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Simple Summary: Starch is a non-fibrous carbohydrate that represents an important percentage of
pet food composition. The degree of its gelatinization, due to the cooking process, can be a useful
indicator of starch digestibility in the diet. Moreover, fiber fractions are important for animals’
health and nutritional status, so pet food industry is interested in the development of an easy and
cost-effective method to measure these parameters. Results of this study revealed the applicability of
visible/near-infrared spectroscopy to predict total and gelatinized starch, neutral detergent fiber, acid
detergent fiber, and acid detergent lignin in pet food. On the other hand, near-infrared transmittance
technology showed a scarce accuracy. The developed prediction models for total and gelatinized
starch and fiber fractions using visible/near-infrared spectroscopy could be applied during the
manufacturing process to perform quality controls.

Abstract: This study aimed to assess the feasibility of visible/near-infrared reflectance (Vis-NIR)
and near-infrared transmittance (NIT) spectroscopy to predict total and gelatinized starch and fiber
fractions in extruded dry dog food. Reference laboratory analyses were performed on 81 samples,
and the spectrum of each ground sample was obtained through Vis-NIR and NIT spectrometers.
Prediction equations for each instrument were developed by modified partial least squares regressions
and validated by cross- (CrV) and external validation (ExV) procedures. All studied traits were
better predicted by Vis-NIR than NIT spectroscopy. With Vis-NIR, excellent prediction models were
obtained for total starch (residual predictive deviation; RPDCrV = 6.33; RPDExV = 4.43), gelatinized
starch (RPDCrV = 4.62; RPDExV = 4.36), neutral detergent fiber (NDF; RPDCrV = 3.93; RPDExV = 4.31),
and acid detergent fiber (ADF; RPDCrV = 5.80; RPDExV = 5.67). With NIT, RPDCrV ranged from
1.75 (ADF) to 2.61 (acid detergent lignin, ADL) and RPDExV from 1.71 (ADL) to 2.16 (total starch).
In conclusion, results of the present study demonstrated the feasibility of at-line Vis-NIR spectroscopy
in predicting total and gelatinized starch, NDF, and ADF, with lower accuracy for ADL, whereas
results do not support the applicability of NIT spectroscopy to predict those traits.

Keywords: fibrous fractions; NIT; non-fibrous carbohydrates; Vis-NIR; pet food; starch gelatinization

1. Introduction

Starch is a polymer organized in concentric semi-crystalline or amorphous layers constituted by
amylose and amylopectin [1]. In companion animals food, starch represents up to 50% of the product [2].
Starch generally derives from one or few cereal grains added up to 60% of the ingredients [3,4], and
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it represents an important source of energy since its digestion releases molecules of glucose. On the
other hand, fibrous fractions, such as neutral detergent fiber (NDF), acid detergent fiber (ADF), and
acid detergent lignin (ADL), are physiologically important because of their influence on the ingesta
transit time, gastric emptying, and fecal volume [5].

Most of the uncooked cereal starch presents a low digestibility in dogs [4]. Therefore, heat
treatments applied during manufacture play a fundamental role in improving the digestibility of starch
in food. Due to the high proportion of starch in extruded and baked dog diets, the digestibility of
these typologies of dog foods is highly related to the digestibility of this component [4], which can also
potentially affects the apparent total tract macronutrient digestibility, fecal characteristics, and fecal
fermentative end-products in dogs [6]. Extrusion is a widespread technology to produce commercial
dry dog food because of its economicity [7] and its capacity to mix, cook, sterilize, and texturize food
ingredients [2]. Extrusion modifies starch structure, leading to the release of amylose and amylopectin,
which increases the solubility and the capacity to absorb water of this polysaccharide, reducing at the
same time its viscosity [8,9]. The complex of these modifications is known as “gelatinization” [10,11].

Extrusion reduces apparent nitrogen digestibility, enhances colonic fermentation—as revealed by
a decrease in fecal pH associated to the assumption of extruded food [12]—slightly increases dry and
organic matter digestibility likely due to the increase in starch digestibility, and increases ether extract
digestibility [13]. From a quality control perspective, the industry is interested in the ratio between
gelatinized and total starch, which indirectly expresses its availability. No information is available in
literature about the optimal value of this parameter, but as the ratio expresses the amount of digestible
starch among the overall quantity, a high value is usually preferable. Sometimes, a small percentage
of resistant starch is guaranteed to assure butyrate production due to its beneficial effects on the gut
health [14]. Thus, some companies are claiming proportions of gelatinized starch between 90% and
95% in their food products.

Due to the importance of both fibrous fractions and non-fibrous carbohydrates for the animals’
health and nutritional status, a further interest of the pet food industry is the development of an
on-line or at-line rapid and cost-effective method to measure these parameters in order to monitor food
composition. The common reference analyses to quantify starch, gelatinized starch, and fiber fractions
(NDF, ADF, and ADL) are time-consuming, expensive, and need qualified analysts to be performed.
On the other hand, near-infrared spectroscopy is already routinely used in most of pet food factories
for the determination of gross composition of their products. This method offers a rapid, objective,
easy to manage, chemical-free, and non-destructive analysis of several traits simultaneously at a lower
cost than the common reference analyses [15–17], facilitating quality control.

Infrared spectroscopy capacity to predict food compounds is based on the bonds between hydrogen
and elements like C, O, and N (C-H, O-H, and N-H), making total starch, gelatinized starch, and fibrous
fractions good candidates to be accurately predicted with this technology. Infrared spectroscopy has
already demonstrated its ability to predict proximate composition parameters—such as moisture,
protein, and fat—of dog food [18–20], starch, and ADL in compound feeds for rabbits [21] and starch,
NDF, ADF, and ADL in compound feeds for swine [22]. However, to the best of our knowledge, there
is no information regarding the ability of near-infrared spectroscopy to predict starch, gelatinized
starch, and fiber fractions in dog food. Therefore, the aim of this study was to assess the feasibility of
visible/near-infrared spectroscopy in reflectance mode and near-infrared spectroscopy in transmittance
mode to predict total starch, gelatinized starch, and fiber fractions in extruded dry dog food.

2. Materials and Methods

2.1. Sample Selection

A total of 81 sealed commercial packages of 2, 2.5, and 3 kg of extruded dog food intended for
puppies and adults of several breed sizes (Table 1) were collected from March 2018 to April 2019 from
a pet food industry in North Italy (Dorado S.r.l.; Monsole di Cona, Venice, Italy). The diversity of the
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selected products was considered as representative of the availability of extruded dry dog food in the
Italian market and provides a high variability that is necessary to develop a prediction model [23,24].
Table 2 shows the chemical composition—dry matter (DM), crude protein (CP), ether extract (EE), and
ash—as reported by the manufacturer. Moreover, Tables S1 and S2 report the ingredients and chemical
composition, respectively, of each single package included in the study. Once received, packages were
stored in absence of light and at room temperature in a dedicated area of the food laboratory of the
Department of Agronomy, Food, Natural resources, Animals and Environment of the University of
Padova (Legnaro, Italy) until analyses were performed. For the analyses, kibbles (100 g) from each
package were grounded in a mill with a 1-mm screen (Retsch Grindomix GM200; Retsch GmbH & Co,
Haan, Germany) and divided into two aliquots: one was subjected to chemical analysis, and the other
underwent spectrophotometric analysis with two different instruments.

Table 1. Brief description of the commercial dry dog food samples included in the study.

Main Carbohydrates
Source

Main Protein
Sources Dog Size Life Stage Number of

Packages

Oats only chicken medium adult 2

Corn chicken, duck, fish,
lamb, rabbit

small, medium,
medium/large, large puppy, adult 25

Potato
chicken, duck,
horse, rabbit

venison
small, medium/large puppy, adult 14

Pea chicken, pork small, medium/large adult 14

Rice fish, lamb, pork small, medium,
medium/large, large adult 13

Sorghum chicken, pork small, medium,
medium/large, large puppy, adult 13

Table 2. Chemical composition (g/100 g dry matter (DM)) of the commercial dry dog food samples
(n = 81) included in the study reported by the manufacturer.

Trait Mean SD Minimum Maximum CV

Dry matter 92.00 0.00 92.00 92.00 0.00
Crude protein 28.98 4.68 23.91 40.22 16.10

Crude fats 15.90 3.45 10.33 21.74 21.71
Crude Fibers 3.62 2.59 2.28 15.22 71.56
Crude Ash 7.32 1.34 2.50 9.78 18.34

SD = standard deviation and CV = coefficient of variation; %.

2.2. Reference Analysis

Milled samples were analyzed for the total amount of starch using an internal method. Briefly,
500 mg of sample were weighed in a 100-mL PYREX glass tube (SciLabware, Stoke on Trent, the United
Kingdom) and added 50 mL of KOH (Carlo Erba, Milano, Italy) 0.5 M; the mixture was quickly mixed
with an electric vortex mixer, heated in an shaking water bath oscillating 80 times/min at 60 ◦C for
60 min, and then cooled to room temperature. Thereafter, glacial acetic acid of a high degree of purity
(>95%) (Carlo Erba, Milano, Italy) was added by pipetting to the solution until reaching a pH between
4.6 and 4.8, measured by pH-meter with temperature probe correction. Subsequently, amyloglucosidase
solution was produced by adding in a 50-mL PYREX glass flask (Schott Duran, Wertheim, Germany)
22.5 mg of amyloglucosidase standard from Aspergillus niger (10115, Sigma-Aldrich, Steinheim, Gemany)
with an aliquot of deionized water (Millipore Corporation, Burlington, MA, USA), dissolved in an
ultrasonic bath for 10 min, and made up to volume with deionized water. Two milliliters of the
amyloglucosidase solution were added to the sample solution and incubated over night at 40 ◦C
for the enzymatic hydrolysis. After cooling, the whole solution was transferred to a 100-mL glass
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flask (Schott Duran, Wertheim, Germany), diluted with deionized water to capacity, and shaken.
Then, an aliquot of 10 mL was transferred into a 10-mL PYREX glass tube (SciLabware, Stoke on
Trent, the United Kingdom), centrifuged at 2700× g for 10 min at room temperature (20 ◦C), and the
supernatant was filtered through a 0.45-µm filter. Finally, 10 µL of the filtered supernatant was injected
in a high-performance liquid chromatography spectra system equipped with an Aminex HPX 87H
column (Bio-Rad, Hercules, CA, USA) and aqueous solution of sulfuric acid 0.0025 N as the mobile
phase, for the quantification of glucose. The working conditions were: flow rate of 0.6 mL/min and
cell internal temperature of 38 ◦C. A glucose standard solution and a calibration line were made
for the quantitative determination of glucose. To prepare the glucose standard solution, 200 mg of
D-(+)-glucose anhydrous (G-7528, Sigma-Aldrich, Steinheim, Germany) were weighed in a 50-mL
glass flask and were made up to volume with deionized water. Afterwards, for each calibration level,
a known aliquot of the glucose standard solution was put in a 25-mL flask making up to volume with
sulfuric acid 0.1 N. Starch quantification was performed in duplicate.

Damaged starch quantification was performed using a Megazyme kit (Megazyme Intl. Ireland Ltd.,
Co., Wicklow, Ireland) following the method 76-31.01 of the American Association of Cereal Chemists
(AACC) that consists in an enzyme digestion procedure with purified fulgal α-amylase that only affects
damaged starch. The oligosaccharides formed were treated with purified amyloglucosidase to obtain
the glucose. Even if quantified damaged starch does not completely correspond to gelatinized starch,
considering the extrusion process conditions, we assume that all the damaged starch in the matrix
undergo gelatinization, and thus, in this case, the two parameters present comparable values [13,25].
The fiber fractions were also analyzed according to official methods [26]: NDF, method 2002.04, and
ADF and ADL, method 973.18.

2.3. Near-Infrared Spectroscopy Analysis

Each sample was analyzed using two infrared instruments: a visible/near-infrared
spectrophotometer in reflectance mode (Vis-NIR) and a near-infrared spectrophotometer in
transmittance mode (NIT). Both instruments worked at room temperature (20 ◦C) and were located
in the same laboratory. The same sample was scanned consecutively with both instruments. Spectra
were collected using ISIscan Nova and Mosaic software (FOSS Electric A/S, Hillerød, Denmark).

For the Vis-NIR instrument, 50 g of ground sample were placed in a large FOSS cup (diameter
105 mm, depth 35 mm; FOSS Electric A/S, Hillerød, Denmark) and scanned by NIRS DS2500 (FOSS
Electric A/S, Hillerød, Denmark) from 400 to 2500 nm every 0.5 nm. Each spectrum was the average of
32 subspectra collected during the automatic rotation of the FOSS cup and recorded as log(1/reflectance).
For the NIT instrument, the same 50-g ground sample was placed in a sample cup (diameter 140 mm,
depth 14 mm) and scanned by FoodScan (FOSS Electric A/S, Hillerød, Denmark) from 850 to 1050 nm
every 2 nm. Each spectrum was the average of 16 subspectra collected during the automatic rotation of
the cup and recorded as log (1/transmittance).

2.4. Chemometric Analysis

Chemometric analysis was performed using WinISI 4 software (Infrasoft International, Port
Matilda, PA, USA) through modified partial least square regression analysis. The prediction equations
for each trait were developed using (i) the complete dataset (n = 81) and then tested by leave-one-out
cross-validation, and (ii) a subset as the calibration set using 75% of the samples (n = 60) and then
tested on the remaining 25% of the samples performing an external validation (n = 21). To establish
the calibration and the validation set, the complete dataset was randomly divided into two subsets
with similar mean and standard deviations for each trait. In the calibration procedure, to increase
the accuracy in terms of the coefficient of determination and residual predictive deviation, three
passes of outliers elimination were applied. The critical T-statistic value set for T-outliers detection
was 2.5, removing the samples whose predicted value deviated more than 2.5 standard errors of
cross-validation from the reference value. In order to develop the most accurate calibration models,
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different combinations of scatter corrections (NONE, no correction; D, detrending; SNV, standard
normal variate; SNV + D, standard normal variate and detrending; MSC, multiplicative scatter
correction; WMSC, weighted multiplicative scatter correction; and ISC, inverted scatter correction)
and mathematical treatments (0,0,1,1; 1,4,4,1; 1,8,8,1; 2,5,5,1; and 2,10,10,1, where the first digit is the
number of the derivative, the second is the gap over which the derivative is calculated, the third is the
number of data points in the first smoothing, and the fourth is the number of data points in the second
smoothing [27]) were applied.

The best calibrations were assessed based on the number of latent factors (LF), the coefficient
of determination of calibration (R2

C), cross-validation (R2
CrV), and external validation (R2

ExV);
the standard error of calibration (SEC), cross-validation (SECrV), and external validation (SEP); and
the residual predictive deviation of cross-validation (RPDCrV) and of external validation (RPDExV),
calculated as the ratio of SD to SECrV or SEP, respectively [28]. Residuals of prediction equations
obtained performing cross- and external validations were normally distributed, and bias did not differ
statistically from zero.

3. Results

3.1. Chemical Composition of the Samples

Total and gelatinized starch were 34.22 g/100 g and 22.99 g/100 g on DM, respectively (Table 3).
The average ratio gelatinized/total starch was 0.68. Fiber fractions were 17.48, 4.67, and 1.85 g/100 g
DM for NDF, ADF, and ADL, respectively (Table 3). Variation of starch and gelatinized starch among
samples was around 25%, while coefficient of variation (CV) of the fiber fractions ranged from 37%
(NDF) to 57% (ADF).

Table 3. Chemical composition (g/100 g DM) obtained by reference analyses of dry dog food samples
(n = 81) included in this study.

Trait Mean SD Minimum Maximum CV

Total starch 34.22 7.64 11.87 46.77 22.3
Gelatinized starch 22.99 6.20 9.49 36.98 27.0

NDF 17.48 6.52 8.21 37.74 37.3
ADF 4.67 2.65 2.28 17.39 56.7
ADL 1.85 0.82 0.43 4.58 44.3

ADF = acid detergent fiber, ADL = acid detergent lignin, CV = coefficient of variation, NDF = neutral detergent
fiber, and SD = standard deviation.

3.2. Near-Infrared Spectrum and Predictions Models

The average raw absorbance spectrum of the samples obtained with the two instruments are
depicted in Figure 1. The Vis-NIR raw spectrum revealed sharp peaks at 465, 663, 1202, 1570, 1726,
1755, 1935, 2307, and 2348 nm and two wide peaks from 1454 to 1495 nm and from 2060 to 2168 nm
(Figure 1a). On the other hand, NIT raw spectrum followed a quite fast-decreasing curve (Figure 1b).

The performance of the best prediction models for each instrument using the complete dataset are
reported in Table 4, whereas using subsets for external validation are reported in Table 5. Outliers
detected for the complete dataset were ≤9% for all the variables, except for the total starch predicted by
Vis-NIR and ADF predicted by NIT (14% and 11% of samples deleted, respectively). When performing
external validation (Table 5), outliers detected were ≤10% for all the variables, except for NDF predicted
by NIT (15%). With the complete dataset (Table 4), LF ranged from 8 to 10 in both instruments. When
performing external validation (Table 5), LF ranged from 7 to 10 for Vis-NIR and from 6 to 10 for NIT.
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Figure 1. Average raw spectra of dry dog pet food using (a) visible/near-infrared spectroscopy in
reflectance mode and (b) near-infrared spectroscopy in transmittance mode.

The best prediction models for Vis-NIR with the complete dataset (Table 4) were obtained when
using SNV + D, MSC, WMSC, or ISC as the scatter correction and the first or second derivatives as the
mathematical pretreatment. On the other hand, for NIT with the complete dataset (Table 4), the best
prediction models were achieved without scatter correction (NONE) or D and with raw spectra or the
first derivative. The best prediction models for Vis-NIR performing an external validation (Table 5)
were obtained using MSC, WMSC, or ISC preprocessing techniques to reduce the variability due to
scatter and using the first and second derivatives as the mathematical pretreatment. On the other hand,
for NIT with external validation (Table 5), the best prediction models were obtained with NONE, D,
or ISC, with raw spectra, or with the first or second derivatives.
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Table 4. Fitting statistics of modified partial least square regression models using one-leave-out
cross-validation (n = 81) for total and gelatinized starch, neutral detergent fiber (NDF), acid detergent
fiber (ADF), and acid detergent lignin (ADL) content (g/100 g DM) in extruded dry dog food with visible
and near-infrared reflectance spectroscopy (Vis-NIR) and near-infrared transmittance spectroscopy
(NIT).

Trait LF Mean SD R2
C SEC R2

CrV SECrV RPDCrV

Vis-NIR, 400–2500 nm
Total starch 8 34.89 7.34 0.99 0.59 0.97 1.16 6.33

Gelatinized starch 9 23.04 6.10 0.98 0.89 0.95 1.32 4.62
NDF 10 16.81 5.97 0.97 1.03 0.93 1.52 3.93
ADF 9 4.53 2.67 0.99 0.26 0.97 0.46 5.80
ADL 9 1.81 0.82 0.98 0.11 0.93 0.22 3.73

NIT, 850–1050 nm
Total starch 8 34.84 7.02 0.88 2.42 0.84 2.77 2.53

Gelatinized starch 10 22.82 6.15 0.83 2.55 0.77 2.94 2.09
NDF 9 17.46 6.55 0.89 2.18 0.80 2.90 2.26
ADF 10 4.10 1.21 0.80 0.54 0.67 0.69 1.75
ADL 10 1.89 0.81 0.88 0.28 0.85 0.31 2.61

LF = optimal number of latent factors, R2
C = coefficient of determination of calibration, R2

CrV = coefficient of
determination of cross-validation, RPDCrV = residual predictive deviation of cross-validation, SD = standard
deviation, SEC = standard error of calibration, and SECrV = standard error of cross-validation.

Table 5. Fitting statistics of modified partial least square regression models using external validation
for total and gelatinized starch, neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid
detergent lignin (ADL) content (g/100 g DM) in extruded dry dog food with visible/near-infrared
reflectance spectroscopy (Vis-NIR) and near-infrared transmittance spectroscopy (NIT).

Trait
Calibration Set (n = 60) Validation Set (n = 21)

LF SECrV R2
CrV Bias Slope SEP R2

ExV RPDExV

Vis-NIR, 400–2500 nm
Total starch 6 1.31 0.97 −0.29 0.90 1.60 0.96 4.43

Gelatinized starch 9 1.60 0.93 0.36 1.03 1.58 0.95 4.36
NDF 10 1.68 0.91 −1.12 1.04 1.63 0.95 4.31
ADF 10 0.54 0.95 −0.08 1.03 0.60 0.97 5.67
ADL 10 0.23 0.89 −0.04 1.02 0.28 0.84 2.46

NIT, 850–1050 nm
Total starch 9 2.91 0.83 −0.16 0.89 3.28 0.80 2.16

Gelatinized starch 10 3.16 0.71 0.42 0.91 3.77 0.71 1.83
NDF 8 2.64 0.78 0.11 0.96 2.90 0.74 1.97
ADF 6 0.66 0.70 −0.18 0.77 0.72 0.75 1.77
ADL 9 0.26 0.83 −0.12 0.77 0.38 0.72 1.71

LF = latent factors, R2
ExV = coefficient of determination of external validation, RPDExV = residual predictive deviation

of external validation, SD = standard deviation, SECrV = standard error of cross-validation, and SEP = standard
error of external validation.

For the complete dataset (Table 4), all prediction models for Vis-NIR achieved an RPDCrV > 3.5,
being the best the one for total starch (R2

CrV = 0.97; RPDCrV = 6.33) and the worst for ADL (R2
CrV = 0.93;

RPDCrV = 3.73). On the other hand, considering the complete dataset (Table 4), RPDCrV of the prediction
models with NIT ranged from 1.75 (ADF) to 2.61 (ADL). When performing an external validation
(Table 5), all prediction models for Vis-NIR achieved an RPDExV > 4, with the exception of ADL, being
the best equation the one for ADF (R2

ExV = 0.97; RPDExV = 5.67) and the worst for ADL (R2
ExV = 0.84;

RPDExV = 2.46). On the other hand, in external validation (Table 5), RPDExV of the prediction models
obtained with NIT ranged from 1.71 (ADL) to 2.16 (total starch). Residuals of prediction equations
obtained performing cross- and external validations were normally distributed, and bias did not differ
statistically from zero.
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4. Discussion

4.1. Samples Composition

Gross composition (Table 2) of the samples was consistent with the European Pet Food Industry
Federation (FEDIAF) [29] recommendations. Moreover, total starch and fiber fractions variability,
as well as the ingredients used, reflects the variability of food in the market connected to the formulations
performed to meet the requirements of animals of different life stages and sizes.

Total starch content (Table 3) in the present study was consistent with those reported by several
authors who determined this parameter in dry dog food using a reference analysis [5,30–32]. The ADF
content (Table 3) agreed with results from De-Oliveira et al. [5] and Tran et al. [31]. The gelatinized
starch content (Table 3) and the ratio gelatinized/total starch were slightly lower than the ones reported
by Tran et al. [31]. In particular, the latter author reported a proportion of gelatinized starch of 0.76
in extruded dog food, which may be due to a slightly lower content of fat (9.7 g/100 g DM) in their
samples, since fat content during extrusion has an inverse effect on the starch gelatinization degree [33].
However, in dog food, fats are usually added after the product is extruded, and differences on dog
food composition (other than fat) and the processing condition may have contributed to the differences
observed. Moreover, we obtained a greater NDF content than De-Oliveira et al. [5], who reported an
average of 8.5% of NDF (DM basis) with a lower CV. The greater variability obtained in the present
study is a consequence of the high variability of samples included, which is a key point to developing
robust calibration models [23,24]. The ADL content (Table 3) was greater than the one reported by
Opitz et al. [34] in extruded dog food but lower than that reported by Cipollini [35], who quantified
ADL in the same matrix.

4.2. Vis-NIR vs. NIT Prediction Models Accuracy

The average raw absorbance spectrum for Vis-NIR (Figure 1a) is consistent with the one reported
in other studies with ground dog food samples [23,36,37], even if they did not consider the visible
region of the spectrum. The absorption signals observed at 1202 and 2348 nm are related to the presence
of carbohydrates [38,39]; signals around 1460 and 1935 nm to water [39,40]; absorption signals at 1490
and 1570 nm to protein [40,41]; at 1726, 1755, and 2308 nm to lipids [17]; and at approximately 1450
and 2100 nm to starch [40]. On the other hand, NIT raw spectrum followed a decreasing curve, and no
clear peaks were observed (Figure 1b). However, the NIT spectra agreed with the absorbance observed
in the Vis-NIR spectra (Figure 1a) on the wavelength range from 850 to 1050 nm. The feasibility of
near-infrared spectroscopy to evaluate pet food general composition has been assessed by several
authors [18,19,23,36,37,42], but studies to predict total starch, damaged or gelatinized starch, NDF,
ADF, and ADL in pet food are lacking.

Fitting statistics of the best prediction models were similar for cross- (Table 4) and external
validations (Table 5) when using the same near-infrared spectroscopy instrument. Prediction models
obtained by Vis-NIR technology with cross-validation can be considered good for NDF and ADL
(RPD between 3.0 and 4.0) and excellent (RPD > 4.0) for total starch, gelatinized starch, and ADF.
In compound feed for swine, a similar R2

CrV was obtained for total starch using a near-infrared
instrument working between 1100 and 2500 nm [22]. However, we obtained better R2

CrV for fiber
fractions than the cited authors (0.92, 0.95, and 0.85 for NDF, ADF, and ADL, respectively) [22]. When
prediction models for Vis-NIR were tested with an external validation, predictions were considered
as excellent for all the traits except for ADL, in which the RPD was below 2.5. In compound feed for
rabbits, a lower R2

ExV has been reported for total starch, NDF, ADF, and ADL (0.90, 0.50, 0.82, and
0.59, respectively) using a near-infrared instrument that worked between 1100 and 2500 nm [21] in
comparison to those obtained in the present study.

On the other hand, prediction models using NIT were, in general, unsatisfactory (RPDCrV or
RPDExV < 2.5; Tables 4 and 5, respectively). Only when using cross-validation, prediction models
achieved for total starch and ADL were adequate for screening. The slight difference between the fitting
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statistics obtained for cross- and external validations affected the interpretation of the model accuracy
for some traits, because that interpretation is based on pre-established thresholds [43]. However, those
changes were in agreement with the results obtained in the prediction of fatty acids and minerals in
cheese when comparing cross- and external validations [44]. Although both procedures (cross- and
external validations) are accepted for chemometric analysis, results obtained with external validation
better reflects the prediction ability of the model for future samples [45].

Overall, Vis-NIR resulted to be better than NIT to predict total starch, gelatinized starch, and
fiber fractions in extruded dry dog food. The better performance of infrared in reflectance than in
transmittance mode has been already reported in meat [46] and fresh grass silage quality traits [47];
despite that, this was not observed when predicting minerals in fresh cheese [48]. Considering Figure 1,
the greater accuracy of Vis-NIR technology is probably due to the extent of the range of the wavelength
that provided a more informative spectrum in the first case rather than in the second one.

5. Conclusions

The results obtained demonstrated that total and gelatinized starch, as well as NDF, ADF, and
ADL, can be successfully predicted with Vis-NIR spectroscopy. On the other hand, prediction models
when using NIT spectroscopy presented low accuracy, which suggests that this instrument is not
adequate to predict starch and fiber fractions in extruded dry dog food. A prediction model to determine
gelatinized starch during the manufacture of dry dog food could be useful to monitor its proportion with
respect to total starch. Moreover, to the best of our knowledge, this is the first time that near-infrared
prediction models have been developed to determine gelatinized starch in pet food. Considering the
good prediction models for total starch, gelatinized starch, NDF, ADF, and ADL, further studies are
needed to confirm the feasibility of Vis-NIR to perform on-line or at-line quality control.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/5/862/s1:
Table S1. List of ingredients for each sample as declared by the manufacturer on the label of the product. Table S2.
Chemical composition of each sample as declared by the manufacturer on the label of the product.
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