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Abstract

E↵orts devoted to mitigate the e↵ects of road tra�c congestion have been conducted since 1970s. Nowadays,
there is a need for prominent solutions capable of mining information from messy and multidimensional road
tra�c data sets with few modeling constraints. In that sense, we propose a unique and versatile model to
address di↵erent major challenges of tra�c forecasting in an unsupervised manner. We formulate the road
tra�c forecasting problem as a latent variable model, assuming that tra�c data is not generated randomly
but from a latent space with fewer dimensions containing the underlying characteristics of tra�c. We solve
the problem by proposing a variational autoencoder (VAE) model to learn how tra�c data are generated
and inferred, while validating it against three di↵erent real-world tra�c data sets. Under this framework,
we propose an online unsupervised imputation method for unobserved tra�c data with missing values.
Additionally, taking advantage of the low dimension latent space learned, we compress the tra�c data
before applying a prediction model obtaining improvements in the forecasting accuracy. Finally, given that
the model not only learns useful forecasting features but also meaningful characteristics, we explore the
latent space as a tool for model and data selection and tra�c anomaly detection from the point of view of
tra�c modelers.
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1. Introduction

Due to recent developments in Intelligent Trans-
portation Systems (ITS), road tra�c forecasting
conforms a vivid area of research, policy making
and technology development. One of its founda-5

tions is to predict tra�c characteristics, since traf-
fic congestion generates important social, economic
and environmental problems [1]. E↵orts devoted to
mitigate the e↵ects of tra�c congestion have been
conducted from the 1970s to the present in tra�c10

flow management with the use of Advanced Traf-
fic Management Systems (ATMS) and Advanced
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Traveler Information Systems (ATIS). Those sys-
tems have been continuously improving and will
continue to with the expansion of technology and15

data provided by sensors in roads and vehicles, the
envisaged Vehicle-to-Everything (V2X) paradigm.
In that context, data-driven approaches like deep
neural networks (DNN) have arisen as a prominent
solution as they are capable of mining information20

from messy and multi-dimensional tra�c data sets
with few modeling constraints [1, 2]. However, the
intrinsic characteristics of road tra�c still makes
the forecast a challenging problem because of com-
plex spatial dependency on road networks [3], non-25

linear temporal dynamics with changing road con-
ditions and inherent di�culties of long-term fore-
casting [4]. In addition to the forecasting problem,
more challenges of equal magnitude derive from said
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context. To name a few, the quality of data, arterial30

and network-level predictions, spatiotemporal fore-
casts and model selection techniques are identified
as current major challenges of future road tra�c
forecasting [1, 2].
Two main categories can be distinguished in35

data-driven approaches that address the tra�c fore-
casting problem: parametric and non-parametric
models. The parametric category is represented
by the autoregressive integrated moving average
(ARIMA) [5], which remains popular (e.g., seasonal40

ARIMA coupled with the Kalman filter [6]) despite
relying on the assumption of stationarity of traf-
fic data. Non-parametric models are the k-nearest
neighbor algorithm (KNN) [7], support vector re-
gression (SVR) [8] and K-means [9], but the cur-45

rent trend is focused on DNN models that show
better better results due to advances in deep learn-
ing techniques [10, 11]. For instances, convolutional
neural networks (CNN) [12] and recurrent neural
networks (RNN) [13] are coupled into more complex50

and deeper networks to characterize the spatiotem-
poral behavior of tra�c and increase the accuracy
of tra�c forecasting systems [4, 14, 15, 16, 17]. Nev-
ertheless, all these supervised methods are feed with
raw data without any or few preprocessing steps.55

All available data are used for training, which may
not be the best option for optimal forecasting per-
formance. Data quality and missing values ??are
not considered, which is known to degrade system
performance. In addition, an excessive number of60

features available from data sources are used to
forecast, which is computational ine�cient and un-
dertakes the risk of over-fitting.
In this manuscript, we propose a unified solution

to the aforementioned problems, which have been65

addressed separately in the literature. Following
the DNN trend, we propose to merge the recent
advances in variational inference [18] with tra�c
forecasting systems as we assume and show that
the tra�c forecasting problem can be formulated70

as a latent variable model and resolved in an unsu-
pervised manner using the Variational Autoencoder
(VAE) framework [19, 20]. According to the best of
authors’ knowledge, this is the first work that im-
plements a VAE-based model for tra�c data. Here,75

we propose a unique and versatile framework to
solve the following major challenges of road traf-
fic forecasting:

1. how to impute missing data to not deteriorate
the performance of forecasting systems80

2. how to extract useful features while compress-
ing the tra�c data

3. how to select the best model and data for a
specific tra�c estimation problem

4. how to detect anomalous tra�c85

To answer that, in this work we learn the underly-
ing structures that generate real-world tra�c data.
We assume that road tra�c is not generated ran-
domly, but from a latent subspace, based on the as-
sumption that there are strong spatiotemporal re-90

lationships and seasonality between points in the
road network. We formulate it as a latent variable
model that forces us to approximate the joint prob-
ability distribution via variational inference. Thus,
we base our model on VAE, which we show is able95

to learn an approximation of the data distribution
of three di↵erent real-world tra�c data set. Un-
der this framework, the posterior distribution of the
latent space is forced to be continuous, which al-
lows the model to decode plausible tra�c samples100

from every point in the subspace, therefore, to on-
line impute unobserved missing tra�c data without
supervision. In said subspace, tra�c of the same
class ends up closer together, allowing unsupervised
tra�c classification and at the same time detecting105

anomalous tra�c. The latent space dimensions are
constrained, which results in learning useful proper-
ties of tra�c to compress the data, that is, feature
extraction. Moreover, since VAE is a generative
model, the model allows tra�c modelers or prac-110

titioners to sample from the learned distribution
to generate new tra�c data and the possibility to
explore into the meaningful latent representations.
Now, using the contributions of this manuscript,
a tra�c modeler can implement a model to com-115

press the tra�c data and e�ciently forecast, im-
pute missing values, select the best data and model
for a specific problem and detect anomalous tra�c
data at the same time with no additional knowledge
required. Before, if an ITS that already estimated120

tra�c required addressing other tra�c problems,
such as missing data imputation or data compres-
sion, it was forced to implement other models, re-
sources and practitioners to solve it.

In summary, our main contributions are:125

– The applicability of the VAE model for real-
world road tra�c data as a unified solution to
for various tra�c forecasting problems.

– A novel online multidimensional imputation
method for missing values in road tra�c data130

2



based on learning the probability distribution
of the data given the observed values.

– A novel dimension reduction approach to traf-
fic data to improve e�ciency and accuracy of
forecasting systems by learning powerful char-135

acteristics of tra�c in an unsupervised manner.

– A novel tool for tra�c modelers using pro-
jected data in a unsupervised learned subspace
with meaningful dimensions that can be used
for model and data selection and anomaly de-140

tection.

– Three case studies on real-world data from
USA (California) and UK (England) that val-
idates the usefulness of the proposed frame-
work.145

2. Related work

To the date of this manuscript, the most up-to-
date reviews on road tra�c forecasting are Laña et
al. in [1] and Vlahogianni et al. in [2]. Our work
is related to the current applications of neural net-150

works for road tra�c forecasting in di↵erent ways.
We divided the related work discussion accordingly
as we are proposing a transversal solution to di↵er-
ent problems that have been addressed separately
in literature.155

Missing data imputation. Road tra�c forecasting
systems are deployed in scenarios where sensor and
system failure are common. In these scenarios, the
missing values ??are known to negatively a↵ect the
precision of the forecast [21] although they are of-160

ten underestimate in current forecast models [1, 2].
The current strategy is to preprocess the data by
inferring the missing values from the known part
of the data. Three well-known imputation meth-
ods in tra�c forecasting are ARIMA, KNN and165

principal component analysis (PCA)-based meth-
ods. [22] compared them among others and the re-
sults showed that the probabilistic PCA is the most
e↵ective in terms of performance and implementa-
tion. More recently, [23] proposed a spatial context170

sensing model based on an automated clustering
analysis tool and the information provided by sur-
rounding sensors. [24] proposed a model that com-
bines long-short term memory (LSTM), SVR and
collaborative filtering. With a similar approach to175

ours, [25] proposed a Bayesian imputation model to

characterize the data generation process and learn
underlying statistical patterns in tra�c data.

On the other hand, state-of-the-art imputation
methods from other research fields can be classi-180

fied [26] as either discriminative, such as multi-
ple imputation by chained equations (MICE) [27]
and matrix completion [28], or generative meth-
ods based on DNN. For example, [29] proposed
an overcomplete denoising autoencoder (DAE) to185

be able to reconstruct data by stochastically cor-
rupting it. Closer to our work, [30] and [31] pro-
posed a RNN-based VAE which succeed at imput-
ing missing words from sentences. [32] applied a
deep sequential VAE with a Gaussian process prior190

in the latent space to capture temporal dynamics
to impute real-world medical data. Similarly, [33]
and [34] proposed also a generative model imputa-
tion method but using generative adversarial net-
works (GAN). Contrary to GAN, our VAE-based195

approach possesses certain desirable properties for
tra�c forecasting systems, such as stable train-
ing [35], interpretable encoder/decoder network [36]
and outlier-robustness [37].

Dimension reduction. The number of features200

available from data sources jointly with the num-
ber of available data points in road networks are
excessive. Forecasting with all those features can
be computational ine�cient and undertakes the risk
of over-fitting. Therefore, it is essential to reduce205

the dimension of the feature space before applying a
prediction model [38]. Reduction of the data is done
by learning the principal components or indepen-
dent factors of a given data manifold, i.e., feature
extraction. Recently, a systematic literature review210

of feature selection and extraction in spatiotempo-
ral tra�c forecasting was reported in [39]. Note
that feature extraction does not necessarily mean
reducing the dimension of the data space, that is,
dimension reduction is a subclass of feature extrac-215

tion methods. The low-dimensional representation
is traditionally obtained by PCA approaches that
had been widely used to extract the linear corre-
lations between the variables [40, 38]. In addition,
the least absolute shrinkage and selection operator220

(LASSO) is a well-known technique used [41, 38].
On the other hand, [42] exploited compressed sens-
ing to reduce the complexity of road networks prior
to regression. In DNN data-driven approaches,
RNN and CNN are used to extract temporal and225

spatial characteristic within the regression model.
[16] used a LSTM and CNN mixed with an atten-
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tion layer but not as an independent layer to the
regression task like our proposal. Similarly to our
work, features learned from a stack of autoencoders230

(SAE) have been previously used in literature to
improve tra�c forecasting [10, 43]. Contrary to
the autoencoder, the VAE encourages the model
to generalize features and reconstruct samples as
an aggregation of those, forces the latent space to235

be continuous and is a generative model. Likewise,
other VAE approaches have been used successfully
for dimensionality reduction within other research
fields, such as fault diagnosis [44] and towards se-
quencing the RNA of individual cells [45].240

Model explanatory power. The explanatory and
representative power of models is valuable for tra�c
modelers to obtain information on how transporta-
tion networks behave and evolve. Some e↵orts have
been devoted to explain the behavior of the mod-245

els in the literature as a second derivative of traf-
fic forecast. For example, [46] analyzed the spatial
features captured by CNN through characterizing
the information that retained layer by layer. [41]
discussed how the input variables relate to the pre-250

dicted output using the coe�cients of the fitted lin-
ear model. In that context, our proposal learns the
probability distribution of the given tra�c data and
a low-dimension continuous latent space. Thus, we
exploit these features as a tool to perform model se-255

lection and anomaly detection for tra�c forecasting
systems.

Model selection. There is no best method that suits
all situations in tra�c forecast [47], which implies
an applicability at a higher level of the method260

to choose the most suitable model given the char-
acteristics of the forecasting problem [1]. Tra�c
modelers frequently face several optimization chal-
lenges related to model selection, while there are
no clear baselines to find the best method and its265

configuration [48]. According to the best of au-
thors’ knowledge, few works are related to the traf-
fic forecast context. [49] proposed a metamodeling
technique to optimize both algorithm selection and
hyperparameter setting and [48] explored the use270

of Auto-WEKA, an automatic algorithm selection
method. On the contrary, we approach the prob-
lem from a data perspective. We provide a tool
based on the clustering of data in the learned la-
tent space to select the data from which the best275

forecasting model will be built to solve a specific
problem. Similar to our approach, [50] proposed

a hybrid method of short-term tra�c forecasting
using a self-organized Kohonen map as an initial
classifier where each class had an individually as-280

sociated tuned ARIMA model. But, according to
the best knowledge of the authors, there is no work
that presents a VAE applied to the selection of the
model or data.

Anomaly detection. One of the main applications285

of urban tra�c analysis lies in detecting anoma-
lies from tra�c data [51]. Recently, [51] and [52]
reviewed on existing outlier detection techniques
in tra�c data in three main categories: statisti-
cal, similarity-based, and based on pattern analy-290

sis. Among them, some find outliers in subspaces,
which is exactly what VAE can provide. In [53],
dimensionality reduction is performed by PCA and
a kNN-based outlier detection is applied in the de-
rived subspace. On the contrary, the VAE is based295

on a DNN that has greater modeling capabilities.
In fact, a linear autoencoder learns to span the
same subspace as PCA. In the learned latent space
by our proposed model, tra�c samples are clus-
tered and projections close to each are forced to300

have similar reconstructions that help in the detec-
tion of outliers. Moreover, when our proposal is
trained with much more normal samples than the
anomalous ones, the reconstruction errors of nor-
mal data are relatively higher than those of anoma-305

lous data. Therefore, the VAE loss function pro-
vides an anomaly score function which can be ex-
ploited as an anomaly detection technique. In that
regard, VAE-based outlier detection methods had
been used successfully in other research fields: [54]310

added a supervised method to the VAE approach
to enhance detection of seen anomalies without de-
grading the performance for unseen anomalies on
real industrial data, [55] proposed a a RNN-based
VAE to detect anomalies on robot time series data315

and [56] proposed an anomaly detection method
based on a reconstruction probability derived from
the VAE loss function.

3. Methodology

In this section, we formulate the tra�c forecast-320

ing problem as a latent variable model. We propose
a VAE implementation to learn how tra�c data
are generated and to learn an approximation of the
probability distribution of the data. Then, we pro-
pose a procedure to impute missing values. Finally,325

we exploit the learned latent subspace proposing a
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Figure 1: Interrelation of the proposed VAE model with di↵erent tra�c forecasting tasks. The proposal is a unified framework
that aims to solve several important challenges of ITS in road tra�c forecasting.

tool for model and data selection, dimension reduc-
tion and anomaly detection. A general framework
diagram that links the model to the di↵erent tra�c
prediction tasks is depicted in Fig. 1.330

3.1. Problem definition

Let X = {x(i)}Ni=1 be a historic tra�c data set
composed of N observed tra�c variables or tra�c
samples with an unknown ground-truth probabil-
ity distribution, x(i) ⇠ pgt(x). Let each element335

within x(i) represent a value of a tra�c variable as-
sociated with time and space, x(i) 2 Rn⇥d where
n is the number of past tra�c variables and d the
number of tra�c sensors deployed into the road net-
work. The method does not use information about340

the position of the sensors along the route. Hence-
forth, the superscript (i) denoting the i -th sample is
omitted to avoid clutter, except in cases where some
ambiguity may exist. Note that x is real-valued,
which is intended to represent tra�c variables such345

as speed, flow, density, etc., hence, the methodol-
ogy presented during this section will be derived
accordingly. Likewise, let y 2 Rm denote the fu-
ture state of m  d subset of sensors in the time
horizon of h samples. The tra�c forecast problem350

can be modeled as y = f⇤(x), where forecast sys-
tems aim to make an accurate estimate of y from x,
while the challenge remains on deriving a function
that closely resembles f⇤.
Suppose we want to infer the tra�c behavior dur-355

ing the next two hours or that we have a partially
occluded tra�c sample due to a sensor or system
failure. Missing data could be anything if there is
no underlying structure (or subspace) from which
the data are generated. In that sense, we know that360

strong spatio-temporal relationships exist between
road network’s points [1]. For instances, due to
seasonality, it is possible to discern between a work
day or not just by observing how morning tra�c
develops through time and space.. Therefore, this365

can be seen as a generative model, where data can
be generated from a latent manifold with fewer di-
mensions, or as a reconstruction problem, where
applying a function to a corrupted input x̃ derives
the actual input.370

As with the forecasting problem, this function
can be approximated using DNN to obtain an es-
timate x̂ of the actual input. Next, based on the
previous assumption, we formulate the problem as
a latent variable model and solve that using a deep375

learning variational inference approach.

3.2. Latent variable model

Let {z(i)}Ni=1 be the set of vectors composed of
continuous random latent variables defining a low-
dimensional representation of the significant factors
of variation in X, z 2 RJ with J ⌧ dim(x). Thus,
whenever a tra�c sample x is feed to the model,
z will represent its underlying characteristics. Let
f denote a deterministic function derived from a
neural network that maps z to the data space and

X ⇡ X̂ = f(z;✓) , (1)

the generative model (Fig. 2) parametrized with ✓,
where X̂ is the estimate of X. Our motivation is
to learn f that minimizes the error between X and
X̂, which is equivalent to maximize the probabil-
ity distribution of the data p✓(X) in terms of ✓.
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Tra�c data space

Underlying tra�c
characteristics
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Generated
distribution

True
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Generative
model

(neural net)

pgt(X)

Figure 2: The generative model. The goal is to learn a parametric model capable of producing M new tra�c samples
{x(j)}Mj=1, x

(j) ⇠ p✓(X) ⇡ pgt(X). That is, let the model learn the ground-truth distribution of the data pgt(X) from a
random variable z with a simple distribution that captures the underlying characteristics of the tra�c in the given road tra�c
network. Black dots are the observed tra�c samples x(i).

Because we assumed that x is generated by a ran-
dom process involving z, this could be solved by
integrating over the joint probability distribution

p✓(x) =

Z
p✓(x|z) p(z) dz (2)

while maximizing log p✓(X) =
PN

i=1 log p✓(x
(i)), a

maximum likelihood problem. Note that by max-
imizing (2) we hope to discover a meaningful rep-380

resentation for the tra�c data x in terms of latent
features given by p(z|x). Unfortunately, the inte-
gral of the marginal likelihood requires computing
the intractable true posterior or sampling-based so-
lutions, which are too costly [19, 20]. To circum-385

vent this, (1) is treated as an optimization problem
adding a recognition model q to approximate the in-
tractable true posterior p(z|x). Consequently, the
whole data model may be viewed as consisting of
two parts (Fig. 3):390

– the generative model p✓(x, z) = p(z) p✓(x|z),
which produces a distribution over the possible
corresponding values of x given z and

– the added recognition model q�(z|x) parame-
terized with �, that given a tra�c sample x,395

produces a distribution over the possible values
of z from which x could have been generated.

From there, a variational lower bound on the
marginal likelihood can be derived which does not
depend on the intractable p✓(z|x) or p✓(x). This
yields the known ELBO function [19, 20], which can
be optimized in terms of � and ✓ at the same time
minimizing

L(✓,�) = �Ez⇠q�(z|x)
⇥
log p✓(x|z)

⇤

+DKL

�
q�(z|x) || p(z)

�

 log p✓(X) ,

(3)

Stochastic
representations

Generative
model

(decoder)

z

Recognition
model

(encoder)

x̂
p✓(x|z)q�(z|x)

x

Tra�c sample Reconstruction

Figure 3: The VAE framework adds a recognition model
q to approximate the intractable true posterior distribution
p(z|x). This can be optimized via stochastic gradient de-
scent (SGD) as the input and output of the model should
be the same. The model might not learn the exact data
distribution pgt(X) but an approximation, (3).

where the first term is the expected reconstruction
error and the second term is the Kullback-Leibler
(KL) divergence of the approximate posterior from400

the prior.

3.3. Model implementation

The aforementioned model is implemented using
VAE [19, 20]: the recognition model using a neural
network encoder with weights and biases � and the405

generative model using a neural network decoder
with weights and biases ✓, Fig. 3. We model the
encoder and decoder using a multilayer perceptron
(MLP), considering that during this work we will be
experimenting with speed and flow data separately.410

However, thanks to the versatility and continuous
development of neural networks, any architecture
could be used as part of the encoder/decoder and
even stack several tra�c variables as input to the
network. For example, [14] treated x as an image to415

exploit the spatial and temporal correlation infor-
mation between road network’s points using CNN.

Encoder. We let the encoder model a multivari-
ate Gaussian with a diagonal covariance struc-
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ture, q�(z|x) = N (z|µz, diag(�
2
z)). The encoder

is implemented using a 1 hidden layer MLP with
� = {W1,W2,W3, b1, b2, b3}, whose outputs are the
mean µz and s.d. �z of q�(z|x) (called the code or
latent representation of the data):

henc = LReLU(W 1 x+ b1)

µz = W 2 h
enc + b2

�z = ReLU(W 3 h
enc + b3) + b� ,

(4)

where REctified Linear activation Unit (ReLU)
and Leaky ReLU (LReLU) are nonlinear activa-
tion functions and �z is filtered through a ReLU420

while lower bounded (b� = 1e�5) to help for numer-
ical stability during training, since the covariance is
positive definite.

Decoder. Likewise, we let the decoder model a
multivariate Gaussian, p✓(x|z) = N (x|µx, I). The
decoder is implemented using a 1 hidden layer MLP
with ✓ = {W4,W5, b4, b5}, whose output is defined
by

hdec = LReLU(W 4 z + b4)

x̂ = µx = W 5 h
dec + b5 ,

(5)

where its input are codes sampled from the pos-
terior z ⇠ q�(z|x) and x̂ is computed using only425

µx. Note that during training via SGD we can-
not directly propagate gradients w.r.t. � through
the sampling operator. Thus, we make use of the
reparametrization trick in [19] as an equivalent sam-
pling procedure that avoids derivation of z, Fig. 4.430

Now, we let the prior over the latent variables be
the centered isotropic multivariate Gaussian p(z) =
N (z|0, I). This jointly with the KL term in (3) al-
lows for a continuous latent space and assumes that
latent representations of samples are iid. Notice435

that any distribution in d dimensions can be gener-
ated by taking a set of d variables that are normally
distributed and mapping them through non-linear
functions. Thus, the model can learn to generate
any distribution of tra�c data from the Gaussian440

assumption on the prior. In addition, this may lead
into learning more disentangled features because z
components are orthogonal, which may help tra�c
modelers to explore and interpret the latent space.

As both the prior and the approximated poste-
rior are Gaussian, the KL divergence in (3) can be

||x� x̂||2

�z

Decoder
✓

Encoder
�

x̂

✏ ⇠ N (0, I)
µz

x

DKL

�
N (µz, diag(�

2
z)) || N (0, I)

� µz + ✏� �z ⌘ z

+

�

henc

Figure 4: Feed forward pass of the network using the
reparametrization trick for training via SGD. Red and pur-
ple show the loss and non linear activation layers, respec-
tively. ✓ and � are updated on the backward pass with the
backpropagation of the error.

analytically derived [19] resulting in

�DKL

�
q�(z|x) || p(z)

�
=

1

2

JX

j=1

(1+log �j
2�µj

2��j
2) ,

(6)
where J is the dimension of z and j indicates each
component of the encoder moments µz and �z. In
addition, we estimate the expectation of the recon-
struction error in (3) using a single sample from
q�(z|x), as it is enough in practice when using
SGD. We minimize the l2 norm between x and x̂
analogously to maximize log p✓(x|z), since the vari-
ance for the recognition model is fixed to 1 and
speed and flow data are real-valued. Hence, the
objective function (3) to minimize becomes

L(✓,�) = ||x� x̂||22�
1

2

JX

j=1

(1+log �j
2�µj

2��j
2) ,

(7)
where the second term (6) is a regularization or445

penalty term during training in an autoencoder
sense.

3.4. Model optimization

Regarding the encoder/decoder architecture, [57]
stated that simple decoders like a conditional uni-450
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modal Gaussian decoder (5) typically results in rep-
resentations that are good at capturing the global
structure but fail at capturing more complex local
structure. To address this, autoregressive models
(e.g., PixelRNN [58] or PixelCNN [59]) may be in-455

tegrated with VAE and used as encoder/decoder
like in the Variational Lossy Autoencoder [60],
or use the Channel-Recurrent Variational Autoen-
coder [61] that uses recurrent connections across
CNN channels to circumvent the simplification of460

VAE’s latent space. These models may be a power-
ful tool for tra�c forecasting [62] because they are
good at capturing local statistics [63]. However,
even that the architecture presented in Sec. 3.3 is
not that complex, we show in the experimentation465

section that is enough to solve general road tra�c
forecast problems with the data dealt in this work.
This is aligned with recent findings suggesting that
Gaussian encoder/decoder assumptions do not re-
duce the e↵ectiveness of VAEs [64].470

Regarding the definition of p(z), we let p(z) =
N (z|0, I) for our purpose, which has the following
computational and implementation benefits: (i) the
samples of z can be drawn from a simple distribu-
tion, (ii) it forces a continuous latent space and (iii)475

the KL divergence is given in closed form. However,
by doing so, we assumed that latent representations
of samples are iid, which for many datasets, such as
time-series of images, can be a strong assumption
[65].480

Nevertheless, increasing the complexity of the
model leads to several issues identified in litera-
ture [18]. Therefore, the model should match the
complexity of the problem and data because this
substantially increases the complexity of model im-485

plementation, training and tuning. Ladder Varia-
tional Autoencoder (LVAE) [66] were proposed to
train deeper architectures for more representational
power, but it is known that a VAE with powerful de-
coding capabilities tend to ignore latent space and490

use only the decoding distribution to represent the
entire data set [67]. We found that in most cases
a straightforward implementation ignored the la-
tent space, that is, q�(z|x) was learned by setting
q�(z|x) ⇠ p(z) thus bringing the KL term close495

to zero (the posterior collapse problem [68]). Note
that a model that encodes useful information in
the latent variable z will have a non-zero KL di-
vergence term. To prevent that, we modified the
training objective (7) by weighting the second term500

with � 2 [0, 1] and increasing its value on each
epoch during training. This annealing strategy [30]

yielded to better results, despite not optimizing the
proper lower bound during the early stages of train-
ing.505

Finally, since road tra�c networks evolve with
time, the reconstruction error of new tra�c sam-
ples can be used as an indicator of when to ad-
just the model to new data. A high reconstruc-
tion error would mean that samples reconstructed510

conform to a di↵erent data distribution than the
already learned by the model.

3.5. Missing data imputation

The first implication of Sec. 3.3 model is that
new unobserved tra�c samples with missing values515

can be reconstructed from the learned p✓(x|z). A
corrupted data sample x̃ can be reconstructed once
the whole network is trained on historical data min-
imizing (7). The imputation procedure depicted in
Fig. 5 consists of:520

– random initialize the missing values,

– sample from the recognition model, i.e., encode
x̃ sampling from z ⇠ N (µz,�z) where µz and
�z are given by the encoder (4) and

– sample from the generative model, i.e., map525

back the resulting z to the data space using de-
coder (5) to obtain a reconstructed data sam-
ple x̂.

This procedure can be iterated until convergence,
simulating a Markov chain that has been shown in530

[20] that converges to the true marginal distribu-
tion of missing values given observed values. In
practice, a more straightforward method is to sam-
ple only using the mean, i.e., z = µz, which leads
to similar results. Note that (6) forces the model535

to be able to decode plausible tra�c samples from
every point in the latent space that has a reason-
able probability under the prior. On the contrary,
an autoencoder without the latent variable model
would have learned a latent space which may not540

be continuous or allow interpolation.

3.6. Dimension reduction

The second implication is that the learned latent
space can be exploited in several di↵erent ways that
are of interest to tra�c forecasting systems. The545

latent space defined by z is forced to capture use-
ful information about the data because z is limited
to having a dimension smaller than x. Therefore,
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Figure 5: Reconstruction of a corrupted sample using the imputation procedure of Sec. 3.5 on PeMS data. y-axis shows 3
hours of 5-minute samples. x-axis represents 31 sensors. The colored variable is the tra�c speed [km/h].

VAE is learning the principal components or inde-
pendent factors of the highly non-linear latent man-550

ifold of the given tra�c data set. Recall that a lin-
ear autoencoder minimizing the mean squared error
(MSE) learns to span the same subspace as PCA.
This can be exploited as an unsupervised dimension
reduction or feature extraction independent layer555

for tra�c forecasting systems. On the one hand,
the data can be compressed using the encoder to
store and reconstruct them when necessary using
the decoder. To aim for the lowest possible dimen-
sion of z (i.e., maximum compression) one may find560

it empirically or rely on the recently published ar-
ticle [69], which inspects the mutual information
evolution between layers. On the other hand, fea-
tures learned may be used by a regression layer to
improve tra�c estimation as the compressed infor-565

mation filters out useless information and allows
data-driven models to easily learn. In this case,
the performance is less conditioned to the dimen-
sions of z since in practice we have obtained similar
results for di↵erent latent space dimensions, except570

with very small or very large dimensions (the reader
is referred to [70] for a theoretical explanation of
that). Finally, the whole procedure consists of:

– pre-train the model to reconstruct its input in
an unsupervised manner575

– use the pre-trained encoder as input to a re-
gression model for supervised tra�c estimation

– fine-tune the entire network if the regression
model is a DNN (we found that yields better
results than fixing the weights and biases of the580

encoder), if not, supervise train with the latent
representations.

It is worth mentioning that, unlike SAE [10, 43],
stacking several VAE in our framework would not
lead to an enhanced representation power [71].585

Also, currently, researchers have put an e↵ort to

learn meaningful (humanly interpretable) and dis-
entangled latent dimensions with VAE [72, 73].

3.7. Model selection

The latent space can be exploited as a tool for590

the selection of models and data, since similar data
is encoded closer in the latent space. Tra�c sam-
ples are clustered in an unsupervised manner in the
latent space learned by VAE. This can be used to
distinguish between work days, weekends, holidays,595

anomalous days, etc. or to compare the tra�c from
di↵erent road tra�c networks and time periods.
This explanatory power makes the model adapt-
able and responsive to dynamic tra�c and road
environment changes over time. Tra�c modelers600

may use the tool as an indicator of model perfor-
mance against new data, thus, the need to train
a new model, or to gain deeper knowledge of the
tra�c behavior by exploring the latent space. In
that way, accuracy of tra�c forecasting systems can605

be enhanced by splitting the data into the classes
learned by the model and fitting a separate model to
each class [50]. This can be done by projecting the
new data into the learned subspace and comparing
it with new data using clustering algorithms [53].610

Further, modelers can visually search for correla-
tions and seasonality by using visualization tech-
niques of high-dimension data sets such as PCA or
t-SNE [74], as we show in the experimentation sec-
tion.615

3.8. Anomaly detection

The anomaly detection with VAE can be done
online and o✏ine. A simple but powerful approach
is to visually compare projected samples in latent
space, which may be useful for tra�c modelers. For620

example, by projecting the samples in the latent
space using PCA and displaying them colored by
type of day, the modeler can see if a Tuesday sample
deviates significantly from his cluster, which may
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mean that an anomaly is occurring or that it is a625

holiday if it’s closer to Sunday’s cluster.
On the other hand, a more interesting scenario

for ITS is to detect anomalies automatically. For
statistical methods, key statistics are used when
anomalies are detected if the statistic exceeds a cer-630

tain threshold value. If anomalies are labeled, one
may project a sample to the latent space, compute
the Euclidean distance of the sample to its class cen-
troid and then establish the threshold, for example
by means of the AUROC. If anomalies are not la-635

beled, one may assume that clusters are Gaussian
distributed and set the threshold proportional to
the s.d. or use kernel density estimation setting a
minimum probability threshold. Nevertheless, VAE
inherently provides the two typically steps of statis-640

tical anomaly detection techniques: dimension re-
duction and an statistical anomaly criterion. VAE
provides a probability measure with the KL diver-
gence term in (7) rather than a reconstruction er-
ror as an anomaly score function. Probabilities645

are more objective than reconstruction errors and
do not require model specific thresholds for judg-
ing anomalies [56]. When the VAE is trained with
far more normal samples than anomalous ones, the
VAE learns to model the distribution of normal650

tra�c data, thus a tra�c sample can be detected as
anomalous if it statistically deviates from what the
model has learned [54]. This particularly suits the
tra�c domain because tra�c data sets are usually
imbalanced, samples are only labeled by days and655

most of the anomalies are still unseen. We have
explored some of this suggestions under Sec. 7 and
left the others as future work.

4. Real-world tra�c data sets

We gathered and cleaned three di↵erent kind of660

real-world data that are described in this section to
later evaluate the proposed methodology, Fig. 6.
It should be noted that there is a lack of bench-
mark data sets in tra�c forecasting literature that
has been identified as a problem to compare dif-665

ferent proposals [1]. The three datasets come from
highways, however, please keep in mind that the
method can also be applied to any road tra�c net-
work and urban areas. Its success depends on the
encoder/decoder architecture chosen to mine the670

existing relations between sensors. In that sense,
literature has shown that neural networks are ca-
pable of mining spatio-temporal characteristics to

perform forecast on complex networks [14]. Dur-
ing experimentation all code was written in Python675

with the help of Tensorflow library for DNN cod-
ing. All testing was performed with an Intel Xeon
W-2123 + 4 ⇥ NVIDIA GeForce RTX 2080 Ti on
an Ubuntu server.

4.1. Data description680

PeMS. We collected data from 31 loop detectors
installed on a south-bound section of Interstate 5 (I-
5), Fig. 6b. Tra�c data are available from the free-
way Performance Measurement System (PeMS) of
the California Department of Transportation (Cal-685

trans)1 that has been widely used in tra�c forecast-
ing literature. Detectors used span spaced equally
apart 82 km of the highway in San Diego County,
concretely from post mile (PM) 1.1 to 52.3. Each
detector reports the speed, occupancy and flow,690

which are aggregated into 5-minute intervals includ-
ing a reliable measure of data quality showing the
percent of observed samples. Incorrect values are
filtered out, while missing samples are imputed us-
ing linear regression [75]. Data collected covers the695

two-year period from 2015 until 2017.

UKM1. We gathered tra�c speed and flow data2

from 19 junctions (J27 to J1) of the English M1 sec-
tion from Nottingham to London, Fig. 6a. The M1
is a major motorway of the Strategic Road Network700

(SRN) which runs between London to Leeds in the
United Kingdom. The data are averaged between
junctions and aggregated into 15-minute intervals.
Junctions span 210 km and consist of di↵erent road
lengths. Speeds are estimated using a combination705

of sources, including automatic number plate recog-
nition (ANPR) cameras, in-vehicle global position-
ing systems (GPS) and inductive loops built into
the road surface. Data collected covers the four-
year period from 2011 until 2015.710

UKM4. We gathered from the same source the
tra�c speed and flow data from 19 junctions (J22
to J2) of the English M4 section from Bristol to
London, Fig. 6a. The SRN’s M4 motorway con-
nects London to South Wales. Similarly to UKM1,715

junctions span 180 km and consist of di↵erent road
lengths. Data collected goes from 2011 until 2015.

1http://pems.dot.ca.gov
2https://data.gov.uk
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Figure 6: Approximate location of the tra�c sensors in (a) England and (b) California.

5. Experimentation: Imputation method

In this section, we evaluated our proposal as an
imputation method by using a defined set of syn-720

thetically generated missing data while determin-
ing to what extent an improvement on the imputed
values yields an enhanced accuracy of the subse-
quent tra�c forecast model. Because imputation
requirements may vary depending on the final ap-725

plication [23], we evaluated the final performance of
the whole tra�c forecasting system instead of mea-
suring the distance between the real data and its
reconstruction. There are cases in which improving
the data imputation does not necessarily mean that730

prediction will improve, e.g., when there is su�cient
information in the observed data for the tra�c fore-
casting system to estimate. The reader may think
on the increase in root mean squared error (RMSE)
when the reconstruction is the same as the original735

but shifted by one value.

5.1. Inducing missingness

Although the original PeMS data contained miss-
ing values, we could not directly use those for
evaluation as their values were previously imputed740

by PeMS [75]. Instead, we considered the PeMS
data quality measure and produced artificial miss-
ing data on the test data, that we will refer to
as PeMS-NMAR. All 5-min data samples available
on PeMS are attached to a data quality measure.745

Those samples are the average of 30-sec samples in
5 minutes and the quality measure shows the per-
centage of valid samples during that time. In this
section, we considered all 5-minute samples that did
not meet a 75% quality measure as missing values.750

Figure 7: Distribution over the PeMS data set of the induced
missing values (white fields). Each column shows two years
of 5-minute samples of mean speed data corresponding to
each detector.

In other words, averaged values with more than
25% of invalid samples were treated as missing val-
ues. The data distribution of Fig. 7 resulted from
said assumption in which 11.28% of the speed data
is missing. Fig.7 shows a Not Missing at Random755

(NMAR) pattern where consecutive missing values
are found in not so random time instants and sen-
sors. This is consistent with real-world missingness
types analyzed in literature [26, 29, 76].

Additionally, we investigated the robustness of760

the system against higher shares of missing val-
ues by removing additional observations from the
data following a Missing Completely at Random
(MCAR) pattern. There might be cases where the
improvement in imputation accuracy is large but765

the improvements in estimation accuracy may not
be significant. This might be because there is su�-
cient information in the observed data for the tra�c
forecasting system to estimate. Thus, the predic-
tion accuracy was evaluated for 10%, 20% and 40%770
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missing data proportion on the test data which we
will refer as PeMS-MCAR-(%).

5.2. Evaluation task

Fig. 8 shows the scenario considered divided
into two parts: an imputation layer that prepro-775

cesses corrupt speed tra�c samples that are then
fed separately to a regression layer to estimate fu-
ture tra�c speed. In interest of faster training, we
set the RL to estimate 1 hour ahead (h = 12) traf-
fic speed of sensor number 15 (m = 1), the one780

presenting less corrupted data (0.07%). The last 3
hours of speed samples were used (n = 36) as input
(x 2 R36⇥31). Evaluation was done on all possible
3-hour speed tra�c samples of PeMS-NMAR and
PeMS-MCAR from 2016 (105360 samples) while785

the rest was used for training (105072 samples).
Each experiment was conducted 10 times and we
reported the mean of RMSE and mean absolute
percentage error (MAPE) of the prediction task as
the performance metrics in Table 1.790

Imputation layer (IL). We compared our pro-
posal (VAE) against a 1-hidden layer non-linear
autoencoder (AE) and PCA. Details of VAE im-
plementation are found in Sec. 3.3 and Fig. 8.
We set z = µz for simplicity. The VAE model795

had 1,298,724 trainable parameters and the aver-
age time to convergence was 22 minutes using one
GPU. Regarding the AE, ReLU was used for each
layer except for the output. We trained both au-
toencoders with a batch size of 128 using a random800

validation split of 10% for earlystopping and 512
neurons per layer. The latent space dimension was
first arbitrary set to 100. We used Adam [77] op-
timizer with a learning rate of 5e�5. Input was
normalized to zero mean and unit variance and all805

missing values were treated as zero prior to each
imputation method for fair comparison.

Regression layer (RL). A 2-hidden layer MLP
was trained where each layer was composed of 100
neurons with sigmoids activations. However, note810

that it could be another type of model, not nec-
essarily a DNN. l2 regularization was used on the
weights to prevent overfitting. Input was normal-
ized to zero mean and unit variance. The MSE was
minimized using SGD with default Adam. We use815

a 10% random split of the training set as the valida-
tion set for early stopping of the training procedure.
The RL showed better performance compared to a
naive approach, where the last input sample is used

as the estimation. On the original test data with-820

out missing values, RL showed a 34.8% and 25.3%
improvement on RMSE and MAPE, respectively,
which was considered as a benchmark and enough
for the evaluation purpose.

5.3. Performance and discussion825

The proposed VAE implementation showed an
RMSE improvement of 69.6%, 52.6% and 39.5%
over RL, PCA and AE on NMAR test speed data,
respectively. Likewise, VAE showed superior per-
formance for each di↵erent missing value propor-830

tion on MCAR. For example, on MCAR–40, VAE
showed an RMSE improvement of 54.9%, 18.7%
and 17.3% over RL, PCA and AE, respectively. The
main di↵erence between VAE and AE is that a reg-
ularizing term on the objective function is imposed835

on the former to force the model to learn a con-
tinuous latent space. Results indicate that learn-
ing the p✓(X) helps to infer missing data as the
model is able to decode plausible unseen data sam-
ples from every point in the latent space that has a840

reasonable probability under the prior, which val-
idates our initial assumption. We also found that
non-linearity helps to impute missing values when
larger gaps of missing data are found (NMAR pat-
tern). Looking at the VAE and AE performance845

against PCA in Table 1 on NMAR data, the linear
model performs poorly. However, no relevant di↵er-
ences were found between PCA and AE on MCAR.
In this case, the PCA performs similarly to AE be-
cause of the MCAR pattern which implies less con-850

secutive missing values and the linear model can
perform better. Another interesting finding is that
VAE performed better in NMAR than MCAR–10
even when the missing data proportion of the for-
mer is greater, which makes the proposed method855

more suitable for real-world data set where mostly
NMAR patterns are found. We also varied the la-
tent space dimension and provided some results on
Table 1, where the compression factors applied on
the data are shown between parenthesis near each860

IL method. Results showed that accuracy increased
jointly with the compression factor but to a certain
extent. Constraining the latent space dimensions
forces the network to learn better features until the
space becomes small enough. Same thing happened865

while increasing the dimensions. This suggested
the existence of a lower and higher bound where
only an insignificant improvement can be observed,
which led us to conclude that the optimal latent
space dimension should be empirically defined as a870
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Figure 8: The production tra�c forecasting system evaluated in Sec. 5. First, the imputation layer imputes the missing values
of the 1116 dimension input. The VAE approach is showed following the imputation procedure of Sec. 3.5 using z = µz . Then,
an independent regression layer estimates the future tra�c speed of one sensor using the reconstructed sample. Three di↵erent
imputation layers based on VAE, AE and PCA were evaluated computing the RMSE and MAPE of the prediction task.

Table 1: RMSE [km/h] — MAPE [%] results on the estimation of 1 hour ahead tra�c speed of sensor number 15 over the
PeMS test speed data. The first row shows the performance of the RL alone and should be compared to the results when an
IL is added, i.e., IL + RL. The compression factor value is shown between parenthesis near each imputation method which was
computed as the ratio between the dimensions of the data space and the latent space. MCAR–(%) indicates the proportion of
generated missing data. In bold are the results closer to the performance of the RL on the Original data containing no missing
values (the closer the better).

Original NMAR MCAR–10 MCAR–20 MCAR–40

RL 5.53 — 3.04 19.37 — 13.50 27.24 — 20.05 30.07 — 22.75 33.28 — 26.20

PCA (11.16) + RL N/A 12.42 — 7.82 10.68 — 6.79 14.35 — 9.40 18.46 — 12.84

AE (11.16) + RL N/A 9.74 — 5.69 10.69 — 6.91 14.02 — 9.46 18.16 — 12.92

VAE (11.16) + RL N/A 5.89 — 3.23 8.98 — 5.52 11.79 — 7.46 15.01 — 9.78

VAE (22.32) + RL N/A 8.70 — 5.27 8.58 — 5.28 10.61 — 6.64 11.98 — 7.70

VAE (111.6) + RL N/A 7.71 — 4.53 7.86 — 4.58 8.57 — 5.03 9.18 — 5.38

hyperparameter or by means of mutual information
between layers like recently suggested in [69].

6. Experimentation: Dimension reduction

Under this section, we experimented with our
proposal as a data compression tool. Our goal was875

to explore if the subspace learned by VAE results
in representative and powerful features of the traf-
fic data that can be used to perform tra�c fore-
cast. To that aim, we set a more complex problem
and we aimed to estimate 1 hour ahead speed of880

all the network sensors using the last 12 hours of
data of PeMS and the last 18 hours of UKM1 and
UKM4. Similarly to Sec. 5, we considered a fea-
ture extraction layer and a regression layer but, in
this case, models were evaluated on PeMS, UKM1885

and UKM4 test data. The latent space dimension
was set to 100, thus models were forced to extract

100 features from a 4464 and 1368 input data space
depending on the data set.

Feature extraction layer (FL). We compared890

our proposal (VAE) against an autoencoder (AE)
and PCA similarly to Sec. 5. The implemented
VAE is shown in Fig. 9 and described in Sec. 3.6.
Training was done using KL cost annealing to avoid
the posterior collapse problem. We set the initial895

weight of KL cost term to be zero and increased it
at each training step k as �k = 0.0001 ⇥ 1.05k�1,
� 2 [0, 1]. Gradients were clipped by their l2 norm
to 0.5 for training stability. The VAE models had
37,810,744/12,445,216 trainable parameters for the900

4464/1368 input and the average time to conver-
gence was 37/25 minutes using one GPU. Regard-
ing the AE, the hidden layers were composed of
4096 neurons followed by ReLU activations. We
trained both using Adam(5e�5) with a batch size905

of 128 and earlystopping. Input was normalized to
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Figure 9: The production forecasting system evaluated in Sec. 6. Here, we show the encoder of an independently pre-trained
VAE used as a feature extraction layer prior to long-term wide-network tra�c forecast. Like in Sec. 5, we used directly µz
as the feature vector. The AE and PCA approaches were also evaluated as feature extraction layers. Note that the 4464 or
1368 input dimension is reduced down to 100 features to perform the forecast. DO stands for a Dropout layer with a drop
probability of 0.5 and BN for a Batch Normalization layer.

zero mean and unit variance.

Regression layer (RL). We trained a non linear
3-hidden layer MLP with 1024 neurons per layer
plus an Exponential Linear Units (ELU) activation910

function, a batch normalization (BN) layer and a
dropout layer to avoid overfitting, Fig. 9. That
is, 2,234,399 trainable parameters not counting BN
layers. Labels were normalized to zero mean and
unit variance. The MSE was minimized using SGD915

and Adam(1e�5) with a batch size of 128. The best
generalization was selected as the final model using
a validation split of 10%.

6.1. Performance and discussion

Main results are reported in Table 2. First two920

rows show that the tuned RL improved accuracy for
all data sets. The RL performed the forecast from
4464 samples input for PeMS and 1368 for the other
data sets, which equals to 12 and 18 hours of data
respectively. The rest of the rows show the models925

evaluated that first projected the data to a 100 di-
mension subspace which was then used as input to
train another RL with the same architecture. The
data compression factor was 44,64 on PeMS and
13,68 on UKM1 and UKM4. In Table 2, VAE out-930

performs all the compared models. Although the
improvement is slight, below 5% on the RMSE, it
even exceeds the performance of the original RL
for all the data sets despite having significantly re-
duced the space dimension of the input. Therefore,935

the introduction of non-linearities and the latent
variable model of VAE is well suited to extract use-
ful features to perform tra�c forecasting while at

the same time for cloud computing and storage as
significant compression factors are achieved.940

Our proposal is intended to be a tool, indepen-
dent from the model used in the prediction part.
However, care must be taken in choosing the fore-
casting model because compressed data can degrade
the performance of models that exploit the spatial945

or temporal structure of the data. Recall that we
let p(z) = N (z|0, I), i.e., latent components are
orthogonal. Therefore, it is safe to conclude that
using a convolutional or recurrent approach to fore-
cast using the compressed data will not lead to im-950

provement over MLP since the latent representa-
tions of the data do not keep the temporal or spatial
structure. In that sense, we made some testing with
LSTM and CNN prediction models that confirmed
a degradation on the accuracy performance.955

During training, we found that increasing the
number of hidden layers derived in VAE ignoring
most of the latent space. Instead, using one layer
with a higher number of neurons led to learning
better features for the tra�c forecast task. In that960

sense, the KL cost annealing and the dropout layer
also proved to be useful. The former helped to
avoid the posterior collapse problem and the later
to prevent overfitting of the model. Here, we spent
the same time tuning each FL independently of the965

RL and results were considered enough to validate
the VAE as a prominent solution for dimension re-
duction of tra�c data. However, we believe that
there exists room for improvement on optimizing
the VAE model for this specific data set which is970

beyond the scope of this manuscript, e.g., using hy-
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Table 2: RMSE [km/h] values of 10 experiment runs of the
RL forecast are reported showing the dimension reduction
results on the test data of PeMS (4464 space dimension),
UKM1 and UKM4 (1368 space dimension) data sets.

Model RL input PeMS UKM1 UKM4

Naive R4464; 1368
10.83 13.06 15.24

RL R4464; 1368
7.51 11.11 10.73

PCA + RL R100
7.61 11.38 10.56

AE + RL R100
7.63 11.28 10.37

VAE + RL R100 7.49 10.89 10.23

perparameter optimization techniques.

7. Experimentation: Model selection and
anomaly detection

In this section, we experimented with the repre-975

sentational power of the VAE model and its learned
latent space. To that aim, we trained the same
model of Sec. 6, but using unique day samples
of tra�c flow and speed for all of the three data
sets. Then, we projected the data to the learned980

subspace and analyzed it from the point of view of
tra�c modelers with the goal to improve the predic-
tion accuracy of a tra�c forecasting system. Note
that the model can be used as an unsupervised tool
to learn insights about tra�c data without previous985

knowledge of the road tra�c network.

7.1. Model selection

Fig. 10 shows the two principal components (PC)
of the latent space. The pattern of flow and speed
di↵ers between weekends and weekdays, even a sep-990

arate cluster for Fridays can be clearly distinguished
from the flow. The flow is classified similarly for the
three data sets, instead, the model classifies speed
di↵erently for PeMS rather than for the rest of data
sets. Only in UKM1, the model can cluster between995

speed samples from Saturday and Sunday as speed
has more complex behavior than flow. In PeMS, the
weekend cluster is more separated from the week-
days cluster suggesting a greater di↵erence between
both and the possibility that two specific models for1000

each cluster perform better than a global one. In
UKM4, the model also clearly identified two clus-
ters which are distinguished by di↵erent instants of
time, Fig. 11. A similar trend can be slightly ap-
preciated for UKM1. The data from 2012 and 20131005

are classified in the upper cluster, while the data for
the years 2011 and 2014 are classified in the lower

one. Those di↵erences at the time of fitting the
forecast model can influence its performance since
the 2012 data may not be beneficial for predicting1010

2014 tra�c, as pointed out by the model.

Evaluation details. We divided the data sets into
weekends and weekdays. For each data set a speed
forecasting model was fitted to see if the overall
performance of the two separate models was an1015

improvement over a single model for the whole
week. To that aim, we set the following prob-
lem: predict 1 hour ahead of all network sensors
using the last 3 hours of data. We implemented the
following DNN model: Dropout(0.5)–MLP(512)–1020

LeakyReLU–MLP(512)–LeakyReLU, trained to
minimize the MSE using l2 regularization on the
weights, Adam and normalized inputs. Three new
data sets were made from whole week (WW ), just
weekdays (WD) and just weekends (WE ) for PeMS,1025

UKM1 and UKM4. The whole last year of each
data set was used for evaluation and the rest for
training. We fitted the DNN model to each of the
new data sets, resulting in three di↵erent models:
MLP–WW, MLP–WD and MLP–WE, respectively.1030

Finally, the RMSE performance of the MLP–WW
model was used as a benchmark and we reported
the RMSE improvement in % of the rest of the mod-
els with respect to it.

Results. The results of MLP–WD and MLP–WE1035

models are shown in Table 3. From these results, it
can be concluded that predicting the speed by using
two separate models for weekdays and weekends in
UKM1 and UKM4 shows little improvement over
the results of the models for the whole week. On1040

the other hand, in the case of PeMS, training a
separated model only on weekend data improves the
RMSE by 17.7% on weekend test data. However,
no improvement on the WD data was found by the
MLP–WD meaning that the performance resembles1045

to the MLP–WW model. The latter model, which
was trained on WW data, mainly learns how tra�c
behaves on weekdays because weekend samples are
imbalanced w.r.t weekday samples. Those results
are related to the cluster separation that exhibit1050

the two classes in the latent space, which can be
seen in the two-dimensional visualization of Fig. 10.
More precisely, the euclidean distances in the latent
space (R100) between weekday and weekend cluster
centroids of PeMS, UKM1 and UKM4 are 87.3,1055

65.6 and 62.7, respectively. PeMS ’ clusters are the
ones that the VAE model projected more separated
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Figure 10: Tra�c flow and speed samples projected to the latent space and colored by day of the week (0-6: Monday to
Sunday). Day samples were projected to a 100-dimension latent space learned by the VAE model in an unsupervised manner.
Then, the two principal components (PC) of the projected data were plotted with the help of PCA. The cumulative explained
variance of PC1 and PC2 is shown below each figure, which means that the other dimensions that are not seen still capture
more tra�c characteristics. Only in PeMS, holidays samples are plotted with a star marker.

16



�50 0 50
PC1

�50

�25

0

25

50

75

P
C
2

Speed - UKM4

0

1

2

3

Y
ea
r

Figure 11: 2D PCA visualization of one-day UKM4 speed
samples projected to the latent space (R100) and colored by
year (0-3: 2011 to 2014). The clustering shows that tra�c
behavior changed between years.

Table 3: RMSE improvement [%] results of MLP-WD and
MLP-WE models w.r.t. MLP-WW on the test data from
all three data sets. The highlighted cells indicate the type of
test data on which the model was intended to improve the
performance.

Data set Split type MLP–WD MLP–WE

WW -7.0 -45.0

WD 0.1 -52.0PeMS

WE -26.0 17.7

WW -1.6 -17.6

WD 1.0 -21.3UKM1

WE -7.1 2.2

WW 0.5 -20.9

WD 3.8 -26.0UKM4

WE -6.9 3.0

apart, that is, that were considered more dissimilar.
This validates the latent space as an indicator of
the performance of separated models for di↵erent1060

classes of data. Therefore, the VAE model can be
used by tra�c modelers as a tool to decide when
it is best to make use of di↵erent models instead of
one unique model to predict tra�c.

7.2. Anomaly detection1065

There are two interesting scenarios for anomaly
detection in tra�c forecasting: o✏ine and online.
O✏ine anomaly detection is helpful for tra�c mod-
elers to analyze historic data. Training a VAE
model with unique day samples leads to Fig. 10-like1070

images which can be used to detect anomalies. We
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Figure 12: 2D PCA visualization of one-day UKM4 flow
samples projected to the latent space (R100). Samples are
colored proportionally to the distance (normalized between
0 and 1) to their corresponding cluster centroid, which high-
lights the anomalous tra�c samples (darker). See Fig. 10e
for comparison.

plotted the samples corresponding to holidays with
a star marker on PeMS in Fig. 10a and 10b. Al-
though holidays can be considered non-anomalies,
it is more likely that during these the behavior of1075

the tra�c will deviate from the usual. First thing
that Fig. 10a shows is that the majority of the hol-
iday days behave like Sundays, which confirms a
common and known fact of most road networks.

In Fig. 10a, a few of the samples are projected1080

in the middle between the workday and weekend
clusters, thus we inspected more closely those sam-
ples because we did not have anomalous tra�c la-
beled. We visually compared the Monday and Sun-
day samples closer to their centroid against the holi-1085

day sample (Monday) placed between both clusters
in Fig. 10a. This simplifies the analysis because
the three data points compared vary greatly along
the x-axis (PC1), while the variability in the y-
axis (PC2) is much smaller. In this case, PC1 and1090

PC2 represented the 55.8% of the variance of the
100 features learned by VAE. The anomaly is that
the targeted sample does not behave like a Mon-
day or Sunday which should be expected because
the sample is labeled as a holiday Monday. To un-1095

derstand what caused the anomaly, we investigated
the latent space by not varying PC2 and compar-
ing the three mentioned tra�c samples which pro-
duced a variation only on PC1. Upon investiga-
tion, we found an increase of tra�c flow around1100

sensor 9 for all three samples, which means that
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PC2 is modeling where the tra�c intensity is lo-
cated in the road tra�c network. Contrary, the
main di↵erence was the intensity of tra�c flow and
the peak hours. The intensity decreased propor-1105

tionally from the Monday sample to Sunday while
a light peak hour moved from morning to the af-
ternoon, meaning that PC1 component is modeling
those tra�c features. Therefore, we can conclude
that the anomaly was the intensity of the flow and1110

when happened, not where it was located. We are
not able to justify this behavior as we do not have
the data labeled. However, this anomaly may be
explained by the e↵ect of non-tra�c features (e.g.,
weather conditions, unusual events, etc.). That1115

said, tra�c modelers may consider the holiday sam-
ple as an anomaly and plan accordingly to absorb
the specific tra�c intensity at noon on that holiday.
Furthermore, a tra�c modeler could answer ques-
tions such as what the holiday would have been like1120

on a Wednesday? by exploring the latent space,
because the model learned meaningful dimensions
plus it is a generative model with a continuous la-
tent space.
On the other hand, one could elaborate more1125

complex analytical methods for automatic anomaly
detection, instead of inspecting it visually. For ex-
ample, Fig. 12 shows the same samples of Fig. 10e,
but colored proportionally to the Euclidean dis-
tance to their respective class centroids. A quick vi-1130

sual comparison shows that all holidays and anoma-
lies are distinguished in darker color without previ-
ous knowledge or labeled data, validating the via-
bility of the approach. In cases where the model can
clearly cluster data (e.g., the flow from UKM1;4 ),1135

a threshold should be defined by means of the AU-
ROC for labeled anomaly data or by assuming that
clusters are Gaussian distributed and setting the
threshold proportional to the s.d., for unlabeled
data. Similarly, in [53] dimensionality reduction is1140

performed by PCA and then kNN outlier detection
is applied. Nevertheless, note that same method
applied to UKM4 ’s speed, Fig. 10f, would not lead
to such clear results (at least in 2D) due to the
topology of the clusters and the higher complex-1145

ity of speed data. Instead of using the Euclidean
distance, a metric can be derived from (7) that pro-
vides an anomaly score function in terms of proba-
bilities [56]. The intuition behind it is that anoma-
lous data will have higher reconstruction errors be-1150

cause VAE is trained with far more normal samples
than anomalous ones, that is, VAE learns to model
normal tra�c data. Finally, the best methodology

to automatically detect anomalies in terms of im-
plementation cost and accuracy will likely depend1155

on the data under consideration and needs further
exploration, hence, will be left as future work.

8. Conclusion

In this paper, we proposed a transversal solution
for road tra�c forecasting systems based on the as-1160

sumption that tra�c data can be generated from
a manifold with reduced dimensions. We formu-
lated the forecasting problem as a latent variable
model and proposed the variational autoencoder
(VAE) as a method to unsupervisely learn an ap-1165

proximation of the probability distribution of the
tra�c data. This was evaluated on three di↵erent
real-world tra�c data sets addressing some current
major challenges of tra�c forecasting and obtain-
ing relevant results. First, the proposed model was1170

used as an imputation method, showing significant
improvements on unseen tra�c samples with miss-
ing values. Secondly, we showed that the model
can learn useful features for tra�c forecasting sys-
tems, allowing for dimension reduction of tra�c1175

data without loss in accuracy on the forecast. In
fact, a regression model trained with data com-
pressed by a factor of 44,6 using the VAE exceeded
the performance of the same model trained with
the raw data. Third, we exploited the learned la-1180

tent space from the point of view of tra�c model-
ers in order to improve tra�c forecasting systems.
Without previous knowledge of the road tra�c net-
works, projecting the data in said space allowed us
to hypothesize and gain insights about the tra�c1185

data that were later validated with experimenta-
tion, concluding that our proposal can be used as
a tool for model and data selection and anomaly
detection.

Acknowledgment1190

This research is supported by the Catalan
Government under Project 2017 SGR 1670 and
the Spanish Government under Project TEC2017-
84321-C4-4-R co-funded with European Union
ERDF funds.1195

References

[1] I. Lana, J. Del Ser, M. Velez, E. I. Vlahogianni, Road
tra�c forecasting: Recent advances and new chal-
lenges, IEEE Intelligent Transportation Systems Mag-
azine 10 (2) (2018) 93–109.1200

18



[2] E. I. Vlahogianni, M. G. Karlaftis, J. C. Golias, Short-
term tra�c forecasting: Where we are and where were
going, Transportation Research Part C: Emerging Tech-
nologies 43 (2014) 3–19.

[3] E. I. Vlahogianni, M. G. Karlaftis, J. C. Golias, Sta-1205

tistical methods for detecting nonlinearity and non-
stationarity in univariate short-term time-series of traf-
fic volume, Transportation Research Part C: Emerging
Technologies 14 (5) (2006) 351–367.

[4] Y. Li, R. Yu, C. Shahabi, Y. Liu, Di↵usion convo-1210

lutional recurrent neural network: Data-driven tra�c
forecasting.

[5] M. S. Ahmed, A. R. Cook, Analysis of freeway tra�c
time-series data by using Box-Jenkins techniques, no.
722, 1979.1215

[6] M. Lippi, M. Bertini, P. Frasconi, Short-term tra�c
flow forecasting: An experimental comparison of time-
series analysis and supervised learning, IEEE Trans-
actions on Intelligent Transportation Systems 14 (2)
(2013) 871–882.1220

[7] F. G. Habtemichael, M. Cetin, Short-term tra�c flow
rate forecasting based on identifying similar tra�c pat-
terns, Transportation Research Part C: Emerging Tech-
nologies 66 (2016) 61–78.

[8] Y.-S. Jeong, Y.-J. Byon, M. M. Castro-Neto, S. M.1225

Easa, Supervised weighting-online learning algorithm
for short-term tra�c flow prediction, IEEE Trans-
actions on Intelligent Transportation Systems 14 (4)
(2013) 1700–1707.
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