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Abstract

Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution
and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been
challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we
address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and
perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our anal-
yses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate
genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies.
We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA
viruses in our samples.

Key words: population genomics, adaptation, demography, selection, clines, SNPs, structural variants.

Introduction
Understanding processes that influence genetic variation in
natural populations is fundamental to understanding the
process of evolution (Dobzhansky 1970; Lewontin 1974;
Kreitman 1983; Kimura 1984; Hudson et al. 1987;
McDonald and Kreitman 1991; Adrian and Comeron 2013).
Until recently, technological constraints have limited studies
of natural genetic variation to small regions of the genome
and small numbers of individuals. With the development of
population genomics, we can now analyze patterns of
genome-wide genetic variation for large numbers of individ-
uals, with samples structured across space and time. As a
result, we have new insight into the evolutionary dynamics
of genetic variation in natural populations (Begun et al. 2007;
Hohenlohe et al. 2010; Cheng et al. 2012; Pool et al. 2012;
Harpur et al. 2014; Zanini et al. 2015). But, despite this tech-
nological progress, extensive large-scale sampling and genome
sequencing of populations remains prohibitively expensive
and too labor-intensive for most individual research groups.

Here, we present the first comprehensive, continent-wide
genomic analysis of genetic variation of European Drosophila
melanogaster, based on 48 pool-sequencing samples from 32
localities collected in 2014 (fig. 1) by the European Drosophila
Population Genomics Consortium (DrosEU; https://droseu.
net). Drosophila melanogaster offers several advantages for
genomic studies of evolution in space and time. It boasts a
relatively small genome, a broad geographic range, a multi-
voltine life history which allows sampling across generations
on short timescales, simple standard techniques for collecting

wild samples, and a well-developed context for population

genomic analysis (Powell 1997; Keller 2007; Hales et al. 2015).
Importantly, this species is studied by an extensive interna-
tional research community, with a long history of developing
shared resources (Hales et al. 2015; Bilder and Irvine 2017;
Haudry et al. 2020).

Our study complements and extends previous studies of
genetic variation in D. melanogaster, both from its native
range in Southeastern Africa and from its world-wide expan-
sion as a human commensal. The expansion into Europe is
thought to have occurred �4,100–19,000 years ago and into
North America and Australia in the last few centuries (David
and Capy 1988; Lachaise et al. 1988; Li and Stephan 2006;
Keller 2007; Kapopoulou, Kapun, et al. 2018; Arguello et al.
2019; Sprengelmeyer et al. 2020). The colonization of novel
habitats and climate zones on multiple continents makes
D. melanogaster especially useful for studying parallel local
adaptation, with previous studies finding pervasive latitudinal
clines in allele frequencies (Schmidt and Paaby 2008; Turner
et al. 2008; Kolaczkowski et al. 2011; Fabian et al. 2012;
Bergland et al. 2014; Kapun, Fabian, et al. 2016; Machado
et al. 2016), structural variants such as chromosomal inver-
sions (reviewed in Kapun and Flatt 2019), transposable ele-
ments (TEs) (Boussy et al. 1998; Gonz�alez et al. 2008, 2010),
and complex phenotypes (de Jong and Bochdanovits 2003;
Schmidt and Paaby 2008; Schmidt et al. 2008; Kapun,
Schmidt, et al. 2016; Behrman et al. 2018), especially along
the North American and Australian east coasts. In addition to
parallel local adaptation, these latitudinal clines are, however,
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also affected by admixture with flies from Africa and Europe
(Caracristi and Schlötterer 2003; Yukilevich and True 2008a,
2008b; Duchen et al. 2013; Kao et al. 2015; Bergland et al.
2016).

In contrast, the population genomics of D. melanogaster
on the European continent remains largely unstudied
(Bo�zi�cevi�c et al. 2016; Pool et al. 2016; Mateo et al. 2018).
Because Eurasia was the first continent colonized by
D. melanogaster as they migrated out of Africa, we sought
to understand how this species has adapted to new habitats
and climate zones in Europe, where it has been established
the longest (David and Capy 1988; Lachaise et al. 1988). We
analyze our data at three levels: 1) variation at single-
nucleotide polymorphisms (SNPs) in nuclear and mitochon-
drial (mtDNA) genomes (�5.5�106 SNPs in total); 2) struc-
tural variation, including TE insertions and chromosomal
inversion polymorphisms; and 3) variation in the microbiota
associated with flies, including bacteria, fungi, protists, and
viruses.

Results and Discussion
As part of the DrosEU consortium, we collected 48 population
samples of D. melanogaster from 32 geographical locations
across Europe in 2014 (table 1 and fig. 1). We performed
pooled sequencing (Pool-Seq) of all 48 samples, with an av-
erage autosomal coverage �50� (supplementary table S1,
Supplementary Material online). Of the 32 locations, ten
were sampled at least once in summer and once in fall
(fig. 1), allowing a preliminary analysis of seasonal change in
allele frequencies on a genome-wide scale.

A description of the basic patterns of genetic variation
of these European D. melanogaster population samples,

based on SNPs, is provided in Supplementary Material
online (see supplementary results and table S1,
Supplementary Material online). For each sample, we es-
timated genome-wide levels of p, Watterson’s h, and
Tajima’s D (corrected for pooling; Futschik and
Schlötterer 2010; Kofler et al. 2011). In brief, patterns of
genetic variability and Tajima’s D were largely consistent
with what has been previously observed on other conti-
nents (Fabian et al. 2012; Langley et al. 2012; Lack et al.
2015, 2016), and genetic diversity across the genome
varies mainly with recombination rate (Langley et al.
2012). We also found little spatiotemporal variation
among European populations in overall levels of sequence
variability (table 2).

Below we focus on the identification of selective sweeps,
previously unknown longitudinal population structure across
the European continent, patterns of local adaptation and
clines, and microbiota.

Several Genomic Regions Show Signatures of
Continent-Wide Selective Sweeps
To identify genomic regions that have likely undergone selec-
tive sweeps in European populations of D. melanogaster, we
used Pool-hmm (Boitard et al. 2013; see supplementary table
S2A, Supplementary Material online), which identifies candi-
date sweep regions via distortions in the allele frequency
spectrum. We ran Pool-hmm independently for each sample
and identified several genomic regions that coincide with
previously identified, well-supported sweeps in the proximity
of Hen1 (Kolaczkowski et al. 2011), Cyp6g1 (Daborn et al.
2002), wapl (Beisswanger et al. 2006), and around the chime-
ric gene CR18217 (Rogers and Hartl 2012), among others
(supplementary table S2B, Supplementary Material online).
These regions also showed local reductions in p and Tajima’s
D, consistent with selective sweeps (fig. 2 and supplementary
figs. S1 and S2, Supplementary Material online). The putative
sweep regions that we identified in the European populations
included 145 of the 232 genes previously identified using Pool-
hmm in an Austrian population (Boitard et al. 2012; supple-
mentary table S2C, Supplementary Material online). We also
identified other regions which have not previously been de-
scribed as targets of selective sweeps (supplementary table
S2A, Supplementary Material online). Of the regions analyzed,
64 showed signatures of selection across all European popu-
lations (supplementary table S2D, Supplementary Material
online). Of these, 52 were located in the 10% of regions
with the lowest values of Tajima’s D (SuperExactTest;
P< 0.001). These may represent continent-wide sweeps
that predate the colonization of Europe (Beisswanger et al.
2006) or which have recently swept across the majority of
European populations (supplementary table S2D,
Supplementary Material online). Indeed, 43 of the 64 genes
(67%) that showed signatures of selection across all European
populations were located in regions with reduced Tajima’s D
(lowest 10%) in African populations, suggesting that selective
sweeps in these genes might predate the out-of-Africa expan-
sion (supplementary table S2D, Supplementary Material
online).
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FIG. 1. The geographic distribution of population samples. Locations
of all samples in the 2014 DrosEU data set. The color of the circles
indicates the sampling season for each location: ten of the 32 loca-
tions were sampled at least twice, once in summer and once in fall
(see table 1 and supplementary table S1, Supplementary Material
online). Note that some of the 12 Ukrainian locations overlap in
the map.
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We then asked if there was any indication of selective sweeps
particular to a certain habitat. To this end, we classified the
populations according to the Köppen–Geiger climate classifi-
cation (Peel et al. 2007) and identified several putative sweeps
exclusive to arid, temperate, and cold regions (supplementary
table S2A, Supplementary Material online). To shed light on
potential phenotypes affected by selective sweeps, we per-
formed a gene ontology (GO) analysis. For temperate climates,
this analysis showed enrichment for functions such as

“response to stimulus,” “transport,” and “nervous system devel-
opment.” For cold climates, it showed enrichment for “vitamin
and cofactor metabolic processes” (supplementary table S2E,
Supplementary Material online). There was no enrichment of
any GO category for sweeps associated with arid regions.

Thus, we identified several new candidate selective sweeps
in European populations of D. melanogaster, many of which
occur in the majority of European populations and which

Table 1. Sample Information for All Populations in the DrosEU Data Set.

ID Country Location Coll. Date
Number

ID
Lat
(�)

Lon
(�)

Alt
(m) Season n Coll. Name

AT_Mau_14_01 Austria Mauternbach 2014-07-20 1 48.38 15.56 572 S 80 Andrea J. Betancourt
AT_Mau_14_02 Austria Mauternbach 2014-10-19 2 48.38 15.56 572 F 80 Andrea J. Betancourt
TR_Yes_14_03 Turkey Yesiloz 2014-08-31 3 40.23 32.26 680 S 80 Banu Sebnem Onder
TR_Yes_14_04 Turkey Yesiloz 2014-10-23 4 40.23 32.26 680 F 80 Banu Sebnem Onder
FR_Vil_14_05 France Viltain 2014-08-18 5 48.75 2.16 153 S 80 Catherine Montchamp-

Moreau
FR_Vil_14_07 France Viltain 2014-10-27 7 48.75 2.16 153 F 80 Catherine Montchamp-

Moreau
FR_Got_14_08 France Gotheron 2014-07-08 8 44.98 4.93 181 S 80 Cristina Vieira
UK_She_14_09 United Kingdom Sheffield 2014-08-25 9 53.39 21.52 100 S 80 Damiano Porcelli
UK_Sou_14_10 United Kingdom South Queensferry 2014-07-14 10 55.97 23.35 19 S 80 Darren Obbard
CY_Nic_14_11 Cyprus Nicosia 2014-08-10 11 35.07 33.32 263 S 80 Eliza Argyridou
UK_Mar_14_12 United Kingdom Market Harborough 2014-10-20 12 52.48 20.92 80 F 80 Eran Tauber
UK_Lut_14_13 United Kingdom Lutterworth 2014-10-20 13 52.43 21.10 126 F 80 Eran Tauber
DE_Bro_14_14 Germany Broggingen 2014-06-26 14 48.22 7.82 173 S 80 Fabian Staubach
DE_Bro_14_15 Germany Broggingen 2014-10-15 15 48.22 7.82 173 F 80 Fabian Staubach
UA_Yal_14_16 Ukraine Yalta 2014-06-20 16 44.50 34.17 72 S 80 Iryna Kozeretska
UA_Yal_14_18 Ukraine Yalta 2014-08-27 18 44.50 34.17 72 S 80 Iryna Kozeretska
UA_Ode_14_19 Ukraine Odesa 2014-07-03 19 46.44 30.77 54 S 80 Iryna Kozeretska
UA_Ode_14_20 Ukraine Odesa 2014-07-22 20 46.44 30.77 54 S 80 Iryna Kozeretska
UA_Ode_14_21 Ukraine Odesa 2014-08-29 21 46.44 30.77 54 S 80 Iryna Kozeretska
UA_Ode_14_22 Ukraine Odesa 2014-10-10 22 46.44 30.77 54 F 80 Iryna Kozeretska
UA_Kyi_14_23 Ukraine Kyiv 2014-08-09 23 50.34 30.49 179 S 80 Iryna Kozeretska
UA_Kyi_14_24 Ukraine Kyiv 2014-09-08 24 50.34 30.49 179 F 80 Iryna Kozeretska
UA_Var_14_25 Ukraine Varva 2014-08-18 25 50.48 32.71 125 S 80 Oleksandra Protsenko
UA_Pyr_14_26 Ukraine Pyriatyn 2014-08-20 26 50.25 32.52 114 S 80 Oleksandra Protsenko
UA_Dro_14_27 Ukraine Drogobych 2014-08-24 27 49.33 23.50 275 S 80 Iryna Kozeretska
UA_Cho_14_28 Ukraine Chornobyl 2014-09-13 28 51.37 30.14 121 F 80 Iryna Kozeretska
UA_Cho_14_29 Ukraine Chornobyl Yaniv 2014-09-13 29 51.39 30.07 121 F 80 Iryna Kozeretska
SE_Lun_14_30 Sweden Lund 2014-07-31 30 55.69 13.20 51 S 80 Jessica Abbott
DE_Mun_14_31 Germany Munich 2014-06-19 31 48.18 11.61 520 S 80 John Parsch
DE_Mun_14_32 Germany Munich 2014-09-03 32 48.18 11.61 520 F 80 John Parsch
PT_Rec_14_33 Portugal Recarei 2014-09-26 33 41.15 28.41 175 F 80 Jorge Vieira
ES_Gim_14_34 Spain Gimenells (Lleida) 2014-10-20 34 41.62 0.62 173 F 80 Lain Guio
ES_Gim_14_35 Spain Gimenells (Lleida) 2014-08-13 35 41.62 0.62 173 S 80 Lain Guio
FI_Aka_14_36 Finland Akaa 2014-07-25 36 61.10 23.52 88 S 80 Maaria Kankare
FI_Aka_14_37 Finland Akaa 2014-08-27 37 61.10 23.52 88 S 80 Maaria Kankare
FI_Ves_14_38 Finland Vesanto 2014-07-26 38 62.55 26.24 121 S 66 Maaria Kankare
DK_Kar_14_39 Denmark Karensminde 2014-09-01 39 55.95 10.21 15 F 80 Mads Fristrup Schou
DK_Kar_14_41 Denmark Karensminde 2014-11-25 41 55.95 10.21 15 F 80 Mads Fristrup Schou
CH_Cha_14_42 Switzerland Chalet �a Gobet 2014-07-24 42 46.57 6.70 872 S 80 Martin Kapun
CH_Cha_14_43 Switzerland Chalet �a Gobet 2014-10-05 43 46.57 6.70 872 F 80 Martin Kapun
AT_See_14_44 Austria Seeboden 2014-08-17 44 46.81 13.51 591 S 80 Martin Kapun
UA_Kha_14_45 Ukraine Kharkiv 2014-07-26 45 49.82 36.05 141 S 80 Svitlana Serga
UA_Kha_14_46 Ukraine Kharkiv 2014-09-14 46 49.82 36.05 141 F 80 Svitlana Serga
UA_Cho_14_47 Ukraine Chornobyl Applegarden 2014-09-13 47 51.27 30.22 121 F 80 Svitlana Serga
UA_Cho_14_48 Ukraine Chornobyl Polisske 2014-09-13 48 51.28 29.39 121 F 70 Svitlana Serga
UA_Kyi_14_49 Ukraine Kyiv 2014-10-11 49 50.34 30.49 179 F 80 Svitlana Serga
UA_Uma_14_50 Ukraine Uman 2014-10-01 50 48.75 30.21 214 F 80 Svitlana Serga
RU_Val_14_51 Russia Valday 2014-08-17 51 57.98 33.24 217 S 80 Elena Pasyukova

NOTE.—Origin, collection date, season, and sample size (number of chromosomes: n) of the 48 samples in the DrosEU 2014 data set. Additional information can be found in
supplementary table S1, Supplementary Material online.
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merit future study, using sequencing of individual flies and
functional genetic experiments.

European Populations Are Structured along an East–
West Gradient
We next investigated whether patterns of genetic differenti-
ation might be due to demographic substructuring. Overall,
pairwise differentiation as measured by FST was relatively low,
particularly for the autosomes (autosomal FST 0.013–0.059; X-
chromosome FST: 0.043–0.076; Mann–Whitney U test;
P< 0.001; supplementary table S1, Supplementary Material
online). The X chromosome is expected to have higher FST

than the autosomes, given its relatively smaller effective pop-
ulation size (Mann–Whitney U test; P< 0.001; Hutter et al.
2007). One population, from Sheffield (UK), was unusually
differentiated from the others (average pairwise FST ¼ 0.027;
SE¼ 0.00043 vs. FST ¼ 0.04; SE¼ 0.00055 for comparisons
without this population and with this population only; sup-
plementary table S1, Supplementary Material online).
Including this sample in the analysis could potentially lead
to exaggerated patterns of geographic differentiation, as it is
both highly differentiated and the furthest west. We therefore
excluded it from the following analyses of geographic differ-
entiation, as this approach is conservative. (For details, see
Supplementary Material online; including or excluding this
population did not qualitatively change our results and their
interpretation.)

Despite low overall levels of among-population differenti-
ation, we found that European populations exhibit clear ev-
idence of geographic substructuring. For this analysis, we
focused on SNPs located within short introns, with a length
�60 bp and which most likely reflect neutral population
structure (Haddrill et al. 2005; Singh et al. 2009; Parsch et al.
2010; Clemente and Vogl 2012; Lawrie et al. 2013). We re-
stricted our analyses to polymorphisms in regions of high
recombination (r> 3 cM/Mb; Comeron et al. 2012) and to
SNPs at least 1 Mb away from the breakpoints of common
inversions (and excluding the inversion bodies themselves),
resulting in 4,034 SNPs used for demographic analysis.

We found two signatures of geographic differentiation us-
ing these putatively neutral SNPs. First, we identified a weak
but significant correlation between pairwise FST and

geographic distance, consistent with isolation by distance
(IBD; Mantel test; P< 0.001; R2¼0.12, max. FST � 0.045;
fig. 3A). Second, a principal components analysis (PCA) on
allele frequencies showed that the three most important PC
axes explain >25% of the total variance (PC1: 16.71%, PC2:
5.83%, PC3: 4.6%, eigenvalues ¼ 159.8, 55.7, and 44, respec-
tively; fig. 3B). The first axis, PC1, was strongly correlated with
longitude (F1,42 ¼ 118.08, P< 0.001; table 2). Again, this pat-
tern is consistent with IBD, as the European continent
extends further in longitude than latitude. We repeated the
above PCA using SNPs in 4-fold degenerate sites, as these are
also assumed to be relatively unaffected by selection (Akashi
1995; Halligan and Keightley 2006; supplementary fig. S3,
Supplementary Material online), and found highly consistent
results.

Because there was a significant spatial autocorrelation be-
tween samples (as indicated by Moran’s test on residuals
from linear regressions with PC1; P< 0.001; table 2), we re-
peated the analysis with an explicit spatial error model; the
association between PC1 and longitude remained significant.
To a lesser extent PC2 was likewise correlated with longitude
(F1,42 ¼ 7.15, P< 0.05), but also with altitude (F1,42 ¼ 11.77,
P< 0.01) and latitude (F1,42 ¼ 4.69, P< 0.05; table 2). Similar
to PC2, PC3 was strongly correlated with altitude (F1,42 ¼
19.91, P< 0.001; table 2). We also examined these data for
signatures of genetic differentiation between samples col-
lected at different times of the year. For the data set as a
whole, no major PC axes were correlated with season, indi-
cating that there were no strong differences in allele frequen-
cies shared between all our summer and fall samples (P> 0.05
for all analyses; table 2). For the ten locations sampled in both
summer and fall, we performed separate PC analyses for sum-
mer and fall. Summer and fall values of PC1 (adjusted R2: 0.98;
P< 0.001), PC2 (R2: 0.74; P< 0.001) and PC3 (R2: 0.81;
P< 0.001) were strongly correlated across seasons. This indi-
cates a high degree of seasonal stability in local genetic
variation.

Next, we attempted to determine if populations could be
statistically classified into clusters of similar populations.
Using hierarchical model fitting based on the first four PC
axes from the PCA mentioned above, we found two distinct
clusters (fig. 3B) separated along PC1, supporting the notion

Table 2. Clinality of Genetic Variation and Population Structure.

Factor Latitude Longitude Altitude Season Moran’s I

p(X) 4.11* 1.62 15.23*** 1.65 0.86
p(Aut) 0.91 2.54 27.18*** 0.16 20.86
h(X) 2.65 1.31 15.54*** 2.22 0.24
h(Aut) 0.48 1.44 13.66*** 0.37 21.13
D(X) 0.02 0.38 5.93* 3.26 22.08
D(Aut) 0.09 0.76 5.33* 0.71 21.45
PC1 0.63 118.08***(***) 3.64 0.75 4.2***
PC2 4.69* 7.15* 11.77** 1.68 20.32
PC3 0.39 0.23 19.91*** 0.28 1.38

NOTE.—Effects of geographic variables and/or seasonality on genome-wide average levels of diversity (p, h, and Tajima’s D; top rows) and on the first three axes of a PCA based on
allele frequencies at neutrally evolving sites (bottom rows). The values represent F ratios from general linear models. Italic type indicates F ratios that are significant after
Bonferroni correction (adjusted a0¼0.0055). Asterisks in parentheses indicate significance when accounting for spatial autocorrelation by spatial error models. These models
were only calculated when Moran’s I test, as shown in the last column, was significant.
*P< 0.05; **P< 0.01; ***P< 0.001.
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of strong longitudinal differentiation among European pop-
ulations. Similarly, model-based spatial clustering also showed
that populations were separated mainly by longitude (fig. 3C;
using ConStruct, with K¼ 3 spatial layers chosen based on
model selection procedure via cross-validation). We also in-
ferred levels of admixture among populations from this anal-
ysis, based on the relationship between FST and migration rate

(Wright 1949) and using recent estimates of Ne in European
populations (Ne � 3.1�106; Duchen et al. 2013; for pairwise
migration rates see supplementary table S3, Supplementary
Material online). Within the Western European cluster and
between the clusters, 4 Nem was similar (4 Nem-WE ¼ 43.76,
4 Nem-between ¼ 45.97); in Eastern Europe, estimates of
4 Nem indicate significantly higher levels of admixture, despite
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the larger geographic range covered by these samples (4 Nem
¼ 74.17; Mann–Whitney U test; P< 0.001). This result sug-
gests that longitudinal differentiation in Europe might be
partly driven by high levels of genetic exchange in Eastern
Europe, perhaps due to migration and recolonization after
harsh winters in that region. However, these estimates of gene
flow must be interpreted with caution, as unknown demo-
graphic events can confound estimates of migration rates
from FST (Whitlock and McCauley 1999).

In addition to restricted gene flow between geographic
areas, local adaptation may explain population substructure,
even at neutral sites, if nearby and closely related populations
are responding to similar selective pressures. We investigated
whether any of 19 climatic variables, obtained from the

WorldClim database (Hijmans et al. 2005), were associated
with the genetic structure in our samples. These climatic
variables represent interpolated averages across 30 years of
observation at the geographic coordinates corresponding to
our sampling locations. As many of these variables are highly
intercorrelated, we analyzed their joint effects on genetic var-
iation, by using PCA to summarize the information they cap-
ture. The first three climatic PC axes capture >77% of the
variance in the 19 climatic variables (supplementary table S4,
Supplementary Material online). PC1 explained 36% of the
variance and was strongly correlated (r> 0.75 or r <�0.75)
with climatic variables differentiating “hot and dry” from
“cold and wet” climates (e.g., maximum temperature of the
warmest month, r¼ 0.84; mean temperature of warmest
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quarter, r¼ 0.86; annual mean temperature, r¼ 0.85; precip-
itation during the warmest quarter, r ¼ �0.87). Conversely,
PC2 (27.3% of variance explained) distinguished climates with
low and high differences between seasons (e.g., isothermality,
r¼ 0.83; temperature seasonality, r¼ 0.88; temperature an-
nual range, r ¼�0.78; precipitation in coldest quarter,
r¼ 0.79). PC1 was strongly correlated with latitude (linear
regression: R2 ¼ 0.48, P< 0.001), whereas PC2 was strongly
associated with longitude (R2¼ 0.58, P< 0.001). PC2 was also
correlated with latitude (R2¼ 0.11, P< 0.05) and altitude (R2

¼ 0.12, P< 0.01).
We next asked whether any of these climate PCs explained

any of the genetic structure uncovered above. Pairwise linear
regressions of the first three PC axes based on allele frequen-
cies of intronic SNPs against the first three climatic PCs
revealed only one significant correlation after Bonferroni cor-
rection: between climatic PC2 (“seasonality”) versus genetic
PC1 (longitude; adjusted a ¼ 0.017; R2 ¼ 0.49, P< 0.001).
This suggests that longitudinal differentiation along the
European continent might be partly driven by the transition
from oceanic to continental climate, possibly leading to local
adaptation to gradual changes in temperature seasonality
and the severity of winter conditions.

Interestingly, the central European division into an eastern
and a western clade of D. melanogaster closely resembles
known hybrid zones of organisms which form closely related
pairs of sister taxa. These biogeographic patterns have been
associated with long-term reductions of gene flow between
eastern and western populations during the last glacial max-
imum, followed by postglacial recolonization of the continent
from southern refugia (Hewitt 1999). However, in contrast to
many of these taxa, which often exhibit pronounced pre- and
postzygotic isolation (Szymura and Barton 1986; Haas and

Brodin 2005; Machol�an et al. 2008; Knief et al. 2019), we found
low genome-wide differentiation among eastern and western
populations (average max. FST ~ 0.045), perhaps indicating
that the longitudinal division of European D. melanogaster is
not the result of postglacial secondary contact.

Climatic Predictors Identify Genomic Signatures of
Local Climate Adaptation
To further explore climatic patterns, and to identify signa-
tures of local adaptation caused by climatic differences
among populations independent of neutral demographic
effects, we tested for associations of SNP alleles with climatic
PC1 and PC2 using BayeScEnv (de Villemereuil and Gaggiotti
2015). The total number of SNPs tested and the number of
“top SNPs” (q value<0.05) are given in supplementary table
S5A, Supplementary Material online. A large proportion of
the top SNPs were intergenic (PC1: 33.5%; PC2: 32.2%) or
intronic variants (PC1: 50.1%; PC2: 50.5%). Manhattan plots
of q values for all SNPs are shown in figure 4. These figures
show some distinct “peaks” of highly differentiated SNPs
along with some broader regions of moderately differentiated
SNPs (fig. 4). For example, the circadian rhythm gene timeout
and the ecdysone signaling genes Eip74EF and Eip75B all lie
near peaks associated with climatic PC1 (“hot/dry” vs. “cold/
wet”; fig. 4, top panels). We note that the corresponding
genes have been identified in previous studies of clinal (lati-
tudinal) differentiation in North American D. melanogaster
(Fabian et al. 2012; Machado et al. 2016). We found a signif-
icant overlap between genes associated with PC1 and PC2
(both of which are correlated with latitude) in our study and
candidate gene sets from these previous studies of latitudinal
clines (SuperExactTest; P< 0.001; Fabian et al. 2012; Machado
et al. 2016). For example, out of 1,974 latitudinally varying loci
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along the North American east coast identified by Fabian
et al. (2012), we found 403 (20%) and 505 (26%) of them
to also be associated with PC1 and PC2 in European popula-
tions, respectively (supplementary table S5B and C,
Supplementary Material online). Moreover, the BayeScEnv
analysis and Pool-hmm analysis together identify four regions
with both climatic associations and evidence for continent-
wide selective sweeps (supplementary table S5B and C,
Supplementary Material online). Finally, four other
BayeScEnv candidate genes were previously identified as tar-
gets of selection in African and North American populations
based on significant McDonald–Kreitman tests (Langley et al.
2012; see supplementary table S5B and C, Supplementary
Material online).

We next asked whether any insights into the targets of
local selection could be gleaned from examining the functions
of genes near the BayeScEnv peaks. We examined annotated
features within 2 kb of significantly associated SNPs (PC1:
3,545 SNPs near 2,078 annotated features; PC2: 5,572 SNPs
near 2,717 annotated features; supplementary table S5B and
C, Supplementary Material online). First, we performed a GO
term analysis with GOwinda (Kofler and Schlötterer 2012) to
ask whether SNPs associated with climatic PCs are enriched
for any gene functions. For PC1, we found no GO term en-
richment. For PC2, we found enrichment for “cuticle devel-
opment” and “UDP-glucosyltransferase activity.” Next, we
performed functional annotation clustering with DAVID
(v6.8; Huang et al. 2009), and identified 37 and 47 clusters
with an enrichment score> 1.3 for PC1 and PC2, respectively
(supplementary table S5D and E, Supplementary Material
online, Huang et al. 2009). PC1 was enriched for categories
such as “sex differentiation” and “response to nicotine,”
whereas PC2 was enriched for functional categories such as
“response to nicotine,” “integral component of membrane,”
and “sensory perception of chemical stimulus” (supplemen-
tary table S5D and E, Supplementary Material online).

We also asked whether the SNPs identified by BayeScEnv
show consistent signatures of local adaptation. Many

associated genes (1,205) were also shared between PC1 and
PC2. Some genes have indeed been previously implicated in
climatic and clinal adaptation, such as the circadian rhythm
genes timeless, timeout, and clock, the sexual differentiation
gene fruitless, and the couch potato locus which underlies the
latitudinal cline in reproductive dormancy in North America
(Tauber et al. 2007; Schmidt et al. 2008; Fabian et al. 2012).
Notably, these also include the major insulin signaling genes
insulin-like receptor (InR) and forkhead box subgroup O (foxo),
which have strong genomic and experimental evidence im-
plicating these loci in clinal, climatic adaptation along the
North America east coast (Paaby et al. 2010, 2014; Fabian
et al. 2012; Durmaz et al. 2019). Thus, European populations
share multiple potential candidate targets of selection with
North American populations (cf. Fabian et al. 2012; Machado
et al. 2016; also see Bo�zi�cevi�c et al. 2016). We next turned to
examining polymorphisms other than SNPs, that is, mito-
chondrial haplotypes as well as inversion and TE
polymorphisms.

Mitochondrial Haplotypes Also Exhibit Longitudinal
Population Structure
Mitochondrial haplotypes also showed evidence of longitudi-
nal demographic structure in European population. We iden-
tified two main alternative mitochondrial haplotypes in
Europe, G1 and G2, each with several subhaplotypes (G1.1
and G1.2 and G2.1, G2.2, and G2.3). The two subtypes, G1.2
and G2.1, are separated by 41 mutations (fig. 5A). The fre-
quencies of the alternative G1 and G2 haplotypes varied
among populations between 35.1% and 95.6% and between
4.4% and 64.9%, respectively (fig. 5B). Qualitatively, three
types of European populations could be distinguished based
on these haplotypes: 1) central European populations, with a
high frequency (>60%) of G1 haplotypes, 2) Eastern
European populations in summer, with a low frequency
(<40%) of G1 haplotypes, and 3) Iberian and Eastern
European populations in fall, with a frequency of G1 haplo-
types between 40% and 60% (supplementary fig. S4,
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FIG. 5. Mitochondrial haplotypes. (A) Network showing the relationship of five common mitochondrial haplotypes. (B) Estimated frequency of
each mitochondrial haplotype in 48 European samples.
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Supplementary Material online). Analyses of mitochondrial
haplotypes from a North American population (Cooper et al.
2015) as well as from world-wide samples (Wolff et al. 2016)
also revealed high levels of haplotype diversity.

Although there was no correlation between the frequency
of G1 haplotypes and latitude, G1 haplotypes and longitude
were weakly but significantly correlated (r2 ¼ 0.10; P< 0.05).
We thus divided the data set into an eastern and a western
subset along the 20� meridian, corresponding to the division
of two major climatic zones, temperate (oceanic) versus cold
(continental) (Peel et al. 2007). This split revealed a clear
correlation (r2¼0.5; P< 0.001) between longitude and the
frequency of G1 haplotypes, explaining as much as 50% of
the variation in the western group (supplementary fig. S4B,
Supplementary Material online). Similarly, in eastern popula-
tions, longitude and the frequency of G1 haplotypes were
correlated (r2 ¼ 0.2; P< 0.001), explaining �20% of the var-
iance (supplementary fig. S4B, Supplementary Material on-
line). Thus, these mitochondrial haplotypes appear to follow a
similar east–west population structure as observed for the
nuclear SNPs described above.

The Frequency of Polymorphic TEs Varies with
Longitude and Altitude
To examine the population genomics of structural variants,
we first focused on TEs. Similar to previous findings, the re-
petitive content of the 48 samples ranged from 16% to 21% of
the nuclear genome size (Quesneville et al. 2005; fig. 6). The
vast majority of detected repeats were TEs, mostly long-
terminal repeat elements (LTRs; range 7.55–10.15%) and
long interspersed nuclear elements (LINEs; range 4.18–
5.52%), along with a few DNA elements (range 1.16–1.65%)

(supplementary table S6, Supplementary Material online).
LTRs have been previously described as being the most abun-
dant TEs in the D. melanogaster genome (Kaminker et al.
2002; Bergman et al. 2006). Correspondingly, variation in
the proportion of LTRs best explained variation in total TE
content (LINEþLTRþDNA) (Pearson’s r¼ 0.87, P< 0.01, vs.
DNA r¼ 0.58, P¼ 0.0117, and LINE r¼ 0.36, P< 0.01 and
supplementary fig. S5A, Supplementary Material online).

For each of the 1,630 euchromatic TE insertion sites an-
notated in the D. melanogaster reference genome v.6.04, we
estimated the frequency at which a copy of the TE was pre-
sent at that site using T-lex2 (Fiston-Lavier et al. 2015; see
supplementary table S7, Supplementary Material online). On
an average, 56% were fixed in all samples. The remaining
polymorphic TEs mostly segregated at low frequency in all
samples (supplementary fig. S5B, Supplementary Material on-
line), potentially due to purifying selection (Gonz�alez et al.
2008; Petrov et al. 2011; Kofler et al. 2012; Cridland et al. 2013;
Blumenstiel et al. 2014). However, 246 were present at inter-
mediate frequencies (>10% and <95%) and located in
regions of nonzero recombination (Fiston-Lavier et al. 2010;
Comeron et al. 2012; see supplementary table S7,
Supplementary Material online). Although some of these
insertions might be segregating neutrally at transposition–
selection balance (Charlesworth et al. 1994; see supplemen-
tary fig. S5B, Supplementary Material online), they are likely
enriched for candidate adaptive mutations (Rech et al. 2019).

In each of the 48 samples, TE frequency and recombination
rate were negatively correlated genome-wide (Spearman rank
sum test; P< 0.01), as has also been previously reported for
D. melanogaster (Bartolom�e et al. 2002; Petrov et al. 2011;
Kofler et al. 2012). This remains true when fixed (population
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frequency�95%) TE insertions were excluded from the anal-
ysis, although it was not statistically significant for some chro-
mosomes and populations (supplementary table S8,
Supplementary Material online). In both cases, the correlation
was stronger when broad-scale (Fiston-Lavier et al. 2010)
rather than fine-scale (Comeron et al. 2012) recombination
rate estimates were used, indicating that the former may best
capture long-term population recombination patterns (see
supplementary materials and methods and table S8,
Supplementary Material online).

We next tested whether variation in TE frequencies among
samples was associated with spatially or temporally varying
factors. We focused on 111 TE insertions that segregated at
intermediate frequencies, were located in nonzero recombi-
nation regions, and that showed an interquartile range (IQR)
>10 (see supplementary materials and methods,
Supplementary Material online). Of these insertions, 57
were significantly associated with an at least one variable of
interest after multiple testing correction (supplementary ta-
ble S9A, Supplementary Material online): 13 were significantly
associated with longitude, 13 with altitude, five with latitude,
three with season, and 23 insertions with more than one of
these variables (supplementary table S9A, Supplementary
Material online). These 57 TEs were mainly located inside
genes (42 out of 57; Fisher’s exact test, P> 0.05; supplemen-
tary table S9A, Supplementary Material online).

The 57 TEs significantly associated with these environmen-
tal variables were enriched for two TE families: the LTR 297
family with 11 copies, and the DNA pogo family with five
copies (v2 values after Yate’s correction < 0.05; supplemen-
tary table S9B, Supplementary Material online). Interestingly,
17 of the 57 TEs coincided with previously identified adaptive
candidate TEs, suggesting that our data set might be enriched
for adaptive insertions (SuperExactTest, P< 0.001), several of
which exhibit spatial frequency clines that deviate from neu-
tral expectation (SuperExactTest, P< 0.001, supplementary
table S9A, Supplementary Material online; cf.; Rech et al.
2019). Moreover, 18 of the 57 TEs also show significant cor-
relations with either geographical or temporal variables in
North American populations (SuperExactTest, P< 0.001,
supplementary table S9A, Supplementary Material online;
cf. Lerat et al. 2019).

Inversions Exhibit Latitudinal and Longitudinal Clines
in Europe
Polymorphic chromosomal inversions, another class of struc-
tural variants besides TEs, are well-known to exhibit pro-
nounced spatial (clinal) patterns in North American,
Australian, and other populations, possibly due to spatially
varying selection (reviewed in Kapun and Flatt 2019; also see
Mettler et al. 1977; Knibb et al. 1981; Lemeunier and Aulard
1992; Hoffmann and Weeks 2007; Fabian et al. 2012; Kapun
et al. 2014; Adrion et al. 2015; Rane et al. 2015; Kapun, Fabian,
et al. 2016). However, in contrast to North America and
Australia, inversion clines in Europe remain very poorly char-
acterized (Lemeunier and Aulard 1992; Kapun and Flatt
2019). We therefore sought to examine the presence and
frequency of six cosmopolitan inversions (In(2L)t, In(2R)NS,
In(3L)P, In(3R)C, In(3R)Mo, In(3R)Payne) in our European
samples, using a panel of highly diagnostic inversion-specific
marker SNPs, identified through sequencing of cytologically
determined karyotypes by Kapun et al. (2014) (also see
Kapun, Fabian, et al. 2016). All 48 samples were polymorphic
for one or more inversions (fig. 6). However, only In(2L)t seg-
regated at substantial frequencies in most populations (aver-
age frequency ¼ 20.2%); all other inversions were either
absent or rare (average frequencies: In(2R)NS ¼ 6.2%,
In(3L)P¼ 4%, In(3R)C¼ 3.1%, In(3R)Mo ¼2.2%, In(3R)Payne
¼ 5.7%) (cf. Kapun, Fabian, et al. 2016; Kapun and Flatt 2019).

Despite their overall low frequencies, several inversions
showed pronounced clinality, in qualitative agreement with
findings from other continents (Lemeunier and Aulard 1992;
Kapun and Flatt 2019). For the analyses below, we tested for
potentially confounding effects of significant residual spatial
autocorrelation among samples; all of these tests were negative,
except for In(3R)C (Moran’s I� 0, P> 0.05 for all tests; table 3).
We observed significant latitudinal clines in Europe for In(3L)P,
In(3R)C, and In(3R)Payne (binomial generalized linear model:
Inversion frequency � Latitude þ Longitude þ Altitude þ
Season; effect of Latitude: P< 0.001 for all; see table 3). Clines
for In(3L)P and In(3R)Payne were similar between Europe and
North America (with frequencies for both decreasing with lat-
itude, P< 0.05; see supplementary table S10, Supplementary
Material online). However, all inversions differed in their fre-
quency at the same latitude between North America and
Europe (P< 0.001 for the Latitude � Continent interaction;
supplementary table S10, Supplementary Material online).

Table 3. Clinality and/or Seasonality of Chromosomal Inversions.

Factor Latitude Longitude Altitude Season Moran’s I

In(2L)t 2.2 10.09** 43.94*** 0.89 20.92
In(2R)NS 0.25 14.43*** 2.88 2.43 1.25
In(3L)P 21.78*** 2.82 0.62 3.6 21.61
In(3R)C 18.5***(***) 0.75 1.42 0.04 2.79**
In(3R)Mo 0.3 0.09 0.35 0.03 20.9
In(3R)Payne 43.47*** 0.66 1.69 1.55 20.89

NOTE.—The values represent F ratios from binomial generalized linear models to account for frequency data. Underlined italic type indicates deviance values that were
significant after Bonferroni correction (adjusted a0¼0.0071). Asterisks in parentheses indicate significance when accounting for spatial autocorrelation by spatial error models.
These models were only calculated when Moran’s I test, as shown in the last column, was significant.
**P< 0.01; ***P< 0.001.
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Latitudinal inversion clines previously observed along the
North American and Australian east coasts (supplementary
fig. S6 and table S10, Supplementary Material online; Kapun,
Fabian, et al. 2016) have been attributed to spatially varying
selection, especially in the case of In(3R)Payne (Anderson et al.
2005; Umina et al. 2005; Kennington et al. 2006; Rako et al.
2006; Kapun, Fabian, et al. 2016; Kapun, Schmidt, et al. 2016;
Durmaz et al. 2018; Kapun and Flatt 2019). Similar to patterns
in North America (Kapun, Fabian, et al. 2016), we observed
that clinality of the three inversion polymorphisms was mark-
edly stronger than for putatively neutral SNPs in short introns
(see supplementary table S11, Supplementary Material on-
line), suggesting that these polymorphisms are maintained
nonneutrally. Together, these findings suggest that latitudinal
inversion clines in Europe are shaped by spatially varying se-
lection, as they are in North America (Kapun, Fabian, et al.
2016; Kapun and Flatt 2019).

We also detected longitudinal clines for In(2L)t and
In(2R)NS, with both polymorphisms decreasing in frequency
from east to west (see table 3; P< 0.01; also cf. Kapun and
Flatt 2019). Longitudinal clines for these two inversions have
also been found in North America (cf. Kapun and Flatt 2019).
One of these inversions, In(2L)t, also changed in frequency
with altitude (table 3; P< 0.001). These longitudinal and al-
titudinal inversion clines did, however, not deviate from neu-
tral expectation (supplementary table S11, Supplementary
Material online).

European Drosophila Microbiomes Contain
Entomophthora, Trypanosomatids, and Previously
Unknown DNA Viruses
The microbiota can affect life-history traits, immunity, hor-
monal physiology, and metabolic homeostasis of their fly
hosts (Martino et al. 2017; Trinder et al. 2017) and might
thus reveal interesting patterns of local adaptation. We there-
fore examined the bacterial, fungal, protist, and viral micro-
biota sequence content of our samples. To do this, we
characterized the taxonomic origin of the non-Drosophila

reads in our data set using MGRAST, which identifies and
counts short protein motifs (features) within reads (Meyer
et al. 2008). We examined 262 million reads in total. Of these,
most were assigned to Wolbachia (mean 53.7%; fig. 7 and
supplementary table S1, Supplementary Material online), a
well-known endosymbiont of Drosophila (Werren et al. 2008).
The abundance of Wolbachia protein features relative to
other microbial protein features (relative abundance) varied
strongly between samples, ranging from 8.8% in a sample
from Ukraine to almost 100% in samples from Spain,
Portugal, Turkey, and Russia (supplementary table S12,
Supplementary Material online). Similarly, Wolbachia loads
varied 100-fold between samples, as estimated from the ratio
of Wolbachia protein features to Drosophila protein features
(supplementary table S12, Supplementary Material online). In
contrast to a previous study (Kriesner et al. 2016), there was
no evidence for clinality of Wolbachia loads (P¼ 0.13, longi-
tude; P¼ 0.41, latitude; Kendall’s rank correlation). However,
these authors measured infection frequencies whereas we
measured Wolbachia loads in pooled samples. Because the
frequency of infection does not necessarily correlate with
microbial loads measured in pooled samples, we might not
have been able to detect such a signal in our data.

Acetic acid bacteria of the genera Gluconobacter,
Gluconacetobacter, and Acetobacter were the second largest
group, with an average relative abundance of 34.4% among
microbial protein features. Furthermore, we found evidence
for the presence of several genera of Enterobacteria (Serratia,
Yersinia, Klebsiella, Pantoea, Escherichia, Enterobacter,
Salmonella, and Pectobacterium). Serratia occurs only at low
frequencies or is absent from most of our samples, but
reaches a very high relative abundance among microbial pro-
tein features in the Nicosia (Cyprus) summer collection
(54.5%). This high relative abundance was accompanied by
an 80� increase in Serratia bacterial load.

We also detected several eukaryotic microorganisms, al-
though they were less abundant than the bacteria. We found
trypanosomatids, previously reported to be associated with
Drosophila in other studies (Wilfert et al. 2011; Chandler and
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James 2013; Hamilton et al. 2015), in 16 of our samples, on an
average representing 15% of all microbial protein features
identified in these samples.

Fungal protein features make up <3% of all but three
samples (from Finland, Austria, and Turkey; supplementary
table S12, Supplementary Material online). This is somewhat
surprising because yeasts are commonly found on rotting
fruit, the main food substrate of D. melanogaster, and co-
occur with flies (Barata et al. 2012; Chandler et al. 2012).
This result suggests that, although yeasts can attract flies
and play a role in food choice (Becher et al. 2012; Buser
et al. 2014), they might not be highly prevalent in or on D.
melanogaster bodies. One reason might be that they are ac-
tively digested and thus not part of the microbiome. We also
found the fungal pathogen Entomophthora muscae in 14
samples, making up 0.18% of the reads (Elya et al. 2018).

Our data also allowed us to identify DNA viruses. Only one
DNA virus has been previously described for D. melanogaster
(Kallithea virus; Webster et al. 2015; Palmer et al. 2018) and
only two additional ones from other Drosophilid species
(D. innubila Nudivirus, Unckless 2011; Invertebrate
Iridovirus 31 in D. obscura and D. immigrans, Webster et al.
2016). In our data set, �2 million reads came from Kallithea
nudivirus (Webster et al. 2015), allowing us to assemble the
first complete Kallithea genome (>300-fold coverage in the
Ukrainian sample UA_Kha_14_46; GenBank accession num-
ber KX130344).

We also found reads from five additional DNA viruses that
were previously unknown (supplementary table S13,
Supplementary Material online). First, around 1,000 reads
come from a novel nudivirus closely related to both
Kallithea virus and to D. innubila nudivirus (Unckless 2011)
in sample DK_Kar_14_41 from Karensminde, Denmark (sup-
plementary table S13, Supplementary Material online). As the
reads from this virus were insufficient to assemble the ge-
nome, we identified a publicly available data set (SRR3939042:
27 male D. melanogaster from Esparto, California; Machado
et al. 2016) with sufficient reads to complete the genome
(provisionally named “Esparto Virus”; KY608910). Second,
we also identified two novel Densoviruses (Parvoviridae).
The first is a relative of Culex pipiens densovirus, provisionally
named “Viltain virus,” found at 94-fold coverage in sample
FR_Vil_14_07 (Viltain; KX648535). The second is “Linvill Road
virus,” a relative of Dendrolimus punctatus densovirus, repre-
sented by only 300 reads here, but with high coverage in data
set SRR2396966 from a North American sample of
D. simulans, permitting assembly (KX648536; Machado
et al. 2016). Third, we detected a novel member of the
Bidnaviridae family, “Vesanto virus,” a bidensovirus related
to Bombyx mori densovirus 3 with �900-fold coverage in
sample FI_Ves_14_38 (Vesanto; KX648533 and KX648534).
Finally, in one sample (UA_Yal_14_16), we detected a sub-
stantial number of reads from an Entomopox-like virus, which
we were unable to fully assemble (supplementary table S13,
Supplementary Material online).

Using a detection threshold of >0.1% of the Drosophila
genome copy number, the most commonly detected viruses
were Kallithea virus (30/48 of the pools) and Vesanto virus

(25/48), followed by Linvill Road virus (7/48) and Viltain virus
(5/48), with Esparto virus and the entomopox-like virus being
the rarest (2/48 and 1/48, respectively). Because Wolbachia
can protect Drosophila from viruses (Teixeira et al. 2008), we
hypothesized that Wolbachia loads might correlate negatively
with viral loads, but found no evidence of such a correlation
(P¼ 0.83 Kallithea virus; P¼ 0.76 Esparto virus; P¼ 0.52
Viltain virus; P¼ 0.96 Vesanto 1 virus; P¼ 0.93 Vesanto 2
virus; P¼ 0.5 Linvill Road virus; Kendall’s rank correlation).
Perhaps this is because the Kallithea virus, the most prevalent
virus in our data set, is not expected to be affected by
Wolbachia (Palmer et al., 2018). Similarly, Shi et al. (2018)
found no link between Wolbachia and the prevalence or
abundance of RNA viruses in data from individual flies.

The variation in bacterial microbiomes across space and
time reported here is analyzed in more detail in Wang et al.
(2020); this study suggests that some of this variation is struc-
tured geographically (cf. Walters et al. 2020). Thus, micro-
biome composition might contribute to phenotypic
differences and local adaptation among populations
(Haselkorn et al. 2009; Richardson et al. 2012; Staubach
et al. 2013; Kriesner et al. 2016; Wang and Staubach 2018).

Conclusions
Here, we have comprehensively sampled and sequenced
European populations of D. melanogaster for the first time
(fig. 1). We find that European D. melanogaster populations
are longitudinally differentiated for putatively neutral SNPs,
mitochondrial haplotypes as well as for inversion and TE in-
sertion polymorphisms. Potentially adaptive polymorphisms
also show this pattern, possibly driven by the transition from
oceanic to continental climate along the longitudinal axis of
Europe. We note that this longitudinal differentiation quali-
tatively resembles the one observed for human populations
in Europe (Cavalli-Sforza 1966; Xiao et al. 2004; Francalacci
and Sanna 2008; Novembre et al. 2008). Given that
D. melanogaster is a human commensal (Keller 2007;
Arguello et al. 2019), it is thus tempting to speculate that
the demographic history of European populations might have
been influenced by past human migration. Outside Europe,
east–west structure has been previously found in sub-
Saharan Africa populations of D. melanogaster, with the split
between eastern and western African populations having oc-
curred �70 ka (Michalakis and Veuille 1996; Aulard et al.
2002; Kapopoulou, Pfeifer, et al. 2018), a period that coincides
with a wave of human migration from eastern into western
Africa (Nielsen et al. 2017). However, in contrast to the pro-
nounced pattern observed in Europe, African east–west
structure is relatively weak, explaining only �2.7% of varia-
tion, and is primarily due to an inversion whose frequency
varies longitudinally. In contrast, our demographic analyses
are based on SNPs located in>1 Mb distance from the break-
points of the most common inversions and excluding the
inversion bodies, making it unlikely that the longitudinal pat-
tern we observe is driven by inversions.

Our extensive sampling was feasible only due to synergistic
collaboration among many research groups. Our efforts in
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Europe are paralleled in North America by the Dros-RTEC
consortium (Machado et al. 2019), with whom we are collab-
orating to compare population genomic data across conti-
nents. Together, we have sampled both continents annually
since 2014; we aim to continue to sample and sequence
European and North American Drosophila populations with
increasing spatiotemporal resolution in future years. With
these efforts, we hope to provide a rich community resource
for biologists interested in molecular population genetics and
adaptation genomics.

Materials and Methods
A detailed description of the Materials and Methods is pro-
vided in supplementary materials and methods,
Supplementary Material online; here, we give a brief overview
of the data set and the basic methods used. The 2014 DrosEU
data set represents the most comprehensive spatiotemporal
sampling of European D. melanogaster populations to date
(fig. 1 and supplementary table S1, Supplementary Material
online). It comprises 48 samples of D. melanogaster collected
from 32 geographical locations across Europe at different time
points in 2014 through a joint effort of 18 research groups.
Collections were mostly performed with baited traps using a
standardized protocol (see supplementary materials and
methods, Supplementary Material online). From each collec-
tion, we pooled 33–40 wild-caught males. We used males as
they are more easily distinguishable morphologically from
similar species than females. Despite our precautions, we
identified a low level of D. simulans contamination in our
sequences; we computationally filtered these sequences
from the data prior to further analysis (see Supplementary
Material online). To sequence these samples, we extracted
DNA and barcoded each sample, and sequenced the�40 flies
per sample as a pool (Pool-Seq; Schlötterer et al. 2014), as
paired-end fragments on a Illumina NextSeq 500 sequencer at
the Genomics Core Facility of Pompeu Fabra University.
Samples were multiplexed in five batches of ten samples,
except for one batch of eight samples (supplementary table
S1, Supplementary Material online). Each multiplexed batch
was sequenced on four lanes at �50� raw coverage per
sample. The read length was 151 bp, with a median insert
size of 348 bp (range 209–454 bp). Our genomic data set is
available under NCBI Bioproject accession PRJNA388788.
Sequences were processed and mapped to the
D. melanogaster reference genome (v.6.12) and reference
sequences from common commensals and pathogens. Our
bioinformatic pipeline is available at https://github.com/
capoony/DrosEU_pipeline (last accessed May 22, 2020). To
call SNPs, we developed custom software (PoolSNP; see sup-
plementary materials and methods, Supplementary Material
online; https://github.com/capoony/PoolSNP, last accessed
May 22, 2020), using stringent heuristic parameters. In addi-
tion, we obtained genome sequences from African flies from
the Drosophila Genome Nexus (DGN; http://www.johnpool.
net/genomes.html, last accessed May 22, 2020; see supple-
mentary table S14, Supplementary Material online, for SRA
accession numbers). We used data from 14 individuals from

Rwanda and 40 from Siavonga (Zambia). We mapped these
data to the D. melanogaster reference genome using the same
pipeline as for our own data above, and built consensus
sequences for each haploid sample by only considering alleles
with >0.9 allele frequencies. We converted consensus
sequences to VCF and used VCFtools (Danecek et al. 2011)
for downstream analyses. Additional steps in the mapping
and variant calling pipeline and further downstream analyses
of the data are detailed in supplementary materials and meth-
ods, Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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