
Received September 18, 2020, accepted October 11, 2020, date of publication October 19, 2020, date of current version November 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3032024

Co-Training for On-Board Deep Object Detection
GABRIEL VILLALONGA AND ANTONIO M. LÓPEZ PEÑA , (Member, IEEE)
Computer Vision Center (CVC), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
Computer Science Department, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain

Corresponding author: Gabriel Villalonga (gvillalonga@cvc.uab.es)

The authors acknowledge the financial support received for this work from the Spanish TIN2017-88709-R (MINECO/AEI/FEDER, UE)
project. Antonio acknowledges the financial support to his general research activities given by ICREA under the ICREA Academia
Program. The authors acknowledge the support of the Generalitat de Catalunya CERCA Program as well as its ACCIO agency to CVC’s
general activities.

ABSTRACT Providing ground truth supervision to train visual models has been a bottleneck over the years,
exacerbated by domain shifts which degenerate the performance of such models. This was the case when
visual tasks relied on handcrafted features and shallow machine learning and, despite its unprecedented
performance gains, the problem remains open within the deep learning paradigm due to its data-hungry
nature. Best performing deep vision-based object detectors are trained in a supervised manner by relying
on human-labeled bounding boxes which localize class instances (i.e. objects) within the training images.
Thus, object detection is one of such tasks for which human labeling is a major bottleneck. In this article,
we assess co-training as a semi-supervised learning method for self-labeling objects in unlabeled images,
so reducing the human-labeling effort for developing deep object detectors. Our study pays special attention
to a scenario involving domain shift; in particular, when we have automatically generated virtual-world
images with object bounding boxes and we have real-world images which are unlabeled. Moreover, we are
particularly interested in using co-training for deep object detection in the context of driver assistance systems
and/or self-driving vehicles. Thus, using well-established datasets and protocols for object detection in these
application contexts, we will show how co-training is a paradigm worth to pursue for alleviating object
labeling, working both alone and together with task-agnostic domain adaptation.

INDEX TERMS Co-training, domain adaptation, vision-based object detection, ADAS, self-driving.

I. INTRODUCTION
Since more than two decades ago, machine learning (ML) has
been the enabling technology to solve computer vision tasks.
In the last decade, traditional ML, i.e. based on relatively
shallow classifiers and hand-crafted features, has given way
to deep learning (DL). Thanks to DL models based on con-
volutional neural networks (CNNs), DL approaches signifi-
cantly outperformed traditional ML in all kinds of computer
vision tasks, such as image classification, object detection,
semantic segmentation, etc. A major key for the usefulness
of DL models is to train them in a supervised way. In other
words, the raw data (still images and videos) need to be sup-
plemented by ground truth; nowadays, usually collected via
crowd-sourced labeling. In practice, due to the data-hungry
nature of CNNs, data labeling is considered a major bottle-
neck. Therefore, approaches to minimize labeling effort are
of high interest; or put in another way, approaches to automat-
ically leverage the large amounts of available unlabeled raw

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongqiang Zhao .

data must be pursued. Thus, we can find different families
of algorithms, or paradigms, which address human-labeling
minimization under different working assumptions. We con-
tinue this introduction by reviewing them in subsection I-A,
while subsection I-B highlights how domain shifts exacerbate
human labeling requirements. With the human-labeling bot-
tleneck problem introduced, subsection I-C summarizes our
focus when addressing such a problem. In particular, we out-
line our application context and the proposed approach for
reducing human annotation effort in such a context. Finally,
subsection I-D highlights the main contributions presented
in this article as well as the organization of the rest of its
contents.

A. PARADIGMS TO MINIMIZE HUMAN LABELING
For instance, active learning (AL) approaches [1], [34], [35]
assume an initial model and an unlabeled dataset to be labeled
by a human (oracle) following an interactive procedure.
In particular, the current model processes the unlabeled data
providing so-called pseudo-labels (at image, object, or pixel
level); then, these results are inspected, either automatically

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 194441

https://orcid.org/0000-0002-1155-9374
https://orcid.org/0000-0002-6979-5783
https://orcid.org/0000-0002-6974-7327


G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

or directly by the oracle, to select the next data to be labeled.
Afterwards, the model is trained again, and the process
repeated until fulfilling a stop criterion. AL assumes that
with less labeling budget than the required to have the oracle
labeling data at random, one can train models that perform
at least similarly. In practice, it is usually hard to clearly
outperform the oracle’s random labeling strategy. In contrast
to AL, other approaches do not assume human oracles in the
labeling loop. For instance, this is the case of semi-supervised
learning (SSL) algorithms [6], [38], [40], which assume the
availability of a large number or raw unlabeled data together
with a relatively small number of labeled data. Then, a model
must be trained using the unlabeled and labeled data (with-
out human intervention), with the goal of being more accu-
rate than if only the labeled data were used. The so-called
self-training and co-training algorithms, which are of our
main interest in this article, fall in the SSL paradigm [40].
In AL and SSL, the most common idea is to efficiently
label the unlabeled data, either via an oracle (AL) or auto-
matically (SSL). Self-supervised learning (SfSL) follows a
different approach which consists in providing supervision
in the form of additional (relatively simple) tasks, known as
pretext tasks, for which automatic ground truth can be easily
generated (e.g. solving jigsaw puzzles [12], [19], [21]).

B. THE DOMAIN ADAPTATION PROBLEM
Within these approaches, the most classical assumption is
that the labeled and the unlabeled data are drawn from the
same distribution and one aims at using the unlabeled data
(via annotations or pretext tasks) to solve the same tasks for
which the labeled data was annotated. However, in practice,
we may require to solve new tasks, leading to transfer learn-
ing (TL) [46], [54], or solving the same tasks in a new domain,
leading to domain adaptation (DA) [10], [43], [47]. Beyond
specific techniques to tackle TL or DA, we can leverage solu-
tions/ideas from AL, SSL, or SfSL. For instance, AL [41],
SSL [20], [55], and SfSL [49] algorithms have been used to
address DA problems. In this article, we use SSL (comparing
self-training and co-training) to address DA too.

C. THE FOCUS OF THIS WORK
From the application viewpoint, in this article, we focus
on vision-based on-board deep object detection. Note that
this is a very relevant visual task for driving, since detect-
ing objects (e.g. vehicles, pedestrians, etc.) along the
route of a vehicle is a key functionality for perception-
decision-action pipelines in the context of both advanced
driver assistance systems (ADAS) and self-driving vehicles.
Moreover, nowadays, most accurate vision-based models
to detect such objects are based on deep CNN architec-
tures [23], [24], [30], [31]. In addition, in this application
context, it is possible to acquire innumerable quantities of raw
images, for instance, from cameras installed in fleets of cars.
Thus, methods to minimize the effort of manually labeling
them are of great relevance.

Among the SSL approaches, co-training [5], [15] has
been explored for deep image classification [8], [29] with
promising results. However, up to the best of our knowl-
edge, it remains unexplored for deep object detection. Note
that, while image classification aims at assigning image-level
class/attribute labels, object detection is more challenging
since it requires to localize and classify objects in images,
i.e. placing a bounding box (BB) per object, together with
the class label assigned to it. Moreover, object detection from
on-board images, i.e. detection of vehicles, pedestrians, etc.,
is especially difficult since, to the inherent intra-class differ-
ences (e.g. due to vehicle models, pedestrian clothes, etc.),
acquisition conditions add a vast variability because the
objects appear in a large range of distances to the camera
(resolution and focus variations), under different illumina-
tion conditions (from strong shadows to direct sunlight), and
they usually move (blur, occlusion, view angle, and pose
variations).

Originally, co-training relies on the agreement of two
trained models performing predictions from different fea-
tures (views) of the data [5]. These predictions are taken as
pseudo-labels to improve the models incrementally. Later,
prediction disagreement was shown to improve co-training
results in applications related to natural language process-
ing [15], [39]. Thus, in this article, we propose a co-training
algorithm inspired by prediction disagreement. On the other
hand, since co-trainingwas proposed as a SSLmethod aiming
at avoiding the drift problem of self-training [5], which incre-
mentally re-trains a single model from its previously most
confident predictions, we also elaborate a strong self-training
baseline for our deep object detection problem.

We assess the effectiveness of the two self-labeling meth-
ods, i.e. self-training and co-training, in two different practi-
cal situations. First, following most classical SSL, we will
assume access to a small dataset of labeled images, X l ,
together with a larger dataset of unlabeled images X u; where
here the labels are object BBs with class labels. Second,
we will address a relevant setting that resorts DA. In par-
ticular, we will assume access to a dataset of virtual-world
images with automatically generated object labels. Therefore,
eventually, X l can be larger than X u, since labeling these
images does not require human intervention; however, X u is
composed of real-world images, thus, between X l and X u

there is a domain shift [41]. In this case, we also compare
self-labeling techniques with task-agnostic DA, in particular,
using GAN-based image-to-image translation [53]. As espe-
cially relevant cases, we will focus on on-board detection of
vehicles and pedestrians using a deep CNN architecture. Our
experiments will show how, indeed, our co-training algorithm
is a good SSL alternative for on-board deep object detec-
tion. Co-training clearly boosts detection accuracy in regimes
where the size of X l is just the 5%/10% of the labeled
data used to train an upper-bound object detector. Moreover,
under the presence of domain shift, we will see how image-
to-imageGAN-based translation and co-training complement

194442 VOLUME 8, 2020



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

each other, allowing to reach almost upper-bound perfor-
mances without human labeling.

D. CONTRIBUTIONS AND ORGANIZATION
Hence, the main contributions of this article are: (1) propos-
ing a co-training algorithm for deep object detection; (2) desi-
gning this algorithm to allow addressing domain shift via
GAN-based image-to-image translation; (3) showing its
effectiveness by developing a strong self-training baseline
and relying on publicly available evaluation standards and
on-board image datasets. Alongside, we will also contribute
with the public release of the virtual-world dataset we gen-
erated for our experiments. To show these achievements
we organize the rest of the paper as follows. Section II
reviews themost relatedworks to ours, highlighting common-
alities and differences. Section III details our self-training
and co-training algorithms. Section IV draws our exper-
imental setting, and discuss the obtained results. Finally,
SectionV summarizes the presentedwork, suggesting lines of
continuation.

II. RELATED WORK
Our main goal is to train a vision-based deep object detec-
tor without relying on human labeling. Following our work
line [26], we propose to leverage labeled images from virtual
worlds and unlabeled ones from the real world, in such a
way that we can automatically label the real-world images
by progressively re-training a deep object detector that sub-
stitutes human annotators. Note that the labeling step is
needed due to the domain shift between virtual and real-world
images, otherwise, we could just use the virtual-world images
to train object detectors and, afterwards, deploy them in
the real world expecting a reliable performance. In particu-
lar, we explore the combination of the co-training idea for
self-labeling objects and GAN-based image-to-image trans-
lation in the role of task-agnostic DA. On the other hand,
our proposal is agnostic to the object detection architecture
supporting self-labeling.

Accordingly, in the remaining of this section, we first
review related works on self-labeling (subsection II-A),
including self-training and co-training; next, we review
related works on DA (subsection II-B). In both sections,
we relate our proposal to the reviewed works.

A. SELF-LABELING
Self-labeling algorithms are examples of SSL wrappers [40],
which work as meta-learners for supervised ML algorithms.
The starting point consists of a labeled dataset, X l , and an
unlabeled dataset, X u, where it is supposed that the cardinal-
ity ofX u is significantly larger than the cardinality ofX l , and
both datasets are drawn from the same domain, D. The goal
is to learn a predictive model, φ, whose accuracy would be
relatively poor by only using X l but becomes significantly
higher by also leveraging X u. Briefly, self-labeling is an
incremental process where φ is first trained withX l ; thenX u

is processed using φ in a way that the predictions are taken

as a new pseudo-labeled dataset X l̂ , which in turn is used
to retrain φ. The pseudo-labeling/retraining cycle is repeated
until reaching some stop criterion, when φ is expected to be
more accurate than at the beginning of the process. The main
differences between self-labeling algorithms arise from how
X l̂ is formed and used to retrain φ in each cycle.

1) SELF-TRAINING
In self-training, introduced by Yarowsky [50] for word sense
disambiguation, X l̂ is formed by collecting the most confi-
dent predictions of φ in X u, updating X u to contain only the
remaining unlabeled data. Then, φ is retrained using super-
vision from X l

∪ X l̂ , i.e. pseudo-labels are taken as ground
truth. Before theDL era, Rosenberg et al. [33] already showed
promising results when applying self-training to eye detection
in face images. More recently, Jeong et al. [18], proposed
an alternative to collect X l̂ for deep object detection, which
consists of adding a consistency loss for training φ as well as
eliminating predominant backgrounds. If Iui is an unlabeled
image, the consistence loss is based on the idea that φ(Iui ) and
φ((Iui )

�), where ()� stands for horizontal mirroring, must pro-
vide corresponding detections. Experiments are conducted on
PASCAL VOC and MS-COCO datasets, and results are on
pair with other state-of-the-art methods combining AL and
self-training [42]. The reader is referred to [28] for a review
on loss-based SSL methods for deep image classification.
On the other hand, note that this SSL variations are not agnos-
tic to φ, since its training loss is modified. This is also the case
in [25], where, in the context of deep image classification,
the activation functions composing φ must be replaced by
Hermite polynomials. In this article, we use a self-training
strategy as SSL baseline for on-board deep object detection,
thus, keeping agnosticism regarding φ.

2) CO-TRAINING
Co-training was introduced by Blum and Mitchell [5] in
the context of web-page classification, as alternative to the
self-training of Yarowsky [50], in particular, to avoid model
drift. In this case, two models, φ1 and φ2, are trained on dif-
ferent conditionally independent features of the data, called
views, assuming that each view is sufficiently good to learn an
accurate model. Each model is trained by following the same
idea as with self-training, but in each cycle the data samples
self-labeled by φ1 and φ2 are aggregated together. Soon,
co-training was shown to outperform other state-of-the-art
methods including self-training [27], and the conditional
independence assumption was shown not to be essential in
practice [4], [44], [45]. Later, in the context of sentence seg-
mentation, Guz et al. [15] introduced the disagreement idea
for co-training, whichwas refined by Tur [39] to jointly tackle
DA in the context of natural language processing. In this case,
samples self-labeled with high confidence by φi but with low
confidence by φj, i, j ∈ {1, 2}, i 6= j, are considered as
part of the new pseudo-labeled data in each cycle. In fact,

VOLUME 8, 2020 194443



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

disagreement-based SSL became a subject of study on its own
at that time [52].

Before the irruption of DL, Levin et al. [22] applied
co-training to detect vehicles in video-surveillance images,
so removing background and using different training data to
generate different views. More recently, Qiao et al. [29] used
a co-training setting for deep image classification, based on
several views. Each view corresponds to a different CNN, φi,
trained by including samples generated to be mutually adver-
sarial. The idea is to use different training data for each φi to
prevent them to prematurely collapse in the same network.
This implies to link the training of the φi’s at the level of
the loss function. In this article, we force the use of different
training data for each φi, without linking their training at the
level of loss functions, again, keeping co-training agnostic
to the used φi. Moreover, we address objected detection,
which involves not only predicting class instances as in image
classification, but also localizing them within the images,
so that the background becomes a large source of potential
false positives.

Finally, to avoid confusion, it is worth to mention the
so-called co-teaching, recently introduced by Han et al. [16],
and its variant co-teaching+ introduced by Yu et al. [51].
These algorithms are designed to address situations with
noisy labels on X l , both demonstrated on deep image classi-
fication. Indeed, these algorithms stem ideas from co-training
(the classical one from [16], the disagreement-based one
from [51]), however, reproducing the words of Han et al. [16],
co-training is designed for SSL, and co-teaching is for learn-
ing with noisy (ground truth) labels (LNL); as LNL is not a
special case of SSL, we cannot simply translate co-training
from one problem setting to another problem setting.

B. DOMAIN ADAPTATION
ML algorithms assume that training and testing data are
drawn from the same domain, D. When this is not the case,
the trained models suffer from domain shift. In other words,
we have data, XS , drawn from a source domain, DS , as well
as data, XT , drawn from a target domain, DT ,DT 6= DS .
We can assume that XS = X tr

S ∪ X tt
S ,X

tr
S ∩ X tt

S = ∅, where
X tr
S is used to train some predictive model φS . It turns out

that the prediction accuracy of φS in X tt
S is much higher than

inXT , a phenomenon known as domain shift. Addressing this
problem is the goal of DA techniques, under the assumption
that there is some (unknown) correlation betweenDS andDT ,
since DA is not possible otherwise.

The core idea is to use XT to obtain a new model, φT ,
being clearly more accurate than φS inDT . While doing this,
the human-based labeling effort in XT must be minimized.
Supervised DA (SDA) assumes access to a relatively small set
of labeled target-domain data X l,tr

T ⊂ XT . If we do not have
access to X l,tr

S , then the challenge is to leverage from φS and
X l,tr
T to obtain φT . Otherwise, we can combineX l,tr

S andX l,tr
T

to trainφT . In unsupervisedDA (UDA),XT is unlabeled; thus,
we address the more challenging situations of using XT with

either φS or X l,tr
S to train φT . For a review of the DA corpus

we advise the reader to consult [10], [43], [47].
In this article, we assume an UDA setting. Moreover, our

source data comes from a virtual world with automatically
generated labels, so we have X l,tr

S . Since we aim at assessing
self-labeling by co-training to address the UDA problem,
we have X l

= X l,tr
S , X u

= XT , thus, X l̂
⊆ XT .

Following this line of work, Kim et al. [20] addressed USD
for deep object detection by proposing a combination of a
weak self-training and a special treatment of backgrounds
via a loss component used during the training of the object
detector, with PASCAL VOC as XS and art-style datasets
(Clipart1K, Watercolor2K, Comic2K) as XT . Zou et al. [56]
also use a self-training strategy for UDA in the context of deep
image classification and semantic segmentation (including
a virtual-to-real setting), where the core idea is to perform
confidence and model regularization of the trained classi-
fiers. Since in our experimental setting we will use Faster
R-CNN to obtain φ, it is also worth to mention the work
by Chen et al. [9], where an UDA method was specifically
designed for Faster R-CNN and demonstrated on car detec-
tion under a virtual-to-real setting too. Since Faster R-CNN
is a two-stage classifier, the proposed UDA involves an
image-level adaptation for the region proposal stage, and
an instance-level adaptation for the BB prediction stage.
Finally, focusing on traditional ML and Amazon reviews
datasets, Chen et al. [7] showed that co-training is a promising
algorithm for UDA, providing better performance than self-
training.

Accordingly, beyond self-training-style andmodel-specific
strategies for UDA, in this article, we are interested in
assessing co-training as a meta-learning UDA strategy. To the
best of our knowledge, this is an under-explored and rel-
evant setting. Moreover, even we are going to use Faster
R-CNN because its outstanding accuracy, our proposal nei-
ther is specific for it, nor requires modifying its losses.
In other words, our co-training-based UDA works at the
training-data level. This allows to complement it with other
UDA working at the same level. In particular, we combine
it with GAN-based image-to-image translation, since such
task-agnostic approach can transform X l,tr

S to be more sim-
ilar to XT before starting co-training. By using the Cycle-
GAN implementation of Zhu et al. [53], we will see how,
indeed, GAN-based image-to-image translation combined
with co-training outperforms the use of each method in
isolation.

III. METHODS
In this section, we detail our self-training and co-training
meta-learning proposals as Algorithms 1 and 2, respectively.
In addition, Figures 1 and 2 provide a visual representation
of these algorithms, highlighting their main components with
the corresponding data flow. Our main interest is to assess the
performance of co-training in vision-based object detection,
but we need also to develop a strong self-training baseline.

194444 VOLUME 8, 2020



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

Algorithm 1 Self-Labeling by Self-Training

input : Labeled images: X l
= {< Ili ,Y

l
i >}

Unlabeled images: X u
= {Iui }

Object detection architecture: 8
8 Training hyper-par.: H8

Slf-tr. hyp.-p.: Hsl = {T ,N , n,Hstp[,Hseq]}

output: New labeled images: X l̂
= {< Il̂i ,Y

l̂
i >}

< X l̂ , k > ← < ∅, 0 >;

φ← TrainDetector(8,H8,X l ,X l̂ );

X l̂
new ← RunDetector(φ,X u,T );

repeat
X l̂
old ← X l̂

new;

X l̂
↑
← Select(↑, n, Rand(X l̂

new,N [,Hseq, k]));

X l̂
← Fuse(X l̂ ,X l̂

↑
);

φ← TrainDetector(8,H8,X l ,X l̂ );

X l̂
new ← RunDetector(φ,X u,T );

until Stop?(Hstp,X l̂
old ,X

l̂
new, k++);

X l̂
← X l̂

new;

return X l̂ ;

FIGURE 1. Self-training main components. We use the same notation as
in Algorithm 1. The data in green is labeled, the one in dark grey is
unlabeled, the transition of both colors represents pseudo-labeled data.
The blue boxes correspond to the main components involved in
self-training according to Algorithm 1.

Since they share functional components, we first introduce
those and then detail how they are used for both self-training
and co-training. Finally, we will see how, depending on the
input data, these SSL algorithms can be used even in a context
where there is a domain shift between already existing labeled
images and the images to be labeled automatically. To refer
to both, self-training and co-training indistinctly, we will use
the term self-labeling in the rest of this section.

A. SELF-LABELING FUNCTIONAL COMPONENTS
1) INPUT AND OUTPUT PARAMETERS
Since we follow a SSL setting [40], we assume access to
a set of images (e.g. acquired on-board a car) with each
object of interest (e.g. vehicles and pedestrians) labeled by
a BB and a class label, as well as to a set of unlabeled
images. The former is denoted as X l

= {< Ili,Y
l
i >},

where Ili is a particular image of the labeled set, being Y l
i

its corresponding labeling information; i.e., for each object
of interest in Ili , Y

l
i includes its BB and its class label. The

unlabeled set is X u
= {Iui }, where I

u
i is a particular unlabeled

image. We assume also a given object detection architecture
to perform self-labeling, denoted as 8, with corresponding
training hyper-parameters denoted asH8. After self-labeling,

Algorithm 2 Self-Labeling by Co-Training

input : Labeled images: X l
= {< Ili ,Y

l
i >}

Unlabeled images: X u
= {Iui }

Object detection architecture: 8
8 Training hyper-par.: H8

Co-tr. hyp.-p.: Hsl = {T ,N , n,m,Hstp[,Hseq]}

output: New labeled images: X l̂
= {< Il̂i ,Y

l̂
i >}

< X l̂
1,X

l̂
2, k > ← < ∅,∅, 0 >;

< X l
1,X

l
2 > ← < X l , (X l )� >;

φ1 ← TrainDetector(8,H8,X l
1,X

l̂
1);

φ2 ← TrainDetector(8,H8,X l
2,X

l̂
2);

X l̂
1,new ← RunDetector(φ1,X u,T );

X l̂
2,new ← RunDetector(φ2,X u,T );

repeat
X l̂
old ← X l̂

1,new;

X l̂
1,↑ ← Select(↑,m, Rand(X l̂

1,new,N [,Hseq, k]));

X l̂
2,↑ ← Select(↑,m, Rand(X l̂

2,new,N [,Hseq, k]));

X l̂
1,↓ ← Select(↓, n, RunDetector(φ1,X l̂

2,↑,T ));

X l̂
2,↓ ← Select(↓, n, RunDetector(φ2,X l̂

1,↑,T ));

X l̂
1 ← Fuse(X l̂

1,X
l̂
1,↓);

X l̂
2 ← Fuse(X l̂

2,X
l̂
2,↓);

φ1 ← TrainDetector(8,H8,X l
1,X

l̂
1);

φ2 ← TrainDetector(8,H8,X l
2,X

l̂
2);

X l̂
1,new ← RunDetector(φ1,X u,T );

X l̂
2,new ← RunDetector(φ2,X u,T );

until Stop?(Hstp,X l̂
old ,X

l̂
1,new, k++);

X l̂
← X l̂

1,new;

return X l̂ ;

FIGURE 2. Co-training main components. We use the same notation as in
Algorithm 2, but we have introduced two dummy variables for the sake of
clarity (X l̂

1,t ,X
l̂
2,t ). The data in green is labeled, the one in dark grey is

unlabeled, the transition of both colors represents pseudo-labeled data.
The blue boxes correspond to the main components involved in
co-training according to Algorithm 2. The light grey bounding box is
executed just once.

we expect to obtain a new set of automatically labeled images,
which we denote as X l̂

= {< Il̂i,Y
l̂
i >}, where I

l̂
i ∈ X u and

VOLUME 8, 2020 194445



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

has Y l̂
i as so-called pseudo-labels, which in this case consists

of a BB and a class label for each detected object in Il̂i . The
variables introduced so far are generic in SSL, i.e. they are
not specific of our proposals. We denote as Hsl the specific
set of hyper-parameters we require for self-labeling. In fact,
Hsl includes {T ,N , n,Hstp,Hseq} as common parameters
for both self-training and co-training, but the latter requires
an additional parameter m that we will explain in the con-
text of co-training. If K is the number of classes to be
considered, then T = {t1, . . . , tK } is a set of per-class
detection thresholds, normally used by object detectors to
ensure a minimum per-class confidence to accept potential
detections. Since self-labeling must perform object detection
on unlabeled images, these thresholds are needed. During
a self-labeling cycle, N self-labeled images are randomly
selected, from which n are kept to retrain the object detector.
Self-training and co-training use different criteria to select
such n self-labeled images. Hstp consists of the parameters
required to evaluate whether self-labeling should stop or not.
Finally, Hseq is an optional set of parameters, only required
if X u consists of sequences rather than isolated images. Note
that, in this case, we can easily avoid to introduce too similar
training samples coming from the same object instances in
consecutive frames, which has shown to be useful in AL
approaches [2].

2) TrainDetector(8,H8,X l ,X l̂ ) : φ
This function returns an object detector, φ, by training a
CNN architecture 8 (e.g. Faster R-CNN [31]) according to
the training hyper-parameters H8 (e.g. optimizer, learning
rate, mini-batch size, training iterations, etc.). Note that this
is just the standard manner of training φ, but as part of our
self-labeling procedures, we control the provided training
data. In particular, we use labels (in X l) and pseudo-labels
(in X l̂) indistinctly. However, we only consider background
samples based on X l , since, during self-labeling, X l̂ can
contain false negatives which could be erroneously taken as
hard negatives when training φ. Despite this control over the
training data, note that we neither require custom modifica-
tions of the loss function used to train φ, nor architectural
modifications of 8.

3) RunDetector(φ,X u, T ) : X l̂

This function returns a set of self-labeled images, X l̂ ,
obtained by running the object detector φ on the unlabeled
set of images X u; in other words, the pseudo-labels corre-
spond to the object detections. Each detection D consists
of a BB B and a class label c; moreover, being a detec-
tion implies that the confidence φ(D) fulfils the condition
φ(D) ≥ tc, tc ∈ T .

4) Rand(X l̂ ,N[,Hseq, k]) : X l̂
s

This function returns a set X l̂
s of N self-labeled images ran-

domly chosen from X l̂ . Hseq and k are optional parameters.

If they are provided, it means that X l̂ consists of sequences
and we want to ensure not to return self-labeled consecutive
frames, since they may contain very similar samples com-
ing from the same object instances and we want to favor
variability in the samples. Moreover, in this way we can
minimize the inclusion of spurious false positives that may
persist for several frames. In this case, Hseq = {1t1,1t2};
where 1t1 is the minimum distance between frames with
pseudo-labels generated in the current cycle, k , and 1t2 is
the minimum distance between frames with pseudo-labels
generated in cycle k and frames with pseudo-labels gen-
erated in previous cycles (< k). 1t1 condition is applied
first, then 1t2 one. The final random selection is per-
formed on the frames remaining after applying these distance
conditions.

5) Select(s,n,X l̂ ) : X l̂
s

This function returns a sub-set X l̂
s ⊂ X l̂ of m self-labeled

images, selected according to a criterion s. If s =↑, the top n
most confident images are selected; while for s =↓, the n least
confident images are selected. We resume the confidence of
an image from the confidences of its detections. For the sake
of simplicity, since X l̂

= {< Il̂i,Y
l̂
i >}, we can assume

that Y l̂
i not only contains the BB and class label for each

detected object in Il̂i , but also the corresponding detection
confidence. Then, the confidence assigned to Il̂i is the average
of the confidences in Y l̂

i .

6) Fuse(X l̂
old ,X

l̂
new ) : X l̂

The goal of this function is to avoid redundant detections
between the self-labeled sets X l̂

old and X l̂
new and preserv-

ing different ones, producing a new set of self-labeled
images, X l̂ . Thus, on the one hand, X l̂ will contain all the
self-labeled images in X l̂

old ∪ X l̂
new − X l̂

old ∩ X l̂
new; on the

other hand, for those images in X l̂
old ∩ X l̂

new, only the detec-
tions in X l̂

new are kept, so the corresponding information is
added to X l̂ .

7) Stop?(Hstp,X l̂
old ,X

l̂
new , k) : Boolean

This function decides whether to stop self-labeling or not.
The decision relies on two conditions. The first one is if a
minimum number of self-labeling cycles, Kmin, have been
performed, where current number is k . The second condition
relies on the similarity of X l̂

old and X l̂
new, computed as the

mAP (mean average precision) [11] by using X l̂
old in the role

of ground truth andX l̂
new in the role of results to be evaluated.

We compute the absolute value difference between the mAP
at current cycle and previous one, keeping track of these
differences in a sliding window fashion. If these differences
are below a threshold, T1mAP , for more than a given number
of consecutive cycles,1K , self-labeling will stop. Therefore,
Hstp = {Kmin,T1mAP ,1K }.

194446 VOLUME 8, 2020



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

B. SELF-TRAINING
Algorithm 1 describes self-training based on the funct-
ional components introduced in Section III-A. In the
following, we highlight several points of this
algorithm.

As Select(, , ) is run in the loop, it implies that in each
cycle the n most confident self-labeled images are kept for
retraining φ. Moreover, potentially redundant object detec-
tions arising from different cycles are resumed by running
the Fuse(, ) function. As is called Fuse(, ) in the loop, when
a previous detection and a new one overlap enough, the new
one is kept since it is based on the last trained version of φ,
which is expected to be more accurate than previous ones.
When calling Select(, , ), not all the available self-labeled
images are considered, but just a random set of them of
size N ; which are chosen taking into account the selection
conditions introduced in case of working with sequences.
This prevents the same highly accurate detections to be
systematically selected across cycles, which would prevent
the injection of variability when retraining φ. The random
selection over the entire X u was also proposed in the original
co-training algorithm [5]. As we have mentioned before,
when running TrainDetector(, , , ), background samples are
only collected from X l to avoid introducing false positives.
Moreover, we set H8 to ensure that all the training sam-
ples are visited at least once (mini-batch size × number of
iterations ≥ number of training images). Therefore, we can
think of X l

∪ X l̂ as a mixing of data, where X l acts as
a regularizing factor during training, which aims to prevent
φ to become an irrecoverably bad detector. Thinking in a
virtual-to-real UDA setting, we note that from traditional ML
algorithms to modern deep CNNs, mixing virtual and real
data has been shown to be systematically beneficial across
different computer vision tasks [17], [32], [36], [41]. Finally,
we can see that to run the stopping criterion we rely on the full
self-labeled data available at the beginning and end of each
cycle, which results from applying the last available version
of φ to the full X u set.

C. CO-TRAINING
Algorithm 2 describes our co-training proposal based on
the functional components introduced in Section III-A.
In the following, we highlight several points of this
algorithm.

Our co-training strategy tries to make φ1 and φ2 different
by training them on different data. Note how each φi is trained
on X l

i and X l̂
i , i ∈ {1, 2}, at each cycle. The X l

i ’s do not
change across cycles and we haveX l

1 = X l andX l
2 = (X l)�,

thus, one of the labeled sets is a horizontal mirroring of
the other. Moreover, the X l̂

i ’s are expected to be different
from each other and changing from cycle to cycle. On the
other hand, even technically not using the same exact data to
train φ1 and φ2, there will be a cycle when they converge and
are not able to improve each other. This is what we check to
stop, i.e. as for self-training, but focusing on the performance

of φ1 since it is the detector using X l (the original labeled
dataset).

Another essential question is how each X l̂
i is obtained.

As we have mentioned before, we follow the idea of dis-
agreement. Thus, from the random set of images self-labeled
by φi, i.e. X l̂

i,new, i ∈ {1, 2}, we set to X l̂
i,↑ the m with overall

higher confident pseudo-labels; then, the images in X l̂
i,↑ are

processed by φj, j ∈ {1, 2}, i 6= j, and the n with the overall
lower confident pseudo-labels are set to X l̂

j,↓. Finally, each

X l̂
i,↓ is fused with the X l̂

i accumulated from previous cycles

to update X l̂
i . Therefore, in each cycle, each φi is retrained

with the images containing the less confident pseudo-labels
for current φi, selected among the images containing the
most confident pseudo-labels for current φj. In this way,
the detectors trust each other, and use the samples that are
more difficult for them for improving.

Note also that the most costly processing in self-training
and co-training cycles is the TrainDetector(, , , ) procedure.
It is called once per cycle for self-training, and twice for
co-training. However, in the latter case the two executions
can run totally in parallel, therefore, with the proper hard-
ware resources, self-training and co-training cycles can be
performed in a very similar time.

D. SELF-LABELING FOR UDA
Once introduced our self-training and co-training algorithms,
we see how using them for UDA is just a matter of pro-
viding the proper input parameters; i.e., X l

= X l,tr
S ,

X u
= XT , being X l,tr

S the source-domain labeled dataset,
and XT the target-domain unlabeled one. We will draw the
former from a virtual world, and the latter from the real
world.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
As real-world datasets we use KITTI [11] and Waymo [37],
in the following denoted asK,W , respectively. The former is
a well-established standard born in the academia; the latter is
a new contribution from the industry. To work withK, we fol-
low the splits introduced in [48], which are based on isolated
images, and guarantee that training and testing images are not
highly correlated; i.e., training and testing images are not just
different frames sampled from the same sequences. On the
other hand, W dataset contains video sequences. Following
the advice for its use, we have randomly selected part of
the sequences for training and the rest for testing. Taking K
as reference, we focus on daytime and non-adverse weather
conditions in all the cases. In addition, we have accommo-
dated W images to the resolution of K ones, i.e. 1240× 375
pixels, by just cropping away their upper part (which mainly
shows sky) and keeping the vertically centered 1240 columns.
Following KITTI benchmark moderate settings, we set the
minimum BB height to detect objects to 25 pixels and, analo-
gously, 50 pixels forW . Moreover, sinceW contains 3DBBs,

VOLUME 8, 2020 194447



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

as for the virtual-world objects (Figure 3), we obtain 2D BBs
from them. In other words, the resulting 2D BBs account for
occluded object areas, which is not the case for the 2D BBs
directly available withW .

FIGURE 3. Top images: virtual-world patches showing 3D BBs framing
vehicles and pedestrians. Bottom image: projecting 3D BBs as 2D BBs for
different views of a pickup, with instance segmentation as visual
reference.

In order to perform our experiments, as set of virtual-world
images (V), we have used a dataset that we generated inter-
nally around two years ago as a complement for our former
SYNTHIA dataset [32]. We did not have the opportunity to
release it at that moment, but it will be publicly available
to complement this article. We generated this data follow-
ing KITTI parameters: same image resolution, daytime and
non-adverse weather, and isolated images. As in [32], we did
not focus on obtaining photo-realistic images. However, for
generating V , we included standard visual post-effects such
as anti-aliasing, ambient occlusion, depth of field, eye adap-
tation, blooming and chromatic aberration. Later, we will see
how the domain shift between V and K/W , is similar to the
one between K and W; thus, being V a proper virtual-world
dataset for our study. Figure 3 shows virtual-world images
with 3D BBs framing vehicles and pedestrians, illustrating
also how the 3D BBs are projected as 2D BBs covering
occluded object areas.

For each dataset, Table 1 summarizes the number of
images/frames and objects (vehicles and pedestrians) used for
training and testing our object detectors.

Since our proposal does not assume a particular object
detection architecture, for performing the experiments we

TABLE 1. Datasets (X ): train (X tr ) and test (X tt ) information,
X = X tr ∪ X tt ,X tr ∩ X tt = ∅. We show the number of images/frames
(sequences), vehicle BBs, pedestrian BBs, and whether the datasets
consists of video sequences or not.

FIGURE 4. Main components of Faster R-CNN: feature extractor (FE),
region proposal network (RPN), and region-based CNN (RCNN). Their
responsibilities are outlined in parenthesis and elaborated in the main
text. We use VGG16 as FE. Blue boxes are blocks of neural network layers
with input dimensions indicated as <height, width, channels>. Grey boxes
are algorithmic steps to return BBs, candidates (RPN) or detections
(RCNN). This Faster R-CNN architecture is detailed in [13].

have chosen Faster R-CNN [31] because it provides a com-
petitive detection accuracy and is very well known by com-
puter vision practitioners [23]. For the sake of completeness,
Figure 4 shows the main components of Faster R-CNN,
namely, the Feature Extractor (FE), the region proposal net-
work (RPN), and the region-based CNN (RCNN). We use the
implementation available in the Detectron framework [13],
with VGG16 as FE. The RPN component generates object
candidates from the so-called bottleneck of FE (i.e. Con-
vBlock5). Conceptually, these candidates can be understood
as BBs which can potentially contain objects of interest.
Using these candidates and the same bottleneck, the RCNN
component performs the final object classification and BB
regression (a refinement of the BBs proposed by RPN). For
comprehensive details the reader can refer to [13]. At train-
ing time, we always initialize VGG16 (FE) with ImageNet
weights since it is a recommended best practice. The weights
of the RPN and RCNN components are randomly initialized.
We run each Faster R-CNN training for 40,000 iterations
using SGD optimizer. The learning rate starts at 0.001 and
we have used a decay of 0.1 at iterations 30,000 and 35,000.
Each iteration uses a mini batch of two images. In terms of
Algorithms 1 and 2, these settings correspond toH8.

As GAN-based image-to-image translation method we use
the CycleGAN implementation in [53]. A GAN training runs
for 40 epochs using a weight of 1.0 for the identity mapping
loss. In order to be able to use full resolution images, the train-
ing of the GAN has been done patch-wise, with patch sizes
of 300 × 300 pixels. The rest of parameters have been set

194448 VOLUME 8, 2020



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

FIGURE 5. From left to right: images from V , corresponding images in VGK (i.e. processed by the V → K GAN), and images from K. Last column is just
a visual reference since, obviously, there is no a one-to-one correspondence between V and K.

FIGURE 6. From left to right: images from V , corresponding images in VGW (i.e. processed by the V → W GAN), and images from W . For visual
comparison, the two top rows of this figure and those in Figure 5, start with the same images in V .

as recommended in [53]. We train a V → K transforming
GAN, GK, and another for V → W , GW . Accordingly,
VGK = GK(V) denotes the set of virtual-world images trans-
formed by GK and, analogously, we have VGW = GW (V).
We will use the notation VG to refer to any of these sets.

The ground truth present in V is used as ground truth for VG .
For qualitative examples of image-to-image transformations,
we refer to Figures 5 and 6, using GK and GW , respectively.

Table 2 summarizes the rest of hyper-parameters used
to perform our experiments. Note that, regarding our

VOLUME 8, 2020 194449



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

TABLE 2. Self-training and co-training hyper-parameters as defined in
Algorithms 1 and 2. We use the same values for both, as well as to work
with KITTI (K) and Waymo (W) datasets, except for Hseq which only
applies to W . N , n, m, 1t1, and 1t2 are set in number-of-images units,
Kmin and 1K in number-of-cycles, T1mAP runs in [0..100]. We use the
same confidence detection threshold for vehicles and pedestrians, which
runs in [0..1]. (?) Only used in co-training, however, for m = ∞, it has no
effect.

TABLE 3. SSL results for K and W . We assess vehicle (V) and pedestrian
(P) detection, according to the mAP metric. From X tr ∈ {Ktr ,Wtr },
we preserve the labeling information for a randomly chosen p% of its
images, while it is ignored for the rest. We report results for p = 100 (all
labels are used), p = 5 and p = 10. Slf-T and Co-T stand for self-training
and co-training, resp., which refers to how images were self-labeled from
the respective unlabeled training sets.

TABLE 4. Number of self-labeled vehicles and pedestrians applying
self-training and co-training, for the SSL (5% & 10%) and UDA (Source &
ASource) settings, for KITTI (K) and Waymo (W). In parenthesis we
indicate the percentage of false positives. The top block corresponds to
ground truth labels in the full training sets, and the percentages used for
SSL. After removing false positives, in each block of rows,
the corresponding 1X shows how many more objects are labeled by
co-training compared to self-training.

self-labeling approaches, we use the same values for K
and W , with the only exception that for W we also con-
sider that it is composed of video sequences. Moreover,
we also use the same values for hyper-parameters shared
by self-training and co-training. We relied on the meaning
of the hyper-parameters to set them with reasonable values.
Then, during the experiments of the 5% with self/co-training
(see Table 3) we did visual inspection of the self-labeled
images to ensure the methods were working well. In this
process, we noted that, since the confidence thresholds (T )
were already avoiding too erroneous self-labeled images, for

TABLE 5. UDA results for V → {K,W}, i.e. virtual to real. ASource
(adapted source) refers to VG ∈ {VGK ,VGW }. X l,tr refers to the fully

labeled target-domain training set. X l̂,tr consists of the same images as
X l,tr , but self-labeled by either self-taining (Slf-T) or co-training (Co-T).
Just as reference, we also show the domain shift between K and W .
According to these results, as upper bound for K we take the detector
based on X l,tr &VG , while for W it is the detector based on X l,tr .
We refer to the main text for more details.

FIGURE 7. Eventual detection performance (mAP) of self-training and
co-training as a function of the stopping cycle, in the UDA setting. Upper
and lower bounds are included as visual reference. We refer to the main
text for more details.

co-training it was better to send all the images self-labeled
by the detector φi to detector φj, i, j ∈ {1, 2}, i 6= j, so that

194450 VOLUME 8, 2020



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

FIGURE 8. Examples of Self/Co-training + ASource. Red BBs are from the ground truth of Ktr , and green BBs are predicted. Each block of two
columns with the same underlying image compares self-training (left column of the block) and co-training (right column of the block). Top row
corresponds to detections in Cycle 0, when, in these examples, the only available training data is VGK (so it is the same for self-training and
co-training). The following rows, top to bottom, correspond to detections from cycles 1, 10, and 20, respectively, when self-labeled images are
incrementally added to the training set.

FIGURE 9. Analogous to Figure 8 for Wtr and VGW .

φj can select the n most difficult for it among them. This is
equivalent to set m = ∞ in Algorithm 2 (so nullifying the
parameter).

Algorithms 1 and 2 return self-labeled images, i.e. X l̂ . For
our experiments, we use X l̂ together with the input labeled
set, X l , to train a final Faster R-CNN object detector out of
the self-labeling cycles but using the same training settings.
This detector is the one used for testing. Finally, to measure
object detection performance, we follow the KITTI bench-
mark mean average precision (mAP) metric [11].

B. RESULTS
We start by assessing the self-labeling algorithms in a pure
SSL setting, working only with either the K or W dataset.

Table 3 shows the results when using the 100% of the respec-
tive real-world training data, i.e. X l

= X tr
∈ {Ktr ,W tr

},
as well as when randomly selecting the 5% or the 10% of
X tr as X l set, meaning that these subsets are created once
and frozen for all the experiments. Table 4 shows the number
of object instances induced by the random selection in each
case. In Table 3, the 100% case shows the upper-bound
performance, and the 5% and 10% act as lower bounds.

We can see that, in all the cases, the self-labeling
methods outperform the lower bounds. For vehicles (V),
self-training and co-training perform similarly for the 5%
lower bound, while for the 10% self-training performs bet-
ter than co-training in K but worse in W . For pedestri-
ans (P), co-training always performs better. Looking at the
vehicle-pedestrian combined (V&P) performance, we see

VOLUME 8, 2020 194451



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

TABLE 6. Results for two new settings: (/FP) assuming we remove the
self-labeled false positives; (/FP+BB) assuming that, in addition, for the
self-labeled instances, we change the predicted BB by the corresponding
one in the ground truth. The 1X rows show differences between these
variants and the respective original one (i.e. neither removing the FP nor
adjusting the BBs). The bottom block of rows remarks the differences
between the best self-labeling (Co-T+ASource, including /FB and /FB+BB
cases) and the upper bound.

significant improvements over the lower bounds. Interest-
ingly, for the 10% setting, co-training even outperforms the
upper bound for pedestrians in W . In fact, in this case,
the correspondingV&P performance is just 1.55 points below
the upper bound. The same setting in K, improves 5.3 points
over the lower bound, but is 7.4 points below the upper bound.
These experiments show that our self-labeling algorithms,
especially co-training, are performing the task of SSL reason-
ably well, which encourages to address the UDA challenge
with them.

Table 5 shows the UDA results for V → K and V → W ,
thus, training with V acts as lower bound. Just as reference,
we also show the results of training on K and testing on W ,
and vice versa. The former case shows a similar domain shift
as when training on V . The latter case shows a significant
lower shift from V to K, than from W to K. Thus, we think
that V offers a realistic use case to assess virtual-to-real UDA.
The 1X rows at the bottom block of Table 5 summarize
numerically the main insights.

A first observation is that, by combining GAN-based
image-to-image translation and co-training, we obtain signif-
icant performance improvements over the lower bounds in all
cases; in terms of V&P, 10.22 points for K and 11.56 forW .
In fact, the gap to reach upper-bound performances, is rel-
atively small compared to the improvement over the lower
bounds; in terms of V&P, such gap is of 0.54 points for K
and of 2.04 for W . Note that for K, the upper bound comes
from the X l,tr&VG setting (i.e. training on the full labeled
training set of K plus VGK ); while for W , the upper bound
comes from the X l,tr setting (i.e. training on the full labeled

FIGURE 10. Examples of misalignment between ground truth BBs (red)
and self-labeled ones (green). Occlusion is the underlying problem, giving
rise to shorter BBs (top and middle) or BBs fusing several instances in
one (bottom).

training set of W). Thus, without any manual training data
labeling, we are almost reaching upper-bound performance.

A second observation is that, indeed, co-training brings
additional improvements on top of image-to-image trans-
lation; in terms of V&P, 5.77 points for K and 4.94
for W . Note that, when applying them separately to the
virtual-world images (source domain), both co-training and
CycleGAN (ASource) show similar performance improve-
ments for W but co-training outperforms CycleGAN in K;
in terms of V&P, co-training improves 7.22 points for K and
6.32 forW , while CycleGAN improves 4.45 and 6.62 points,
respectively. Interestingly, CycleGAN performs better than
co-training for vehicles and it is the opposite for pedestri-
ans. In any case, using both together outperforms them in
isolation.

A third observation is that co-training consistently out-
performs self-training. Moreover, in Figure 7 we can see
that this is also consistent along self-labeling cycles (we
show the UDA setting). It plots curves illustrating how the
self-training and co-training strategies would perform as a
function of the stopping cycle. We collect the respective
self-labeled images at different cycles (x-axis) and train an

194452 VOLUME 8, 2020



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

FIGURE 11. Results for Ktt (top ‘Source → Co-T + Asource’ block) and Wtt (bottom ‘Source → Co-T + Asource’ block). Red BBs
are the ground truth, and green ones are the detections done by the detector indicated at the first column of each row.

object detector as these cycles were determined as the stop-
ping ones. Then, we assess the performance of the detector
in the corresponding testing set (either from K or W),

so collecting the corresponding mAP (y-axis) per each
considered cycle. We see how self-training curves oscillate
more around the respective lower bounds, while co-training

VOLUME 8, 2020 194453



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

ones keep improving performance as we train more cycles.
Moreover, in Table 4, we can see how co-training sys-
tematically self-labels more correct object instances than
self-training (1X rows show the increment for SSL and UDA
settings).

Figures 8 and 9 show qualitative examples of how
self-training and co-training progress inKtr andW tr images,
respectively; in this case, starting with VGK and VGW as
corresponding initial labeled training sets. Both self-labeling
strategies improve over the starting point, since they can cor-
rect BB localization errors, remove false positives, and recov-
ering from false negatives. In some cases, self-training and
co-training show the same final right result, but co-training
reaches it in earlier cycles, while in other cases co-training
shows better final results.

As summarized in Table 6, with additional experiments,
we have further analyzed co-training results. We repeat the
training and evaluation of all the detectors developed for both
the SSL and UDA settings, considering two variants in the
respective training sets. In (/FP) we remove the false positives
from the self-labeled data. In (/FP+BB), in addition, for those
self-labeled instances that are true positives, we replace the
BBs predicted during self-labeling by the corresponding BB
ground truth. In this way, we can incrementally analyze the
effect of false positives and BB adjustment accuracy.

Table 6 shows how the impact of having false positives
as training data is not as strong as one may think a priori.
For instance, in Table 4 we can see that co-training with
CycleGAN (Co-T + ASource) has output a 28.8% of false
vehicles in W and a 3.1% in K, a large difference; however,
Table 6 indicates that removing them results in a vehicle
detection improvement of just 0.71 points in the former case,
and 0.17 in the latter. This may be linked with the fact that
SGD optimization in deep neural networks (DNNs) tend to
prioritize learning patterns instead of noise [3].

In general, as Table 6 shows, a better BB adjustment has
a higher impact than removing false positives, especially
for vehicles. In fact, for the higher performing detector, i.e.
co-training with CycleGAN, this adjustment would allow
to even outperform the upper bound. This improvement is
mainly coming from the detection of vehicles. For instance,
Figure 10 shows examples of the typical BBmisalignment we
have found, mainly due to occluded vehicle instances. Note
also that the (/FP+BB) results indicate that non-self-labeled
objects (false negatives) do not cause any loss of perfor-
mance, unless they would result in better BB adjustments.

We finish by showing qualitative results on Ktt and W tt

(Figure 11), for different object detectors. Comparing ground
truth BBs and detections, we appreciate how it is confirmed
what is expected from the quantitative results, i.e. co-training
combined with GAN-based image-to-image translation is
providing the most accurate results.

V. CONCLUSION
Motivated by the burden of manual data labeling when
addressing vision-based object detection, we have explored

co-training as SSL strategy for self-labeling objects in
images. Moreover, we have focused on the challenging sce-
nario where the initial labeled set is generated automatically
in a virtual world; thus, co-training must actually perform
UDA. We have proposed a specific co-training algorithm
which is agnostic to the particular object detector used for
self-labeling. We have devised a comprehensive set of exper-
iments addressing the challenging task of on-board vehicle
and pedestrian detection, using de facto standards such as
KITTI and Waymo datasets, together with a virtual-world
dataset introduced in this article. Our qualitative results
allow us to conclude that co-training and GAN-based image-
to-image translation complement each other up to allow the
training of object detectors without manual labeling, while
still reaching almost the same performance as by totally
relying on human labeling for obtaining upper-bound perfor-
mances. These results show that the self-labeled objects are
sufficient to train a well-performing object detector, but also
that improving BB adjustment is convenient to improve its
performance. Accordingly, our future work will address this
point, for instance, by developing a multi-modal co-training
which jointly explores RGB images (as in this article) as
well as depth information based on monocular depth estima-
tion [14], where object borders may be better localized.

ACKNOWLEDGMENT
The authors would like to thank several past collaborators and
visiting interns of the Computer Vision Center (CVC). They
thank Dr. Hamed H. Aghdam for starting discussions on the
use of co-training for computer vision tasks. They also thank
the interns Mojtaba Valipour and, especially, Sahil Gupta, for
helping in the early stages of the research, when they were
programming exploratory ideas under their supervision. They
also thank Jose L. Gómez for the help in the synthetic data
generation.

REFERENCES
[1] Y. Abramson and Y. Freund, ‘‘SEmi-automatic VIsuaL LEarning

(SEVILLE): A tutorial on active learning for visual object recognition,’’
in Proc. Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2005.

[2] H. H. Aghdam, A. Gonzalez-Garcia, A. Lopez, and J. Weijer, ‘‘Active
learning for deep detection neural networks,’’ inProc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 3672–3680.

[3] D. Arpit, S. Jastrzebsk, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal,
T. Maharaj, A. Fischer, A. Courville, Y. Bengio, and S. Lacoste-Julien,
‘‘A closer look at memorization in deep networks,’’ in Proc. Int. Conf.
Mach. Learn. (ICML), 2017, pp. 233–242.

[4] M.-F. Balcan, A. Blum, andK. Yang, ‘‘Co-training and expansion: Towards
bridging theory and practice,’’ in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), 2004, pp. 89–96.

[5] A. Blum and T. Mitchell, ‘‘Combining labeled and unlabeled data with co-
training,’’ in Proc. 11th Annu. Conf. Comput. Learn. Theory - COLT, 1998,
pp. 92–100.

[6] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learning. Cam-
bridge, MA, USA: MIT Press, 2006.

[7] M. Chen, K. Weinberger, and J. Blitzer, ‘‘Co-training for domain
adaptation,’’ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2011,
pp. 2456–2464.

[8] M. Chen, K. Weinberger, and Y. Chen, ‘‘Automatic feature decomposition
for single view co-training,’’ in Proc. Int. Conf. Mach. Learn. (ICML),
2011, pp. 953–960.

194454 VOLUME 8, 2020



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

[9] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, ‘‘Domain
adaptive faster R-CNN for object detection in the wild,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 3339–3348.

[10] G. Csurka, ‘‘A comprehensive survey on domain adaptation for visual
applications,’’ in Domain Adaptation in Computer Vision Applica-
tions (Advances in Computer Vision and Pattern Recognition). Cham,
Switzerland: Springer, 2017, ch. 1.

[11] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3354–3361.

[12] S. Gidaris, P. Singh, and N. Komodakis, ‘‘Unsupervised representation
learning by predicting image rotations,’’ in Proc. Int. Conf. Learn. Rep-
resent. (ICLR), 2018, pp. 1–16.

[13] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and K. He. (2018).
Detectron. [Online]. Available: https://github.com/facebookresearch/
detectron

[14] C. Godard, O. M. Aodha, M. Firman, and G. Brostow, ‘‘Digging into self-
supervised monocular depth estimation,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 3828–3838.

[15] U. Guz, D. Hakkani-Tür, S. Cuendet, and G. Tur, ‘‘Co-training
using prosodic and lexical information for sentence segmentation,’’
in Proc. Conf. Int. Speech Commun. Assoc. (INTERSPEECH), 2007,
pp. 1–4.

[16] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. W. Tsang, and
M. Sugiyama, ‘‘Co-teaching: Robust training of deep neural networks with
extremely noisy labels,’’ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS),
2018, pp. 8527–8537.

[17] N. Jaipuria, X. Zhang, R. Bhasin, M. Arafa, P. Chakravarty, S. Shrivastava,
S. Manglani, and V. N. Murali, ‘‘Deflating dataset bias using synthetic data
augmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2020, pp. 772–773.

[18] J. Jeong, S. Lee, J. Kim, and N. Kwak, ‘‘Consistency-based semi-
supervised learning for object detection,’’ inProc. Adv. Neural Inf. Process.
Syst. (NeurIPS), 2019, pp. 10759–10768.

[19] D. Kim, D. Cho, D. Yoo, and I. S. Kweon, ‘‘Learning image representations
by completing damaged jigsaw puzzles,’’ in Proc. IEEEWinter Conf. Appl.
Comput. Vis. (WACV), Mar. 2018, pp. 793–802.

[20] S. Kim, J. Choi, T. Kim, and C. Kim, ‘‘Self-training and adversarial
background regularization for unsupervised domain adaptive one-stage
object detection,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 6092–6101.

[21] A. Kolesnikov, X. Zhai, and L. Beyer, ‘‘Revisiting self-supervised visual
representation learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 1920–1929.

[22] Levin, Viola, and Freund, ‘‘Unsupervised improvement of visual detectors
using cotraining,’’ in Proc. 9th IEEE Int. Conf. Comput. Vis., Oct. 2003,
p. 626.

[23] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, ‘‘Deep learning for generic object detection: A survey,’’
Int. J. Comput. Vis., vol. 128, no. 2, pp. 261–318, Feb. 2020.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, andA. Berg,
‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2016, pp. 21–37.

[25] V. S. Lokhande, S. Tasneeyapant, A. Venkatesh, S. N. Ravi, and
V. Singh, ‘‘Generating accurate pseudo-labels in semi-supervised learning
and avoiding overconfident predictions via Hermite polynomial activa-
tions,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 11435–11443.

[26] A.M. López, G. Villalonga, L. Sellart, G. Ros, D. Vázquez, J. Xu, J. Marín,
and A. Mozafari, ‘‘Training my car to see using virtual worlds,’’ Image Vis.
Comput., vol. 68, pp. 102–118, Dec. 2017.

[27] K. Nigam and R. Ghani, ‘‘Analyzing the effectiveness and applicability
of co-training,’’ in Proc. 9th Int. Conf. Inf. Knowl. Manage. CIKM, 2000,
pp. 86–93.

[28] A. Oliver, A. Odena, C. Raffel, E. Cubuk, and I. Goodfellow, ‘‘Realistic
evaluation of deep semi-supervised learning algorithms,’’ in Neural Inf.
Process. Syst. (NeurIPS), 2018, pp. 3235–3246.

[29] S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille, ‘‘Deep co-training
for semi-supervised image recognition,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), Sep. 2018, pp. 135–152.

[30] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 7263–7271.

[31] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards
real-time object detection with region proposal networks,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149,
Jun. 2017.

[32] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, ‘‘The
SYNTHIA dataset: A large collection of synthetic images for semantic
segmentation of urban scenes,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 3234–3243.

[33] C. Rosenberg, M. Hebert, and H. Schneiderman, ‘‘Semi-supervised
self-training of object detection models,’’ in Proc. 7th IEEE
Workshops Appl. Comput. Vis. (WACV/MOTION), vol. 1, Jan. 2005,
pp. 29–36.

[34] S. Roy, A. Unmesh, and V. Namboodiri, ‘‘Deep active learning for object
detection,’’ in Proc. Brit. Mach. Vis. Conf. (BMVC), 2018, p. 91.

[35] B. Settles, ‘‘Active Learning,’’ Synthesis Lectures on Artificial Intelligence
and Machine Learning, vol. 6. San Rafael, CA, USA: Morgan & Claypool,
2012, pp. 1–114.

[36] C. R. de Souza, A.Gaidon, Y. Cabon, N.Murray, andA.M. López, ‘‘Gener-
ating human action videos by coupling 3D game engines and probabilistic
graphical models,’’ Int. J. Comput. Vis., vol. 128, no. 5, pp. 1505–1536,
May 2020.

[37] P. Sun et al., ‘‘Scalability in perception for autonomous driving: Waymo
open dataset,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 2446–2454.

[38] I. Triguero, S. García, and F. Herrera, ‘‘Self-labeled techniques for semi-
supervised learning: Taxonomy, software and empirical study,’’Knowl. Inf.
Syst., vol. 42, no. 2, pp. 245–284, Feb. 2015.

[39] G. Tur, ‘‘Co-adaptation: Adaptive co-training for semi-supervised learn-
ing,’’ in Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Apr. 2009, pp. 3721–3724.

[40] J. E. van Engelen andH. H. Hoos, ‘‘A survey on semi-supervised learning,’’
Mach. Learn., vol. 109, no. 2, pp. 373–440, Feb. 2020.

[41] D. Vazquez, A. M. Lopez, J. Marin, D. Ponsa, and D. Geronimo,
‘‘Virtual and real world adaptation for pedestrian detection,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 797–809,
Apr. 2014.

[42] K. Wang, X. Yan, D. Zhang, L. Zhang, and L. Lin, ‘‘Towards human-
machine cooperation: Self-supervised samplemining for object detection,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 1605–1613.

[43] M. Wang and W. Deng, ‘‘Deep visual domain adaptation: A survey,’’
Neurocomputing, vol. 312, pp. 135–153, Oct. 2018.

[44] W. Wang and Z.-H. Zhou, ‘‘Analyzing co-training style algorithms,’’ in
Proc. Eur. Conf. Mach. Learn. (ECML), 2007, pp. 454–465.

[45] W. Wang and Z.-H. Zhou, ‘‘A new analysis of co-training,’’ in Proc. Int.
Conf. Mach. Learn. (ICML), 2010, pp. 1135–1142.

[46] K. Weiss, T. Khoshgoftaar, and D. Wang, ‘‘A survey of transfer learning,’’
J. Big Data, vol. 3, no. 9, 2016.

[47] G. Wilson and D. J. Cook, ‘‘A survey of unsupervised deep domain
adaptation,’’ ACM Trans. Intell. Syst. Technol., vol. 11, no. 5, pp. 1–46,
Sep. 2020.

[48] Y. Xiang,W. Choi, Y. Lin, and S. Savarese, ‘‘Data-driven 3D voxel patterns
for object category recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 1903–1911.

[49] J. Xu, L. Xiao, and A. M. Lopez, ‘‘Self-supervised domain adaptation
for computer vision tasks,’’ IEEE Access, vol. 7, pp. 156694–156706,
Nov. 2019.

[50] D. Yarowsky, ‘‘Unsupervised word sense disambiguation rivaling super-
vised methods,’’ in Proc. 33rd Annu. meeting Assoc. Comput. Linguistics,
1995, pp. 189–196.

[51] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, and M. Sugiyama, ‘‘How does
disagreement help generalization against label corruption,’’ in Proc. Int.
Conf. Mach. Learn. (ICML), 2019, pp. 7164–7173.

[52] Z.-H. Zhou and M. Li, ‘‘Semi-supervised learning by disagreement,’’
Knowl. Inf. Syst., vol. 24, no. 3, pp. 415–439, Sep. 2010.

[53] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image
translation using cycle-consistent adversarial networks,’’ inProc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232.

[54] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong,
and Q. He, ‘‘A comprehensive survey on transfer learning,’’ 2019,
arXiv:1911.02685. [Online]. Available: http://arxiv.org/abs/1911.
02685

VOLUME 8, 2020 194455



G. Villalonga, A. M. López Peña: Co-Training for On-Board Deep Object Detection

[55] Y. Zou, Z. Yu, B. Kumar, and J. Wang, ‘‘Unsupervised domain adaptation
for semantic segmentation via class-balanced self-training,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 289–305.

[56] Y. Zou, Z. Yu, X. Liu, B. V. K. V. Kumar, and J. Wang, ‘‘Confidence
regularized self-training,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 5982–5991.

GABRIEL VILLALONGA received the B.Sc.
degree in computer science from the Universi-
tat Autònoma de Barcelona (UAB), in 2014, and
the M.Sc. degree in computer vision jointly from
UAB, UPC, UPF, and UOC universities, in 2015.
He is currently pursuing the Ph.D. degree in com-
puter science focusing on tasks related to percep-
tion for autonomous driving. He performed his
B.Sc. final project on on-board 3-D pedestrian
detection at UAB. He did his M.Sc. dissertation on
pedestrian behaviour analysis.

ANTONIO M. LÓPEZ PEÑA (Member, IEEE)
is currently the Principal Investigator of the
Autonomous Driving Lab, Computer Vision Cen-
ter (CVC), Universitat Autònoma de Barcelona
(UAB). He has also a tenure position as an
Associate Professor at the Computer Science
Department, UAB. He has a long trajectory car-
rying research at the intersection of computer
vision, computer graphics, machine learning, and
autonomous driving. He has been deeply involved

in the creation of the SYNTHIA dataset and the CARLA open-source simu-
lator for democratizing autonomous driving research. He is actively working
hand-on-hand with industry partners to bring state-of-the-art techniques to
the field of autonomous driving. He was granted by the Catalan ICREA
Academia Program.

194456 VOLUME 8, 2020


