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TOPOLOGICAL MODULI SPACE
FOR GERMS OF HOLOMORPHIC FOLIATIONS

DAVID MARÍN, JEAN-FRANÇOIS MATTEI AND ÉLIANE SALEM

Abstract. This work deals with the topological classification of germs
of singular foliations on (C2, 0). Working in a suitable class of folia-
tions we fix the topological invariants given by the separatrix set, the
Camacho-Sad indices and the projective holonomy representations and
we compute the moduli space of topological classes in terms of the coho-
mology of a new algebraic object that we call group-graph. This moduli
space may be an infinite dimensional functional space but under generic
conditions we prove that it has finite dimension and we describe its
algebraic and topological structure.
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1. Introduction

This work deals with the topological classification of germs of singular fo-
liations on (C2, 0). To every (possibly dicritical) foliation F we can associate
the separatrix set SepF , that is the collection of all germs at 0 ∈ C2 of in-
variant irreducible analytic curves, called separatrices, its minimal reduction
map EF : (MF , EF )→ (C2, 0), cf. [5], and the marked exceptional divisor

E�F = (EF ,ΣF , ıF ),

where ΣF := Sing(F ]) is the finite set consisting of the singular points of
the foliation F ]:= E∗FF and ıF is the intersection pairing of EF = E−1

F (0)
in MF . The topological class of SepF is clearly a topological invariant of
F . In this paper we will assume that F is a generalized curve, i.e. F ] has
no saddle-node singularities. The topological class [E�F ] of E�F (as a marked
intrinsic curve) is then a topological invariant of F because in this situation
EF is also the minimal desingularization map of SepF , cf. [3].

We know [18] that under some assumptions the Camacho-Sad indices of
F ] at the points of ΣF and the holonomy representations (up to inner auto-
morphisms) of every component of EF are also topological invariants of the
germ F at 0 ∈ C2. Our purpose in this work is to describe the set of all other
topological invariants and highlight its geometric and algebraic structure.

MAIN RESULT. Under generic conditions,
(a) there exists an analytic family of foliations parametrized by a fi-

nite dimensional space which gives all the topological types once
we fix the topological class of the marked exceptional divisor, the
Camacho-Sad indices and the holonomy representations;

(b) the quotient of this complete family by the topological equivalence
relation is naturally isomorphic to the abelian group(

F ⊕B ⊕λj=1 (C∗/αZ
j )⊕ (C∗)ν

)/
Z ,

where αj ∈ C∗, F is a finite abelian group, Z is a finite subgroup,
B is a direct sum of β totally disconnected subgroups of the uni-
tary group U(1) and the natural numbers β, λ, ν only depend on
the (combinatorics of the) local types of the singularities inside the
exceptional divisor.

We will also give an explicit characterization of those foliations satisfying
Assertion (a) in the main result above, that we will call finite type foliations.

We thank the anonymous reviewers for their careful reading of our man-
uscript and their many useful comments and suggestions.
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2. Statement of results

2.1. Marking of a foliation. To give a precise sense to our problem let
us call marked divisor any collection E� = (E ,Σ, ı) consisting of a compact
curve with normal crossings E whose irreducible components are biholomor-
phic to P1, a finite subset Σ of E and a symmetric map ı : Comp(E)2 → Z,
Comp(E) denoting the set of irreducible components of E . We will denote
by Ed ⊂ E the union of the irreducible components of E that do not contain
any point of Σ; we call them dicritical components.

A marking of a foliation F by E� will be a homeomorphism f : E → EF
sending Σ onto ΣF compatible with the intersection pairing:

ıF (f(D), f(D′)) = ı(D,D′).

In this way, the holonomy representations and the Camacho-Sad indices of
all pairs F� := (F , f) can now be associated to two common sets of indices:
the set CE� := Comp(E \ Ed) of irreducible components of E \ Ed and the set

IE� := {(D, s) ∈ CE� × Σ | s ∈ D} .

Indeed, we define

CSF
�

:= (CS(F�, D, s))(D,s)∈IE� , CS(F�, D, s) := CS(F ], f(D), f(s)) ,

ḢF� := (ḢF�D )D∈CE� , HF�D := HF]f(D) ◦ f∗ : π1(D \ Σ, ·) −→ Diff(C, 0) ,

where HF]f(D) is the F ]-holonomy representation of π1(f(D) \ ΣF , ·) in the
group Diff(C, 0) of germs of holomorphic automorphisms of (C, 0), ḢF�D is its
class up to inner automorphisms, f∗ is the isomorphism induced by f at the
fundamental groups level and CS(F ], f(D), f(s)) is the Camacho-Sad index
of F ] along f(D) at f(s).

Let us denote by Fol(E�) the set of germs of generalized curves F at 0 ∈ C2

for which there exists a marking f : E → EF of F by E�. Our general goal is
to describe a generic subset of the quotient set

[Fol(E�)]C0

of the set Fol(E�) by the equivalence relation:
• F ∼C0 G if F and G are topologically equivalent as germs at 0 ∈ C2.

2.2. Globalization of topological equivalences. Consider now the equiv-
alence relation:

• F ∼E G if F ] and G] are topologically conjugated, as germs along
the exceptional divisors, by a germ of a homeomorphism (MF , EF )→
(MG , EG) which is holomorphic at each point of ΣF \ NCF ,

NCF denoting the subset of the singular points of EF , called nodal cor-
ners, where the Camacho-Sad index of F ] is a strictly positive real number.
Clearly relation ∼E is stronger than ∼C0 , but they will coincide on a generic
class of foliations when E� fulfills the following condition
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(TC) The closure of each connected component of E \ Ed contains an irre-
ducible component D with card(D∩Σ) 6= 2, i.e. there is no connected
component of E \ Ed as in Figure 1.

s′ s′′• · · · •• •· · ·

Figure 1. The only situation excluded by Condition (TC).
Every divisor is non-dicritical and the elements of Σ are s′,
s′′ and the intersection points of the divisors; dicritical com-
ponents may intersect any component.

To specify the notion of genericity let us call cut-component of EF any
closure C of a connected component of EF \ (EdF ∪NCF ); if card(D ∩Σ) ≤ 2
for each D ∈ Comp(C) we will say that C is exceptional. Now consider the
following transverse rigidity condition:

(TR) Any non-exceptional cut-component of EF contains an irreducible
component with topologically rigid1 holonomy group.

The Krull-open density in Fol(E�) of the subset Foltr(E�) consisting of the
foliations F fulfilling Condition (TR) is proven in [10].

Theorem A. If E� satisfies condition (TC) then the relations ∼E and ∼C0

are equal on Foltr(E�).

In other words

[Foltr(E�)]E = [Foltr(E�)]C0 ⊂ [Fol(E�)]C0 ,

[X]E and [X]C0 denoting the quotient of a subsetX ⊂ Fol(E�) by the relations
∼E and ∼C0 respectively. This result, proven in Appendix (Theorem 11.4),
is an extended version of Main Theorem of [18].

Remark 2.1. Theorem A implies that under the hypothesis (TR) and (TC)
the collection of Camacho-Sad indices at the singular points of F ] is a topo-
logical invariant of the germ of F at 0. The topological classification of
logarithmic foliations obtained by E. Paul shows [28, Théorème 3.5] that
Condition (TR) is necessary for this. When Condition (TC) is not sat-
isfied it is easy to construct topologically conjugated foliations with same
separatrices but different Camacho-Sad indices. Indeed, on a neighborhood
of a cut-component described in Figure 1, all the foliations with non-real
Camacho-Sad indices are topologically conjugated. �

1We recall that a subgroup G of the group Diff(C, 0) of germs of biholomorphisms of C
at 0 is called topologically rigid if every topological conjugation between G and another
subgroup G′ ⊂ Diff(C, 0) is necessarily conformal. This class contains the non-solvable
groups [25] and the non-abelian groups with dense linear part [7, Théorème 2].
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2.3. The Teichmüller space of foliations. In order to describe [Foltr(E�)]C0

we consider the set MFol(E�) of marked by E� foliations F� = (F , f) and we
adapt the equivalence relation ∼E in Fol(E�) to MFol(E�) by means of

• (F , f) ∼� (G, g) if there is a germ of homeomorphism Φ : (MF , EF )→
(MG , EG) that conjugates F ] and G], is holomorphic at each point of
ΣF \NCF and its restriction to EF is isotopic to g◦f−1 by an isotopy
fixing ΣF .

We define the (topological) Teichmüller space as the quotient set

Mod(E�) := MFol(E�)/∼�
so that the Forgetful map

Mod(E�) −→ [Fol(E�)]C0 , [F , f ] 7→ [F ]C0

is well defined. We consider the action

ϕ̇ ? [F , f ] :=
[
F , f ◦ ϕ−1

]
, ϕ̇ ∈ Mcg(E�) , (F , f) ∈ MFol(E�) ,

on Mod(E�) of theMapping Class Group Mcg(E�) of E� defined as the group2

of isotopy classes of C0-automorphisms of E leaving the set Σ and the inter-
section form ı invariant.

A direct consequence of Theorem A is:

Corollary 2.2. If E� satisfies condition (TC) then the fibers of the Forgetful
map over Foltr(E�) are exactly the orbits of the action of the mapping class
group Mcg(E�). Thus

[Foltr(E�)]C0 ' Modtr(E�)/Mcg(E�) ,
where Modtr(E�) := {[F , f ] ∈ Mod(E�) | F ∈ Foltr(E�)}.

2.4. Topological moduli space of a marked foliation. In order to de-
scribe [Foltr(E�)]C0 we are led to study Modtr(E�). In fact, we give a descrip-
tion of the whole Mod(E�) without the assumption (TC) on E�. We obtain
it by fixing the Camacho-Sad indices and the holonomy representations. In
other words we give a description of each nonempty fiber of the well-defined
map

H̃ := CS× Ḣ : Mod(E�) −→ CIE� × ṘE� , [F�] 7→ (CSF
�
, ḢF�) ,

where ṘE� is the set of conjugacy classes of group morphisms from the free
product of the groups π1(D \ Σ, ·) for all D ∈ CE� with values in Diff(C, 0).

Definition 2.3. We call topological moduli space of [F�] ∈ Mod(E�) the
fiber of H̃ above H̃([F�]), that is the set

Mod([F�]) :=
{

[G�] ∈ Mod(E�) | CSF
�

= CSG
�
, ḢF� = ḢG�

}
.

Here the term topological does not refer to the C0-equivalence of folia-
tions but to the equivalence relation ∼� on the marked foliations. Indeed,
as we have seen in Remark 2.1, if E� does not satisfy (TC) or F ∈ Fol(E�)
does not satisfy Condition (TR) then there may exist G ∈ Fol(E�) such that
F ∼C0 G and [F , f ] 6= [G, g] for any markings f, g. However, the descriptions

2In fact, it is an extension of a finite group by a direct product of pure Artin groups.
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of Mod([F�]) given in the following results do not assume conditions (TR)
or (TC) anymore.

We will consider in Section 3 a new algebraic notion, which we call group-
graph, that will be the key tool in the whole paper. It allows us, by com-
bining Theorems 4.9 and 5.14, to obtain a bijection between this moduli
space Mod([F�]) and the cohomology of a suitable group-graph defined in
Section 5, namely the symmetry group-graph SymF

�
. If we call F�-cut-

component of E any inverse image f−1(C) of a cut-component C of EF and
if we denote by AF� the dual graph of the disjoint union of all the F�-cut-
components of E , then one can prove:

Theorem B. If F� ∈ MFol(E�) then we have a natural bijection

Mod([F�]) ∼−→H1(AF� , SymF
�
) .

Without any other assumption the computation of this cohomological
space is difficult and the usefulness of this result is essentially theoreti-
cal. However it will allow us in Section 8 to construct examples for which
Mod([F�]) is an infinite dimensional functional space. To get finiteness we
shall need to restrict to some Krull open dense subsets of Fol(E�) by requir-
ing conditions on HF� depending only on a finite jet3 of a differential 1-form
defining F .

2.5. The generic case: non-degenerate foliations. Let us call singular
chain4 of the dual graph of EF any sequence D0, . . . , D`, ` ≥ 1, of invariant
irreducible components of EF such that:
a) D0 and D` contain at least 3 singular points of F ],
b) Di ∩ ΣF = {si, si+1} with si = Di−1 ∩Di, if 1 ≤ i ≤ `− 1.
At all the points si, 1 ≤ i ≤ `−1, F ] has the same property of normalization
and we will say that the chain is linearizable, resonant normalizable or non-
normalizable, non-resonant, if F ] fulfills this property at these points si.

Definition 2.4. A germ of a foliation F is called non-degenerate if it sat-
isfies the following properties:

(i) the holonomy group Im(HF]D ) of any invariant component D of EF with
card(D ∩ ΣF ) ≥ 3, is non-abelian;

(ii) for any singular chain D0, . . . , D` in EF , the local holonomies of F ] at
the singular points si = Di−1 ∩Di, i = 1, . . . , `, are non-periodic.

The subset of Fol(E�) of all non-degenerate foliations will be denoted by
Folnd(E�).

3It is well known that for p large enough all the foliations defined by a 1-form sharing
the same p-jet have the same reduction map, the same singular points on the exceptional
divisor, the same Camacho-Sad indices and the same dicritical components.

4Notice that a singular chain may not correspond to a chain of the dual graph of E , in
the usual sense. Indeed the interior vertices Di, 0 < i < `, may meet dicritical components
and the number of their adjacent edges can be greater than two, and also D0 or D` may
have only two adjacent edges. Conversely a chain of the dual graph of E may not be a
singular chain because there may exist points of Σ outside the singular locus of E .
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Remark 2.5. Theorem 6.2.1 of [24] claims the Krull open density, in the
set of formal 1-forms defining foliations of second kind (in particular non-
dicritical generalized curves), of the set of 1-forms defining foliations fulfilling
conditions (i) and (ii) of Definition 2.4. The proof, which is given in the
formal non-dicritical context, remains valid for all holomorphic foliations
that are generalized curves. �

Theorem C. Let F� = (F , f) ∈ MFol(E�) be a marked foliation with F
non-degenerate. Then we have an identification:

Mod([F�]) '
(
F ⊕B ⊕λj=1 (C∗/αZ

j )⊕ (C∗)ν
)/

Z ,

where αj ∈ C∗, F is a finite abelian group, Z is a finite subgroup, B is a direct
sum of β totally disconnected subgroups of the unitary group U(1) and λ, ν
and β are respectively the number of linearizable, resonant normalizable and
non-resonant non-linearizable singular chains contained in cut-components
of EF , the factor F corresponding to resonant non-normalizable chains. In
particular, λ+ν is equal to the codimension τF of F given in Definition 6.9.

The naturality of this identification will be explained by Assertion (b) in
Theorem D below.

2.6. Foliations of finite topological type. We have seen that Mod([F�])
is endowed with a very specific structure of topological group of finite dimen-
sion if F ∈ Folnd(E�). However this finiteness property continues to be valid
for a larger class of foliations that we shall call finite type foliations. The set
Folft(E�) ⊃ Folnd(E�) of these foliations is defined in Section 6 and it is opti-
mal for finiteness as Example 3 in Section 8 shows. Furthermore we obtain
complete families of marked foliations parametrized by finite dimensional
spaces, completeness meaning that the family contains all the topological
types of marked foliations by E� with prescribed Camacho-Sad indices and
holonomies. Such a family of marked foliations is called SL-equisingular de-
formation, where SL stands for semi-local. We will give a precise formulation
of this notion in Definition 10.2, Step (vi) of Section 10.

Theorem D. Let F� = (F , f) ∈ MFol(E�) be a marked foliation with F of
finite type. Then Mod([F�]) admits an abelian group structure with identity
element [F�] such that:
(a) there is an exact sequence

Zp → CτF Λ→ Mod([F�]) Γ→ D→ 0 (1)

where D is a totally disconnected topological abelian group and τF is the
codimension of F given by Definition 6.9;

(b) given a section i 7→ [Fi, fi] ∈ Γ−1(i) of Γ, there is a family parametrized
by i ∈ D of SL-equisingular deformations (Fci,t)t∈CτF of Fi such that
for all t ∈ CτF we have [Fci,t, f ci,t] = Λ(t) · [Fi, fi], f ci,t being the marking
induced by fi and the dot · denoting the operation in the group Mod([F�]).

The superscript c in the deformation stands for complete. The group D will
be specified in the proof (Step (i) of Section 10): it is a quotient of a product
of a finite family of totally discontinuous subgroups of U(1), that can be



8 DAVID MARÍN, JEAN-FRANÇOIS MATTEI AND ÉLIANE SALEM

uncountable. However, let us highlight that D is “generically finite” in the
following sense:
- there is a subset N of zero measure in the algebraic subset CS(Mod(E�))
of CIE� such that if CS([F�]) 6∈ N , the formally linearizable singularities
of F ] are holomorphically linearizable, and in this case we can prove that
D is finite.
As a direct consequence of the proof we can see that if H̃([F�]) = H̃([G�])

then the sets Mod([F�]) and Mod([G�]) coincide. However their respective
abelian group structures are related by the map µ 7→ γµ where γ = [G�] ∈
Mod([F�]).

The paper is organized as follows. Section 3 is devoted to general notions
about group-graphs and their cohomology. In Section 4 we introduce our first
group-graph AutF

�
over AF� and we construct a natural bijection between

Mod([F�]) and H1(AF� ,AutF
�
). In Section 5 we introduce a simpler group-

graph SymF
�
over AF� having the same cohomology as AutF

�
, obtaining in

this way Theorem B. In Section 6 we prove that the group-graph SymF
�
is

abelian over a subgraph RF� ⊂ AF� . Then the cohomology H1(RF� ,SymF
�
)

is an abelian group. We also prove Theorem 6.8 asserting that under finite
type hypothesis the cohomology of SymF

�
over AF� and RF� coincide. The-

orem C is proven in Section 7. Some applications of Theorems B and C are
discussed in Section 8. In Section 9 we introduce the group-graphs ExpF

�

and DisF
�
which allow us to compute the continuous and discrete parts of

the cohomology group of SymF
�
in Section 10. This computation jointly

with Theorem B will conclude the proof of Theorem D. Finally, Theorem A
is a direct consequence of Theorem 11.4 proven in Appendix.

3. Group-graphs

In this section we will introduce and study the algebraic notion of group-
graph which differs in an essential way from the notion of graph of groups
introduced by Serre in [34] and that will be a key tool of this work.

Let A be a finite graph with vertex set VeA and edge set EdA. In all
the paper the graph we consider will be without loops, i.e. without edges
e ∈ EdA with ∂e = {v} for some v ∈ VeA. Denote by

IA := {(v, e) ∈ VeA × EdA | v ∈ ∂e}

the set of oriented edges of A.

Definition 3.1. A group-graph G over A is the data of groups Gv and Ge
for each vertex v ∈ VeA and each edge e ∈ EdA, and of group morphisms
ρev : Gv → Ge for each (v, e) ∈ IA which are called restriction maps. A
morphim α : F → G between group-graphs over the same graph A is given
by group morphisms αv : Fv → Gv and αe : Fe → Ge such that the diagram

Fv
αv−→ Gv

ρev ↓ ↓ ρev
Fe

αe−→ Ge
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commutes for each (v, e) ∈ IA. A group-graph G is called abelian if all the
groups Gv and Ge are abelian.

•v1

e1
v•v0

e2

e3

v•v2

e4

v•v3 v•v4

Gv1
// Ge1 Gv0

oo

��

// Ge2 Gv2

��

oo

Ge3 Ge4

Gv3

OO

Gv4

OO

Figure 2. Dual tree of the desingularization of the curve
(y2 − x3)2 − x2y3 = 0 in the sense of Definition 4.1 and a
group-graph G over it.

Remark 3.2. One can define in a natural way the notions of image and
kernel of a group-graph morphism α : F → G, which are group-graphs over
the same graph. In the abelian case the cokernel can also be defined as a
group-graph. We also have an obvious notion of restriction of a group-graph
over a graph to a subgraph. �

Definition 3.3. Let G be a group-graph over a graph A. The cochain com-
plex of G consists of

C0(A, G) :=
∏
v∈VeA

Gv and C1(A, G) :=
∏

(v,e)∈IA

Gv,e , Gv,e := Ge ,

jointly with the right action C0(A, G)× C1(A, G)→ C1(A, G) given by

(gv) ?G (gv,e) := (ρev(gv)
−1gv,eρ

e
v′(gv′))

where ∂e = {v, v′}.
The set of 0-cocycles is the subset H0(A, G) of C0(A, G) of all elements

(gv) satisfying the relations ρev(gv) = ρev′(gv′) whenever ∂e = {v, v′}. Let us
consider the set of 1-cocycles

Z1(A, G) := {(gv,e) ∈ C1(A, G) | gv,egv′,e = 1 when ∂e = {v, v′}} ⊂ C1(A, G)

which is invariant by the action of C0(A, G) and its quotient, the 1-cohomology
set:

H1(A, G) := Z1(A, G)/C0(A, G).

Remark 3.4. The sets of cochains C0(A, G) and C1(A, G) are groups but
in general H0(A, G) and H1(A, G) are merely sets (although Z1(A, G) is in
bijection with

∏
e∈EdA

Ge which is a group). However, if the group-graph G

is abelian then we can consider the group C2(A, G) :=
∏

e∈EdA
Ge and the

morphisms ∂0 : C0(A, G) → C1(A, G) and ∂1 : C1(A, G) → C2(A, G) given
by

∂0(gv) := (gv) ?G (1) = (ρev(gv)
−1ρev′(gv′)) and ∂1(gv,e) = (gv,egv′,e)
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whenever ∂e = {v, v′}. It turns out that ∂1◦∂0 = 1 and we obtain a complex

C∗(A, G) : C0(A, G)
∂0

→ C1(A, G)
∂1

→ C2(A, G)→ 1

whose cohomology is H0(C∗(A, G)) = H0(A, G) = ker ∂0, H1(C∗(A, G)) =
H1(A, G) = Z1(A, G)/∂0C0(A, G) andH2(C∗(A, G)) = 1 because Z1(A, G) =
ker ∂1 and coker ∂1 = 1. �

The following result is straightforward.

Lemma 3.5 (Functoriality). Every morphism α : F → G of group-graphs
over the same graph A induces well-defined maps αi : H i(A, F )→ H i(A, G),
for i = 0, 1, given by

α0(gv) = (αv(gv)) and α1([gv,e]) = [αe(gv,e)].

Moreover, if F and G are abelian then αi are morphisms.

A short sequence 1 → F
α→ G

β→ J → 1 of morphisms of group-graphs
over the same graph A is exact if for all a ∈ VeA ∪ EdA the corresponding
short sequence of groups 1 → Fa

αa→ Ga
βa→ Ja → 1 is exact. In the abelian

case the complexes of abelian groups considered in Remark 3.4 fit into a short
exact sequence 1 → C∗(A, F ) → C∗(A, G) → C∗(A, J) → 1. The following
results are classical.

Lemma 3.6 (Long exact sequence). If 1 → F → G → J → 1 is a short
exact sequence of abelian group-graphs over the same graph A, then there is a
long exact sequence 1→ H0(A, F )→ H0(A, G)→ H0(A, J)→ H1(A, F )→
H1(A, G)→ H1(A, J)→ 1.

Lemma 3.7 (Mayer-Vietoris). Let G be an abelian group-graph over a graph A.
If A0 and A1 are subgraphs of A such that A = A0∪A1 then there is an exact
sequence 1 → H0(A, G) → H0(A0, G) ⊕ H0(A1, G) → H0(A0 ∩ A1, G) →
H1(A, G)→ H1(A0, G)⊕H1(A1, G)→ H1(A0 ∩ A1, G)→ 1.

Proof. We have a short exact sequence of complexes of abelian groups

1→ C∗(A, G)→ C∗(A0, G)⊕ C∗(A1, G)→ C∗(A0 ∩ A1, G)→ 1

and we consider the long exact sequence of cohomology. �

Definition 3.8. The valency in A or the A-valency of a vertex v of A is
the cardinality valA(v) of the set {e ∈ EdA ; v ∈ ∂e}. We say that v is an
extremity of A if valA(v) = 1; in that case we will write v ∈ ∂A.

A partial dead branch (M, v0) of A is the data of a vertex v0 of A called
attaching point and a connected subgraph M of A such that:

• M contains an extremity v′0 of A,
• all its vertices are of valency 2 in A, except possibly its extremities
that are v′0 and v0.

Notice that M is always a chain. When M 6= A and valA(v0) ≥ 3 one says
that M is a dead branch of A. We define a total order <

M
on the sets of

its vertices VeM := {v0, . . . , v` := v′0} and of its edges EdM := {e1, . . . , e`}
with ∂ej = {vj−1, vj}, by setting v0 <

M
· · · <

M
v` and e1 <

M
· · · <

M
e`

j = 1, . . . , `.
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Definition 3.9. For a group-graph G, we say that a partial dead branch M
is G-repulsive if the morphisms ρev : Gv → Ge are surjective for all e ∈ EdM
such that ∂e = {v, v′} and v′ <

M
v.

Now we will give a process that will allow us to restrict a group-graph to
a subgraph without changing its cohomology.

Definition 3.10. If (M, v0) is a partial dead branch of A, the pruning Ă of
M in A, at the attaching point v0, is the subgraph Ă = (A \M) ∪ {v0}.

Theorem 3.11 (Pruning). Let G be a (not necessarily abelian) group-graph
over A and M a G-repulsive partial dead branch of A then there is a natural
bijection H1(A, G)

∼−→H1(Ă, Ğ) where Ă is the pruning of M in A and Ğ

is the restriction of G to Ă. Moreover, if G is abelian, this bijection is an
isomorphism of groups.

Before giving the proof let us notice that the natural projections pri :
Ci(A, G) → Ci(Ă, Ğ), i = 0, 1, are group morphisms commuting with the
actions ?G and ?Ğ and inducing a natural map pr1

∗ : H1(A, G)→ H1(Ă, Ğ).
On the other hand, we have an "extension by 1” map ext : C1(Ă, Ğ) →

C1(A, G) such that pr1 ◦ ext is the identity map, ext(Z1(Ă, Ğ)) ⊂ Z1(A, G)
and

ext ◦ pr1((gv,e)) = (g′v,e) , with g′v,e =

{
gv,e if (v, e) ∈ IA \ IM
1 if (v, e) ∈ IM .

Proof of Theorem 3.11. First we will see that the morphism ext induces a
map ext∗ : H1(Ă, Ğ) → H1(A, G) that satisfies pr1

∗ ◦ ext∗ is the identity of
H1(Ă, Ğ). Indeed, by G-repulsivity of M we have the following diagram of
groups and morphisms

Gv0

ρ
e1
v0→ Ge1

ρ
e1
v1
� Gv1

ρ
e2
v1→ Ge2

ρ
e2
v2
� Gv2 → · · · · · ·� Gv`−1

ρ
e`
v`−1→ Ge`

ρ
e`
v`
� Gv`

Let h̆1 = (h̆v, e) and ğ1 = (ğv,e) be two cohomologous elements in Z1(Ă, Ğ):

h̆v,e = ρev(h̆v)
−1 ğv,e ρ

e
v′(h̆v′) , h̆0 := (h̆v) ∈ C0(Ă, Ğ) .

We will determine h0 := (hv) ∈ C0(A, G) such that h0 ?G ext(h̆1) = ext(ğ1).
We define hv = h̆v if v ∈ VeĂ. For v /∈ VeĂ it is sufficient to solve the system
of ` equations:

1 = ρe1v0
(hv0)−1 · 1 · ρe1v1

(hv1) , hv1 ∈ Gv1

...
1 = ρe`v`−1

(hv`−1
)−1 · 1 · ρe`v`(hv`) , hv` ∈ Gv`

This can be easily done using the surjectivity of the maps ρejvj , j = 1, . . . , `.
This shows that the map ext∗ : H1(Ă, Ğ) → H1(A, G) is well defined. As
pr1 ◦ ext is the identity map on C1(Ă, Ğ) we deduce that pr1

∗ ◦ ext∗ is the
identity of H1(Ă, Ğ).

Using again the G-repulsivity of M we now check that ext∗ ◦ pr1
∗ is the

identity of H1(A, G). To do that we prove that for each (gv,e) ∈ Z1(A, G)
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there is (gv) ∈ C0(A, G) such that:

ext ◦ pr1 ((gv,e)) =
(
ρev(gv)

−1 gv,e ρ
e
v′(gv′)

)
.

We define gv = 1 when v ∈ VeĂ, so that in particular gv0 = 1 and therefore
ρe1v0

(gv0) = 1. As the maps ρejvj , 1 ≤ j ≤ `, are surjective, the following system
of ` equations has a solution with gv1 ∈ Gv1 , . . . , gv` ∈ Gv`

1 = ρe1v0
(gv0)−1 gv0,e1 ρ

e1
v1

(gv1)
1 = ρe2v1

(gv1)−1 gv1,e2 ρ
e2
v2

(gv2)
...

1 = ρe`v`−1
(gv`−1

)−1 gv`−1,e` ρ
e`
v`

(gv`) .

This proves that ext∗ ◦ pr1
∗ is the identity of H1(A, G). The two maps ext∗

and pr1
∗ are inverses one of the other and therefore bijections.

When G is abelian the maps pr1
∗ and ext∗ are group morphisms, one the

inverse of the other, and the map H1(A, G)
∼−→H1(Ă, Ğ) induced by pr1

∗ is
trivially an isomorphism. �

Remark 3.12. By repeating this process we obtain a subtree Apr of A
such that the restriction Gpr of G to Apr has no Gpr-repulsive partial dead
branches and the map ext : Z1(Apr, Gpr) → Z1(A, G) of extension by 1,
induces an isomorphism H1(Apr, Gpr)

∼−→H1(A, G). In particular if all the
morphisms ρev : Gv → Ge are surjective, the subtree Apr is reduced to a single
vertex and H1(A, G) is trivial. �

4. Automorphism group-graph

Let us fix once for all a marked divisor E� = (E ,Σ, ı) and a marked foli-
ation F� = (F , f) ∈ MFol(E�). We recall that Ed is the union of dicritical
components D of E�, i.e. D ∩ Σ = ∅, cf. Section 2.1.

As usual, the combinatorics of the reduction is encoded by the dual tree:

Definition 4.1. The dual tree AE of E is the graph having Comp(E) and
Sing(E) as sets VeAE of vertices and EdAE of edges respectively, with ∂s =
{D,D′} whenever D ∩D′ = s.

On the other hand, the dynamics of the marked foliation is organized
along the following new subgraph of the dual tree:

Definition 4.2. The subgraph of AE obtained by removing the vertices associ-
ated to Ed, the edges attached with these vertices and the edges corresponding
by f to nodal corners of F ], is called the cut-graph of F�. We denote it by
AF�, or more simply by A when there is not ambiguity. It is a finite graph
without loops.

The cut-graph of F� only depends on the class [F�] of F� by the equiv-
alence relation ∼�. In fact, it is constant along the fiber CS−1(CS([F�])) ⊂
Mod(E�) that contains Mod([F�]). This graph is a disjoint union of trees,
denoted by AiF� , or more simply by Ai, that can be considered as the dual
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trees of the F�-cut-components of E defined in Section 2.4. Notice that if G
is a group-graph on A then

H1(AF� , G) =
∏
i

H1(AiF� , Gi)

where Gi is the restriction of G to AiF� .

Definition 4.3 (The group-graph AutF
�
). For s ∈ EdAF� and D ∈ VeAF� ,

let us denote by
• AutF

�
s the group of germs at f(s) of holomorphic automorphisms of F ],

• AutF
�

D the group of germs along f(D) of continuous automorphisms of F ]
preserving EF , that are holomorphic at each singular point of F ] that is not
a nodal corner (cf. Section 2.2) and whose restriction to f(D) \ Sing(F ])
is homotopic to the identity.

We define by these data the automorphism group-graph AutF
�
over AF� , the

morphisms ρsD, s ∈ D, being just the restriction maps.

Remark 4.4. If D is not dicritical, the elements of AutF
�

D are transversely
holomorphic at each point of f(D)\ΣF , with ΣF := Sing(F ]), because they
are holomorphic on an open set whose saturation by F ] is a neighborhood
of f(D) \ ΣF , cf. [19, Theorem A] or [4, Theorem 2]. �

Now we will assign to each topological class g ∈ Mod([F�]) a cohomology
class iF�(g) ∈ H1(AF� ,AutF

�
). To do that we fix a representative (G, g)

of g.

Definition 4.5. A good fibration along an invariant component g(D) of EG
is a germ along g(D) of a C∞-submersion from a neighborhood of g(D) to
g(D), that is holomorphic at each singular point of G], equal to the identity on
g(D), constant on each component adjacent to g(D) and coincides with the
projection given by linearizing holomorphic coordinates at nodal singularities.

Clearly good fibrations along invariant components always exist and their
fibers, except the adjacent components of g(D), are transverse to the leaves
of the foliation G] on a neighborhood of g(D) thanks to the reducedness of
the singularities of G].

Fix D ∈ CE� , a regular point oD ∈ D and good fibrations along f(D) and
g(D). Since [G, g] ∈ Mod([F , f ]), cf. Definition 2.3, there is a biholomor-
phism ψ∆ between the fibers ∆ and ∆′ of the good fibrations over the points
f(oD) and g(oD) conjugating the holonomy representations HF�D and HG�D .

Lemma 4.6 (Lifting path method). Up to performing an isotopy on f and
g there is a unique germ of a transversely holomorphic homeomorphism

ψD : (MF , f(D))→ (MG , g(D)) , ψD(F ]) = G] ,

that conjugates the good fibrations and the foliations such that the restriction
to f(D) is g◦f−1 and the restriction to ∆ is ψ∆. Moreover ψD is holomorphic
at ΣF ∩ f(D).

Proof. We proceed in three steps. First, we extend ψ∆ to a neighborhood of
f(D \Σ) by the classical method of lifting to the leaves paths in D \Σ thus
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obtaining a transversely holomorphic conjugation ψD, see for instance [21]
and [14].

Next, in order to extend ψD to the fibers over ΣF = f(Σ) we must pre-
viously make an isotopy on f and g such that they become holomorphic
at Σ. Hence g ◦ f−1 is holomorphic at ΣF . Since the good fibrations are
holomorphic at f(Σ) and g(Σ) and ψD is transversely holomorphic we de-
duce that ψD is holomorphic on a neighborhood of f(Σ) minus the adjacent
components to f(D). Using that the Camacho-Sad indices of F ] and G] at
the singular points corresponding by g ◦ f−1 are the same, the holomorphic
extension of ψD to the adjacent components of f(D) follows by [21] if the
corresponding singular points are non-nodal.

Finally, at the nodal singularities f(s) and g(s) the good fibrations coin-
cide with the projections given by linearizing holomorphic coordinates of the
nodes and we can perform an isotopy on f and g such that the expression
of g ◦ f−1 in the linearizing coordinates of the nodes is the identity. Thus,
on the common linear model yx−λ, λ ∈ R+ \ Q, we have an automorphism
which is the identity on |x| = 1. Since it commutes with the linear holonomy
y 7→ ye2iπλ we deduce that it is linear on the fibers and it extends to |x| ≤ 1
by linearity. �

Thus, for each edge s ∈ EdAF� , the germs at f(s)

ϕD,s = ψ−1
D ◦ ψD′ , ϕD′,s = ψ−1

D′ ◦ ψD , D ∩D′ = s ,

are holomorphic automorphisms of F ] and the 1-cocycle c1 := (ϕD,s), with
(D, s) ∈ IAF� , is an element of Z1(AF� ,AutF

�
).

Definition 4.7. The cohomology class of this cocycle c1 = (ϕD,s) is denoted
by iF�(g).

Lemma 4.8. The cohomology class iF�(g) does not depend on the choice of
a representative of the class g nor on the good fibrations associated to it.

Proof. If we choose another element (Ğ, ğ) in g, and good fibrations for Ğ,
taking in the same way homeomorphisms

ψ̆D : (MF , f(D))→ (MĞ , ğ(D)) , ψ̆D(F ]) = Ğ] ,

we obtain another 1-cocycle

c̆1 = (ϕ̆D,s) = (ψ̆−1
D ◦ ψ̆D′) ∈ Z

1(AF� ,AutF
�
) .

Since (G, g) ∼� (Ğ, ğ) there is a homeomorphism Φ between neighborhoods
of the exceptional divisors EG and EĞ of the reductions of these foliations
that conjugates G] and Ğ] and is holomorphic at the singular points of G],
except perhaps at the nodal corners; moreover, when restricted to EG , Φ is
isotopic to ğ ◦ g−1.

Let us denote by ΦD the germs of Φ along the invariant components
D of EG . One easily checks that the 0-cochain c0 = (ψ−1

D ◦ Φ−1
D ◦ ψ̆D) ∈

C0(AF� ,AutF
�
) fulfills c0 ? c1 = c̆1. This proves that the cohomology class

of c1 does not depend on the choice of the representative of the class g nor
on the good fibrations used to define it. �
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Theorem 4.9. The map

iF� : Mod([F�]) ∼−→ H1(AF� ,AutF
�
) (2)

is bijective. Moreover, iF�([F�]) = [(id)].

Proof. Let us recall that AF� is the common cut-graph to all marked folia-
tions (G, g) with [G, g] ∈ Mod([F�]); in this proof we will denote it by A and
by Ai its connected components. Let us show first the injectivity of iF� . If

iF�([G, g]) = [(ϕD,s)] = [(ϕ̆D,s)] = iF�([Ğ, ğ])

then for each D ∈ CE� there exists ξD ∈ AutF
�

D such that

ξ−1
D ◦ ϕD,s ◦ ξD′ = ϕ̆D,s.

Writing ϕD,s = ψ−1
D ◦ψD′ and ϕ̆D,s = ψ̆−1

D ◦ ψ̆D′ , with s = D∩D′, we deduce
that

ψ̆D ◦ ξ−1
D ◦ ψ

−1
D = ψ̆D′ ◦ ξ−1

D′ ◦ ψ
−1
D′

defines conjugations Φi : Wi → W̆i between the foliations G] and Ğ] restricted
to some tubular neighborhoods Wi and W̆i of E iG :=

⋃
D∈VeAi

g(D) ⊂ EG and⋃
D∈VeAi

ğ(D) ⊂ EĞ respectively. By composing Φi with suitable automor-
phisms of G] isotopic to the identity along the leaves and whose supports are
disjoint from the singular locus of G], we can assume that Φi respects the
attaching points of the adjacent dicritical components.

On the other hand, since the self-intersections of g(D) and ğ(D) coincide
for each dicritical component D ⊂ Ed, there is a conjugation ΦD between
the foliations G] and Ğ] restricted to some tubular neighborhoods WD and
W̆D of g(D) and ğ(D) whose restriction to g(D) is ğ ◦ g−1.

In order to glue the conjugations Φi and ΦD we use the following trick:
For each 0 < ε < 1, any germ of biholomorphism of (C2, 0) preserving
the fibration (x, y) 7→ x and the curve {y = 0} can be represented by
a C1-diffeomorphism F from D1 × D1 onto a neighborhood of (0, 0)
preserving the fibration and the curve with support in {|x| < ε}, where
D1 is the open unit disc of C.

This implies that there is an automorphism FD on a neighborhood of g(D)
preserving g(D) and G], which is equal to Φ−1

D ◦Φi in a neighborhood of the
attaching point g(D) ∩ E iG with support a polydisc centered at this point.
Shrinking the domain of definition of ΦD ◦ FD we obtain a conjugation of
the pairs (G], g(D)) and (Ğ], ğ(D)) which can be glued with Φi.

The gluing of Φi and Φj at the nodal corners is made by using linearizing
coordinates for (G, g(s)) and (Ğ, ğ(s)) as in [18, §8.5]. In this way we obtain
a global conjugation Φ : MG → MĞ between the foliations G] and Ğ] which
is holomorphic at the singular points.

By definition of AutF
�

D , the restrictions of ξD to the divisor are isotopic to
the identity. Hence the restriction of Φ to E�G is isotopic to ğ ◦g−1. Therefore
[G, g] = [Ğ, ğ].

To prove the surjectivity of iF� we consider a cocycle c = (ϕD,s) in a
given class of H1(AF� ,AutF

�
). We define ϕD,s = id when f(s) is a nodal

corner or an attaching point of a dicritical component. By gluing open
neighborhoods UD of f(D) using the local biholomorphisms ϕD,s we obtain
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a complex manifold Mc endowed with a foliation Fc, a divisor Ec and a
biholomorphism between Ec and EF sending the singular locus of Fc onto ΣF .
There is a composition of blow-ups E′ : M ′ → (C2, 0) and a biholomorphism
g : Mc →M ′ sending Ec onto the exceptional divisor E′−1(0), see for instance
[20, p. 306]. We obtain a foliation F ′ = (E′ ◦ g)(Fc) on (C2, 0) and a
biholomorphism h : EF → EF ′ satisfying h(ΣF ) = ΣF ′ . We define f ′ :=
h ◦ f : E → EF ′ . By construction iF�([F ′, f ′]) = [c]. �

5. Symmetry group-graph

We keep the notations and the fixed data of the previous section. In order
to define the remaining group-graph associated to F�, we moreover fix for
each D ∈ CE� a regular point oD ∈ D and a transverse section ∆D to f(D)
passing through f(oD).

Definition 5.1. For s ∈ EdAF� we say that φ ∈ AutF
�

s fixes the leaves of F ]
if for every neighborhood V of f(s) there is a neighborhood V ′ of f(s) such
that φ(V ′) ⊂ V and for all p ∈ V ′ the points p and φ(p) belong to the same
leaf of F ]|V . We denote by FixF

�
s the (normal) subgroup of AutF

�
s of these

automorphisms.

Remark 5.2. It is easy to see that an example of element of FixF
�

s is pro-
vided by φ ∈ AutF

�
s such that φ|f(D) = idf(D) and Fp ◦ φ = Fp for any local

first integral Fp at every point p ∈ f(D \Σ) in a neighborhood of f(s). The
diffeomorphisms of the flow of a vector field tangent to the foliation fulfill
this property for small times and, by composition, all the diffeomorphisms
of the flow are in FixF

�
s . �

Remark 5.3. For a fundamental system (Vα) of open neighborhoods of f(s)
let us denote by QFVα the leaf space of the restriction of the foliation F ] to
Vα \ EF . The inclusion relation on the leaves induces an inverse system of
continuous maps QF�(s) := (QFVα ← Q

F
Vβ

)Vβ⊂Vα . Every ψ ∈ AutF
�

s defines

an automorphism5 of this inverse system ψ̃ ∈ Aut(QF�(s)) and the map
ζ : ψ 7→ ψ̃ is a group morphism. It turns out that ψ̃ is the identity if and
only if ψ ∈ FixF

�
s , i.e. we have an exact sequence:

1→ FixF
�

s −→ AutF
�

s
ζ−→ Aut(QF�(s)) .

�

Definition 5.4. For s ∈ EdAF� and D ∈ VeAF� we consider the groups

SymF
�

s := AutF
�

s /FixF
�

s

and

SymF
�

D :=

 C(HD) if valΣ(D) ≥ 3,

C(HD)/HD if valΣ(D) ≤ 2,

5 The system QF
�
(s) is an element of the category Top

←−−
of pro-objects associated to the

category of topological spaces and continuous maps. The objects of this category are the
inverse families of topological spaces and Aut(QF

�
(s)) is the group of invertible elements

of lim←−β lim−→α
C0(QFVα

, QFVβ
), cf. [8, §2.8] or [18, §3.1].
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where HD ⊂ Diff(∆D, f(oD)) is the holonomy group of F ] along f(D),
C(HD) is its centralizer inside Diff(∆D, f(oD)) and valΣ(D), called here
singular valency of D, is the number of elements of D ∩ Σ.

Notice that if valΣ(D) ≤ 2 then π1(D\Σ) is abelian and so is the holonomy
group HD. Thus, in this case we have C(HD) ⊃ HD.

In order to define maps ρsD : SymF
�

D → SymF
�

s , s ∈ D, we will need the
following result:

Lemma 5.5. If ψ ∈ AutF
�

D satisfies ψ|f(D) = idf(D) and ψ|∆D
= id∆D

, then
the germ of ψ at f(s) belongs to FixF

�
s .

Proof. For each p ∈ f(D) \ Sing(F ]) we choose a local holomorphic first
integral Fp of F defined in a neighborhood of p. The set

Ω := {p ∈ f(D) \ Sing(F ]) |Fp ◦ ψ = Fp}

is open and closed in f(D) \ Sing(F ]) and it contains f(oD) = ∆D ∩ f(D).
Hence Ω = f(D) \ Sing(F ]) and we conclude thanks to Remark 5.2. �

By applying Lemma 4.6, with F� = G�, we obtain that each element φ of
C(HD) can be extended to an element of AutF

�
D . Thanks to Lemma 5.5, the

class modulo FixF
�

s of the germ at f(s) of this extension does not depend on
the way the extension is made and hence on the choice of the good fibrations.
We define ρsD(φ) as this class in case valΣ(D) ≥ 3.

Before defining ρsD for D with valΣ(D) ≤ 2, we must make some prelimi-
nary considerations. Let us fix for each point s ∈ Σ ∩D the image Ks of a
holomorphic embedding of the closed unit disc D1 intoD sending 0 to s and 1
to oD and satisfying Σ∩Ks = {s}. The simple loops γs that parametrize ∂Ks
with the natural positive orientation, form a system of generators of the fun-
damental group π1(D\Σ, oD). Hence the holonomies hD,s ∈ Diff(∆D, f(oD))

of the foliation F ] along f ◦ γs, s ∈ Σ ∩D, generate HD.

Definition 5.6. The collection (Ks)s∈D∩Σ of such embedded discs is called
appropriate compact discs system and the maps hD,s are called the local
holonomies associated to it.

Let us denote Ks := f(Ks) and fix a good fibration πD : WD → f(D)
associated to F defined on an open neighborhood WD of f(D). The same
arguments used in the proof of Lemma 4.6, with F� = G�, imply that any
element φ of the centralizer C(hD,s) of hD,s in Diff(∆D, f(oD)) has a unique
extension φext as a germ along Ks of a homeomorphism that leaves invariant
the foliation F ] and each fiber of the fibration. Moreover φext is necessarily
holomorphic at f(s), as it is shown in Lemma 4.6. Taking its germ at f(s)
we obtain a map

ext : C(hD,s) −→ AutF
�

s , φ 7→ φext (3)

and the property of uniqueness of the extensions implies that this map is a
group morphism.

Let us consider the inverse system QF�(Ks) = (QFWα
← QFWβ

)Wβ⊂Wα ,
where (Wα)α is the fundamental system of neighborhoods of Ks and QFWα
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is the leaf space of the restriction of the foliation to Wα \ EF . Let Vs ⊂
◦
Ks

be a small open disc centered at f(s). Over Ks \ Vs the foliation F ] is a
product foliation; thus we have an isomorphism of inverse systems (i.e. an
isomorphism of the category Top

←−−
)

QF�(s) ∼−→QF�(Ks) . (4)

We also consider the orbit spaces QhD,sα of the pseudogroup defined by
the restriction of hD,s to ∆D ∩Wα; they form an inverse system QhD,s =

(QhD,sα ← QhD,sβ )Wβ⊂Wα . We can choose each Wα such that there are retrac-
tions along the leaves from Wα \ EF on (Wα \ EF )∩ π−1

D (∂Ks), πD being the
good fibration fixed above; moreover we can require that Wα ∩ π−1

D (∂Ks) is
a set of suspension type, i.e. the union of all paths with origin in ∆D ∩Wα

obtained by lifting via πD the loop ∂Ks to the leaves of F ], cf. [16, Defini-
tion 3.1.1]. This property implies that the leaf space of the restriction of the
foliation to this set can be identified to the orbit spaceQhD,sα of the restriction
of hD,s to ∆D ∩Wα. Hence using (4), the retractions induce isomorphisms

τ : QF�(s) ∼−→QhD,s and τ∗ : Aut(QF�(s)) ∼−→Aut(QhD,s) , τ∗(ϕ) := τ◦ϕ◦τ−1,

the inverse of τ being given by the inclusion relations of the orbits of hD,s
in the leaves of the foliation on neighborhoods of Ks.

Each element φ of C(hD,s) induces an automorphism ξ(φ) := τ∗(ζ(φext))

of QhD,s and the map ξ : C(hD,s)→ Aut(QhD,s) is a group morphism.

Lemma 5.7. The kernel of the morphism ξ is the cyclic group generated
by hD,s.

Proof. Let us take φ ∈ ker(ξ). This means that for each open neighborhood
U of f(oD) in ∆D there is an open set V ⊃ U such that for each z ∈ U , z and
φ(z) are in the same V -orbit of hD,s. The V -orbit of z is the set of points z′
of V such that either there exists n ∈ N fulfilling either φ(z), . . . , φn(z) ∈ V
and φn(z) = z′, or φ−1(z), . . . , φ−n(z) ∈ V and φ−n(z) = z′. Let us denote
λ = h′D,s(f(oD)) and µ = φ′(f(oD)). If |λ| 6= 1 there is a holomorphic
coordinate z such that hD,s(z) = λz and φ(z) = µz. Hence φ(z) = µz =

λν(z)z = h
ν(z)
D,s (z) implies ν(z) is constant. To see that, let Vn be the set

of points z ∈ U such that hkD,s(z) ∈ V for each k = 0, . . . , n. There is an
uncountable set K invariant by hD,s such that for all n ∈ Z it is contained
in the connected component of Vn containing f(oD). If hD,s is linearizable
(conjugated to a rotation) then we can take an invariant conformal disc as
K. If hD,s is resonant non-linearizable then K is a union of petals contained
in U . If hD,s is non-resonant non-linearizable we take as K the hedgehog
associated to U , cf. [30].

For each z ∈ K there is an integer ν(z) such that φ(z) = h
ν(z)
D,s (z). Thus,

there is n ∈ Z such that φ and hnD,s coincide on an uncountable subset of K
and by isolated-zero principle they coincide on the connected component of
Vn containing f(oD). Then the germs of φ and hnD,s at f(oD) are equal, that
achieves the proof. �
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Corollary 5.8. The extension map (3) induces an isomorphism:

[ext] : C(hD,s)/〈hD,s〉
∼→ SymF

�
s .

Proof. By construction the following diagram is commutative

1 // FixF
�

s
// AutF

�
s

ζ // Aut(QF�(s))

τ∗
��

1 // 〈hD,s〉 // C(hD,s)
ξ //

ext

OO

Aut(QhD,s)

Thanks to Remark (5.3) and Lemma (5.7) the lines are exact. Because τ is
an isomorphism, ext induces an isomorphism between C(hD,s)/〈hD,s〉 and
AutF

�
s /FixF

�
s = SymF

�
s . �

Remark 5.9. Suppose that there are local coordinates u1, u2 at s for which
F ] is defined by a linear differential 1-form ω = µu2du1 − u1du2 and D1 =
{u2 = 0}, D2 = {u1 = 0} are the components of EF . On the transversals
{ui = 1} the local holonomies are hD1,s(u2) = e2πiµu2 and hD2,s(u1) =

e
2πi 1

µu1 and their centralizers are formed by the linear automorphisms in
the coordinates ui, C(hDi,s) = C∗ui. Therefore we have isomorphisms

C(hD1,s)

〈hD1,s〉
' C

2πi(Z + µZ)

τ1−→ SymF
�

s
τ2←− C

2πi(Z + 1
µZ)

'
C(hD2,s)

〈hD2,s〉

To describe τ−1
2 ◦ τ1 let us remark that the automorphisms (u1, u2) 7→

(etu1, e
µtu2), t ∈ C are elements of FixF

�
s . Thus the automorphisms (u1, u2) 7→

(etu1, u2) and (u1, u2) 7→ (u1, e
µtu2) in AutF

�
s that extend hD1,s and hD2,s

respectively, define the same element of SymF
�

s . It follows:

τ−1
2 ◦ τ1 : C/2πi(Z + µZ) −→ C/2πi(Z +

1

µ
Z) , ṫ 7→ − 1

µ
ṫ .

�

Remark 5.10. If valΣ(D) ≥ 3, then [ext]−1 ◦ ρsD is the quotient map

SymF
�

D = C(HD) ↪→ C(hD,s)→ C(hD,s)/〈hD,s〉 .
�

For D containing at most two singular points of F ] we define

ρsD := [ext] : SymF
�

D = C(hD,s)/〈hD,s〉 → SymF
�

s .

Definition 5.11. We call symmetry group-graph and we denote by SymF
�

the group-graph consisting of the groups SymF
�

D , SymF
�

s , with D ∈ VeAF� ,
s ∈ EdAF� and the morphisms ρsD, s ∈ D.

Now, we are going to define a group-graph morphism α : AutF
� → SymF

�

which will induce an isomorphism on the 1-cohomology of AF� . If s ∈ EdAF� ,
we define αs as the quotient map AutF

�
s → SymF

�
s . If D ∈ VeAF� , we define

αD : AutF
�

D → SymF
�

D as follows. Fix Φ ∈ AutF
�

D and take an homotopy φt :
f(D \Σ)→ f(D \Σ), t ∈ [0, 1], between φ0 := Φ|f(D\Σ) and φ1 := idf(D\Σ),
which exists by definition of AutF

�
D . Consider the path β(t) = φt(oD) and
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the holonomy map hβ : (Φ(∆D),Φ(oD))→ (∆D, oD) associated to it. Since
φ0 induces the identity on π1(D \ Σ) we have that hβ ◦ Φ|∆D

belongs to
C(HD). If D has singular valency valΣ(D) ≥ 3, the group consisting of the
homeomorphisms of f(D \Σ) which are homotopic to the identity is simply
connected [36]; consequently hβ does not depend on the chosen homotopy
φt and we can put αD(Φ) := hβ ◦Φ. Finally, if v(D) ≤ 2 then only the class
[hβ ◦ Φ|∆D

] of hβ ◦ Φ|∆D
modulo HD is well-defined and we put αD(Φ) :=

[hβ ◦ Φ|∆D
].

Lemma 5.12. α : AutF
� → SymF

�
is a group-graph morphism.

Proof. We must see that the following diagram is commutative:

AutF
�

D

αD //

ρ̆sD
��

SymF
�

D

ρsD
��

AutF
�

s
αs // SymF

�
s

where ρ̆sD, resp. ρ
s
D, denote the restriction maps of the group-graphs AutF

�
,

resp. SymF
�
. Let us consider two cases, depending on the singular valency

valΣ(D). First let us assume valΣ(D) ≥ 3 and let us fix φ ∈ AutF
�

D . Then
αD(φ) = hβ ◦ φ|∆D

with hβ : φ(∆D) → ∆D the holonomy along a path β.
There exists φ′ ∈ AutF

�
D with compact support outside f(D) ∩ Sing(F ])

whose restriction to ∆D coincides with hβ . Indeed φ′ can be constructed by
composition of flows of tangent vector fields whose supports intersect the di-
visor f(D) in holomorphically embedded discs disjoint from the singularities
and which cover the image of β. Thus αD(φ) = φ′ ◦ φ|∆D

and ρsD(αD(φ))

coincides with the class modulo FixF
�

s of the germ of φ′ ◦ φ at f(s) thanks
to Lemma 5.5. This germ is just the germ of φ at f(s) because the sup-
port of φ′ does not intersect the singularities. This achieves the proof in
the case valΣ(D) ≥ 3. If valΣ(D) ≤ 2, the only difference is that only the
class of hβ ◦ φ|∆D

modulo HD = 〈hD,s〉 is well-defined; but we can proceed
analogously choosing arbitrarily hβ . �

Proposition 5.13 (Extension). LetW be a neighborhood of f(s), s ∈ EdAF� ,
then each germ φ ∈ FixF

�
s can be extended to a germ Φ ∈ AutF

�
D along f(D),

whose support fulfills supp(Φ) ∩ f(D) ⊂W .

Proof. At the point f(s) let us fix local holomorphic coordinates (u, v),
u(f(s)) = v(f(s)) = 0 such that the axes are invariant by the foliation,
and v = 0 is a local equation of f(D). We consider a holomorphic vector
field tangent to the foliation of the form Z = u∂∂u + vB(u, v)∂∂v .

First, we will see that each germ of biholomorphism ζ : (f(D), f(s)) →
(f(D), f(s)) can be extended as an element g of AutF

�
D whose germ at f(s)

belongs to FixF
�

s and whose support intersect f(D) inside W . This is easy
to prove when ζ is embedded in the flow (ψt)t of a vector field a(u)u∂∂u , i.e.
ζ = ψ1. Indeed in this case, let us consider the real vector field Y whose flow
is the flow of aZ, but with real times. Let us take a real smooth function
ρ equal to 1 on an open neighborhood of f(s), such that supp(ρ) ∩ f(D)
is contained in W and in the domain of definition of Y . Then ρY extends
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by zero along f(D) and the elements Ψt of its flow induce homeomorphisms
defined on neighborhoods of f(D). Their supports are contained in the
support of ρ and their germs at f(s) are element of FixF

�
s , cf. Remark 5.2.

Clearly the restriction of Ψ1 to f(D) is equal to ζ near f(s). Now, when ζ is
not embedded in a flow, we decompose ζ = ζ1 ◦ ζ2, with |ζ ′1(0)|, |ζ ′2(0)| 6= 1.
Both ζ1 and ζ2 are linearizable. Thus they can both be embedded in a flow
and have convenient extensions. Their composition extends φ along f(D),
and fulfills the required properties.

By replacing φ by φ◦g−1 where g is the above extension of ζ := φ|f(D) we
can suppose that the restriction of the germ φ to f(D) is the identity. Let us
choose ε > 0 such that the compact disc D2ε ⊂ f(D) defined by |u| ≤ 2ε, is
contained in W and in a definition domain of φ. Denote by C the compact
annulus contained in D2ε given by ε ≤ |u| ≤ 2ε. By the implicit function
theorem, there is a holomorphic function τ defined in an open neighborhood
Ω of C, that verifies:

(u ◦ φ)(m) = u ◦ ΦZ
τ(m)(m) and τ|f(D) = 0 ,

ΦZ
t being the flow of the previous vector field Z. Let us take a C∞ function

α : f(D) → R with compact support in Ω ∩ f(D), that is equal to 1 on a
neighborhood of C. The map

ξ : m 7→ ξ(m) := ΦZ
α(u(m))τ(m)(m)

is a C∞-diffeomorphism, because its restriction to f(D) is the identity and
moreover it is a local diffeomorphism. Indeed using coordinates (u, z) at each
point of f(D), with z a local first integral of the foliation, we easily see that
the jacobian matrix of ξ is the identity. Clearly χ := φ ◦ ξ−1 coincides with
φ on a neighborhood of f(s), it preserves the foliation and it leaves invariant
each fiber of u:

∆c := {u = c}, ε ≤ |c| ≤ 2ε .

Thus the restriction χ|∆c
of χ to ∆c leaves invariant the orbits of the ho-

lonomy map of F ] around f(s) represented on ∆c -which is equal to the
restriction of ΦZ

2π to ∆c. By Lemma 5.7, χ|∆c
is an iteration of this holo-

nomy map. Therefore, there exists an integer p ∈ Z such that χ coincides
with ΦZ

2iπp on a neighborhood of C.
Let us now take a continuous function σ : [0, 2ε] → R+ vanishing on

[0, ε] and being equal to 1 on [3
2ε, 2ε]. The homeomorphism Θ : m 7→

ΦZ
2iπpσ(|u(m)|)(m) is the identity on a neighborhood of f(s), it coincides with χ

for 3
2ε ≤ |u| ≤ 2ε and it leaves F ] invariant. To end the proof, we define

the required diffeomorpism Φ as the germ along f(D) of the diffeomorphism
equal to Θ−1 ◦ χ when |u| ≤ 2ε and equal to the identity otherwise. �

Theorem 5.14. The morphism of group-graphs α : AutF
� → SymF

�
in-

duces a natural bijection

α1 : H1(AF� ,AutF
�
)
∼→ H1(AF� ,SymF

�
). (5)

Proof. The surjectivity of α1 follows easily from the surjectivity of αs :
AutF

�
s → SymF

�
s . For this we fix an orientation ≺ of the union of trees

AF� and for (cD,s) ∈ Z1(AF� ,SymF
�
), we choose for each edge s with
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∂s = {D,D′}, D ≺ D′, an element ϕD,s such that αs(ϕD,s) = cD,s and we
set ϕD′,s := ϕ−1

D,s. Clearly the family (ϕD,s) is an element of Z1(AF� ,AutF
�
)

defining a lift of (cD,s).
To prove the injectivity of α1 we consider [φD,s], [φ̃D,s] ∈ H1(AF� ,AutF

�
)

such that α1([φD,s]) = [αs(φD,s)] = [αs(φ̃D,s)] = α1([φ̃D,s]). Then there is
(gD) ∈ C0(AF� ,SymF

�
) such that

αs(φ̃D,s) = ρsD(gD)−1 ◦ αs(φD,s) ◦ ρsD′(gD′) ∈ SymF
�

s

where s = D∩D′. Let ϕD ∈ AutF
�

D be extensions of gD ∈ SymF
�

D and let us
denote by (ϕD)s ∈ AutF

�
s their germs at s. Then

αs(φ̃D,s) = αs((ϕ
−1
D )s) ◦ αs(φD,s) ◦ αs((ϕD′)s)

and there is Fs ∈ FixF
�

s such that φ̃D,s = (ϕ−1
D )s ◦ φD,s ◦ (ϕD′)s ◦ Fs. Now

we choose a map δ : EdAF� → VeAF� such that s ∈ δ(s) for each s ∈ EdAF�
and we define F̄D as the composition over the set {s ∈ EdAF� | δ(s) = D} of
extensions of Fs to a neighborhood of δ(s) with disjoint supports given by
Proposition 5.13. Finally putting ϕ̄D = ϕD ◦ F̄D ∈ AutF

�
D we have that

φ̃D,s = ϕ̄−1
D ◦ φD,s ◦ ϕ̄D′ ∈ AutF

�
s ,

i.e. [φD,s] = [φ̃D,s] in H1(AF� ,AutF
�
). �

Proof of Theorem B. It follows immediately from Theorem 4.9 and Theo-
rem 5.14. �

6. Foliations of finite type

In this section we introduce the optimal condition on a germ of singular
foliation F in order to have a finite dimensional moduli space Mod([F�]).
We keep all the notations of previous sections.

Given a marked foliation F� = (F , f) and a sheaf Q defined on a neighbor-
hood of EF in the ambient space MF of F ], we can associate a group-graph,
denoted by QF� , over the cut-graph AF� as follows: if s ∈ EdAF� then QF�s
is the stalk of Q at f(s) and if D ∈ VeAF� , then

QF
�

D := H0(f(D), ι−1
f(D)Q),

ιf(D) being the inclusion map of f(D) in MF and for s ∈ D the morphism
ρsD : QF

�
D → QF

�
s being the canonical restriction.

Definition 6.1. We call group-graph of transverse infinitesimal symmetries
of F the group-graph T F� associated to the sheaf T F] := BF]/XF] on MF
equal to the quotient of the sheaf BF] of F ]-basic6 holomorphic vector fields
tangent to the F ]-invariant components of EF , by the sheaf XF] of holomor-
phic vector fields tangent to F ].

6i.e. whose flow leaves F] invariant.
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Remark 6.2. For each (D, s) ∈ IE� let us consider the local holonomies
hD,s as in Definition 5.6. There are linear isomorphisms, depending on the
choice of an appropriate compact discs system,

T F�D
∼−→THD , T F�s

∼−→ThD,s ,

where THD (resp. ThD,s) is the vector space of germs at f(oD) of vector fields
on the transversal disc ∆D which are invariant by the holonomy group HD

of F ] along f(D) (resp. invariant by hD,s), see [13, 24]. Moreover, if X 0
∆D

denotes the set of germs of vector fields on (∆D, f(oD)) vanishing at f(oD),
then the exponential map exp : X 0

∆D
→ Diff(∆D, f(oD)) sends ThD,s into

C(hD,s) and THD into C(HD). �

Now we define a coloring on AF� by saying:
(1) D ∈ VeAF� is green if the holonomy group HD is finite,
(2) s ∈ EdAF� is green if for each D ∈ ∂s the holonomy map hD,s is

periodic,
(3) D ∈ VeAF� or s ∈ EdAF� are red otherwise.

Let us denote by J F� the group-graph of holomorphic first integrals asso-
ciated to the sheaf of germs of holomorphic first integrals of F ]. Because
F ] does not have saddle-node singularities, an element a ∈ VeAF� ∪ EdAF�
is green iff J F�a 6= C, see [21]. Notice that if an edge s = D ∩D′ of AF� is
red then the vertices D and D′ are also red. We can therefore consider the
following:

Definition 6.3. The set of red elements of AF� is a subgraph called red
graph of F� and denoted by RF�.

Proposition 6.4. Let s and D ∈ ∂s be a green edge and a green vertex of
AF� . Then the following properties are equivalent:

(1) the holonomy group HD is generated by hD,s;
(2) J F�D → J F�s is surjective;
(3) T F�D → T F�s is surjective;
(4) SymF

�
D → SymF

�
s is surjective.

Proof. Let D be a green vertex of AF� and let z : (∆D, f(oD)) → C be
a linearizing coordinate of the holonomy group HD ⊂ Diff(C, 0) which is
finite. For each singular point s of D (necessarily a green edge of AF�) there
is nD,s ∈ N such that the local holonomies hD,s given in Definition 5.6 are
hD,s(z) = ζD,s z for some primitive nD,s-root of unity ζD,s. Let us denote
by nD ∈ N the least common multiple of {nD,s | s ∈ D ∩ Σ} and by ζD a
primitive nD-root of unity. Because a first integral is completely determined
by its restriction to the transversal ∆D, we can consider J F�D as subrings of
C{z}. In the same way, by extending the elements of J F�s along the compact
discs used in Definition 5.6 to define hD,s, we can also consider J F�s as a
subring of C{z}. With these identifications and using Remark 6.2, we have
the following well known equalities and isomorphisms:

J F�D = C{znD} , T F�D ' THD = J F�D z∂z , C(HD) = {z(α+ ND) |α ∈ C∗} ,

J F�s = C{znD,s} , T F�s ' ThD,s = J F�s z∂z , C(hD,s) = {z(α+Ns) |α ∈ C∗} ,
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with ND ⊂ J F
�

D and Ns ⊂ J F
�

s being the maximal ideals. Furthermore HD

is cyclic, generated by ζD z. The required equivalences follow immediately.
�

If B is a nonempty connected subgraph of a connected component AiF�
of AF� , then for every vertex D /∈ B of AiF� or D ∈ ∂B there is a unique
geodesic [D,B] ⊂ AiF� joining D to ∂B. We define the following pre-order
relation on the set of vertices of the closure of AiF� \B by means of

D′ ≤ D ⇐⇒ D′ ∈ [D,B].

Definition 6.5. We say that B is repulsive in AiF� if for each edge s = D∩D′
of AiF� \B with D′ ≤ D, the restriction map SymF

�
D → SymF

�
s is surjective.

Remark 6.6. Notice that when B is repulsive there is a filtration B0 =
B ⊂ B1 ⊂ · · · ⊂ Bk = AiF� such that Bj−1 is obtained from Bj by pruning a
SymF

�
-repulsive partial dead branch Mj of Bj , cf. Definitions 3.9 and 3.10.

�

A change of marking induces an isomorphism of colored graphs compatible
with the repulsiveness property that gives sense to the following definition:

Definition 6.7. The foliation F is of finite type if for each connected com-
ponent AiF� of AF� we have: either the subgraph AiF� ∩ RF� is nonempty,
connected and repulsive, or it is empty and there exists a green repulsive
vertex in AiF�.

As we have already pointed out, this finiteness property does not depend on
the marking. In fact thanks to Theorem 11.4 of Appendix, under (TR) and
(TC) conditions, it only depends on the topological class of the germ F at
0 ∈ C2 and it is fulfilled by all the foliations G with [G�] ∈ Mod([F�]) as
soon as it holds for one of them.

Theorem 6.8. If F is of finite type then the extension by 1 map

Z1(RF� ,SymF
�
)→ Z1(AF� , SymF

�
)

induces a bijection

H1(AF� ,SymF
�
) ' H1(RF� , SymF

�
) . (6)

Proof. We apply Pruning Theorem 3.11 to each partial dead branch Mj

considered in Remark 6.6, see also Remark 3.12. �

When the foliation F is of finite type let us now give the precise value of
the integer τF in the statement of Theorem D in Section 2.6. Let us consider
the following subgraph R0

F� whose
• vertices correspond by f to the invariant irreducible components of
EF whose holonomy groups do not leave invariant a non-trivial vector
field,
• edges correspond by f to the resonant non-normalizable or non-
resonant non-linearizable singularities of F ].

As before changes of marking induce isomorphisms between the graphs R0
F� ;

that allows us to put:
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Definition 6.9. If F is of finite type we call codimension of F the integer

τF := rankH1(RF�/R
0
F� , Z),

where RF�/R
0
F� is the quotient graph obtained from RF� by collapsing R0

F�
to a single vertex.

We will highlight now a group structure on H1(RF� , SymF
�
) when F is

of finite type. Let us choose an arbitrary map s 7→ Ds from EdRF� to VeRF�
with Ds ∈ ∂s. Since H1(RF� ,SymF

�
) is the quotient of

Z1(RF� , SymF
�
) '

⊕
s∈EdRF�

SymF
�

s '
⊕

s∈EdRF�

C(hDs,s)

〈hDs,s〉

by C0(RF� , SymF
�
) =

⊕
D∈VeRF�

SymF
�

D , we must pay attention to the central-

izers C(h) of the local holonomy transformations h = hD,s ∈ Diff(∆D, f(oD)).
Trivially h is of one and only one following type:
(P ) periodic;
(L1) linearizable and non-periodic;
(L0) formally linearizable but non-linearizable;
(R1) resonant non-linearizable but normalizable;
(R0) resonant non-linearizable and non-normalizable.

Classically, in the first three cases there exists a (only formal, in the case (L0))
local coordinate u on (∆D, f(oD)), such that u ◦ h = αu, with α ∈ C∗. In
these situations h = expX , withX := log(α)u∂u. In the resonant cases (R0)
and (R1) there exists a coordinate u on ∆D, only formal in the case (R0),
such that h = `r ◦exp t0X, X := up+1

1+λup∂u, where p+1 is the contact order of
hk with the identity when h′(0)k = 1, ` is the formal diffeomorphism defined
by u ◦ ` := e2iπ/pu, h′(0) = e2iπr/p, r ∈ {0, 1, . . . , p− 1}, λ ∈ C, t0 ∈ C∗ and
we can choose t0 = 1, (remark that ` and expX commute). In all cases u is
unique up to multiplication by an element of C∗.

Let us denote by Ĉ(h) the centralizer of h inside the group D̂iff(∆D, f(oD))

of formal diffeomorphisms of (∆, f(oD)). Clearly C(h) = Ĉ(h)∩Diff(∆D, f(oD)).
As in Remark 6.2 let us denote by Th the space of germs of holomorphic vec-
tor fields on (∆, f(oD)) invariant by h. The following result contains several
well-known facts.

Proposition 6.10. According to the type of h ∈ Diff(∆D, f(oD)) we have:
(P ) C(h) = {g ∈ Diff(∆D, f(oD)) | u ◦ g = u(α + F (uq)), α ∈ C∗, F ∈

uC{u}}; C(h)/〈h〉 ' Diff(C, 0); Th = C{uq}u∂u;
(L) Ĉ(h) = {g ∈ D̂iff(∆D, f(oD)) | u◦g = λg, λ ∈ C∗} = expCX ' C∗;
(R) Ĉ(h) = {`n ◦exp tX, n ∈ Z/pZ, t ∈ C} = 〈`〉⊕expCX ' Z/pZ⊕C.

Moreover:
(L1) Th = CX and C(h)/ exp Th = {1};
(R1) Th = CX, C(h)/ exp Th ' Z/pZ and C(h)/〈h, exp Th〉 ' Z/〈p, r〉;
(L0) Th = {0}; C(h) = {g ∈ Diff(∆D, f(oD)) | u ◦ g = λu, λ ∈ D} '

D, where D := {λ ∈ C∗ | u−1 ◦ (λu) is convergent} is a totally
discontinuous subgroup of U(1), that can be uncountable [29];
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(R0) Th = {0}, there exists m ∈ N∗ such that the sequence

0→ Z α−→ C(h)
β−→ Z/pZ , α(t) = exp

t

m
X , β(g) =

1

2iπ
log g′(0)

is exact and C(h)/〈h〉 is finite.

Proof. The periodic case has already been described in the proof of Proposi-
tion 6.4 except the isomorphism C(h)/〈h〉 ' Diff(C, 0) which follows eas-
ily from the fact that every g ∈ Diff(C, 0) commuting with a rotation
z 7→ e2iπ/qz is equal to (g[(zq))

1
q for a unique g[ ∈ Diff(C, 0). The descrip-

tion of the formal centralizers is given for instance in [13, Proposition 1.3.2]
or [5, p. 150], where it is also shown that C(h) = Ĉ(h) in the normaliz-
able cases (L1) and (R1). In addition, in the case (L1), Th = Cu∂∂u and
exp : Th → C(h) can be canonically identified to the surjective morphism
C→ C∗ given by µ 7→ eµ. In the case (R1), Th is equal to CX and

C(h)/〈h, expCX〉 ' (Z/pZ⊕ C)/〈ṙ ⊕ 1, 0⊕ C〉 ' Z/〈p, r〉,

where ṙ is the class of r modulo p. Thanks to the description of Ĉ(h), in the
case (R0) the kernel of β consists of the convergent elements of the flow of X
and by the Écalle-Liverpool Theorem, see for instance [13, Corollary 2.8.2] or
[11, Theorem 4] and [1, Theorems 7 and 10], it is equal to α(Z) for a suitable
m ∈ N∗. Indeed, Theorem 7 of [1] claims that if exp tX is convergent for
|t| ≤ p then exp tX is bounded in |t| ≤ p and |z| ≤ ρ; consequently in
this case X = d

dt

∣∣
t=0

exp(tX) would be convergent. Thus, the set {t ∈ C :
exp tX is convergent}, which contains Z, is different from C. By Theorem 10
of [1] this set is a lattice whose dimension is necessarily 1 by Theorem 4
of [11].

Finally in the case (L0), let g be an element of C(h) = Ĉ(h) ∩Diff(C, 0).
Then u ◦ g = λu with |λ| = 1. Indeed if |λ| 6= 1, g would be linearizable
in a convergent coordinate and h, that commutes with g, would be also lin-
earizable in the same coordinate, contradicting the assumption (R0). On the
other hand, D is a totally discontinuous subgroup of U(1) because otherwise
D = U(1) and h would be linearizable. �

It follows from this proposition and from Remark 3.4,

Theorem 6.11. Given a ∈ VeAF� ∪ EdAF� we have the equivalences:

a is red⇐⇒ SymF
�

a is abelian ⇐⇒ dimC T F
�

a <∞

a ∈ VeR0
F�
∪ EdR0

F�
⇐⇒ T F�a = 0 .

Furthermore the abelian structure of the group-graph SymF
�
over RF� in-

duces an abelian group structure on H1(RF� , SymF
�
).

Remark 6.12. By following the natural bijections (2), (5) and (6) provided
by Theorems 4.9, 5.14 and 6.8 respectively, one can check that if H̃([F�]) =

H̃([G�]) then Mod([F�]) and Mod([G�]) coincide as sets, but their respective
abelian group structures are related by the map µ 7→ γµ where γ = [G�] ∈
Mod([F�]). Indeed, the bijection (2) is given by iF� which sends [F�] to
[(id)] ∈ H1(AF� ,AutF

�
). �
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We end this section by proving some properties of centralizers which will
be useful in the sequel.

Lemma 6.13. If g and h are non-periodic and g ∈ C(h), then C(g) = C(h).

Proof. The group C(h) in case (L) only depends on the formal coordinate
u that linearizes h. Similarly in case (R) all the non-periodic elements of
C(h) have the same invariants p and λ, and if we fix these invariants, the
centralizers of resonant diffeomorphisms only depend on the normalizing
coordinate u. Thus the lemma follows from the fact that in both cases all
the non-periodic elements of a centralizer can be linearized or normalized by
using the same coordinate. �

Lemma 6.14. Let H be a finitely generated subgroup of Diff(C, 0). Suppose
that H and its centralizer are infinite. Then H is abelian, it contains a
non-periodic element h and H ⊂ C(H) = C(h).

Proof. We will first prove that H is abelian by contradiction. Take a non-
trivial element f ∈ [H,H] which is tangent to the identity: f(z) = z+ckz

k+
· · · with k ≥ 2 and ck 6= 0. Then fn(z) = z+nckz

k+ · · · is the identity only
for n = 0. Thus f is non-periodic and C(H) ⊂ C(f). By the description
of C(f) given in Proposition 6.10 there is a non-periodic element g in the
infinite subgroup C(H) ⊂ C(f). The fact that g ∈ C(H) is equivalent to the
inclusion H ⊂ C(g). As C(g) ⊂ Ĉ(g) is abelian by Proposition 6.10 we get
a contradiction. Since H = 〈h1, . . . , hk〉 is abelian, there is a non-periodic
generator hi, otherwise H would be finite. Let h ∈ H be any non-periodic
element. By Proposition 6.10, the group C(h) ⊂ Ĉ(h) is abelian. Since
H is abelian we have H ⊂ C(H) ⊂ C(h). Since C(h) is abelian every
element of C(h) commutes with H and consequently C(h) ⊂ C(H). Hence
H ⊂ C(H) = C(h). �

It follows immediately:

Proposition 6.15. Under the hypothesis of the previous lemma, all the non-
periodic elements of H are of the same type (L1), (L0), (R1) or (R0).

7. Non-degenerate foliations

A F�-singular chain C of E is a sequence D0, . . . , D`C of irreducible com-
ponents of E defining a connected subgraph

(C) •D0

s1 •D1 · · · · · ·
s`C •D`C (7)

of AF� such that the singular valency (cf. Definition 5.4) of its extremities
D0 and D`C is at least three, and that of the others, called interior vertices,
is exactly two. If `C = 1, then C consists of only two adjacent divisors of
singular valency at least three: •D0

s1 •D1 . The image by the marking
map f of a F�-singular chain of E is a singular chain of EF as considered in
Section 2.5.

Proposition 7.1. Let F� be a non-degenerate marked foliation. Then F
is of finite type. Moreover, the union R̆F� of all F�-singular chains of E
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is a subgraph of RF� such that for each connected component AiF� of AF�,
R̆F� ∩ AiF� is connected and repulsive in RF�. Hence

H1(RF� , SymF
�
) ' H1(R̆F� ,SymF

�
) .

In order to simplify the notations in the two proofs below, we will write
R, R̆, Sym, instead of RF� , R̆F� , SymF

�
.

Proof of Proposition 7.1. Clearly R̆ is connected in each connected compo-
nent Ai of the cut-graph A and the closure of R\R̆ in R is exactly the union of
all connected subgraphs C denoted as in (7) but with singular valencies sat-
isfying valΣ(D0) ≥ 3, valΣ(Dj) = 2 for 0 < j < `C and valΣ(D`C) = 1
or 2. By definition of the group-graph Sym, for j ≥ 1 the morphisms
ρ
sj
Dj

: SymDj → Symsj are bijective and R̆ is repulsive in R. Since F is

non-degenerate all the vertices and edges of R̆ are red; thus R∩Ai is also re-
pulsive and connected. By using Pruning Theorem 3.11 we obtain the group
isomorphism H1(R,Sym) ' H1(R̆, Sym). �

Proof of Theorem C. To have uniqueness of the numbering in the notation
(7) of a singular chain C, we fix in the sequel an extremity D̆ of R̆ and we
prescript that D0 belongs to the geodesic joining D`C to D̆. We will say that
D0, resp. s`C , is the initial vertex, resp. terminal edge of C.

For an interior vertex Dj of C the morphisms ρsjDj and ρsj+1

Dj
are bijective

and by composition they induce isomorphisms

ξDj : Syms1 ' SymDj , ξsj : Syms1 ' Symsj , 0 < j < `C .

Let us consider the subgroups:
• Z̃1(R̆,Sym) ⊂ Z1(R̆,Sym) of the 1-cocycles (φD,a)(D,a)∈IR̆ such that
φD,a = 1 if a is not the terminal edge of some singular chain,
• C̃0(R̆,Sym) ⊂ C0(R̆,Sym) of the 0-cochains (φD)D∈VeR̆ such that
φD = ξD ◦ ρs1D0

(φD0) for all interior vertices D of any singular chain,
D0 denoting its initial vertex.

Notice that the coboundary morphism ∂0 defined in Remark 3.4 maps C̃0(R̆,Sym)

into Z̃1(R̆,Sym), allowing us to define the group

H̃1(R̆,Sym) := coker(∂0 : C̃0(R̆, Sym) −→ Z̃1(R, Sym)) .

We easily see that each element of H1(R̆,Sym) can be represented by a
cocycle belonging to Z̃1(R̆, Sym). We deduce that the morphism

τ : H̃1(R̆,Sym) −→ H1(R̆,Sym)

induced by the inclusion Z̃1(R̆,Sym) ⊂ Z1(R̆, Sym) is surjective. On the
other hand if a cochain c0 := (φD)D∈VeR̆ ∈ C0(R̆, Sym) satisfies ∂0(c0) ∈
Z̃1(R̆,Sym), then for each singular chain C of lenght `C ≥ 2 denoted as in
(7) we have the equalities

ρ
sj
Dj

(φDj ) = ρ
sj
Dj−1

(φDj−1) , j < `C .

It follows that c0 ∈ C̃0(R̆, Sym). Therefore ker(τ) is trivial and τ is an
isomorphism. To achieve the proof of Theorem C, let us first notice that
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the group C̃0(R̆,Sym) is finite. Indeed it is isomorphic to the direct sum
of all centralizers of holonomy groups associated to the vertices of R having
singular valency at least three. These holonomy groups being non-abelian
by the non-degeneracy assumption, thanks to Lemma 6.14 their centralizers
are finite. On the other hand, Proposition 6.10 gives a decomposition of
Z̃1(R̆,Sym) as F ⊕ B ⊕λj=1 (C∗/αZ

j ) ⊕ (C∗)ν ; that completes the proof of
Theorem C. �

8. Examples

Before proving Theorem D in full generality let us motivate its statement
by computing the moduli space of some non-trivial examples using the iden-
tification Mod([F�]) ' H1(RF� , SymF

�
).

• Example 0: a logarithmic generic multicusp
Let L be the germ at 0 ∈ C2 of the logarithmic foliation defined by the
meromorphic form

ω :=

p∑
i=1

αi
d(y2 + aix

3)

y2 + aix3
+ δ

d(y − x)

y − x
+

p∑
i=1

βi
d(x2 + biy

3)

x2 + biy3
,

with ai, bi ∈ C mutually distinct. We normalize the coefficients αi, βi, δ ∈ C∗
by requiring δ+ 2

∑p
i=1(αi +βi) = 1. To simplify the exposition we suppose

that E is equal to the exceptional divisor EL, Σ = Sing(L]), the marking
being the identity map and L� = (L, idEL). Clearly E is formed by five
irreducible components, its dual tree is equal to the cut-graph AL�

(AL�) •C′
s′∞ •D′

s′0 •D
s′′0 •D′′

s′′∞ •C′′

valΣ(C ′) = valΣ(C ′′) = 1 , valΣ(D′) = valΣ(D′′) = p+ 2 , valΣ(D) = 3 ,

where valΣ is the singular valency introduced in Definition 5.4. The cut
graph AL� decomposes into one singular chain that is the red part RL� of
the graph

(RL�) •D′
s′0 •D

s′′0 •D′′

and two dead branches •C′
s′∞ •D′ and •D′′

s′′∞ •C′′ necessarily green.
Thus the restriction morphisms SymL

�
C′ → SymL

�
s′∞

, SymL
�

C′′ → SymL
�

s′′∞
are

surjective and by Pruning Theorem 3.11, the group H1(AL� , SymL
�
) is iso-

morphic to H1(RL� ,SymL
�
). On R = RL� the morphism ∂0 defined in Re-

mark 3.4 decomposes, with additive notations on abelian groups, as

C0(R,SymL
�
) =

∂0

��

C(HD′)

ξ1 ""

⊕ C(HD)

ξ2{{ ξ3 ##

⊕ C(HD′′)

ξ4

zz
Z1(R,SymL

�
) = SymL

�

s′0
⊕ SymL

�

s′′0

∂0(c1 ⊕ c2 ⊕ c3) = (ξ1(c1) + ξ2(c2))⊕ (ξ3(c2) + ξ4(c3)) .

On the other hand, Sing(L])∩D′, resp. Sing(L])∩D′′, is formed by s′∞, s′0,
resp. s′′∞, s′′0, and the attaching points s′i, resp. s

′′
i , of the strict transforms
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of the curve {y2 + aix
3 = 0}, resp. {x2 + biy

3 = 0}, i = 1, . . . , p; and
Sing(L]) ∩ D is formed by s′0, s′′0 and the attaching point s1 of the strict
transform of {y − x = 0}. The Camacho-Sad indices of L] at these points
are

CS(D′, s′∞) = CS(D′′, s′′∞) = −1/2 , CS(D, s1) = −δ , CS(D′, s′0) = −α̃ ,

CS(D′′, s′′0) = −β̃ , CS(D′, s′j) = −αjα̃ , CS(D′′, s′′j ) = −βj β̃ ,

with α̃ := (1 +
∑p

i=1 αi)
−1/2, β̃ := (1 +

∑p
i=1 βi)

−1/2. Assuming that p ≥ 3,
we choose αi, βi and δ sufficiently generic so that no Camacho-Sad index is
a real number, except at the points s′∞ and s′′∞. All the singularities of L]
are linearizable and according to Proposition 6.10 the centralizers C(HD′),
C(HD), C(HD′′) are isomorphic to C∗ = C/2πiZ. Using Remark 5.9 we
obtain:

C
2iπZ

ξ1 && &&

⊕ C
2iπZ

ξ3 && &&ξ2xxxx

⊕ C
2iπZ

ξ4xxxx

C/2iπ(Z + α̃Z) ⊕ C/2iπ(Z + β̃Z)

moreover ξ2 and ξ3 are induced by the identity map, but ξ1 is induced by
z 7→ z/α̃ and ξ4 by z 7→ z/β̃. It immediately follows that ∂0 is surjective
and H1(R,SymL

�
) = 0. We conclude that Mod([L�]) = {[L�]}. Thus, L is

topologically SL-rigid which means that if a foliation F has the same separa-
trices, Camacho-Sad indices and holonomies than L then F is topologically
conjugated to L. It is worth to notice that the converse is not true, as [28,
Théorème 3.5] shows, because condition (TR) is not satisfied.

Next Examples 1–4 will be suitable perturbations of this logarithmic foli-
ation L that we have considered in Example 0.

• Example 1: non-degenerate multicusps
Let F1 be a foliation with the same reduction as the previous logarithmic
foliation L, same Camacho-Sad indices but such that the holonomy groups
along D, D′ and D′′ are non-abelian. Such a foliation can be obtained by
perturbing the holonomy groups of D, D′ and D′′ as in [22] and by using
the realization theorem of [15]. In this case it is well-known that F1 satisfies
condition (TR) and therefore we can compute Mod([F�1 ]) by identifying it
with H1(R, SymF

�
1 ). According to Lemma 6.14 the centralizers of HD′ , HD

and HD′′ are finite groups F ′1, F1 and F ′′1 respectively, however Sym
F�1
s′0

and

Sym
F�1
s′′0

remain isomorphic to SymL
�

s′0
and SymL

�

s′′0
because the singularities of

F ]1 at s′0 and s′′0 are again linearizable.

F ′1

ξ1 && &&

⊕ F1

ξ3 && &&ξ2xxxx

⊕ F ′′1

ξ4xxxx

C/2iπ(Z + α̃Z) ⊕ C/2iπ(Z + β̃Z)

It follows:
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- Mod([F�1 ]) is a finite quotient of a product of two elliptic curves.
• Example 2: partially degenerate multicusps

Let F2 be a perturbation of the logarithmic foliation L with same Camacho-
Sad indices, with non-abelian holonomy groups along D′ and D′′ (having
finite centralizers F ′2 and F ′′2 ), but such that there is a biholomorphism be-
tween neighborhoods of D that conjugates F2 to L. The existence of F2 is
guaranteed by the same process as in Example 1, but without perturbing
the holonomy group of D. We have

F ′2

ξ1 && &&

⊕ C/2iπZ

ξ3 '' ''ξ2wwww

⊕ F ′′2

ξ4xxxx

C/2iπ(Z + α̃Z) ⊕ C/2iπ(Z + β̃Z)

where again ξ2 and ξ3 are induced by the identity map. We easily obtain the
exact sequence

K −→ C/2πi(Z + α̃Z + β̃Z) −→ Mod([F�2 ]) −→ 0 ,

K being finite. If 1, α̃, β̃ are Z-independent then
- Mod([F�2 ]) is not a finite quotient of a product of elliptic curves; in
particular, in the statement of Theorem D we cannot replace Zp by a
finite group in the exact sequence (1).

• Example 3: infinite type multicusps
First we choose the coefficients αi, βi, δ in the expression of the 1-form ω,
so that CS(D′, s′0) ∈ Z<0, the other Camacho-Sad indices being in C \ R,
except for the points s′∞ and s′′∞. At s′0 the foliation L] possesses now a
germ of holomorphic first integral, the local holonomy is a periodic rota-
tion, thus SymL

�

s′0
is isomorphic to Diff(C, 0). Then, as before we perform

a perturbation F3 of L changing only the holonomy groups HD′ and HD

that become non-abelian, but without changing HD′′ nor the local analytic
types at any singular point. For such foliation F3 the group Sym

F�3
s′0

is always

isomorphic to Sym
F�3
s′0
' Diff(C, 0). The group-graph SymF

�
3 is not abelian

and its cohomology is no longer given by the cokernel of a morphism ∂0.
However

ξ4 : Sym
F�3
D′′ ' C/2πiZ −→ Sym

F�3
s′′0
' C/2πi(Z + β̃Z)

is always a submersion. Thus performing a new pruning we have an isomor-

phism H1(RF�3 ,SymF
�
3 ) ' H1(R′,SymF

�
3 ) with R′ := •D′

s′0 •D . The
centralizers of HD′ and HD being finite by Lemma 6.14, we obtain:

- Mod([F�3 ]) is a quotient of Diff(C, 0) by the action of a finite group
and RF�3 is not connected.

• Example 4: Cremer multicusps
By gluing techniques and thanks to realization Theorem [31] and Pérez
Marco’s results [29] we can build a foliation F4 with same separatrices, thus
same reduction, as in previous examples, with non-abelian holonomy groups
HD′ , HD, HD′′ , but whose local holonomies at s′0 and s′′0 are Cremer with
uncountable centralizers. In this case
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- Mod([F�4 ]) is a finite quotient of a product of two uncountable totally
discontinuous subgroups of U(1).

• Example 5: non-degenerate foliations with a single separatrix.
For such a foliation F5, after pruning all dead branches of the dual graph
of EF5 , the obtained graph is the red graph RF�5 which is reduced to a geo-

desic segment •D0

s1 · · · s` •D` . All Camacho-Sad indices are ratio-
nal numbers. The singular chains in RF�5 are in two categories: the normaliz-
able chains whose edges s correspond to normalizable resonant singularities
of F ]5 and the non-normalizable chains. For the first one the group Sym

F�5
s is

isomorphic to C∗ and for non-normalizable chains it is isomorphic to Z/msZ
for a suitable ms ∈ N. It follows:

- Mod([F�5 ]) ' (
⊕µ

i=1 Z/miZ ⊕ C∗ν)/Z, with Z a finite subgroup, µ,
resp ν, the number of non-normalizable, resp. normalizable singular
chains; furthermore µ+ ν is equal to the number of Puiseux pairs of
the unique separatrix.

Another specificity of this foliation F5 is that the mapping class group of
E�F5

is trivial because every singular point of EF5 is fixed7 by Mcg(E�F5
) and

the pure mapping class group of P1 punctured at three points is trivial [9,
Proposition 2.3]. From Corollary 2.2 we obtain that

Mod([F�5 ]) ⊂ Mod(E�F5
) ' [Foltr(E�F5

)]C0 .

• Example 6: some topologically SL-rigid foliations.
Whenever for a marked foliation F� the red part of any cut-component of
AF� is reduced to one vertex, the moduli space Mod([F�]) is reduced to one
element. In particular this is the case for:
- any non-dicritical foliation reduced after only one blow-up, its separatrices
being smooth curves mutually transversal, or more generally any topolog-
ically quasi-homogeneous foliation, see [14],

- absolutely dicritical foliations of Cano-Corral [6],
- dicritical foliations that are non-singular after one blow-up, see [2] and [27].

9. Exponential and disconnected group-graphs

We keep all notations used in Section 6. For technical reasons the last
group-graphs that we must consider will be defined uniquely over the red
graph RF� ⊂ AF� . Recall that XF

� , BF� and T F� denote the group-graphs
over AF� associated to the sheaves XF] , BF] and T F] = BF]/XF] of tangent,
basic and transverse holomorphic vector fields for F ], respectively.
Lemma 9.1. For s ∈ EdAF� the exponential map exp : BF�s → AutF

�
s

induces a well-defined map expF
�

s : T F�s → SymF
�

s .

Proof. We must prove that exp(Z +X) ≡ exp(Z) modulo FixF
�

s if Z ∈ BF�s
and X ∈ XF�s . For that it suffices to show that for each neighborhood V
of f(s) there is another neighborhood U of f(s) such that for each p ∈ U

7Each element of the mapping class group of E�F5
preserves dead branches so it must fix

every singular point except maybe the attaching points of the two dead branches of the
extremity divisor of singular valency 3. But these two points have different Camacho-Sad
indices, as it can be easily deduced from [12, p. 164].
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the curve α ∈ [0, 1] 7→ exp(Z + αX)(p) is contained in a leaf of F ]|V . We
choose U ⊂ V such that the map φ : U ×D2×D2 → V given by φ(p, t, α) =
exp(t(Z + αX))(p) is well-defined. Fix p ∈ U and take a local holomorphic
first integral F defined in a neighborhood W of p. If t is small enough then
φ(p, t, α) ∈W and

∂

∂t

(
∂

∂α
F (φ(p, t, α))

)
=

∂

∂α

(
∂

∂t
F (φ(p, t, α))

)
=

∂

∂α
((Z + αX)(F ) ◦ φ(p, t, α))

= [X(F ) ◦ φ(p, t, α)]
∂

∂α
φ(p, t, α) = 0

because X is tangent to F ]. Since φ(p, 0, α) = p does not depend on α we
obtain that ∂

∂αF (φ(p, t, α)) = 0 for t small enough. As φ is holomorphic, we
conclude that the curve α 7→ φ(p, 1, α) is contained in a leaf of F ]|V . �

Remark 9.2. It can be checked that under the identifications T F�s ' ThD,s
and C(hD,s)/〈hD,s〉 ' SymF

�
s given by Remark 6.2 and Corollary 5.8, the

morphism expF
�

s coincides with the composition of the restriction ThD,s →
C(hD,s) of the exponential map on the transverse section ∆D and the quo-
tient map C(hD,s)→ C(hD,s)/〈hD,s〉. �

Motivated by the above remark, for D ∈ VeAF� we define the map expF
�

D :

T F�D → SymF
�

D as the composition T F�D ' THD
exp→ C(HD)→ SymF

�
D . From

Remark 9.2 it is clear that the following diagram is commutative:

T F�D

ρsD
��

expF
�

D // SymF
�

D

ρsD
��

T F�s

expF
�

s // SymF
�

s

(8)

the vertical maps being the restriction maps of the group-graphs T F� and
SymF

�
, written with the same notation.

Although the exponential map

exp : C{z}z∂z → Diff(∆D, f(oD)) ' Diff(C, 0),

z : (∆D, f(oD)) → (C, 0) being a germ of coordinate, is not a morphism of
groups, its restriction to a subspace of complex dimension ≤ 1 is. On the
other hand it is well-known that dimC T F

�
s ≤ 1 if the stalk J F�s of the sheaf

of first integrals is equal to C. Since T F�D ⊂ T F�s for s ∈ D we deduce that
expF

�
D and expF

�
s define a morphism

expF
�

: T F� → SymF
�

of abelian group-graphs over RF� .

Definition 9.3. The group-graph over RF� image of expF
� is called the

exponential group-graph of F�. We denote it by ExpF
�
.
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At this point it is clear that the subset of RF� consisting of all a ∈
VeAF� ∪ EdAF� such that ExpF

�
a = 0 is just the subgraph R0

F� of RF� pre-
viously defined in Section 6 and characterized by the second equivalence in
Theorem 6.11. Let us denote by R1

F� the completion of RF� \ R0
F� , i.e. the

minimal subgraph of RF� containing RF� \ R0
F� .

Lemma 9.4. If (D, s) ∈ IRF� and T F�D 6= 0, then the restriction map ρ′sD :

T F�D → T F�s is an isomorphism and all the red singular points in D share the
same character resonant non-linearizable or linearizable; we will say that D is
resonant or linearizable according to the case. Furthermore, the isomorphism
class of the group ExpF

�
D is given by the following table

ExpF
�

D valΣ(D) ≤ 2 valΣ(D) ≥ 3
D resonant non-linearizable C/Z C

D linearizable C∗/αZ C∗
(9)

The restriction morphism ρsD : ExpF
�

D → ExpF
�

s is surjective and

ker ρsD '
{

Z if valΣ(D) ≥ 3,
0 if valΣ(D) ≤ 2.

Proof. The homogeneity of singular types in D is given by Proposition 6.15.
Notice that if a basic vector field for F ] defined on a connected open set
U ⊂ MF is tangent to the foliation in a neighborhood of a point of U then
it is tangent to the foliation on the whole U . Using this fact it is easy
to see that if W is a connected subset of a F ]-invariant component of EF ,
the stalk maps T F](W ) → T F]m , m ∈ W are injective. Taking W = D
we deduce that the restriction map ρ′sD : T F�D → T F�s is injective. Since
dim T F�D = dim T F�s = 1, ρ′sD is an isomorphism. In fact, T F�s ' T F�D can be
identified to a line CX in the space of germs of vector fields on (∆D, f(oD)).
Then Table (9) follows from Proposition 6.10.

On the other hand expF
�

s : T F�s → ExpF
�

s being surjective by definition
and the restriction map ρ′sD being an isomorphism, it follows that ρsD ◦
expF

�
D = expF

�
s ◦ρ′

s
D is surjective. Therefore ρsD is also surjective. The last

assertion follows from Remark 9.2 and the commutativity of the diagram (8).
�

Thanks to Theorem 6.11, H1(RF� , SymF
�
) is an abelian group and the

natural inclusion ExpF
� → SymF

�
is an injective morphism of abelian group-

graphs over RF� .

Definition 9.5. The quotient group-graph over RF�

DisF
�

:= SymF
�
/ExpF

�

given by DisF
�

a := SymFa /ExpFa for every a ∈ VeRF� ∪ EdRF� , is called the
disconnected group-graph of F�.

Obviously, we have over RF� the short exact sequence of abelian group-
graphs:

0→ ExpF
� → SymF

� → DisF
� → 0. (10)

The name “disconnected” is explained by the following proposition.

Proposition 9.6. For s ∈ EdRF� and D ∈ VeRF� we have that
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(1) the abelian group DisF
�

s ' C(hD,s)/〈hD,s, exp(ThD,s)〉 is:
(a) trivial if f(s) is a linearizable (non-periodic) singularity
(b) a finite abelian group if f(s) is a resonant (non-periodic) singu-

larity, cyclic in the normalizable case;
(c) a cyclic quotient of a totally disconnected subgroup of U(1) if f(s)

is a non-resonant non-linearizable singularity;
(2) the abelian group DisF

�
D is

(a) infinite and finitely generated if HD is abelian and all the red
singularities on f(D) are resonant non-normalizable;

(b) a cyclic quotient of a totally disconnected subgroup of U(1) if HD

is abelian and all the red singularities on f(D) are non-resonant
non-linearizable;

(c) finite in all the remaining cases;
(3) DisF

�
s and DisF

�
D are finite if s ∈ EdR1

F�
and D ∈ VeR1

F�
.

Proof. Assertions (1) result directly from Proposition 6.10.
To obtain Assertions (2) we can suppose that the singular valency of D

is at least three, otherwise DisF
�

D = DisF
�

s for s ∈ D ∩ Σ and Assertions (2)
result again directly from Proposition 6.10. Now let us suppose also that
DisF

�
D -thus also C(HD)- is infinite. Because D is red, HD is infinite and

it follows from Lemmas 6.13 and 6.14 that the set H ′ of all non-periodic
elements of HD is nonempty and for every h ∈ H ′ we have C(HD) = C(h),
therefore DisF

�
D = C(h)/exp(Th). By Proposition 6.10 the only case where

this group is infinite is when h is resonant non-normalizable or non-resonant
non-linearizable. To see that these two possibilities correspond to the cases
(2a) and (2b) above, it is enough to notice that the local holonomies hD,s,
s ∈ D∩Σ, that generate HD, cannot be all periodic (otherwise by abelianity
HD would be finite), and to use Proposition 6.15.

Assertion (3) follows immediately from Assertions (1) and (2) except for
DisF

�
D when D is a common vertex of R1

F� and R0
F� . In this case although

ExpF
�

D = 0, at the meeting points s of D with components D′ of R1
F� we

have ExpF
�

s 6= 0 because ExpF
�

D′ 6= 0. Therefore D does not correspond to
case (2a) nor case (2b) and DisF

�
D is finite according to (2c). �

10. Proof of Theorem D

In order to simplify the notations in the proofs below, we will write again
A, R, Aut, Sym, Exp, Dis and τ , instead of AF� , RF� , AutF

�
, SymF

�
, ExpF

�
,

DisF
�
and τF . We will also write R0 and R1 instead of R0

F� , R
1
F� .

We have already shown that there are “natural” bijections:

Mod([F�])
(2)
' H1(A,Aut)

(5)
' H1(A,Sym)

(6)
' H1(R,Sym) , (11)

the bijection (6) being only valid when F is of finite type. Moreover Sym is
an abelian group-graph over R and consequently H1(R, Sym) is an abelian
group, cf. Theorem 6.11. Recall that R0 is the subgraph of R constituted by
all the vertices and edges b satisfying Expb = 0 and R1 is the completion of
R \ R0. The rest of the proof is divided in several steps:
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(i) The abelian group H1(R, Sym) fits into an exact sequence

0→ F → H1(R,Exp)→ H1(R, Sym)→ D→ 0,

where F is a finite abelian group and D is a totally disconnected
topological abelian group.

(ii) We have group isomorphisms

H1(R,Exp) ' H1(R1,Exp) '
⊕
α

H1(Zα,Exp),

with R1 =:
⋃

α∈π0(R\R0)

Zα where each zone Zα is the completion of a

connected component of R \ R0 = R1 \ R0.
(iii) To simplify the computation of the cohomology groups H1(Zα,Exp)

we modify each zone (not reduced to a single vertex) without changing
the number of its extremities nor its cohomology, by adding a vertex
and an edge, for each of its extremities. The modified zones fulfill the
following property:

(∗) each extremity of Zα is joined by its edge to a vertex of valency 2
in Zα.

(iv) We decompose each modified zone Z as Z = Z0 ∪ Z1 where Z0 is
either empty or a disjoint union of n + 1 ≥ 1 segments •D′i •Di
with D′i ∈ R0, Di ∈ R1 and Z0 ∩ Z1 = {D0, . . . , Dn}. We prove that

H1(Z,Exp) is trivial if Z0 is empty, and it is the quotient of
n⊕
i=1

ExpDi

by a finitely generated subgroup if Z0 6= ∅.
(v) Since ExpDi is isomorphic to C or C/Z ' C∗ or C∗/αZ by Lemma 9.4,

we can construct a morphism Λ : Cτ → Mod([F�]) with totally dis-
connected cokernel and finitely generated kernel.

(vi) We specify the notion of semi-local-equisingularity, denoted by SL-
equisingularity. This notion was introduced in [24] for germs of de-
formations and in this paper we adapt it to the context of a global
parameter space.

(vii) We construct SL-equisingular families of foliations FUt,i satisfying The-
orem D.

Step (i). Consider the long exact sequences

· · · → H0(R,Dis)→ H1(R,Exp)
χ→ H1(R, Sym)→ H1(R,Dis)→ 0 (12)

and

· · ·→H0(R1,Dis)→ H1(R1,Exp)
χ1→ H1(R1, Sym)→ H1(R1,Dis)→ 0

associated by Lemma 3.6 to the short exact sequence (10) of abelian group-
graphs. By the first part of Proposition 9.6, Z1(R,Dis) is a finite product
of totally disconnected subgroups of U(1) and H1(R,Dis) is thus a totally
disconnected abelian topological group. Moreover when all the singularities
of the foliation are resonant or linearizable, the case 1c) is excluded and
Z1(R,Dis) is finite. In order to conclude this step it only remains to prove
that kerχ is finite. Let us notice thatH0(R0∩R1,Exp) = 0, H1(R0,Exp) = 0
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and H1(R0 ∩ R1,Exp) = 0. By applying Mayer-Vietoris Lemma 3.7 to the
union R = R0 ∪R1 we obtain the following commutative diagram with exact
rows

0 // H1(R,Exp) //

χ

��

0⊕H1(R1,Exp) //

0⊕χ1

��

0

· · · // H1(R, Sym) // H1(R0, Sym)⊕H1(R1,Sym) // · · ·
(13)

Thus kerχ is isomorphic to a subgroup of kerχ1 and it is sufficient to prove
that H0(R1,DisF ) is finite. But using the second part of Proposition 9.6 we
obtain that C0(R1,DisF ) is finite.

Step (ii). Diagram (13), coming from the Mayer-Vietoris sequence, gives us
the isomorphism

H1(R,Exp) ' H1(R1,Exp) . (14)

Clearly R1 is a finite union of zones Zα. Moreover, Zα ∩ Zβ is either empty
or a single vertex of R0. Therefore

H0(Zα ∩ Zβ,Exp) = 0 and H1(Zα ∩ Zβ,Exp) = 0.

By applying recursively Mayer-Vietoris Lemma 3.7 we deduce that

H i(R1,Exp) '
⊕

α∈π0(R\R0)

H i(Zα,Exp) , i = 0, 1 . (15)

Step (iii). If a zone Zα is reduced to a single vertex then H1(Zα,Exp) is
clearly trivial. If this is not the case, we modify Zα in the following way: if
v′ is an extremity of Zα and v′′ ∈ VeZα is the unique vertex joined to v′ by

an edge e′, we replace the segment •v′′
e′

•v′ by •v′′
e′′

•v
e
•v′ . We

also extend the group-graph Exp to the new edges and vertices by defining

Expe′′ := Expe := Expv := Expe′ , ρe
′′
v := ρev := idExpe′ , (16)

ρe
′′
v′′ = ρe

′
v′′ , ρev′ = ρe

′
v′ .

We call this operation the blow-up of the edge e′. By performing these blow-
ups for each extremity of Zα we get a new graph Z̃α called a modified zone.
Clearly Z̃α fulfills property (∗) of (iii).

By doing this process on each zone, we get a modified graph R̃ endowed
with a group-graph still denoted by Exp. We define now a contraction map:

Z1(R̃,Exp)
[→ Z1(R,Exp) , c = (φve) 7→ c[ = (φ[ve)

where φ[ve = φve if e is not produced by a blow-up, and φv′′e′ := φv′′e′′φve =:

φ−1
v′e′ if •v′′

e′′

•v
e
•v′ is given by the blow-up of •v′′

e′

•v′ . It is
easy to see that this map induces group isomorphisms

H1(Z̃α,Exp) ' H1(Zα,Exp) , H1(R̃,Exp) ' H1(R,Exp) . (17)
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Step (iv). Fix Z = Z̃α a modified zone of R1. Let Z1 be the maximal
subgraph of Z with all vertices and edges b satisfying Expb 6= 0. Denote by
Z0 the completion of Z \ Z1. Clearly Z = Z0 ∪ Z1 and Z0 is either empty
or a disjoint union of n + 1 ≥ 1 segments •D′ •D with ExpD′ = 0,
ExpD 6= 0, D′ being an extremity of Z and valZ(D) = 2. Notice that
H1(Z1, Exp) = 0. Indeed the restriction morphisms of the group-graph
Exp over Z1 are surjective by Lemma 9.4. We apply recursively Pruning
Theorem 3.11 and we conclude by Remark 3.12 that H1(Z,Exp) = 0 if Z0 is
empty.

Now suppose that Z0 6= ∅. We will apply Mayer-Vietoris Lemma 3.7 to
Z = Z0 ∪ Z1. Using again Lemma 9.4 we see that H1(Z0,Exp) = 0 and
H0(Z0,Exp) = 0 by construction of the modified zones. We obtain the exact
sequence

H0(Z1,Exp)
σα−→ H0(Z0 ∩ Z1,Exp)

δα→ H1(Z,Exp)→ 0, (18)

σα being the restriction map and δα the connecting map.

In the sequel we will choose one vertex D0 in Z0 ∩ Z1 = {D0, . . . , Dn}
and we will call the remaining vertices D1, . . . , Dn the active vertices of the
zone Z.

Lemma 10.1. The projection πα : H0(Z1,Exp) → H0(D0,Exp) ' ExpD0
,

(yD)D 7→ yD0 is surjective and its kernel is a finitely generated abelian group.

Proof. From Lemma 9.4 for each (D, s) ∈ IZ1 the restriction map ρsD is
surjective with kernel 0 or Z. Since D0 ∈ Z0 ∩ Z1 then valZ(D0) = 2 by
Step (iv). Let s0 be the edge of Z passing through D0 and let D′0 be the other
vertex of s0. Let si, i = 1, . . . , `, be the edges such that D′0 ∈ ∂si. For each
y0 ∈ ExpD0

there are yi ∈ Expsi , i = 1, . . . , `, such that ρsiDi(yi) = ρsiD0
(y0),

see Figure 3. Moreover, the different choices of yi are parametrized by Zk
with k ≤ `. By induction we easily deduce that πα is surjective and its kernel
is finitely generated. �

Denote by ρ : H0(Z0 ∩ Z1,Exp) → H0(D0,Exp) ' ExpD0
the projection

map. Then we have the following morphism of exact sequences

H0(Z1,Exp)
σα //

πα

��

H0(Z0 ∩ Z1,Exp)
δα //

ρ

��

H1(Z,Exp) //

��

0

0 // ExpD0

id // ExpD0
// 0

Since Z0∩Z1 only contains the vertices Di we have that H0(Z0∩Z1,Exp) =⊕n
i=0 ExpDi and ker ρ is just

⊕n
i=1 ExpDi . Because πα is surjective, by

applying the snake lemma we obtain the following exact sequence:

ker(πα)→
n⊕
i=1

ExpDi
δα→ H1(Z,Exp)→ coker(πα) . (19)

Since πα is surjective and ker(πα) is finitely generated, thanks to Lemma 10.1
we get that H1(Z,Exp) is a quotient of Cn by a finitely generated subgroup.
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ExpD0

ρ
s0
D0 ����
Exps0

ExpD′0ρ
s1
D′0

vvvv

ρ
s`
D′0

(( ((

ρ
s0
D′0

OOOO

Exps1 · · · Exps`

ExpD1

ρ
s1
D1

OOOO

|||| "" ""

· · · ExpD`

ρ
s`
D`

OOOO

!! !!}}}}· · · · · · · · ·

Figure 3. Schematic diagram for the group-graph Exp re-
stricted to Z1.

Step (v). First we notice that the number of active vertices of a modified
zone Z = Z̃α is equal to the rank of the homology groups H1(Z/Z0,Z) '
H1(Zα/(Zα∩R0),Z) of the corresponding quotient graphs. We easily deduce
that the number of all active vertices ar for all the modified zones is equal
to the rank τ := rankH1(R/R0,Z) introduced in Definition 6.9.

Each active vertex ar, r = 1, . . . , τ , belonging to some modified zone, is
produced by the blow-up of an edge •v′′r

sr
•v′r , v

′
r being an extremity of

the zone. By construction, Expar = Expsr , cf. (16). With this identification
and thanks to the isomorphisms (14), (15) and (17) it can be easily checked,
using the proof of Lemma 3.7, that the map δ = ⊕αδα given by the con-
necting maps δα of the Mayer-Vietoris exact sequences (18) is the surjective
morphism

δ :

τ⊕
r=1

Expar =

τ⊕
r=1

Expsr 3 (ϕr) 7−→ [(φve)] ∈ H1(R,Exp)

with φv′′r sr := ϕr, φv′rsr := ϕ−1
r and φve is trivial otherwise.

Now for each r = 1, . . . , τ we choose a local holomorphic basic vector field
Xr transverse to the foliation F ] and defined on a neighborhood of f(sr) in
the ambient space of F ]. We define the group morphism Λ : Cτ → Mod([F�])
of Theorem D, as the composition

Cτ
ξ
�

τ⊕
r=1

Expsr
δ
� H1(R,Exp)

χ→ H1(R,Sym)
(11)
' Mod([F�]) ,
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where ξ(t) = (
•

expt1X1, . . . ,
•

exptτXτ ), •
exptrXr denotes the class of exp trXr

in Autsr/Fixsr = Symsr and χ is induced by the natural inclusion of group-
graphs Exp ↪→ Sym, see (10). The last bijection (11) induces an abelian
group structure on Mod([F�]). Moreover, if we define D := H1(R,Dis) and
Γ : Mod([F�])→ D as the composition of the isomorphism (11) and the last
arrow in the sequence (12), then the sequence

Cτ Λ→ Mod([F�]) Γ→ D→ 0

is exact. It remains to check that ker Λ = ker(χ ◦ δ ◦ ξ) is finitely gener-
ated. Since kerχ is finite by step (i) and ker δ is finitely generated thanks to
Lemma 10.1 and (19), it suffices to see that ker ξ is also finitely generated.
In fact, we will conclude by proving that the kernel of each group morphism
ξr : C→ Symsr , t 7→

•
exp trXr is finitely generated. Since Remark 9.2 allows

us to work on a transversal, we can use Proposition 6.10 to describe ker(ξr)
as the kernel of the morphism C→ C(hr)/〈hr〉 given by t 7→ [exp tXr], which
is finitely generated thanks to Lemma 9.4.

Step (vi). Let P be a complex connected manifold and t0 a point of P . A
deformation of F with parameter space the manifold P pointed at t0, is a
germ along all {0}×P of a 1-dimensional holomorphic singular foliation FP
defined on an open neighborhood of {0} × P in C2 × P , which is tangent to
the fibers of the projection πP : C2 × P → P and such that F is equal to
the restriction of FP to C2 × {t0}, with the identification C2 ∼−→C2 × {t0},
(x, y) 7→ (x, y, t0).

We say that FP is equireducible if there exists a map EFP :M→ C2×P
obtained by composition of blow-up maps Ej :Mj+1 →Mj fulfilling:

(1) each center of blow-up Cj ⊂Mj of Ej is biholomorphic to P by the
map πj := πP ◦ E0 ◦ E1 ◦ · · · ◦ Ej−1 :Mj → P ,

(2) the singular locus of the foliation E∗FPFP is smooth, contained in
the exceptional divisor EFP := E−1

FP ({0} × P ) and the restriction of
πP ◦ EFP to each of its connected component is a biholomorphism
onto P ,

(3) the restriction of EFP toMt := (πP ◦EFP )−1(t) is exactly the min-
imal reduction map of the foliation Ft on C2 × {t} induced by FP ;

Notice that EFP is a topological product over P , i.e. there is a homeomor-
phism ΦP :Mt0 ×P

∼−→M such that πP ◦ΦP is the second projection map.
By identifying C2 × {t0} with C2, each marking f : E → EFt0 of Ft0 by E�
extends via ΦP to markings ft : E → EFt ⊂Mt of Ft, t ∈ P , defining in this
way a map

P → Mod([F�]) , t 7→ [Ft, ft] .
On the other hand, given a point t′ ∈ P , for each base point oD in a com-
ponent D of E introduced at the beginning of Section 5, let us choose a
(1 + dimP )-dimensional submanifold ∆P,D of M, transverse to ft′(D) at
the point ft′(oD). The representation of FP -holonomy of the leaf ft′(D \Σ)

defines a representation Ht′P,D of the fundamental group π1(D \ Σ, oD) in
the group Diff(∆P,D, ft′(oD)) of germs of holomorphic automorphisms of
(∆P,D, ft′(oD)).

Definition 10.2. We say that FP is SL-equisingular at a point t′ of P if
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(1) FP is equireducible,
(2) for t ∈ P sufficienty close to t′ and for each (D, s) ∈ VeAF� ×EdAF� ,

D ∈ ∂s, the Camacho-Sad indices CS(E∗tFt, ft(D), ft(s)) do not
depend on t;

(3) there is a germ of biholomorphism ψ : (∆P,D, ft′(oD))
∼−→(C×P, (0, t′))

such that
(a) the composition of ψ with the second projection C × P → P is

equal to πP ◦ EFP restricted to ∆P,D;
(b) for all γ ∈ π1(D \ Σ, oD) the biholomorphism (z, t) 7→ ψ ◦
Ht′P,D(γ) ◦ ψ−1(z, t) does not depend on t.

We say that FP is SL-equisingular if it is SL-equisingular at each point of P .

Step (vii). We now do a construction similar to the one given in the proof
of Theorem 4.9 after a suitable choice of cocycles in Z1(A,Aut).

Consider the elements [Fi, fi] of Mod([F�]), i ∈ D, given in the statement
of Theorem D. By isomorphism (11) they are represented by cocycles ci =
(ciD,s) ∈ Z1(R,Sym). Now we fix an orientation ≺ of A and as in the proof of
Theorem 5.14, we lift this cocycle to a cocycle (ϕiD,s) ∈ Z1(R,Aut) and we
continue to denote by s1, . . . , sτ the edges associated to the active vertices
a1, . . . , aτ chosen in step (v). We define then (ϕi,tD,s) ∈ Z1(A,Aut) by setting

ϕi,tD,s =


id if s ∈ EdA \ EdR ,

ϕiD,s if s ∈ EdR \ {s1, . . . , sτ} ,
ϕiD,s ◦ exp tjXj if s = sj ∈ {s1, . . . , sτ} ,

ϕi,tD′,s = (ϕi,tD,s)
−1 ,

for s ∈ EdA with ∂s = {D,D′} and D ≺ D′, where exp tjXj is defined in
Step (v).

Using these cocycles, for each i ∈ D we glue suitable neighborhoods WD

of D × Cτ inside MF × Cτ obtaining

(i) a manifoldMi endowed with a submersion map πi onto Cτ ,
(ii) a normal crossing divisor such that the restriction of πi to each irre-

ducible component is a locally trivial fibration with fiber P1 and the
restriction of πi to the singular locus of the divisor is a covering over Cτ ,

(iii) and a foliation by curves tangent to the fibers of the submersion πi and
to the divisor.

By the same arguments used in Theorem 4.9 we obtain an open neighborhood
of {0}×Cτ in C2×Cτ and on this neighborhood an holomorphic vector field
defining a one-dimensional equireducible foliation tangent to the fibers of
the projection onto Cτ , whose singular locus is {0} × Cτ . By construction,
after equireduction the exceptional divisor, as an intrinsic analytic space, is
holomorphicaly trivial over Cτ and along each of its irreducible components
the reduced foliation is holomorphically trivial. Hence we have obtained a
SL-equisingular deformation Fci,t of Fi, see [23], and biholomorphisms hi,t :

EFi
∼−→EFci,t , i ∈ D. The superscript c stands for complete. We define the

markings f ci,t : E ∼−→EFci,t by f
c
i,t := hi,t ◦ fi.
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Notice that by the construction of Λ in step (v), Λ(t) is represented in
H1(A,Aut) by the following 1-cocycle with support in R1:

atD,s :=

 id if s ∈ EdA \ EdR ,
id if s ∈ EdR \ {s1, . . . , sτ} ,

exp tjXj if s = sj .

Thanks to Theorems 6.8 and 6.11 we have in H1(R,Sym) the equality[
(
•
ϕ
i,t
D,s)

]
=
[
ci
]
·
[
(
•
a
t
D,s)

]
,

where •ϕi,tD,s and
•
a
t
D,s denote the classes of ϕ

i,t
D,s and a

t
D,s in Syms. The abelian

group structure on Mod([F�]) being induced by the one on H1(R,SymF )
by (11), the previous equality proves that in Mod([F�]) we have

[Fci,t, f ci,t] = Λ(t) · [Fi, fi] , i ∈ D .

11. Appendix

Let us denote by Br ⊂ C2 the closed ball {|x|2 + |y|2 ≤ r}. For a curve
S 3 0 in C2 let us call Milnor ball any ball B = BR such that S ∩B \ {0} is
regular and meets transversely each sphere ∂Br, 0 < r ≤ R. We fix a germ
F at 0 ∈ C2 of a singular holomorphic foliation.

Definition 11.1. A germ of an invariant curve S at 0 ∈ C2 will be called
F-appropriate if S is invariant by F , contains all the isolated separatrices8

and its strict transform by the reduction of F meets any dicritical component
D with card(D ∩ Sing(EF )) = 1.

The following incompressibility property is proved under some additional
assumptions in [16], [19] and an optimal version was obtained by L. Teyssier
in [35]:

Theorem 11.2. Let F be a generalized curve and let S be an F-appropriate
curve in a Milnor ball B. Then there exists a fundamental system (Un)n∈N
of open neighborhoods of S in B such that for each n ∈ N

(1) the inclusion map Un ↪→ B induces an isomorphism between the
fundamental groups of Un \ S and B \ S;

(2) for each leaf L of the foliation F|(Un\S) the inclusion map L ↪→ Un\S
induces an injective morphism π1(L, ·) ↪→ π1(Un \ S, ·);

(3) there is a finite union of curves in Un \ S whose preimage Ω in the
universal covering Ũn of Un \S is a disjoint union of holomorphically
embedded open discs Ωα such that each leaf L of the foliation F̃n
induced by F on Ũn meets Ω and card(L ∩ Ωα) ≤ 1 for any α.

Remark 11.3. Two direct consequences of this result are the simple con-
nectedness of the leaves of the foliation F̃n and a structure of (non-Hausdorff)
Riemann surface on the leaf space Q̃FUn , an atlas being given by the transver-
sals Ωα . �

Previous Theorem 11.2 will allow us to extend Theorem 1.6 of [18] with
weaker assumptions:

8i.e. their strict transforms meet invariant components of the exceptional divisor.
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Theorem 11.4. Let F and G be two topologically equivalent germs of folia-
tions at 0 ∈ C2 and suppose the existence of a germ of homeomorphism that
conjugates them:

ψ : (C2, 0)→ (C2, 0) , ψ∗G = F . (20)

If F is a generalized curve fulfilling Conditions (TC) and (TR) stated in
Section 2, then there exists a germ of homeomorphism φ : (C2, 0) → (C2, 0)
such that:

(1) the lifting E−1
G ◦ φ ◦ EF of φ through the reduction maps of F and

G extends to the exceptional divisor as a germ of homeomorphism
Φ : (MF , EF )→ (MG , EG) along the exceptional divisors;

(2) Φ is holomorphic at each singular point of F ] := E∗FF which is not
a nodal corner;

(3) Φ is transversely holomorphic at each point of the exceptional divisor
which is regular for F ] and not contained in a dicritical component.

The rest of this appendix is devoted to the proof of this theorem, which is
similar to that of Main Theorem of [18]. The new difficulties lie in the fact
that ψ may not be transversely holomorphic on a whole neighborhood of 0,
and this for three reasons:

• on the union of leaves meeting a dicritical component of EF there
are C0-automorphisms of the foliation F which are not transversally
holomorphic;
• there are also such automorphisms near nodal singular points with
support in nodal separators, cf. [18, page 406];
• exceptional cut-components9 introduced in Section 2.2 of EF are not
excluded by Condition (TC) and at such a component C the prop-
erty (TR) is ineffective. Indeed, every irreducible component of C
contains at most two singular points, therefore its holonomy group,
being monogenous or trivial, cannot be topologically rigid.

To prove Theorem 11.4 we will proceed in five steps:

(i) we prove that the one-to-one correspondence induced by ψ between the
irreducible components of EF and those of EG and between the singular
points of both foliations F ] and G] preserves the Camacho-Sad indices;

(ii) we recall the notion of monodromy and two key results given in [18]
that remain valid in our more general setting;

(iii) we construct a conjugation Φ′ between F ] and G] along the non-excep-
tional cut-components of EF , except at the nodal corners and at the
intersection with the dicritical components;

(iv) we construct a conjugation Φ′′ along the exceptional cut-components,
except at the nodal corners and at the intersection with the dicritical
components;

(v) we extend and glue Φ′ and Φ′′ at the nodal corners and along the
dicritical components.

9which cannot exist if F is non-dicritical by Theorem 11.5 below.
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11.1. Step (i): Equality of Camacho-Sad indices. Since F and there-
fore G are generalized curves [3], there is a unique one-to-one correspondence

D 7→ D′ and s 7→ s′ (21)

between the irreducible components of the exceptional divisors EF and EG ,
the strict transforms of the isolated separatrices of F and G, and between
the points of Sing(EF ) ∪ Sing(F ]) and Sing(EG) ∪ Sing(G]), such that:

• if s is the intersection point of an isolated separatrix S with EF , then
s′ is the intersection point of ψ(S) with EG ,
• we have equalities of intersection numbers

(D′1, D
′
2) = (D1, D2) for D1 7→ D′1, D2 7→ D′2 . (22)

Indeed the reduction map of a generalized curve foliation coincides with the
reduction map of the curve formed by all its isolated separatrices and two
dicritical separatrices for each dicritical component of the exceptional divi-
sor. Thus the above properties follow from classical topological properties
for germs of curves.

Let us point out that property (2) in Theorem 11.4 implies equality of
Camacho-Sad indices of these foliations. These equalities will be strongly
used in the proof of the above theorem and in fact we need to prove them
first. We will use the following result [4, Theorem 9 and Remark 11]:

Theorem 11.5. For any cut-component there is a strict transform of an
isolated separatrix which meets it at a non-nodal singular point.

Lemma 11.6. Under the assumptions of Theorem 11.4, F fulfilling again
Conditions (TR) and (TC), if s ∈ D ⊂ EF and s′ ∈ D′ ⊂ EG correspond
by (21), then

CS(F ], D, s) = CS(G], D′, s′) . (23)

As discussed in Remark 2.1, Conditions (TR) and (TC) are necessary to get
this lemma.

Proof. The induction process given in [18, §7.3], which is based on the
Camacho-Sad Index Formula, proves that equalities (23) hold at all singu-
larities in a cut-component C if they are satisfied at every intersection point
s of the strict transform of a separatrix with C. The existence of such a point
s being assured by Theorem 11.5, we distinguish three possibilities.
a) λ := CS(F ], D, s) is an irrational real number. If λ is positive, s is a

nodal singular point, and equality (23) was obtained by R. Rosas in [33,
Proposition 13]. Another proof is given in [19, Theorem 1.12] that remains
valid for λ < 0.

b) C is non-exceptional and s is not a nodal singular point. Then by using
(TR) and thanks to an extended version [18] of the rigidity theorem in
[32], ψ is transversely holomorphic on the image by EF of a neighborhood
of C and specifically at the points of the separatrix S. In this case the
proof of equality (23) given in [18, §2] remains valid.

c) C is exceptional. Then C is a union of components of EF , C = D1∪· · ·∪D`,
` ≥ 1, Di meeting Di+1 in one point si, and Di ∩Dj = ∅ if |i − j| 6= 1.
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Perhaps C meets several dicritical components of EF , but we only have
two possibilities fulfilling Assumption (TC):
(i) s ∈ D1 and the other singular points of F ] belonging to C are

s1, . . . , s`−1, see Figure 4;
(ii) s ∈ D1, D` contains a nodal singular point s` 6= s`−1, the other

singular points of F ] belonging to C being s1, . . . , s`−1, see Figure 5.
Indeed, Theorem 11.5 implies that singularity s is not nodal. In case (ci)
using the classical index formula, we see that CS(F ], D1, s) is given by a
continuous fraction whose coefficients are the self-intersections (Di, Di),
i = 1, . . . , `; thus (23) follows from (22). In the same way we obtain in
case (cii) that CS(F ], D1, s) is an irrational (negative) real number, but
this case was already examined in case (a).

�

· · ·
s s1 s`−1

D1 D2 D`

• · · ·• •· · ·

Figure 4. Situation (ci) with two dicritical components.

s s1

· · ·
D1 D2 D`

s`−1 s`• · · ·• •· · · • •

Figure 5. Situation (cii) with a dicritical component and a
nodal singularity s`.

Since the dicriticity of an irreducible component D can be characterized by
the vanishing of the Camacho-Sad indices along all the adjacent components
at their intersection points with D, we have:

Corollary 11.7. The image by correspondence (21) of a dicritical compo-
nent, an exceptional cut-component, a non-exceptional cut-component of F
is respectively a dicritical component, an exceptional cut-component, a non-
exceptional cut-component of G.

11.2. Step (ii): Monodromy and holonomy. Let us now fix a F-appropr-
iate curve S, Milnor balls B and B′ for S and the G-appropriate curve
S′ := ψ(S), where ψ is given by (20). Let us also fix

q : B̃ −→ B \ S , q′ : B̃′ −→ B′ \ S′

universal coverings of B \ S and B′ \ S′ respectively. In all the sequel we
adopt the following conventions and notations:
(a) for A ⊂ B, resp. A′ ⊂ B′, we write

Ã := q−1(A \ S) , resp. Ã′ := q′−1(A′ \ S′) ,
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(b) we suppose that B′ contains ψ(B), we choose a lifting ψ̃ : B̃ → B̃′

of ψ and we denote the isomorphisms induced by ψ̃ between the deck
transformation groups of these coverings by

ψ̃∗ : Γ
∼−→Γ′ , ψ̃∗(f) := ψ̃ ◦ f ◦ ψ̃−1 , Γ := Autq(B̃) , Γ′ := Autq′(B̃

′) ,

(c) we fix fundamental systems of open neighborhoods of S in B, resp. S′
in B′,

(Un)n∈N , (U ′n)n∈N , with ψ(Un) ⊂ U ′n ,
fulfilling Properties (1)-(3) of Theorem 11.2,

(d) Q̃FUn := Ũn/F̃|Ũn denotes the leaf space of the restriction to Ũn of the

foliation F̃ := q∗F , endowed with its structure of Riemann surface, cf.
Remark 11.3,

(e) via EF : BF → B and EG : B′G → B′, the reduction maps of F and G,
we perform the following identifications

BF \ S ' B \ S , B′G \ S ′ ' B′ \ S′ ,

S := E−1
F (S) , S ′ := E−1

G (S′) ,

(f) we consider B̃ and B̃′ as universal coverings of BF \ S and B′G \ S ′
respectively and, with these identifications, for A ⊂ BF or A′ ⊂ B′G we
write:

Ã := q−1(A \ S) , Ã′ := q′−1(A′ \ S ′) .

Definition 11.8. The monodromy of F is the morphism between Γ and the
group of automorphisms of inverse systems

MFS : Γ→ AutAn←−
(Q̃F∞) ⊂ AutTop

←−−
(Q̃F∞) , Q̃F∞ := (Q̃FUn)

n∈N ,

given by the actions of Γ on the leaf spaces (f, L) 7→ f(L), f ∈ Γ, L ∈ Q̃FUn,
with An←− the category of pro-objects associated to the category of analytic
spaces, and Top

←−−
the category of pro-objets associated to the category of topo-

logical spaces and continuous maps.

The monodromy MGS′ : Γ′ → AutAn←−
(Q̃G∞) of G is defined in the same way.

Remark 11.9. The lifting ψ̃ of ψ fixed in (b) induces an isomorphism

h
ψ̃

: Q̃F∞
∼−→Q̃G∞

in the category Top
←−−

, given by the maps Q̃FUn → Q̃
G
U ′n

that associate to each

leaf L of F̃|Ũn the leaf of G̃|Ũ ′n containing ψ̃(L). When EF contains an ex-
ceptional cut-component h

ψ̃
may not be N -analytic in the sense of [18, page

416] and we must extend to our context the notion of geometric conjugation
of monodromy introduced in [18]. �

To any subset A in B meeting S we associate the following object and
morphism in the category Top

←−−
:

• (Ã,∞) := (Ã ∩ Un)n∈N ,
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• τ
Ã

: (Ã,∞) → Q̃F∞ is induced by the family of maps τn
Ã

: Ã ∩ Un →
Q̃FUn that associate to any point m in Ã ∩ Un the leaf containing m
of the foliation F̃|Ũn , n ∈ N,
• Γ

Ã,∞ is the group of automorphisms f of (Ã,∞) such that q ◦ f = q.

For A′ ⊂ B′ meeting S′, (Ã′,∞), τ
Ã′ and Γ

Ã′,∞ are similarly defined.

Definition 11.10. A geometric C0-conjugation between MFS and MGS′ is a
pair (g, h) formed by:

• an isomorphism of groups g : Γ
∼−→Γ′ induced by the lifting

g̃ : (B̃,∞)
∼−→(B̃′,∞) , q′ ◦ g̃ = g ◦ q ,

of a germ of homeomorphism along the separatices g : (B,S)
∼−→(B′, S′)

preserving the orientations of B, B′, S and S′ (but not necessarily
the foliations),
• an isomorphism h : Q̃F∞

∼−→Q̃G∞ in the category Top
←−−

, such that h∗ ◦
MFS = MGS′ ◦ g, where h∗ is the group morphism

h∗ : AutTop
←−−

(Q̃F∞)→ AutTop
←−−

(Q̃G∞) , ϕ 7→ h ◦ ϕ ◦ h−1 .

We also say that (g, g̃, h) represents the conjugation (g, h).

Remark 11.11. The lifting ψ̃ of ψ choosen in (b) induces a geometric C0-
conjugation (ψ̃∗, hψ̃) betweenMFS andMGS′ , that is represented by (ψ, ψ̃, h

ψ̃
),

with h
ψ̃
as in Remark 11.9. �

Now for each invariant component D of S we will denote by SD the set
of singular points of F ] belonging to D, except the nodal singularities which
are attaching points of strict transforms of separatrices. Let us choose:

• a good fibration ρD transverse to D, cf. Definition 4.5; thus if m ∈ D
is not a singular point of S we can write without ambiguity:

∆m = ρ−1
D (m) ; (24)

• a collection (ZD,s)s∈SD of holomorphically embedded compact discs
in D, centered at the points s, without pairwise intersection.

We also require that ZD,s = D when D is the strict transform of an isolated
separatrix.

Definition 11.12. The following compact sets:
(i) ZD := D \ ∪s∈SD ZD,s, with D an invariant component of EF ,
(ii) Zs := ZD1,s ∪ ZD2,s, with s the intersection point of two invariant

components of S,
will be called elementary pieces of S.

We perform for G similar choices of good fibrations ρD′ and embedded
discs defining similarly elementary pieces Z ′s′ and Z

′
D′ of S ′.

Theorem A of [17] gives immediately:

Lemma 11.13. For any geometric C0-conjugation (g, h) between MFS and
MGS′ there exists a representation (g, g̃, h) and a choice of elementary pieces
of S and S ′ such that:
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(1) g lifts through the reduction maps EF and EG to a germ of homeomor-
phism g] : (BF ,S)→ (B′G ,S ′), i.e. EG ◦ g] = g ◦ EF ,

and, for any elementary piece ZD, D ∈ Comp(EF ) invariant, and Zs, s ∈
Sing(S), it satisfies:
(2) g](ZD) = Z ′

g](D)
and g] is compatible with the transverse fibrations over

ZD, i.e. (ρg](D) ◦ g])|ρ−1
D (ZD) = (g] ◦ ρD)|ρ−1

D (ZD),
(3) g](Zs) = Z ′

g](s)
, g] is holomorphic on a neigborhood of Zs and is com-

patible with the good fibration over ∂Zs.
Definition 11.14. Let V ⊂ (B \ S) and V ′ ⊂ (B′ \ S′) be subsets whose
closures meet respectively S and S′. A C0-realization of (g, h) over V and V ′
is the data (χ, χ̃) of a homeomorphism χ : V → V ′ and a lifting of it (in the
category Top

←−−
)

χ̃ : (Ṽ ,∞)
∼−→(Ṽ ′,∞) , q′ ◦ χ̃ = χ ◦ q ,

such that the following diagrams commute:

(Ṽ ,∞)
χ̃ //

τ
Ṽ

��

(Ṽ ′,∞)

τ
Ṽ ′
��

Q̃F∞
h // Q̃G∞

Γ
ι //

g

��

Γ
Ṽ ,∞

χ̃∗

��
Γ′

ι′ // Γ′
Ṽ ′,∞

When χ can be lifted via EF and EG to an open neighborhood of a subset Z
of EF , we will say that (χ, χ̃) is a C0-realization of (g, h) along Z.
Remark 11.15. If V is an open set then the commutativity of the first
diagram implies that χ conjugates the foliations F|V and G|V ′ . �

We now fix a geometric C0-conjugation (g, h) between the monodromies
MFS and MGS′ and a representation (g, g̃, h) of it fulfilling Assertion (1) of
Lemma 11.13. Let D be an invariant component of S and let m0 ∈ D \
Sing(F ]). We will use the notations:

D′ := g](D) , m′0 := g](m0) , D∗ := D \Sing(F ]), D′∗ := D′ \Sing(G]) .
Let us fix now (∆,m0), resp. (∆′,m′0), a germ at m0, resp. m′0, of an
holomorphically embedded disc transversal to the foliation. We also denote
by

HF]D : π1(D∗,m0)→ Diff(∆,m0) , HG]D′ : π1(D′∗,m′0)→ Diff(∆′,m′0) ,

the holonomy representations of the foliation F ], resp. G], associated to the
leaves D∗ and D′∗.
Theorem 11.16. Let χ : (∆,m0) → (∆′,m′0) be a germ of homeomor-
phism and χ̃ : (∆̃,∞) → (∆̃′,∞) be a lifting of it, such that (χ, χ̃) is a
realization over ∆ and ∆′ of the geometric C0-conjugation (g, h) between the
monodromies MFS and MGS′ . Then χ and the group isomorphism g]∗ from
π1(D∗,m0) to π1(D′∗,m′0) induced by g] define a conjugation between HF]D
and HG]D′, i.e.

HG]D′(g
]
∗(γ̇)) = χ ◦ HF]D (γ̇) ◦ χ−1 , γ̇ ∈ π1(D∗, m0) .
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Proof. The proof of [18, Theorem 4.3.1] remains literally valid for this C0-
version. �

Let us assume now that the previously fixed representation (g, g̃, h) of
(g, h) satisfies all the properties (1)-(3) of Lemma 11.13 and that the pointm0

is in the boundary ∂Z of an elementary piece Z such that either Z = ZD with
D an invariant component of EF , or Z = Zs with s a non-nodal singularity.
We can suppose that ∆ = ∆m0 and ∆′ = ∆′m′0

, cf. Notation (24).

Lemma 11.17. With the notations introduced above and under the hypoth-
esis of Theorem 11.16, let us also suppose that the following additional as-
sumptions are satisfied:

• χ̃ and g̃ induce the same map from π0(∆̃) to π0(∆̃′),
• χ is holomorphic,
• if Z = Zs, the Camacho-Sad indices of F ] at s along D and of G] at
g](s) along g](D) are equal.

Then there exists a C0-realization (Φ, Φ̃),

Φ : V → V ′ , Φ̃ : (Ṽ ,∞)→ (Ṽ ′,∞) ,

of (g, h) along Z, such that:
(1) the restriction of Φ to EF ∩V is equal to g], its restriction to (∆,m0)

is equal to χ and that of Φ̃ to (∆̃,∞) is equal to χ̃,
(2) on a neighborhood of ∂Z ∩ EF , Φ is compatible10 with the good fibra-

tions previously choosen; moreover the restriction of Φ to each fiber
∆m, m ∈ ∂Z ∩ EF , is holomorphic, cf. Notation (24);

(3) for every m ∈ ∂Z ∩ EF , the restrictions Φ̃|∆̃m
and g̃|∆̃m

induce the

same map π0(∆̃m)→ π0(∆̃′
g](m)

).

Proof. It is literally the same proof as that of [18, Lemma 8.3.2] but using
Theorem 11.16 above instead of [18, Theorem 4.3.1]. �

11.3. Step (iii): Conjugation at non-exceptional cut-components.
We keep the notations and conventions (a)-(f) introduced at the beginning
of Section 11.2. We will also use the notation ∆m, resp. ∆′m′ , introduced at
(24) for the fibers of the good fibrations at regular points of S, resp. S ′.

Using Theorem 11.5, in each non-exceptional cut-component C ⊂ EF ,
let us choose a non-nodal singular point sC ∈ Sing(F ]) where the strict
transform XC of an isolated separatrix meets C. Let us consider the following
filtration of S:

C0 ⊂ C1 · · · ⊂ Ck ⊂ S
defined by:

• C0 is the union of all elementary pieces ZsC for any cut-component
C of EF ,
• each Zj := Cj \ Cj−1, j = 1, . . . , k, is the union of all (disjoint)
elementary pieces meeting Cj−1, but not contained in Cj−1.

10i.e. ρ′ ◦Φ(m) = Φ ◦ ρ(m) if ρ(m) ∈ ∂Z, ρ and ρ′ denoting the good fibrations of the
corresponding components of the exceptional divisors.
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• S \ Ck is the union of the dicritical components, the strict trans-
forms of the components of S meeting a dicritical component and
the elementary pieces associated to nodal corners.

Lemma 11.18 ([18], §8.4). There exists a representation (g, g̃, h) of (g, h)
satisfying properties (1)-(3) of Lemma 11.13, such that moreover the restric-
tions of g̃ to ∆ and the lifting ψ̃ of ψ chosen in (b) induce the same map
from π0(∆̃) to π0(∆̃′).

Let us choose (g, g̃, h) given by this lemma. Notice that according to
Lemma 11.6, the points s′C′ = g](sC) are not nodal singular points of G] and
we can consider the filtration of S ′

C ′0 ⊂ C ′1 · · · ⊂ C ′k ⊂ S ′ , C ′j := g](Cj) .

According to Lemma 11.13, C ′0 is a union of elementary pieces of S ′, and for
j = 1, . . . , k,

Z ′j := C ′j \ C ′j−1 = g](Zj)
is a union of disjoint elementary pieces not contained in C ′j−1 but meeting
C ′j−1. By induction we will now define a realization (Φj , Φ̃j) along every Zj
of the conjugation (ψ̃∗, hψ̃), j = 0, . . . , k.

• (Φ0, Φ̃0) is defined along any connected component ZsC of C0 as the real-
ization of (ψ̃∗, hψ̃) obtained by: first choosing a point mC in the boundary
of XC , then modifying ψ near mC by performing a foliated isotopy such
that ψ(∆mC) = ∆′ψ(mC) and finally applying the extension Lemma 11.17

with Z = ZsC , ∆ = ∆mC , ∆′ = g](∆), χ = ψ|∆ and χ̃ = ψ̃|∆̃;

• (Φj , Φ̃j) is defined along each connected component Z of Zj as the real-
ization of (ψ̃∗, hψ̃) obtained by: first choosing a point mZ in the (unique)
component of ∂Z contained in Cj−1, then applying Lemma 11.17 with
Z = Z, ∆ = ∆mZ , ∆′ = g](∆), and χ, χ̃ being respectively the restric-
tions of Φj−1 and Φ̃j−1 to ∆ and ∆̃.

According to Remark 11.15, Φj conjugates the germ of F ] along Zj to the
germ of G] along Z ′j . To achieve this step and to obtain a conjugation
Φ′ between F ] and G] on a neighborhood of Ck it suffices to note that
for j = 1, . . . , k and for each connected component Θ of Zj−1 ∩ Zj , Φj−1

and Φj are necessary equal when we restrict them to the real hypersurfaces
ρ−1
D (Θ), D being the component of S containing Θ. This fact results from

the property (2) in Lemma 11.17 and the uniqueness of the extension of a
conjugation between the holonomies to a conjugation of the corresponding
foliations preserving transversal fibrations.

11.4. Step (iv): Construction along the exceptional cut-components.
Let C be an exceptional cut-component of EF and let us keep the notations
introduced in the proof of Lemma 11.6: C = D1 ∪ · · · ∪D` has two possible
configurations (ci) and (cii), see Figures 4 and 5.

In the first case (ci), D` contains only one singular point of the foliation,
hence there is a holomorphic first integral defined on a neighborhood of C and
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specifically the foliation is linearizable at each singular point. Thus by equal-
ity of Camacho-Sad indices given by Lemma 11.6 the foliations considered
are locally holomorphically conjugated at the singular points corresponding
by (21). The equalities (22) of self-intersections of the components of C and
C′ allow us to glue these conjugacies and to obtain a homeomorphism de-
fined on a neighborhood of C. We leave the details of this construction to
the reader.

The situation in case (cii) is similar: we have again equality of Camacho-
Sad indices and therefore local conjugacies, and then equality of self-inter-
sections allowing to glue and to obtain a global C0-conjugation.

11.5. Step (v): Extension and gluing. On the elementary pieces Zs
corresponding to a nodal corner s, we perform the gluing of the homeomor-
phisms already constructed by the process described in [18, §8.5]. It remains
to extend the obtained homeomorphisms to the dicritical components. No-
tice that in all the above constructions the homeomorphisms can be built
by respecting the dicritical components meeting their domains of definition.
Finally we arrive at the following situation described in [19, page 147]:

• we identify tubular neighborhoods of the dicritical components D ⊂
EF and D′ ⊂ EG corresponding by (21), with the same tubular neigh-
borhood of the zero section of the normal bundle of D; it is possible
because D and D′ have same negative self-intersection;
• the corresponding foliations are identified with the natural normal
fiber bundle;
• we have to extend to the whole D a continuous map f from a union K
of disjoint closed discs to the group Aut0(C, 0) of germs of homeomor-
phisms of (C, 0). This extension can be easily made by extending f
to a union K′ of bigger discs being a constant automorphism on ∂K′.

This ends the proof of Theorem 11.4.
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