
This is the submitted version of the article:

Dougherty, Steven T.; Fernández-Córdoba, Cristina; Ten-Valls, Roger; [et al.].
«Quaternary group ring codes : ranks, kernels and self-dual codes». Advances in
Mathematics of Communications, Vol. 14, issue 2 (May 2020), p. 319-332. 14
pàg. DOI 10.3934/amc.2020023

This version is available at https://ddd.uab.cat/record/239907

under the terms of the license

https://ddd.uab.cat/record/239907


Advances in Mathematics of Communications Web site: http://www.aimSciences.org
Volume X, No. 0X, 200X, X–XX

QUATERNARY GROUP RING CODES: RANKS, KERNELS AND

SELF-DUAL CODES

Steven T. Dougherty

Department of Mathematics
University of Scranton

Scranton, PA 18510, USA

Cristina Fernández-Córdoba
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Abstract. We study G-codes over the ring Z4, which are codes that are held

invariant by the action of an arbitrary group G. We view these codes as ideals in

a group ring and we study the rank and kernel of these codes. We use the rank
and kernel to study the image of these codes under the Gray map. We study

the specific case when the group is the dihedral group and the dicyclic group.

Finally, we study quaternary self-dual dihedral and dicyclic codes, tabulating
the many good self-dual quaternary codes obtained via these constructions,

including the octacode.

Codes over Z4 have received an enormous amount of attention ever since the
landmark paper [13]. The major importance of these codes is that they are equipped
with a Gray map to the binary Hamming space. This Gray map allows for many
interesting non-linear binary codes to be viewed as images of linear quaternary
codes under this map. This connection makes it important to understand families
of quaternary codes and what their images are in the binary Hamming space.

Two of the most important and useful tools to study quaternary codes are the
rank and kernel of the code. In this paper, we shall examine both the rank and
kernel of a large family of quaternary codes and use these to examine their image
under the Gray map.

Cyclic codes are one of the most important families of codes. They are charac-
terized by the fact that the code is held invariant by the action of the cyclic group.
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Moreover, cyclic codes have a canonical characterization as ideals in a polynomial
ring which enables a classification of cyclic codes. We generalize this definition to
G-codes, which are codes that are held invariant by the action of an arbitrary finite
group G. When the group is specified we use the name of the group. For example,
we can talk about cyclic codes, dihedral codes, or dicyclic codes. We then show
how these codes can be described in terms of certain skew polynomial rings.

Codes as ideals in group algebras were first studied by Jesse MacWilliams in [15]
and [16]. In these early works the alphabet was always the binary alphabet. Our
goal is to study the alphabet Z4 and use non-abelian groups as well. We begin with
the standard definitions. For a complete description of codes over rings and for any
undefined terms see [4].

A code over the ring Z4 of length n is a subset of Zn4 and a binary code of length
n is a subset of Fn2 . For the ring Z4 we say the code is linear if it is a submodule of
Zn4 and for F2 we say it is linear if it is a sub-vector space of Fn2 .

We attach the usual inner-product to Zn4 , namely [v,w] =
∑
viwi and we define

the orthogonal to a code C in Zn4 as C⊥ = {v |v ∈ Zn4 , [v,w] = 0 ∀w ∈ C}. If
C ⊆ C⊥, we say that C is self-orthogonal and if C = C⊥ we say that C is self-dual.

Denote by φ the standard Gray map φ : Z4 → F2
2 that is defined by 0→ 00, 1→

01, 2→ 11, 3→ 10, see [13] for a complete description of this map. We extend this
map to Zn4 → F2n

2 by applying it coordinatewise. If C is a quaternary code, then
φ(C) is a binary code that is not linear in general. This map has been generalized
to numerous rings. For the widest generalization see [7].

We now give the standard definition of the kernel and the rank of a binary code
and relate this code to its quaternary preimage. Let C be a binary, not necessarily
linear code. First, we say that a linear subcode Ci of C is a maximal linear code in
C if for any linear code Di satisfying Ci ⊆ Di ⊆ C we have Ci = Di.

Define the kernel of C to be

(1) ker(C) = {v ∈ Fn2 | v + C = C}.

If C is a quaternary code then its kernel is defined to be

(2) K(C) = {v ∈ C | φ(v) ∈ ker(φ(C))}.

Note that ker(C) must be a linear code and, in fact, it can be characterized as the
intersection of all maximal linear codes in C. Moreover, the code C can be seen as
the union of the cosets of ker(C) in C. See [9] for a complete description of these
results.

Denote by 〈C〉 the linear binary code generated by the vectors in C. We say that
the rank of C is

(3) rank(C) = dim(〈C〉).

For a quaternary code C we shall also say that rank(C) = rank(φ(C)). Then define
the quaternary preimage of 〈φ(C)〉 as R(C), that is,

(4) φ(R(C)) = 〈φ(C)〉.

We have the following lemma which appears in [9].

Lemma 1. Let C be quaternary linear code. Then, R(C) and K(C) are quaternary
linear codes satisfying

K(C) ⊆ C ⊆ R(C).

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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For vectors v,w ∈ Zn4 , define the operation v ∗w = (v1w1, v2w2, . . . , vnwn). In
[13], it is proved that φ(v + w) = φ(v) + φ(w) + φ(2v ∗w). The following lemma
follows from the last property and can be found in [9].

Lemma 2. Let C be a quaternary linear code.

1. The code φ(C) is linear if and only if 2v ∗w ∈ C for all w ∈ C.
2. The kernel of C is

K(C) = {v ∈ C | 2v ∗w ∈ C, ∀w ∈ C}.
3. The code R(C) is

R(C) = 〈C, 2v ∗w | v,w ∈ C〉.

1. G-codes over Z4

We now give the standard definition of group rings and show how to construct
codes as ideals in these group rings. Let G = {g1, g2, . . . , gn} be a group of order
n and denote by eG the identity element in G. If G is non-abelian then one must
distinguish between left and right ideals. We shall assume throughout that we are
always dealing with left ideals and multiply by group elements on the left. Similar
results can be obtained for right ideals. For abelian groups, the left and right ideals
coincide.

We define the group ring

(5) Z4G = {v1g1 + · · ·+ vngn | vi ∈ Z4, gi ∈ G, 1 ≤ i ≤ n} ,
where the addition in Z4G is done by coordinate addition, namely

(6)

n∑
i=1

αigi +

n∑
i=1

βigi =

n∑
i=1

(αi + βi)gi,

and the product in Z4G is given by

(7)

(
n∑
i=1

αigi

) n∑
j=1

βjgj

 =
∑
i,j

αiβjgigj .

Note that the coefficient of gi in the product is∑
gjgk=gi

αjβk.

We shall consider linear codes over Z4 that are ideals in the group ring Z4G.
First, define the one-to-one map I : Zn4 → Z4G given by

I(v1, v2, . . . , vn) = v1g1 + v2g2 + · · ·+ vngn.

If g ∈ G, v ∈ Zn4 , and I(v) = v = v1g1 + v2g2 + · · ·+ vngn ∈ Z4G, then g(v) is the
vector I−1(gv), where gv = v1gg1 + v2gg2 + · · ·+ vnggn.

If C is a code over Z4 then I(C) = {I(v) | v ∈ C}. If C is linear, then I(C) is
also linear. Note that for g ∈ G,v ∈ Zn4 and λ ∈ Z4, we have that λg(v) = g(λv).
Then, we have I(C) is an ideal in Z4G if, for g ∈ G and v ∈ I(C), gv ∈ I(C). If I(C)
is an ideal in Z4G, then we say that C is a G-code over Z4.

Let Sn be the symmetric group of permutations on the set {1, . . . , n}. Recall the
standard definition of an automorphism group of a code C of length n. Namely, let
C be a code and let τ ∈ Sn, with τ acting on the coordinates of C. Then we define

(8) Aut(C) = {τ ∈ Sn | τ(C) = C}.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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The following lemma is immediate.

Lemma 3. Let C be a linear code over Z4. If C is a G-code, then Aut(C) must
contain the group G.

In many respects, this lemma is the key motivation for studying codes as ideals
in a group ring. That is, we wish to find codes that are held invariant by the actions
of some group.

We now give a construction of a code from an element of the group ring. This
construction was given for codes over rings in [8] and for codes over fields in [14].
It was used in [12] to construct self-dual codes. Let v = v1g1 + · · · + vngn ∈ Z4G.
Notice that the elements g−11 , g−12 , . . . , g−1n are simply the elements of the group G
in some order. Then, define the matrix σ(v) ∈Mn(Z4) to be

(9) σ(v) =

 I−1(g−11 v)
...

I−1(g−1n v)

 =

 v1,1 . . . v1,n
...

...
...

vn,1 . . . vn,n

 ,

where vi,j = vk, for k satisfying g−1i gj = gk.
For a given element v ∈ Z4G, define C(v) as the quaternary code with generator

matrix σ(v). It is immediate that if v has weight 0 then C(I(v)) = {0} and if w
has Lee weight 1, then C(I(w)) = Zn4 .

Lemma 4. Let g ∈ G. If v, w ∈ Z4G with gv = w then C(v) = C(w).

Proof. The matrix σ(gv) = σ(w) is the matrix σ(v) with the rows permuted. Hence
they generate the same code.

Let G be a group. We say that G is the internal semi-direct product of its
subgroups H and N if N is a normal subgroup of G, H ∩N = {eG} and G = NH.
It is denoted G = H nN .

Let H and N be groups and let τ : H → Aut(N) be an homomorphism. The
external semi-direct product of H and N is G = H nτ N defined by

G = {(h, n) | h ∈ H,n ∈ N}

with the group operation (h1, n1)(h2, n2) = (h1h2, n
hτ2
1 n2).

In both cases, we will refer to G as the semi-direct product a H and N , and it
will be denoted by G = H nN even though in some cases it depends on the action
τ .

1.1. Some families of G-codes. We shall define the groups that we use in this
paper. The first group is the cyclic group Ct, which is defined as

(10) Ct = 〈a | at = 1〉.
Codes that are ideals in F2Ct are one of the most widely studied families of codes.

The second group is the dihedral group D2t (see [10], [11]). The dihedral group
is defined as

(11) D2t = 〈a, b | bt = 1, a2 = 1, aba−1 = b−1〉.
By considering the action τ : C2 → Ct given by τ(y)(x) = x−1, we have D2t =

Ct n C2 [20].
Note that the notation for the dihedral group is not the same in all texts, as some

might refer to this group asDt. This group can be seen as the group of symmetries of
a regular t sided figure in a Euclidean plane. The element b corresponds to rotating

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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the object 2π
t radians with respect to its center and the element a corresponds to

flipping the object over.
The third group is also a generalization of the cyclic group, namely the dicyclic

group. The dicyclic group is defined as

(12) Dic4t = 〈a, b | a2t = 1, b2 = at, bab−1 = a−1〉.

We note that both D2t and Dic4t are non-abelian groups for t ≥ 3, while the
cyclic group is abelian.

1.1.1. Cyclic codes. One of the most studied families of codes are cyclic codes.
Initially, the cyclic codes were studied over a finite field. Cyclic codes may also be
studied as ideals in the group algebra of a cyclic group (see [11]). In [13] cyclic
codes over Z4 were introduced and, since then, cyclic codes have been studied over
different rings.

Cyclic codes, by definition, are invariant under the action of Cn, and therefore
have Cn as a subgroup of their automorphism groups. This can also be seen by
considering cyclic codes over Z4 as ideals in Z4Cn. If C is a cyclic code of length n
then Aut(C) must contain Cn as a subgroup.

One of the most important aspects of cyclic codes is that they can be understood
by studying ideals in a polynomial ring. Specifically, cyclic codes of length n over a
ring R are ideals in R[x]/〈xn − 1〉. This is easily generalized to constacyclic codes
by studying ideals in R[x]/〈xn − λ〉, with λ a unit in the ring R. If we define
S = Z4[x]/〈xn − 1〉, then S is the ambient space where cyclic codes reside. Cyclic
codes can be considered as ideals in the polynomial ring S. The following Theorem
gives the generator polynomials of cyclic codes over Z4.

Theorem 1 ([19]). Let C be a cyclic code of odd length. Then, there are unique
monic polynomials f(x), g(x) and h(x) such that C = 〈f(x)h(x) + 2f(x)〉, with
f(x)g(x)h(x) = xn − 1, and |C| = 4deg(g(x))2deg(h(x)).

Let v = v1g1 + · · ·+ vngn ∈ Z4Cn. Then, we can consider the polynomial v(x) =
v1 + v2x + · · · + vnx

n−1. Then, the code over Z4 generated by σ(v) is the code
generated by the polynomial v(x).

1.1.2. Dihedral Codes. We shall now examine the specific case when the group G is
the dihedral group.

A circulant matrix with elements from the ring R is of the form:

(13) circ(a1, a2, . . . , an) =


a1 a2 a3 . . . an
an a1 a2 . . . an−1
an−1 an a1 . . . an−2

...
...

...
...

...
a2 a3 a4 . . . a1


A reverse circulant matrix with elements from the ring R is of the form:

(14) rcirc(a1, a2, . . . , an) =


a1 a2 a3 . . . an
a2 a3 a4 . . . a1
a3 a4 a5 . . . a2
...

...
...

...
...

an a1 a2 . . . an−1


Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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Recall that D2t = 〈a, b | a2 = bt = 1, ab = b−1a〉. Take an ordering of the elements
for the map σ as 1, b, b2, . . . , bt−1, a, ab, ab2, . . . , abt−1. Let v =

∑
αai,bja

ibj . In this
case, the matrix σ(v) is of the form:

(15)

(
A B
B A

)
,

with A a circulant matrix, A = circ(α1αbαb2 , . . . , αbt−1), and B a reverse circulant
matrix, B = rcirc(αa, αab, αab2 , . . . , αabt−1).

We can now give a description of dihedral codes in terms of a skew polynomial
ring, specifically as an Ore extension of the polynomial ring corresponding to cyclic
codes [17].

Let S = Z4[x]/〈xn − 1〉 and τ ∈ Sn be a Z4-automorphism of S defined by
τ(x) = x−1. We note that τ is of order 2. Let Rn = S[y; τ ]/〈y2 − 1〉, noting that
y2 − 1 is central in S[y; τ ]. This ring is a non-commutative ring with |Rn| = 42n.

We can now make a correspondence in a canonical way between elements in the
group ring and polynomials in the skew polynomial ring. For an element in Z4D2n

define

(16) ψ
(∑

αijb
iaj
)

=
∑

αijx
iyj .

Theorem 2. Let C be a left dihedral code in Z4D2n then ψ(C) is a left ideal in Rn.

Proof. It is immediate that since C is closed under addition and multiplication we
have that ψ(C) is closed under addition and multiplication. Then we note that
multiplication by x on the left corresponds to multiplication by the group element
b and multiplication by y on the left corresponds to multiplication by a on the left.
Moreover, yx = x−1y and so yxy−1 = x−1. Therefore, since C is a left ideal in
Z4D2n, ψ(C) is a left ideal in Rn.

Example 1. Let p(x) be a divisor of xn− 1. Then ψ−1(Z4(p(x))) is a left dihedral
code of length 2n.

Note that if C is a Z4-dihedral code, then C is the semi-direct product of Z4-cyclic
codes [20]. In fact, any ideal in Rn = S[y; τ ] is of the form I1 + yI2 with Ii an ideal
in S, which gives that the ideal is the semi-direct product of cyclic codes.

1.1.3. Dicyclic codes. Recall that the dicyclic group is defined as

Dic4t = 〈a, b | a2t = 1, b2 = at, bab−1 = a−1〉.

Let v =
∑2t
i=1 αia

i−1 + αi+2tba
i−1. In this case, the matrix σ(v) is of the form:

(17)

(
A B
C A

)
,

with A = circ(α1, α2, . . . , α2t), B = rcirc(α1+2t, α2+2t, . . . , α4t) and

C = rcirc(α1+3t, α2+3t, . . . , α4t, α1+2t, α2+2t, . . . , α3t).

We can now give a similar description of dicyclic codes as ideal in a skew poly-
nomial ring.

Let T = Z4[x]/〈x2n− 1〉. We note that this is the ambient space for cyclic codes
of length 2n. Let τ be a Z4-automorphism of S defined by τ(x) = x−1.

Let An = T [y; τ ]/〈y2 − xn〉, noting that y2 − xn is central in T [y; τ ]. The ring
An is a non-commutative ring with |An| = 44n.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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We can now make a correspondence in a canonical way between elements in the
group ring and polynomials in the skew polynomial ring. For an element in Z4Dic4n
define

(18) µ
(∑

αija
ibj
)

=
∑

αija
ibj .

Theorem 3. Let C be a left dicyclic code in Z4Dic4n. Then µ(C) is a left ideal in
An.

Proof. Since C is closed under addition and multiplication, so is µ(C). Then we
note that multiplication by x on the left corresponds to multiplication by the group
element s and multiplication by y on the left corresponds to multiplication by b on
the left. Moreover, yx = x−1y and so yxy−1 = x−1. Therefore, since C is a left ideal
in Z4Dic4n, µ(C) is a left ideal in An.

1.2. Quasi G-codes. As we have seen in Lemma 3, if C is a G-code, then Aut(C)
contains the group G. For example, if C is a Cn-code, then Aut(C) contains Cn. It
may of course contain other elements, specifically it is possible that Cn 6= Aut(C).
The image of the cyclic code under the Gray map is a quasi-cyclic code. We shall
now generalize this notion.

If D is a code in Rsn with the coordinates partitioned into n sets of size s, where
each set is assigned an element of G and the code is held invariant by the action of
multiplying the coordinate set marker by every element of G, then the code D is
called a quasi-group code of index s. The word group can be replaced by the specific
group in question. For example, it might be a quasi-cyclic code or a quasi-dihedral
code.

Theorem 4. If C is an ideal in Z4G where G is a finite group of order N , then
φ(C) is a (possibly non-linear) quasi-group code of index 2 and length 2N .

Proof. The length of the image is immediate from the definition of φ. Then since
gv ∈ C, for all g ∈ G, we have that G acts on pairs of coordinates and gives a
quasi-group code of index 2.

Just as it is possible that G is not the full automorphism group of a G-code, it is
also possible that a code may be a quasi-G code for different groups with possibly
different partitions of the coordinates.

Lemma 5. Let C1 and C2 be two G-codes over Z4, then C1 ⊕ C2 is a G-code.

Proof. Let v ∈ C1,w ∈ C2, α, β ∈ Z4. Then gαv + gβw ∈ C1 ⊕ C2 and then
g(αv + βw) ∈ C1 ⊕ C2. Therefore, C1 ⊕ C2 is a G-code.

Let C and D be linear codes over Z4. We define C ∗ D as {u ∗ v | u ∈ C,v ∈ D}.

Theorem 5. Let C1 and C2 be binary G-codes of length n. Then C = C1 ⊕ 2C2 is a
quaternary G code. Moreover, if C1 ∗ C1 ⊆ C2 then the image under the Gray map
is a linear quasi-G code of length 2n.

Proof. It is well known, see [18] that if C1∗C1 ⊂ C2 then the code has a linear binary
image. By the previous lemma, the code C is a quaternary G code since both C1
and C2 are held invariant by the action of G. Therefore the Gray image is a binary
linear quasi-G code.

This theorem shows that given binary G codes of length n we can construct
binary quasi-G codes of length 2n by using quaternary codes.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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2. Rank and Kernel

We shall now examine the rank and kernel of G codes, viewed as an ideal in a
group ring. When the size of the kernel of a code is the minimal size, we say that
the kernel is a minimum. In the case the size of the kernel is the maximal, then we
say that it is a maximum.

The result is a broad generalization of the fact that the kernel of a cyclic code is
cyclic, which can be found in [6].

Theorem 6. Let C be a linear code over Z4. If C is a G-code, then K(C) is a
G-code.

Proof. Since K(C) is linear, all we need to show is that, for all g ∈ G, v ∈ I(K(C)),
gv ∈ I(K(C)). We have v = I−1(v) ∈ K(C). Then, we have to show that g(v) ∈
K(C); that is, by Lemma 2, 2g(v) ∗w ∈ C for all w ∈ C.

For w ∈ C, 2g(v)∗w = g(2v)∗w = g(2v∗g−1w). Since v ∈ K(C), g−1w ∈ C and
I(C) is an ideal, we have 2v ∗ g−1w ∈ C. Therefore I(K(C)) is an ideal of Z4G.

Similarly, the next result is a broad generalization of the fact that R(C) is cyclic
when C is cyclic which can also be found in [6].

Theorem 7. Let C be a linear code over Z4. If C is a G-code, then R(C) is a
G-code.

Proof. Since R(C) is linear, we only have to check that, for x ∈ I(R(C)) and g ∈ G,
we have gx ∈ I(R(C)). If x = I−1(x), then we have to check that g(x) ∈ R(C).

By Lemma 2, thatR(C) = 〈C, 2v∗w | v,w ∈ C〉. If x ∈ R(C), then x = u+2v∗w,
for some u,v,w ∈ C.

Since I(C) is an ideal, g(u), g(v), g(w) ∈ C. Then g(x) = g(u) + 2g(v) ∗ g(w) ∈
R(C) and so I(R(C)) is an ideal of Z4G.

Hence, for a G-code C over Z4, we have

(19) I(K(C)) ⊆ I(C) ⊆ I(R(C)).

We summarize the relations between the codes in the following diagram.

Z4G Zn4 F2n
2

I(R(C)) R(C) 〈φ(C)〉

I(C) (C) φ(C)

I(K(C)) K(C) Ker(φ(C))

I φ

Theorem 8. Let C be a G-code over Z4. Then K(C) is the intersection of all
maximal G-codes Ci ⊆ C satisfying that φ(Ci) is linear.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX



Quaternary group ring codes: Ranks, Kernels and Self-dual codes 9

Proof. We know that K(C) is the intersection of all maximal codes Ci ⊆ C such that
φ(Ci) is linear and, by Theorem 6, K(C) is a G-code.

Let Ci ⊆ C be a maximal linear code over Z4. We have K(C) ⊆ Ci. Since K(C)
is a G-code, there exists a code C′i that is a G-code with K(C) ⊆ C′i ⊆ Ci. Hence, if
K(C) is the intersection of such Ci, then K(C) is also contained in the intersection
of such C′i which gives the result.

Theorem 9. Let v ∈ Z4G and C(v) be a G-code. Then C(2v) ⊆ K(C(v)).

Proof. If w ∈ C(2v) then w ∈ C(v) and w has order 2, so 2w ∗ u = 0 ∈ C(v), for
all u ∈ C(v), which implies w ∈ K(C(v)).

Therefore, the minimal kernel for any code C(v) is C(2v) and we have

C(2v) = K(C(v)) = C(v),

for all v.
Note that if v is of additive order 2 in Z4G, then C(2v) = {0}. However, in this

case, we have that φ(C(v)) is linear as it is shown in the following proposition.

Proposition 1. Let v ∈ Z4G and C(v) be a G-code. If v ∈ K(C(v)), then K(C(v)) =
C(v).

Proof. Let u ∈ C(v); that is, u =
∑n
i=1 λigiv, or u =

∑n
i=1 λigi(v), for λi ∈ Z4. For

all w ∈ C(v), we have that 2u∗w = 2(
∑n
i=1 gi(v))∗w =

∑n
i=1 gi(2v∗g

−1
i (w)) ∈ C(v)

because v ∈ K(C(v)) and, therefore, u ∈ K(C(v)).

Corollary 1. Let v ∈ Z4G and C(v) be a G-code. If v has additive order 2 in Z4G
then K(C(v)) = C(v).

Proof. If v has additive order 2, then for all u ∈ C(v), 2v ∗ u = 0 ∈ C(v) and
v ∈ K(C). Therefore, the results follows by Proposition 1.

It is proven in [8] that if I(C) is an ideal in Z4G then I(C⊥) is an ideal in Z4G.
The following gives an example where the kernel of a group code over Z4 is a

minimum for all groups G. Specifically, where K(C(v)) = C(2v).

Theorem 10. Let v = 1eG − h for some h ∈ G − {eG}, where eG is the identity
element of the group G. Then |C(v)| = 4n−2, C(v) = 〈1n

2
〉⊥ × 〈1n

2
〉⊥, where

K(C(v)) = 2(C(v)) = C(2v)

and

R(C(v)) = 〈C(v), (2, 0, 0, . . . , 0), (0n
2
, 2, 0, 0, . . . , 0)〉.

Proof. It is immediate that |C(v)| = 4n−2, by examining the generator matrix σ(v)
and seeing the code as 〈1n

2
〉⊥ × 〈1n

2
〉⊥.

Then for every gv there exists g′v where 2(gv) ∗ (g′v) = (0, 0, . . . , 0, 2, 0, . . . , 0)
which is not in C(v). It follows that the kernel is a minimum. It is a simple conse-
quence that R(C) is 〈C(v), (2, 0, 0, . . . , 0), (0n

2
, 2, 0, 0, . . . , 0)〉. Namely, we have ad-

joined 2gv ∗ (g′v) and that gives us the rank.
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2.1. Rank and kernel of I(C) for some families of codes. Recall that the
minimal kernel of a code C(v) is given when K(C(v)) = C(2v) and the maximal
when K(C(v)) = C(v). In this section we will see that there exist G-codes with both
minimal and maximal kernel when G is Cn, D2n and Dic4t.

The rank and kernel of cyclic codes over Z4 were studied in [6]. In that paper,
it was shown that there exist cyclic codes over Z4 with the minimal and maximal
kernels. We give just some example.

Example 2. Consider the cyclic code of length n generated by the polynomial x−1,
that is, the ideal C1 = 〈x− 1〉 in Z4[x]/〈xn− 1〉. Theorem 10 gives that for this code
K(C1) is a minimum. The code C2 = 〈2(x− 1)〉 has K(C2) = C and hence the kernel
is a maximum.

In fact, in Theorem 17 in [6], if C = 〈f(x)h(x) + 2f(x)〉 is a quaternary cyclic
code of odd length n = p2 and xn − 1 = (x − 1)a(x)b(x) with a(x) and b(x)
irreducible polynomials over Z4, then for h(x) = 1 and f(x) = a(x), we have
K(C) = 〈1 + x+ · · ·+ xn−1 + 2a(x)〉. Moreover, if f(x) = b(x) then K(C) = C.

Theorem 11. Let G be the dihedral group D2t. Let v =
∑
αigi, with αi = 0 if

gi = abs. Then C(v) = C1 × C2, with C1 and C2 cyclic codes, and

(20) K(C) = K(C1)×K(C2)

and

(21) R(C) = R(C1)×R(C2).

Proof. If αi = 0, when gi = bsa, then the generator matrix σ(v) is of the form

(22)

(
A 0
0 A

)
with A generating a cyclic code. The result follows.

Example 3. Consider the dihedral group D2t. Let v = 1−b, then Theorem 10 gives
K(C(v)) = C(2v), hence it is a minimum. As in the previous example, if v = 2−2b,
then K(C(v)) = C(v) and hence it is a maximum.

Let C1 and C2 be quaternary cyclic codes of odd length n = p2 and xn − 1 =
(x − 1)ab with a and b irreducible polynomials over Z4. Let C1 = C2 = 〈b, 2bg〉.
Let C be the dihedral code C = C1 × C2 as given in Theorem 11. By Theorem 11,
we have K(C) = C and the kernel is a maximum. Theorem 10 has already given
examples of dihedral codes with minimum kernel. Therefore we have the following.

Theorem 12. There exists dihedral codes with minimal kernel and with maximal
kernel.

Example 4. For length 4, (here the dihedral group is really the Klein 4 group), it
is a simple computation to see that, for all v, we have K(v) = C(v) = R(v).

We can now mimic the technique used in Theorem 11 to get a similar result for
dicyclic codes.

Theorem 13. Let G be the dicyclic group Dic4t. Let v =
∑
αigi, with αi+2t = 0

for i ∈ {1, . . . , 2t}. Then C(v) = C1 × C2, where C1 and C2 are cyclic codes and

(23) K(C) = K(C1)×K(C2)
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and

(24) R(C) = R(C1)×R(C2).

Proof. If αi = 0, when i > 2t, then the generator matrix σ(v) is of the form

(25)

(
A 0
0 A

)
with A generating a cyclic code. The result follows.

Again using Theorem 17 in [6], we can let C1 and C2 be quaternary cyclic codes of
odd length n = p2 and xn−1 = (x−1)a(x)b(x) where a(x) and b(x) are irreducible
polynomials. Let C1 = C2 = 〈b(x), 2b(x)g(x)〉. Let C be the dicyclic code C = C1×C2
as given in Theorem 13. Hence, by Theorem 13, we have that K(C) = C and the
kernel is a maximum. Theorem 10 has already given examples of dicyclic codes
with minimum kernel. Therefore we have the following.

Theorem 14. There exists dicyclic codes with minimal kernel and with maximal
kernel.

3. Self-dual codes

We will discuss self-dual dihedral and dicyclic codes over Z4 in this section.
Self-dual codes over the ring Z4 were first studied in [3]. Self-dual codes are an
important class of codes as they are related to many other structures such as lattices,
designs, etc. In particular, self-dual codes over Z4 have been used to construct even
unimodular lattices in [1].

Many of the construction methods in the literature for self-dual codes use genera-
tor matrices of the form [In|A], with A a special type of matrix, such as a circulant
or bordered circulant matrix. However, self-dual codes obtained from these con-
structions all fall into the category of free self-dual codes. It is well known from [3]
that free self-dual codes over Z4 exist only for lengths that are multiples of 8. Thus,
following these constructions would restrict the lengths of the self-dual codes that
we can obtain quite considerably. The dihedral and dicyclic matrix structures that
we have discussed above suggest an alternative way of constructing self-dual codes
over Z4, through which we could obtain self-dual codes of different lengths.

It is well known that self-dual codes over Z4 exist for all lengths, see [3] or
[5]. However, we are concerned with self-dual codes that are also group codes.
Therefore, we are only concerned with lengths that are the order of a finite group.
So for example, dihedral codes only exist for even lengths and dicylic codes only
exist for lengths a multiple of 4. The following existence theorem shows that if the
length is appropriate then there is a self-dual Z4 group code of that length.

Theorem 15. For any positive integer n, there exists a self-dual Z4 G-codes for
all finite groups G with |G| = n.

Proof. Let C be the code of length 1 generated by 2, namely C = {0, 2}. This code
is a self-dual code of length 1.

Let C be a linear code over Z4 and let Cn = {(c, . . . , c) : c ∈ C} be the n-fold direct
product of C. Since the direct product of quaternary self-dual codes is self-dual we
have that Cn is a quaternary self-dual code of length n, see [5] for details.
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If τ is any permutation of the coordinates of C we have τ(C) = C. Therefore C
is held invariant by the action of any group. Therefore, C is a self-dual G code of
length n for any group G of order n.

Naturally, the minimum Lee distance of all the self-dual codes that are generated
by Theorem 15 is 2, which is, in general, not of interest for longer lengths.

Cyclic self-dual codes over Z4 have been studied in [18]. Now we will study self-
dual dihedral and dicyclic codes. For the rest of the section, the computer searches
have been done by using the computer algebra system Magma [2].

3.1. Self-dual dihedral codes. We begin with a theorem which follows natu-
rally from the fact that the dihedral code is the semi-direct product of Z4-cyclic
codes as it was mentioned in Section 1.1.2.

Theorem 16. Let C and D be self-dual cyclic codes of length n. Then C n D is a
self-dual Dihedral code of length 2n.

Proof. We have that C nD is a dihedral code. Then if v1,w1 ∈ C and v2,w2 ∈ D
then

[v1 nw1,v2 nw2] = [v1,w1] + [v2,w2] = 0 + 0 = 0.

Therefore, the code is self-dual.

We ran some computer searches for all dihedral self-dual Z4-codes of lengths
4, 6, 8, 10 and 12. The results we obtained are of interest.

Table 1. (Extremal) Dihedral Self-dual Codes of length 4

First Row of A First row of B Min Lee Weight Lee Weight Distribution
(1,1) (1,3) 4 1 + 14z4 + z8

(1,1) (3,1) 4 1 + 14z4 + z8

(1,3) (1,1) 4 1 + 14z4 + z8

(1,3) (3,3) 4 1 + 14z4 + z8

(3,1) (1,1) 4 1 + 14z4 + z8

(3,1) (3,3) 4 1 + 14z4 + z8

(1,3) (1,3) 4 1 + 14z4 + z8

(3,3) (3,1) 4 1 + 14z4 + z8

Remark 1. Note that the Lee weight distribution of all the self-dual codes obtained
in Table 1 is the same as the Hamming weight distribution of the extended binary
Hamming code, which is an extremal Type II code of length 8. In fact, it turns out
that the Gray image of all the codes in Table 1 are linear over the binary field, and
moreover they are all self-dual. So, the Gray maps of codes in Table 1 are precisely
the extended binary Hamming code of length 8.

Remark 2. We obtained many self-dual dihedral codes of length 8 and minimum
Lee distance 4. We just put a few of them in Table 2, which represent the typical
case. Unlike the case of length 4, we obtained both Type I and Type II weight
enumerators for extremal binary self-dual codes of length 16. Indeed, upon checking
the Gray images, we see that the Gray images of all the self-dual dihedral codes of
length 8 and minimum Lee distance 4 are (linear) extremal binary self-dual codes
of length 16, with some being Type I and some Type II.
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Table 2. (Extremal) Dihedral Self-dual Codes of length 8

First Row of A First row of B Min Lee Weight Lee Weight Distribution
(0,0,2,2) (1,1,3,1) 4 1 + 28z4 + 198z8 + . . .
(0,0,0,0) (1,3,1,1) 4 1 + 28z4 + 198z8 + . . .
(0,0,0,2) (3,1,3,1) 4 1 + 12z4 + 64z6 + 102z8 + . . .
(0,0,2,0) (1,1,3,3) 4 1 + 12z4 + 64z6 + 102z8 + . . .

Upon running an exhaustive search over all dihedral self-dual codes of length
6 and 10 we found that the highest minimum Lee distance is 2 and when we ran
the search over all dihedral self-dual codes of length 12, the highest minimum Lee
distance that we obtained turned out to be 4.

3.2. Self-dual dicyclic codes. We first recall that, because of their structure,
dicyclic codes have to be of lengths 4k for k ∈ Z+. Thus, we searched over all
self-dual dicyclic Z4-codes of lengths 4, 8 and 12. Out of the many self-dual codes
of best parameters that we obtained, we put a sample in the following table:

Table 3. Best Dicyclic Self-dual Codes of lengths 4, 8 and 12

n 1st row of A 1st row of B 1st row of C Min Lee Weight Gray Image Linear
4 (1,3) (3,3) (3,3) 4 Yes
8 (0,0,0,2) (3,3,3,3) (3,3,3,3) 4 Yes
8 (0,0,1,1) (0,0,1,3) (1,3,0,0) 4 No
8 (0,0,1,1) (0,1,1,2) (1,2,0,1) 6∗ No
12 (0,0,0,0,0,0) (0,1,3,0,1,1) (0,1,1,0,1,3) 4 Yes

Remark 3. In Table 3, the code marked with ∗ is the well-known octacode, which
is a self-dual code of length 8, whose binary image is a non-linear code of length 16,
size 28 and minimum distance 6. This is better than the best known binary linear
code of the same length and dimension, as the minimum distance of a binary linear
code of length 16 and dimension 8 can be at most 5. Thus we have obtained the
octacode from the dicyclic construction.

Remark 4. An exhaustive search reveals that all the dicylic self-dual codes of lengths
4 and 12 have 4 as the highest minimum Lee distance and all such examples have
linear Gray map images.

4. Conclusion

As a broad generalization of cyclic codes we have studied G-codes over the ring
Z4, which are codes held invariant by the action of a finite group G. As an analogue
to the results for cyclic codes, we have shown that the quaternary kernel and rank
of a G-code is itself a G-code. We have found bounds for the size of the kernel and
gave examples of minimal and maximal kernels for G-codes. Examining the image
of G-codes under the canonical Gray map, we have shown how to construct binary
quasi-G codes. Finally, we have studied self-dual G-codes and given examples for
the dihedral and dicyclic groups, in particular we have been able to obtain the
octacode from the dicyclic construction.
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We believe quaternary G-codes are a deep topic that would warrant further
studies. As possible directions for future research, we can suggest different groups
than dicyclic and dihedral groups, or a search for self-dual codes of higher lengths.
Different rings than Z4 can also be considered within the same context.

<doughertys1@scranton.edu; cristina.fernandez@uab.cat; rten@deic.uab.cat; bahattin.yildiz@nau.edu

>

References

[1] E. Bannai, S.T. Dougherty, M. Harada and M. Oura, “Type II codes, even unimodular lattices,
and invariant rings”, IEEE Trans. Inform. Theory, Vol. 45, No. 4, pp. 1194–1205, 1999.

[2] W. Bosma, J.J. Cannon, C. Fieker, A. Steel: Handbook of Magma functions, Edition 2.22

5669 pages (2016). http://magma.maths.usyd.edu.au/magma/.
[3] J. H. Conway and N. J. A. Sloane, “Self-dual codes over the integers modulo 4”, J. Combin.

Theory Ser. A, Vol. 62, No. 1, pp. 30–45, 1993.

[4] S.T. Dougherty, “Algebraic Coding Theory Over Finite Commutative Rings”, SpringerBriefs
in Mathematics. Springer, Cham, 2017, ISBN: 978-3-319-59805-5; 978-3-319-59806-2.
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