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A B S T R A C T   

In this work, we propose to combine massive variables collected during the evolution of patients in end-stage 
renal disease (ESRD), along with machine learning techniques to improve mortality prediction in ESRD. This 
work was carried out with a retrospective cohort of 261 patients, their evolution from diagnoses, laboratory tests, 
and variables recorded during haemodialysis sessions was combined. Random forest (RF) was used to explore the 
inference of the variables and define a base performance for long short-term memory (LSTM) recurrent neural 
networks. Then, LSTMs were trained with several groups of variables chosen by expert staff, the ones found by RF 
and all the available ones. The best performance was obtained using all the variables, but the ones found by RF 
had better predictive capacity than those chosen with expert knowledge. Integrating the three sources of in
formation supposes an improvement in more than 4% in the area under the receiver operating characteristic 
curve. The approach is sufficiently robust to predict mortality at different time ranges. The massive integration of 
variables from patients in ESRD, together with the use of LSMTs, supposes an exceptional improvement in the 
predictive models of mortality. In conclusion, the machine learning approach can lead to a change in the 
paradigm in the analysis of predictive factors in mortality in ESRD.   

1. Introduction 

Chronic kidney disease (CKD) represents an epidemiological prob
lem, USA 11% and Spain 9.2% in the adult population [1]. According to 
the World Health Organization (WHO), it has an indirect impact on the 
morbidity and mortality of the global population, increasing the mor
tality risk of the deadliest diseases [2,3]. CKD is closely related to car
diovascular (CV) risk, which is responsible for the highest mortality, 
especially on the end-stage renal disease (ESRD), where death from CV is 
one of the leading causes [1]. 

The most widely used way to detect the risk of suffering these kinds 
of pathologies is based on evidence-based medicine, which is translated 
into best practice guidelines, such as the American Heart Association/ 
American College of Cardiology (ACC/AHA) [4], QRISK2 [5], Fra
mingham [6] or Reynolds [7]. They are based on assuming linear re
lationships between risk factors and events. Nevertheless, the 
application of more sophisticated algorithms that use non-linear re
lationships, and can offer better performance in predictive models is still 

an open issue. 
Thus, in the era of machine learning (ML), it is possible to generate 

complex models supported by large amounts of data [8–10]. Moreover, 
large-scale studies have begun to be described with ML to establish 
prognosis of mortality in the general population using routine clinical 
data [11–14]. However, those that exist in ESRD use approaches based 
on classical statistics [15–18] and some of them present a doubtful 
benefit [19]. 

There are few studies where ML techniques are applied to CKD. 
Salekin [20] and Abdullah [21] detect CKD using different classifiers 
(support vector machine, k-Nearest Neighbors, Random Forest (RF) and 
artificial neural networks (ANN)), Doi [22] trains logistic regression to 
predict mortality in patients starting with haemodialysis, and Tita
piccolo [23] stratifies cardiovascular risk with RF. Predictive models of 
mortality using ML are even scarcer in the ESRD population, Akbilgic 
[24] used RF to predict mortality from one month to one year with an 
Area Under the Receiver Operating Characteristics (AUROC) of 0.736. 

The aim of this manuscript is twofold, to present an exploratory 

* Corresponding author. 
E-mail addresses: edwar.macias@uab.cat (E. Macias), antoni.morell@uab.cat (A. Morell), javier.serrano@uab.cat (J. Serrano), jose.vicario@uab.cat (J.L. Vicario), 

jibeas@telefonica.net (J. Ibeas).  

Contents lists available at ScienceDirect 

Informatics in Medicine Unlocked 

journal homepage: http://www.elsevier.com/locate/imu 

https://doi.org/10.1016/j.imu.2020.100351 
Received 15 February 2020; Received in revised form 10 May 2020; Accepted 10 May 2020   

mailto:edwar.macias@uab.cat
mailto:antoni.morell@uab.cat
mailto:javier.serrano@uab.cat
mailto:jose.vicario@uab.cat
mailto:jibeas@telefonica.net
www.sciencedirect.com/science/journal/23529148
https://http://www.elsevier.com/locate/imu
https://doi.org/10.1016/j.imu.2020.100351
https://doi.org/10.1016/j.imu.2020.100351
https://doi.org/10.1016/j.imu.2020.100351
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2020.100351&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Informatics in Medicine Unlocked 19 (2020) 100351

2

analysis of the potential by using massive variables and exploit temporal 
dependencies through long short-term memory (LSTM) recurrent neural 
networks (RNN) for improving predictive models of mortality in ESRD. 
It is evaluated the predictive capacity of several groups of variables. This 
study also takes advantage of the number of samples generated by the 
continuous monitoring of patients to propose predictive models of short- 
term mortality, which in our knowledge have not yet been achieved an 
AUROC higher than 0.736. This study points to the potential benefits of 
ML approaches to assess the medical staff with ESRD patients. It en
courages the development of more powerful models using specialized 
ANNs as a predictive mechanisms. 

2. Materials and methods 

This retrospective study was carried out on a homogenous cohort of 
1178 HD patients from a single centre with a reference population of 
almost half a million inhabitants. Of 1178, it was possible to extract 
information from 537 deceased patients, and of these, 261 provided the 
necessary massive data. These data were taken from the Information 
System of the Parc Tauli University Hospital, from the Haemodialysis 
(HD) Unit at the Nephrology Department from 2007 to 2018. This 
project passed through the ethics committee (Code 2018/508) and 
subsequently anonymised following the usual protocol. Inclusion 
criteria was being of legal age (> 18years). The available data include 
diagnoses, laboratory tests, and variables from haemodialysis sessions. 
The exposure period is from the moment the information of a patient is 
registered in ESRD in the information system of the hospital until the 
death of the patient. 

To exploit the predictive capacity of variables and their temporal 
dependencies in the follow-up of patients in ESRD, data were first 
selected, then pre-processed and finally, the predictive models were 
generated in two stages. The first one using RF, due to its easy to tune 
and computational cost, to find the most important variables and for 
setting a baseline performance for more sophisticated algorithms. The 
second stage has the twofold purpose of exploiting temporal de
pendencies through LSTMs and analysing the impact of sets of variables 
including the ones found in the previous stage, groups of variables 
chosen by the expert staff and using all the available ones. All the 
necessary steps to carry out the prediction of mortality for patients in 
ESRD can be seen in Fig. 1 and are described below. 

2.1. Data selection 

Variables from the history of diagnoses, laboratory tests, HD sessions 
and demographics are taken as input for developing the predictive 
models. The outcome to predict is the mortality of patients. The 

variables are filtered based on their percentage of missing values (MV), 
variables with more than 43.2% of MVs are discarded. In Table 1 can be 
appreciated the selected features. Next are described the most relevant 
sources of information for this study. 

2.1.1. Diagnoses 
Refers to the historical hospital admissions that a patient has had. 

Each entry is associated with some particular diagnoses determined by 
examinations and evaluations of medical staff, which is encoded using 
the international classification of diseases (ICD9). 

2.1.2. Laboratory 
All the associated variables with samples from haematology, 

biochemistry, or some ESRD related hormones are stored as laboratory 
events. Some of them are taken with more or less periodicity. For 
instance, the most regular is the haemoglobin, which is measured every 
month, while proteins and PTH are measured every four months. Other 
measurements like immunology or tumour markers are taken more 

Fig. 1. Framework for developing predictive models in ESRD, G11 to G33 refer to set of variables ranked by their importance based on the expert staff experience. In 
pre-processing stage some features were generated based on 1-hot encoded for categorical features. 

Table 1 
Selected variables from the data sources. The outcome is coded according to the 
death date of the patient. SBP and DBP refer to systolic and diastolic blood 
pressure, HR to heart rate and Temp to temperature.  

Laboratory tests Haemodialysis Diagnoses 

Calcium Acc weight Arteriopathy 
Creatinine Average flow Cardiopathy 
Ferritin Blood vol dia Diabetes 
Glucose DBP post HD Enteropathy 
Haemoglobin DBP pre HD Fracture 
Haemoglobin Dry weight Haemorrhage 
HDL cholesterol HD time Hepatopathy 
Hematocrit HR post HD Hypertension 
Iron HR pre HD Infection 
KTV Hypotension Neoplasia 
LDL cholesterol SBP post HD Pneumopathy 
leucocytes SBP pre HD  
Lymphocytes Temp post HD  
Monocyts Temp pre HD Demographics 
Neutrophil Vascular access Age 
Phosphorus  Sex 
Platelets   
Potassium   
PTH  Outcome 
Reticulocytes  Months to decease 
Sodium   
Total cholesterol   
Total proteins   
Triglycerides   
Urea    
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exceptionally. 

2.1.3. HD variables 
During the HD sessions, 3–4 per week, some variables are recorded at 

the beginning and the end of the HD session. Registered information 
includes the type of vascular access, duration of the session, episodes of 
hypotension and other variables taken from the haemodialysis machine, 
such as dry weight, temperature, systolic and diastolic blood pressure, 
heart rate, average flow, among others. 

2.2. Data pre-processing 

In general, raw data from electronic health records (EHR) are not 
appropriately structured to generate or test learning models. Thus, to 
prepare the information for predictive models, it is necessary to explore 
the variables, clean them and coherently correct wrong values. Below 
are the problems found in the samples.  

� Data structure  
� Incorrect values in variables  
� Missing values 

Initially, the information has to be structured. The diagnoses were 
grouped into 11 general ones based on expert knowledge. Then, they 
were structured in such a way that they became new variables for the 
final data set. In Fig. 2, this transformation can be appreciated. Later, the 
three information sources are combined based on their date they were 
measured. Finally, the follow-up of patients was summarized into one- 
month records, i.e., using the mean of variables in case of having 
more than one sample per month. 

To correct the outliers and imputed the MVs, the ranges of the var
iables in laboratory tests and HD sessions were decided by the expert 
staff. The outliers of variables are identified and replaced with MVs to 
avoid losing the time stamp of variables. Then, the MVs are treated in 
two stages. The first one based on the individual imputation of the 
variables of each patient using second-order interpolations, to preserve 
trends in the evolution of the patient. In the second stage, MVs are 
imputed for patients without samples in some variables. Thus, from 
patients in training set, without MVs, the average value from each 
variable is extracted and used to impute MVs of the remaining patients. 

2.3. Learning models 

Initially, RF was used with the twofold purpose of establishing a 
baseline performance in terms of prediction, due to its easy set of pa
rameters and computational cost, and quantifying the importance of the 

features for the final predictor. Then, due to the structure of the data, the 
different temporal dependencies are exploited using LSTMs. 

2.3.1. Feature selection-Random forest 
RF combines predictions based on decision trees [25]. They are 

trained with random subsets of data Dn. Branches of the decision trees 
are generated based on the calculation of the impurity of their features 
through the Gini index, 

GðDnÞ¼ 1 �
Xm

i¼1
p2

i (1)  

where m is the number of classes (2 in our case, dead or alive), and pi is 
the relative frequency of class i in a given branch of the tree. Initially, 
GðDnÞ is calculated for all the possible combinations of features and 
splitting thresholds. The combination which achieves the lowest value of 
GðDnÞ is chosen as far as it represents the best possible classification of 
Dn at this point of the tree. In subsequent branches, the same procedure 
is repeated up to the specified depth. In an RF approach, several trees are 
computed and fed with subsets of the data. Finally, the outcome pro
duced by most of the trees is taken as the final decision (see Fig. 3). 

On the other hand, the Gini index allows quantifying the importance 
of the features. This characteristic is used in this work to find the most 
relevant variables, more robustly, for predictors by combining a recur
sive feature elimination (RFE) [26] approach with RF. The traditional 
way to find the importance of features is to relate them individually with 
the outcome, without taking into account the interactions between 
variables. RFE solves this issue generating several predictors iteratively. 
Thus, in each iteration a predictor offer a performance measurement and 
the ranking of features. In the next iteration, the less important feature is 

Fig. 2. Initially, each entry is associated with a series of diagnoses. In the new scheme, the most important diagnoses are selected and coded using one-hot encoding.  

Fig. 3. Random forest data flow, at the end the class decision is made by voting 
of each tree. 
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eliminated and the new predictor will yield another performance and a 
new ranking, and so on. 

2.3.2. Predictive model-LSTM 
ANNs have been successfully applied in the past to classification 

problems. The goal is, given a set of N input examples xn, where n ¼ 1;
…;N and its corresponding classification targets tn ¼ ½t1;n; …; tK;n�, to 
learn the best non-linear model that maps the input to its respective 
target. Note that tn has all values equal to 0 except the class where xn 
belongs to, which has a value of 1. In the case of the prediction of 
mortality of patients in ESRD, the objective is to classify data collected 
during a period of ndata months, to be able to determine if the patient will 
be alive or not after npred months. Thus, driven by a considerable number 
of training samples, an ANN can learn an optimised non-linear function 
in an iterative process so that the error between the input and the output 
is minimised. Fig. 4 shows the structure of a basic ANN. 

An ANN is composed of L layers (l ¼ 0;…;L), where l ¼ 0 represents 
the input layer, Nl neurons per layer and their corresponding in
terconnections. Samples are first presented through the input layer, 
whose neurons connect with one or more hidden layers, and they link to 
the output layer where the result of the model is obtained. The output of 
the i-th neuron at the l-th layer (the so-called activation) is the linear 
combination of the outputs at the previous layer, taking into account the 
weights learned, and modified by a specific non-linear function fð �Þ, 
usually the sigmoid, the hyperbolic tangent or the Rectified Linear Unit 
(ReLU). In other words, 

al
j ¼ f

 
XNl� 1

i¼0
wl� 1

i;j al� 1
i

!

(2)  

where wl� 1
i;j is the weight that connects the i-th activation at layer l� 1 to 

the input of the j-th neuron at layer l. Note that al
0 ¼ 1 in all layer except 

the output layer to take into account the bias term. 
At the output layer, activations are usually normalised (e.g., softmax) 

so that the resulting values take a value between 0 and 1. They can be 
interpreted as a probability estimation; for example, yk represents the 
probability that the input example belongs to the k-th class. 

The network is trained in order to achieve a minimum of a given cost 
function that measures the error between predictions and the corre
sponding true values. A common function is cross-entropy, 

C
�n

wl
i;j

o�
¼ �

XN

n¼1

XK

k¼1
tk;nlog

�
yk

�
xn;
n

wl
i;j

o��
(3) 

A known problem using ANN is overfitting, which happens when the 
network does not learn a model from the underlying data but memorizes 
the individual examples. A common way to reduce this effect is applying 
L2 weight regularization [27], a quadratic penalty function is added to 
the weight, i.e. (3) is modified to 

C’
�n

wl
i;j

o�
¼C

�n
wl

i;j

o�
þ

λ
2N
XL

l¼1

XNl� 1

i¼1

XNl

j

�
wl

i;j

�2
(4) 

With L2 regularization, controlled by λ, we limit the adaptation ca
pacity of the network by penalizing large weights. 

Training is carried out with a gradient descent approach and the so- 
called back-propagation algorithm [28]. Thus, weights of the network 
are updated iteratively towards the opposite of the gradient, being the 
step controlled by the learning rate (LR). Currently, some algorithms 
accelerate the learning process by dynamically changing the LR. In this 
work we consider adaptive moment estimation (ADAM) [29]. 

On the other hand, RNNs are a variation of the networks shown in 
Fig. 4. Unlike feed-forward ANNs, RNNs use feedback connections to 
retain information about past events. In recent years one of the RNN 
implementations that have been successful is LSTM. To carry out mor
tality prediction in ESRD, LSTMs are used to exploit temporal de
pendencies in the follow-up of the patients. Fig. 5 shows the component 
of an LSTM cell. The memory mechanism is controlled by the gates, 
made up of ANNs with a specific activation function at the output layer. 
Each cell is responsible for filtering relevant information. The core idea 
is to combine the information from the gates in the cell gate, ct. The 
forget gate, ft , indicates which information from the combination of the 
previous state, ht , and the input, xt , is discarded. Then new information 
is added to ct through the combination of two gates, the input gate, it, 
which decides the information to updated and the candidate values, c’

t. 
Finally, ct is updated and the output is a filtered version of the cell gate 
modulated. 

In the case of mortality in ESRD, LSTMs are fed with concatenated 
vectors that contain the evolution of n months and the prediction is 
carried out to p months. For instance, Fig. 6 illustrates the follow-up of a 
patient during m months, from the first encounter with the hospital’s 
system to the death event. The follow-up is structured into samples, 
taking information of n months of evolution. Then, using the timestamp 
of the samples and date of death, d in the figure, the moths to the death 
event of the structured samples are computed. Thus, the binary target of 
the generated data depends on the prediction range using the rule, 

f ðtdÞ¼

�
0; if ​ td > p
1; otherwise (5)  

where p is the prediction range, td is the time to the death event. ’00 and 
’10 indicates the class sample, alive and deceased respectively. 

3. Results 

The samples for this analysis were extracted from 261 patients who 
had the three types of variables, as described in Section 2.1. Table 2 
shows the description of the population. Because the duration of HD 
treatment varies across the cohort, each patient generates a different 
number of monthly samples. In total, 8394 monthly samples were 
extracted. In this work mortality is predicted to 1, 2, 3, 6 and 12 months. 
Thus, five datasets with the same data but different targets, after 
applying the transformation in Eq. (5), are generated. Fig. 7 shows the 
mortality trajectories for patients in the training and test sets. 

For models development, patients were split into training and test 
sets (80-20%). The training set was divided into 5-folds for cross- 
validation (CV), see Fig. 8. With this approach, it is possible to find 
the hyperparameters for RFE-RF and LSTMs. Such parameters are the 
ones that can be calibrated manually. For RFE-RF the number of trees, 
depth of the decision trees and splitting criteria. For LSTMs the number 
of cells, neurons per cell, LR, among others. Then, with the hyper
parameters fixed, the parameters of the network (weights of the LSTMs) 
are computed and five different models, M1;M2;…;M5 in Fig. 8, from 
the 5-folds are obtained as a result. The evaluation is done in the initial 
test set. Fig. 4. Structure of a feed-forward artificial neural network with two hid

den layers. 
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To estimate the performance of the classifiers in the test set, AUROC 
was used. It measures the area under the graphic representation of the 
general accuracy, showing the variation of the sensitivity and specificity 
of a binary classifier when the decision threshold varies. The metric 
takes values between 0 and 1, with 1 corresponding to the perfect 
classifier. 

3.1. Feature selection-RF 

Our first experiment studies the importance of the available features 
automatically, using an RF approach, together with an RFE approach. 
The optimal hyperparameters for RF were 103 trees, maximum depth of 
3, using the Gini index for splitting the nodes and calculate the impor
tance of features. For RFE approach, the 5-folds were used to find the 
best features more robustly. With the approach, it was found that 42 
features offered the best performance for all the predictors. AUROCs of 
0.737, 0.714, 0.712, 0.668 and 0.615 were the baseline performance 
predicting mortality to 1, 2, 3, 6 and 12 months, respectively. Fig. 9 
illustrate the AUROC as a function of the number of considered features 
for the prediction of mortality to one month. 

The features not considered by RF-RFE were: cardiopathy, enterop
athy, haemorrhage, hepatopathy, hypertension, neoplasia, pneumo
pathy, fracture, infection and the type of vascular access. 

3.2. Predictive model-LSTM 

In the second experiment, we consider a more powerful model based 
on LSTMs. After parameter optimization, we found that the best 
configuration was using an LSTM with two cells and with 750 and 500 
units, respectively. We used ADAM optimizer with LR ¼ 0.001 and L2 
regularization with λ ¼ 0:001. Then, the LSTM approach is evaluated in 
several groups of variables chosen by the experience of the expert staff, 
the group of variables found by RFE-RF and all the available ones. 
Table 3 shows the importance level of both laboratory and HD variables 
as determined by the experience of the hospital expert staff. 

Fig. 10 shows ROC curves comparing the groups of variables using a 
4 months to feed the LSTM and predicting mortality to 1 month. As 
illustration, Group_12 considers laboratory variables with an impor
tance label of 1 and HD session variables with an importance level of 2 
and Group_RFE refers to the ones found by RFE-RF. Note that diagnosis 

Fig. 5. LSTM cell, σ is the sigmoid activation function.  

Fig. 6. Sample structuring from follow-up of a patient with m months in HD treatment to the death event, d.  
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variables (11 in total) are included in all cases. 
Finally, in Fig. 11 we test the performance of our algorithm by 

considering: i) all variables; ii) HD data only and iii) diagnosis and 
laboratory data only. 

4. Discussion 

This work explored how deep learning can help in the study of ESRD. 
After the experiments conducted, in this case, focused on the evaluation 
of mortality, the lessons learned are: i) we can improve model accuracy 

w.r.t. the other works in the literature; ii) including knowledge expert 
not always leads to better models and iii) solutions can guide the 
research in a specific field by revealing possible causal relations not 
explored before, possibly far from human intuition. Table 4, includes a 
performance comparison in terms of AUROC with the existing solutions 
in the literature. Although one-year mortality does not exceed that 
stated in the literature, the improvement in short-term mortality grows 
to 4% if we reduce the prediction time to 3 months. When we compared 
our approach to these other works, we realised that we combined three 
sources of data, i.e., diagnosis, laboratory and HD data, being not the 

Table 2 
Cohort description. Variable Samples/Patient contains the information about the number of samples that the patients generate. For diagnoses, Number of patients 
column represents the total of patients with a specific diagnose. VA refers to vascular access, SBP and DBP to systolic and diastolic blood pressure.  

Feature Units Number of patients MV (%) Mean Std Min Max 

Age Years – 0.0 71.41 10.69 24.00 91.00 
Sex (Women) – 104 0.0 – – – – 
Sex (Men) – 157 0.0 – – – – 
Samples/Patient – – – 26 22 1 116 
Calcium mg/dL 261 10.8 9.10 0.69 6.30 13.00 
Creatinine mg/dL 261 25.0 6.80 2.30 0.30 15.50 
Ferritin ng/mL 261 28.1 472.1 368.32 8.10 6590.00 
Glucose mg/dL 261 25.7 123.30 67.85 13.00 1370.00 
Haemoglobin g/L 261 29.2 6.21 1.26 4.10 13.60 
HDL cholesterol mg/dL 261 18.3 43.73 14.60 4.40 115.60 
Hematocrit L/L 261 1.0 349.990 0.04 0.17 0.49 
Hemoglobin g/L 261 1.1 111.69 14.21 46.00 161.00 
Iron μg/dL 261 38.1 59.44 26.70 10.00 340.00 
KTV mL/min 261 17.3 1.43 0.28 0.42 02.09 
LDL cholesterol mg/dL 261 18.9 83.40 33.20 8.00 240.00 
Leucocytes x109=L  261 1.0 7.63 4.97 1.25 11.3 

Lymphocytes x109=L  261 5.8 1.50 0.76 0.22 12.74 

Monocyts x109=L  261 5.8 0.56 0.22 0.03 2.69 

Neutrophil x109=L  261 5.8 5.24 2.29 0.22 7.25 

Phosphorus mg/dL 261 26.1 4.33 1.39 0.20 11.80 
Platelets x109=L  261 1.1 223.37 83.17 14.40 1067.00 

Potassium mEq/L 261 35.0 4.95 0.80 0.30 8.90 
PTH pg/mL 261 28.3 228.05 189.17 6.00 3264.00 
Reticulocytes x109=L  261 28.4 5.37 2.69 0.23 35.23 

Sodium mEq/L 261 31.5 138.66 3.59 121.00 198.00 
Total cholesterol mg/dL 261 38.1 149.98 39.41 45.00 432.00 
Total proteins g/L 261 27.6 66.02 6.84 28.5 96.00 
Triglycerides mg/dL 261 18.1 140.49 107.92 20.00 2673.00 
Urea mg/dL 261 43.2 102.40 51.12 20.20 317.20 
Accumulative weight Kg 261 21.7 1.95 0.77 � 3.05 4.44 
Average flow mL/min 261 16.2 290.28 34.48 200.00 414.55 
Blood vol dia mL/min 261 12.0 65.08 10.52 40.00 98.43 
DBP post HD mmHg 261 10.4 65.34 10.22 40.00 105.61 
DBP pre HD mmHg 261 10.5 64.44 10.62 40.00 106.08 
Dry weight Kg 261 0.9 66.78 15.24 31.29 149.63 
HD session time Hours 261 0.0 3.73 0.35 3.50 7.30 
HR post HD BPM 261 10.6 75.59 11.49 41.00 122.00 
HR pre HD BPM 261 6.6 73.19 10.57 42.00 121.17 
Hypotension Cases/month 261 0.0 2 4 0 24 
SBP post HD mmHg 261 13.3 138.11 22.7 57.00 205.00 
SBP pre HD mmHg 261 6.3 137.31 22.19 56.07 218.60 
Temp post HD ∘C 261 16.9 35.58 0.33 33.00 38.20 
Temp pre HD ∘C 261 11.6 35.52 0.34 33.85 38.00 
Arteriopathy – 177 0.0 – – – – 
Cardiopathy – 241 0.0 – – – – 
Diabetes – 204 0.0 – – – – 
Enteropathy – 94 0.0 – – – – 
Fracture – 9 0.0 – – – – 
Hemorrhague – 6 0.0 – – – – 
Hepatopathy – 18 0.0 – – – – 
Hypertension – 223 0.0 – – – – 
Infection – 102 0.0 – – – – 
Neoplasia – 79 0.0 – – – – 
Pneumopathy – 115 0.0 – – – – 
VA (AVF) – 168 0.0 – – –  
VA (Catheter) – 164 0.0 – – – – 
VA (Graft) – 6 0.0 – – – – 
Mortality Months – 0.0 25.52 21.89 1.00 116.00  
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case in the available works. Most of them use either laboratory and 
diagnosis data or HD session data. Fig. 11 shows that the inclusion of all 
variables improves the AUROC at least by 11% in AUROC. 

In order to study how considering knowledge expert influences the 
performance of algorithms, expert staff labelled HD and laboratory data 

according to their importance level, being 1 the highest level and 3 the 
lowest (see Table 3). Accordingly, in Fig. 10 we tested our model with 
several combinations of the subsets of variables. We could expect to 
achieve the best possible performance by using level 1 laboratory data 
together with level 1 HD variables, i.e., Group_11 (recall that diagnostic 

Fig. 7. Kaplan Meier mortality model for training and test set. p ¼ 0.17.  

Fig. 8. Cross validation with 5-folds. Test Data is only used when the hyperparameters are found.  

Fig. 9. Recursive feature selection, with 5-folds cross-validation, using RF as learning model.  
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data is included in all cases). However, the performance achieved is 
similar to Group_33, and the inclusion of all variables boosts the AUROC 
value in 9%. In other words, expert knowledge is undoubtedly relevant, 
but it is also important to explore beyond it. 

Finally, machine learning approaches can also help the research of 
physicians by revealing causal relations possibly not explored before. In 
Fig. 9, we tested how an automatic feature selection tool such as RFE 
may help. In this case, 42 features gave us the best classification per
formance using an RF approach, and when we consider this selection as 
input to our LSTM solution, the performance is close to best one, which 
is obtained with all the features. Therefore, physicians can explore the 
subset of variables selected, reduce or increase it as far as performance is 
sustained (see Fig. 9) and investigate the importance and effects of the 
chosen features. However, it should be noted that RF-RFE did not take 
into account most of the diagnoses or the type of vascular access. This 
evidence could suggest that those variables that were not considered 
important could lead to new medical research. 

5. Conclusion 

In this work, we demonstrate the potential of the massive use of 
variables together with machine learning techniques for the improve
ment of mortality predictive models in ESRD. We designed a baseline 
predictor and feature selector using an RFE-RF approach. Then we 
improve it using LSTM strategy that exploits temporal dependencies in 
the data. We conclude that thanks to considering diagnostic variables 
along with laboratory and HD session data, we could improve perfor
mance in the prediction of mortality in the ESRD patient by at least 4% 
w.r.t. existing works for short-term mortality. Furthermore, results show 
that expert knowledge has to contribute to the analysis, but we shall not 
limit our algorithms to it. In our experiment, the best performance 
achieved by the groups chosen does not exceed the RF-RFE. Therefore, 
machine learning methods like the ones explored here can provide 
feedback to the experts, improve our knowledge and can lead to a 
change in the paradigm in the analysis of predictive factors in mortality 
in ESRD. 

Ethical statement 

The authors of the manuscript certify that the manuscript entitle 
“Mortality prediction enhancement in end-stage renal disease: A machine 
learning approach” has not been and will not be submitted to or published 
in any other publication before its appearance in the "Informatics in 
Medicine Unlocked" journal. 

The data used for this study were taken from the information system 
of the Parc Taulí University Hospital, from the Haemodialysis unit at the 
Nephrology Department. This project passed through the ethics com
mittee (Code 2018/508). 

Next the contributions of the authors are listed. 

Author contribution 

Conception and design of the study: E Macias, A Morell, J Serrano, JL 
Vicario and J Ibeas. 

Adquisition of data: J Ibeas. 
Analysis and/or interpretation of data: E Macias, A Morell, J Serrano, 

JL Vicario and J Ibeas. 
Drafting the manuscript: E Macias, A Morell, J Serrano, JL Vicario 

and J Ibeas. 
Revising the manuscript critically for important intellectual content: 

A Morell, J Serrano, JL Vicario and J Ibeas. 

Table 3 
Ranking of features chosen by the experience of the expert. Their importance are 
marked from 1 to 3, being 3 the less important features. VA refers to vascular 
access.  

Laboratory Importance HD variables Importance 

Calcium 1 HD time 3 
Creatinine 3 HR post HD 1 
Ferritin 2 HR pre HD 1 
Glucose 3 Hypotension 1 
Haemoglobin 1 SBP post HD 1 
HDL cholesterol 2 SBP pre HD 1 
Iron 3 Temp post HD 3 
KTV 1 Temp pre HD 3 
LDL cholesterol 2 VA (AVF) 1 
Leucocytes 2 VA (Catheter) 1 
Lymphocytes 2 VA (Graft) 1 
Monocytes 2   
Neutrophil 2   
Phosphorus 1   
Platelets 3   
Potassium 2   
PTH 1   
Reticulocytes 2   
Sodium 1   
Total cholesterol 2   
Total proteins 3   
Triglycerides 2   
Urea 1    

Fig. 10. Performance comparison between best features found by RFE-RF, the combinations of features chosen by expert staff and using all the available information. 
The groups are generated based on the experience of the medical staff, from Group_11 which can be inferred from the combination of the most important analytics 
with the most important HD variables to Group_33, the least significant ones. 
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