof & F,

e cach Z; := C;\Cj_1, j = 1,...,k, is the union of all (disjoint)
elementary pieces meeting C;_1, but not contained in C;_.

e, p' o ®(m) = ® o p(m) if p(m) € DZ, p and p’ denoting the good fibrations of the
corresponding components of the exceptional divisors.
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e S\ C is the union of the dicritical components, the strict trans-
forms of the components of S meeting a dicritical component and
the elementary pieces associated to nodal corners.

Lemma 11.18 (18], §8.4). There exists a representation (g,g,h) of (g,h)
satisfying properties (1)-(3) of Lemma 11.13, such that moreover the restric-
tions of g to A and the lifting 1Z of ¥ chosen in (b) induce the same map
from mo(A) to mo(A).

Let us choose (g,g,h) given by this lemma. Notice that according to
Lemma 11.6, the points sp, = g*(sc) are not nodal singular points of G# and
we can consider the filtration of &’

ChcCl--cCrcS, Cf=4g4C)).

According to Lemma 11.13, C{, is a union of elementary pieces of &', and for
i=1,...,k,

r._ _
Zj:=Cj\Cj_, = ¢*(2))
is a union of disjoint elementary pieces not contained in 03,'71 but meeting

C’]’~_1. By induction we will now define a realization (®;, &)j) along every Z;

of the conjugation ({/;*, h{/;), j=0,...,k.

o (D, 50) is defined along any connected component Z,, of Cy as the real-
ization of (¢, h J) obtained by: first choosing a point m¢ in the boundary

of X¢, then modifying 1 near me by performing a foliated isotopy such
that ¥(Ape) = A;}(mc) and finally applying the extension Lemma 11.17

with Z = Zgo, A = Ao, A = g*(A), x = ¢ and X = {5‘5;

o (5, EI;J) is defined along each connected component Z of Z; as the real-
ization of (1), h J) obtained by: first choosing a point mz in the (unique)
component of 0Z contained in Cj_1, then applying Lemma 11.17 with
Z =2, A=A, A =g¥A), and x, X being respectively the restric-
tions of ®;_; and &)j_l to A and A.

According to Remark 11.15, ®; conjugates the germ of F¥ along Z; to the
germ of G* along Z]’-. To achieve this step and to obtain a conjugation

' between F! and Gf on a neighborhood of Cj, it suffices to note that
for j = 1,...,k and for each connected component © of Z;_1 N Z;, ®;_;
and ®; are necessary equal when we restrict them to the real hypersurfaces
pf)l(@), D being the component of S containing ©. This fact results from
the property (2) in Lemma 11.17 and the uniqueness of the extension of a
conjugation between the holonomies to a conjugation of the corresponding
foliations preserving transversal fibrations.

11.4. Step (iv): Construction along the exceptional cut-components.
Let C be an exceptional cut-component of £ and let us keep the notations
introduced in the proof of Lemma 11.6: C = Dy U --- U Dy has two possible
configurations (ci) and (cii), see Figures 4 and 5.

In the first case (ci), Dy contains only one singular point of the foliation,
hence there is a holomorphic first integral defined on a neighborhood of C and
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specifically the foliation is linearizable at each singular point. Thus by equal-
ity of Camacho-Sad indices given by Lemma 11.6 the foliations considered
are locally holomorphically conjugated at the singular points corresponding
by (21). The equalities (22) of self-intersections of the components of C and
C" allow us to glue these conjugacies and to obtain a homeomorphism de-
fined on a neighborhood of C. We leave the details of this construction to
the reader.

The situation in case (cii) is similar: we have again equality of Camacho-
Sad indices and therefore local conjugacies, and then equality of self-inter-
sections allowing to glue and to obtain a global C%-conjugation.

11.5. Step (v): Extension and gluing. On the elementary pieces Z
corresponding to a nodal corner s, we perform the gluing of the homeomor-
phisms already constructed by the process described in [18, §8.5]. It remains
to extend the obtained homeomorphisms to the dicritical components. No-
tice that in all the above constructions the homeomorphisms can be built
by respecting the dicritical components meeting their domains of definition.
Finally we arrive at the following situation described in [19, page 147]:

e we identify tubular neighborhoods of the dicritical components D C
Er and D’ C &g corresponding by (21), with the same tubular neigh-
borhood of the zero section of the normal bundle of D; it is possible
because D and D’ have same negative self-intersection;

e the corresponding foliations are identified with the natural normal
fiber bundle;

e we have to extend to the whole D a continuous map f from a union
of disjoint closed discs to the group Autg(C, 0) of germs of homeomor-
phisms of (C,0). This extension can be easily made by extending f
to a union K’ of bigger discs being a constant automorphism on 9K'.

This ends the proof of Theorem 11.4.
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