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Anal squamous cell carcinoma (ASCC) is a rare neoplasm. Chemoradiotherapy is the standard of care, with no thera-
peutic advances achieved over the past three decades. Thus, a deeper molecular characterization of this disease is still
necessary. We analyzed 46 paraffin-embedded tumor samples from patients diagnosed with primary ASCC by exome
sequencing. A bioinformatics approach focused in the identification of high-impact genetic variants, which may act as
drivers of oncogenesis, was performed. The relation between genetics variants and prognosis was also studied. The list
of high-impact genetic variants was unique for each patient. However, the pathways inwhich these genes are involved
are well-known hallmarks of cancer, such as angiogenesis or immune pathways. Additionally, we determined that ge-
netic variants in BRCA2, ZNF750, FAM208B, ZNF599, and ZC3H13 genes are relatedwith poor disease-free survival in
ASCC. This may help to stratify the patient's prognosis and open new avenues for potential therapeutic intervention. In
conclusion, sequencing of ASCC clinical samples appears an encouraging tool for themolecular portrait of this disease.
Introduction

Anal squamous cell carcinoma (ASCC) is a rare tumor. In 2019, an esti-
mated 8300 new cases will occur in the United States, representing approx-
imately 2.5% of all gastrointestinal cancers [1].
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targeted therapy or immunotherapy. In addition, there is insufficient infor-
mation on molecular prognostic or response prediction factors.

With the improvements in high-throughput molecular techniques, it is
possible to study several variables instead of the classical gene-centered
view. These technical advances allow for the study ofmultiple genetic alter-
ations from clinical samples. Exome sequencing (ES) has contributed to the
identification of new disease-causing genes and is now being incorporated
into clinical practice [6]. Since the first work reporting ES [7], numerous
medical sequencing projects have faced the challenge of identifying molec-
ular alterations related to rare diseases or cancers [8]. The Cancer Genome
Atlas is making huge strides in characterizing several tumor types by com-
prehensive molecular techniques. However, ASCC is not included because
this project is focused on more frequent tumors.

Previous studies have analyzed metastatic or primary ASCC tumors by
ES or even by gene panels in an attempt to describe the most frequent alter-
ations in this disease. These studies established PIK3CA as a frequently mu-
tated gene in ASCC [9–12]. However, the exact relationship between
genetic variations, phenotype, and tumor evolution is currently unknown.

In this study, we analyzed 46 ASCC formalin-fixed, paraffin-embedded
(FFPE) samples. On the one hand, we characterized the main genetic vari-
ants present in these tumors and the main biological processes in which
these genes are involved, while on the other hand, we identified those
genes in which the presence of a genetic variant is associated with DFS in
ASCC.

Materials and Methods

Patients

Forty-six treatment-naive FFPE samples from patients diagnosed with
localized ASCC were analyzed by ES. All tumor samples were reviewed
by an experienced pathologist. All the samples contained at least 70% inva-
sive tumor cells. Informed consent was obtained for all patients, and the
study was approved by the Hospital Universitario La Paz Research Ethics
Committee. Patients were required to have a histologically confirmed diag-
nosis of ASCC; be 18 years of age or older; have an Eastern Cooperative On-
cology Group performance status score from 0 to 2; have not received prior
radiotherapy or chemotherapy for thismalignancy; and presentwith no dis-
tant metastasis. Demographic characteristics related to the tumor and the
treatments were collected. The presence of human papillomavirus (HPV)
infection was determined using CLART HPV2 (Genomica).

DNA Isolation

One 10-mm section from each FFPE sample was deparaffinized, and
DNA was extracted with GeneRead DNA FFPE Kit (Qiagen), following the
manufacturer's instructions. Once eluted, DNA was frozen at −80°C until
use.

Library Preparation, Exome Capture, and Illumina Sequencing

ES from 46 FFPE samples of ASCC was performed. Purified DNA was
quantified by Picogreen, and mean size was determined by gel electropho-
resis. Genomic DNA was fragmented by mechanical means (Bioruptor) to a
mean size of approximately 200 bp. Then, DNA samples were repaired,
phosphorylated, A-tailed, and ligated to specific adaptors, followed by
PCR-mediated labeling with Illumina-specific sequences and sample-
specific barcodes (Kapa DNA library generation kit).

Exome capture was performed using the VCRome system (capture size
of 37Mb, Roche Nimblegen) under amultiplexing of eight samples per cap-
ture reaction. Capture was strictly carried out following manufacturer's in-
structions. After capture, libraries were purified, quantified, and titrated by
real-time PCR before sequencing. Samples were then sequenced to an ap-
proximate coverage of 4.5 Gb per sample in Illumina-NextSeq NS500
(Illumina Inc.) using 150-cycle (2 × 75) high-output cartridges.
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Bioinformatics Exome Sequencing Data Processing

The quality of the ES experiments was verified using FASTQC (http://
www.bioinformmatics.babraham.ac.uk/projects/fastqc).

First, adaptors were removed using Cutadapt [13], and FASTQ files
were filtered by quality using PrinSeq [14]; both tools are included in the
GPRO Suite (Biotechvana SL) [15]. Alignment of the sequences was
achieved using the human genome h19 as the reference genome. The
tools BWA [16], Samtools [17], and Picard Tools (http://picard.
sourceforge.net) were used. Variant calling was performed using the
MuTect tool from the GATK4 package [18] combined with PicardTools,
first, to create a panel of normal samples and, second, for the variant calling
[19]. The panel of normal samples was built using 11 samples from Iberian
exomes from 1000 genomes (http://www.ncbi.nlm.nih.gov/sra/), and it
was used to discard germline variants.

Prioritization of High-Impact Genetic Variants

With the aim of establishing the genetic variants that may act as drivers
of the disease, the VarSEQ software (Golden Helix) was used. Variant Call
Format files were filtered according to strict criteria: a reading depth of at
least 15×, a gnomAD global frequency <1%, high impact (frameshift,
splice variants, and stop-loss and stop-gain variants), and a detectable pres-
ence in at least 15% of the reads [20].

Filtering of the Most Frequent Genetic Variants in Our Cohort

On the other hand, with the aim of establishing the most frequent high-
and moderate-impact variants, genetic variants were further annotated
using Variant Effect Predictor (VEP) [21] and the Varsome database
(https://varsome.com/). Then, the information provided by VEP was
used to filter the genetic variants. The filtering criteria were a frequency
in the general population, according to the gnomAD database, of less than
1%; a high or moderate impact; and the presence of the variant in at least
10% of the patients in our cohort.

Visual Validation of the High-Impact Genetic Variants

The BAM files containing the prioritized variants were verified using
Alamut Visual v2.11 (Interactive Biosoftware).

Pathway Annotation

Pathway annotation of the genes containing the prioritized variantswas
done using PANTHER database (http://www.pantherdb.org/) and DAVID
webtool [22] selecting GO-BP as the category and Homo sapiens as the
background.

Genes Associated with Prognosis

From the list of genes with high- or moderate-impact variants identified
by VEP, those genes in which the presence of a genetic variant was associ-
ated with DFS were identified using BRB Array Tools developed by Dr.
Richard Simon's team [23]. Genes associated with DFS were selected ac-
cording to their P values by a Kaplan-Meier analysis. DFS was defined as
the time from primary tumor surgery until local and/or distant tumor re-
lapse. For survival analyses, only the 41 patients treated with chemoradio-
therapy were included (Figure 1).

Statistical Analyses

Statistical analyses were performed using GraphPad Prism v6 and IBM
SPSS Statistics v20. All P values were two-tailed, and statistical significance
was set as .05 or less.

http://www.bioinformmatics.babraham.ac.uk/projects/fastqc
http://www.bioinformmatics.babraham.ac.uk/projects/fastqc
http://picard.sourceforge.net
http://picard.sourceforge.net
http://www.ncbi.nlm.nih.gov/sra/
https://varsome.com/
http://www.pantherdb.org/


Figure 1.Workflow followed in this study.
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Results

Patient Cohort

Forty-six FFPE samples of ASCCwere analyzed by ES. Twenty-eight sam-
ples were from patients included in the VITAL clinical trial (GEMCAD-09-
02, NCT01285778). These patients were treated with panitumumab, 5FU,
and mitomycin C, concomitantly with radiotherapy. The remaining 18 pa-
tients were retrospectively included from the clinical practice in Hospital
Universitario La Paz and Hospital Clinic. Fourteen patients were treated
with cisplatin-5FU or mitomycin C-5FU, concomitantly with radiotherapy.
Table 1
Patient Clinical Characteristics

Number of Patients Percentage (%)

Number of patients 46 100%
Age at diagnosis (median and range) 61 (41-86)
Age at diagnosis (mean) 61
Gender

Male 23 50%
Female 23 50%

HPV
16 26 57%
Other subtypes 8 17%
Negative 6 13%
Unknown 6 13%

HIV
Positive 2 4%
Negative 44 96%

Lymph node status
N0 19 41%
N positive 24 52%
Unknown 3 7%

TNM stage
I 3 7%
II 16 35%
III 27 58%

Treatment
Chemoradiotherapy 14 30%
Chemoradiotherapy-panitumumab 28 61%
Other 4 9%

3

Three patients who were initially treated only with surgery and one patient
treated with radiotherapy alone were excluded from the survival analyses
(Table 1).

Exome Sequencing Experiments

The mean coverage obtained in ES experiments was >42.6×, with the
exception of one sample with a coverage of 3.57× that was excluded
from subsequent analyses. Once this sample was dismissed, the remaining
samples presented a mapping efficiency of between 90% and 98% with
the exception of one sample (75.4%). The human exome has >195,000 ex-
onic regions, out of which only 23,021 (11.21%) were not mapped in any
sample.

Relevant Genes and Their Associated Genetic Variants

VarSEQ and Alamut were used to filter and visualize the variants that
may play a significant role in the development of ASCC. For this purpose,
we studied all genetic variants that caused a high impact in their respective
gene. A total of 333 high-impact variants across 312 genes in the 45 pa-
tients were prioritized by the VarSEQ software.

The list of the implicated genes with high-impact variants is shown in
Supplementary Table 1.

Within the high-impact variants, the most frequent type of alteration
was the nonsense substitution which introduces a premature STOP codon
(Table 2).
Table 2
Description of the Type of High-Impact Alterations Detected by
WES Analysis

Type of Alteration Frequency

Duplications 16 (4.8%)
Insertions 32 (9.6%)
Deletions 55 (16.4%)
Nonsense substitutions 204 (62%)
Splice site substitutions 19 (6%)
Intronic deletions 2 (0.6%)
Intronic substitutions 2 (0.6%)



Figure 2. List of high-impact genetic variants identified by VarSEQ in our cohort in more than one patient.
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The principal alterations identified by these analyses were different be-
tween patients; i.e., each patient presented a unique set of high-impact ge-
netic variants. However, in some cases, the genes affected by these high-
impact alterationswere common. The list of these genes is shown in Supple-
mentary Table 2 and Figure 2.

Ontology Analysis of the High-Impact Genetic Variants Identified

With the aim of identifying the pathways affected by the genetic alter-
ations, PANTHER andDAVIDdatabaseswere used. Themost frequently im-
plicated pathwayswere intracellular signal transduction (22% of the genes,
24% of the patients in the cohort), immune (20% of the genes, 15% of the
patients), and apoptosis (17% of the genes, 15% of the patients) pathways,
although there were also relatively frequent alterations in genes implicated
in angiogenesis (11% of the genes, 11% of the patients), metabolism (11%
of the genes, 9% of the patients), chromatin modification (8% of the genes,
11% of the patients), EGFR signaling (8% of the genes, 7% of the patients),
or Wnt signaling pathways (8% of the genes, 11% of the patients) (Figure
3).

Characterization of the Most Frequently Mutated Genes in Our Cohort

With the aim of characterizing the most frequently mutated genes in
ASCC, genetic variants were annotated using VEP, and genes with high-
Figure 3. Pathways in which genes presenting
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and moderate-impact genetic variants were analyzed. After filtering by
VEP results, 382 genes were found to present at least one high- or
moderate-impact genetic variant in at least 10% of the patients in our co-
hort (Supplementary Table 3). The functions associated with these 382
genes were cytoskeleton, DNA repair, adhesion, and chromatin binding.
PIK3CA was mutated in 40% of the patients, FBXW7 in 16%, FAT1 in
18%, and ATM in 27% of the patients. The most frequent variants found
in PIK3CA are rs104886003 (seven patients), classified as a variant of un-
certain significance in Varsome, and rs121913273 (three patients), classi-
fied as likely pathogenic by the same database.
Genetic Variants Associated with Prognosis in ASCC

With the aim of determining the genes associated with relapse in ASCC,
a Kaplan-Meier analysis was performed. This analysis showed that, in this
cohort, the presence of a high- or moderate-impact genetic variant in
BRCA2, ZNF750, FAM208B, ZNF599, and ZC3H13 was associated with
poor disease-free survival (Figure 4). The genetic variants detected in
these genes are summarized in Table 3. Presenting more than one genetic
variant in any of these genes implied aworse DFS (P=.001) (Figure 5). Pa-
tients without genetic variants or with only a single genetic variant in these
genes did not reach the median DFS, and DFS percentages at 60 months
were 54% and 29%, respectively. The median DFS in those patients with
high-impact genetic variants are involved.



Figure 4. Survival curves for those patients whose high- and moderate-impact genetic variants are associated with DFS.
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two or more genetic variant in these genes was 7 months, and DFS percent-
age at 60 months was 86%.

Discussion

ASCC is a relatively rare type of cancer, although its incidence has in-
creased in recent years. The management of these patients consists of mito-
mycin C combined with 5FU chemotherapy and radiotherapy, but not all
patients obtain a benefit from these treatments. For this reason, it is neces-
sary to delve deeper into the molecular characterization of this disease,
with the objective of identifying biomarkers and new potential therapeutic
targets. In this study, a cohort of 46 ASCC patients was studied by ES, and a
list of genes with high-impact genetic variants that may be drivers of onco-
genesis processes was identified. In addition, a characterization of the most
frequently mutated genes with high- and moderate-impact variants was
performed. Finally, five genes in which the presence of a genetic variant
was associated with DFS were identified.

In this study, 46 ASCC paraffin samples were analyzed by ES. The anal-
ysis of FFPE samples using next-generation sequencing has been challeng-
ing due to the DNA fragmentation and the artificial alterations of the
sequence caused by the fixation process. However, paired comparisons be-
tween fresh-frozen tissue and FFPE samples showed that although DNA
damage in FFPE samples was evident, the results of fresh-frozen tissue
and FFPE samples sequencing were comparable [24].

PIK3CA variants with a well-established functional effect were identi-
fied in 40% of our cohort samples. This value is consistent with that re-
ported in previous studies [11,12]. The most frequent PIK3CA variants
were rs121913273 and rs104886003, both described in the COSMIC and
5

Varsome databases. The rs121913273 variant has been described as likely
pathogenic in esophageal and squamous cell carcinoma of the head and
neck and in uterine cervical neoplasms (VCV000376244.2). Our results
are comparable with the percentage observed in previous studies trying
to identify the predominant genetic variants in ASCC [9–12]. Cacheux
et al. established variants in PIK3CA as a frequent alteration (20.3%) in
this type of cancer [10]. Chung et al. studied 70 patients and described re-
current alterations in 40 genes such as PIK3CA (40%), FBXW7 (13%), PTEN
(14%), and RICTOR (9%) [12]. Both studies included localized but also
metastatic ASCC. Morris et al. analyzed metastatic ASCC samples combin-
ing ES and gene panels. They confirmed that PIK3CA is commonly mutated
in ASCC (29%), and they used a xenograft model to test EGFR and PIK3CA
inhibitors with a decrease in tumor growth [11]. In a later work, Cacheux
et al. performed ES on 20 ASCC patients and described PIK3CA (25%),
FBXW7 (15%), and FAT1 (15%) as frequently mutated genes, and TRIP12
(15%), and chromatin remodeling as a pathway playing an important role
in ASCC [9].

In contrast to the gene panel-based analyses, the nondirected ES ap-
proach made it possible to propose a list of genetic variants which may
play an important role in the development of the disease and to identify
five genes in which the presence of a genetic variant is associated with
DFS.Moreover, this analysis replicated the identification of genetic variants
in some genes previously described in ASCC, such as FBWX7, but also sug-
gested the involvement of novel genes, such as ZNF750.

In addition, we found that 16% of the patients presented a high- or
moderate-impact variant in FBXW7, 18% in FAT1, and 27% in ATM. A re-
markable finding was the presence of high-impact genetic variants of the
FBXW7 gene in four patients. FBXW7 is a cell cycle key regulator, and its



Table 3
Genetic Variants Associated with Disease-Free Survival in ASCC.

Gene Chromosomal Location Number of Mutated Samples % Genetic Variants cDNA Level Protein Level

BRCA2 chr13 8 18% chr13_32914858_G/T NM_000059.3:c.6366G > T p.(Met2122Ile)
chr13_32936775_G/A NM_000059.3:c.7921G > A p.(Glu2641Lys)
chr13_32972631_-/TAGAC NM_000059.3:c.9980_9981insTAGAC p.(Lys3327Asnfs*15)
chr13_32900790_G/A NM_000059.3:c.631+ 40G > A Not predictable
chr13_32936713_T/C NM_000059.3:c.7859 T > C p.(Val2620Ala)
chr13_32914516_−/G NM_000059.3:c.6024dup p.(Gln2009Alafs*9)
chr13_32968918_C/T NM_000059.3:c.9349C > T p.(His3117Tyr)
chr13_32953641_A/G NM_000059.3:c.8942A > G p.(Glu2981Gly)

ZNF750 chr17 4 9% chr17_80788075_C/T NM_024702.2:c.2115G > A p.(Ala705=)
chr17_80789547_C/− NM_024702.2:c.784del p.(Ala262Leufs*104)
chr17_80789802_C/A NM_024702.2:c.529G > T p.(Glu177*)
chr17_80789503_G/C NM_024702.2:c.828C > G p.(Tyr276*)

ZNF599 chr19 6 13% chr19_35249946_C/G NM_001007248.2:c.1760G > C p.(Arg587Thr)
chr19_35250950_T/A NM_001007248.2:c.756A > T p.(Glu252Asp)
chr19_35251215_C/T NM_001007248.2:c.491G > A p.(Gly164Asp)
chr19_35250352_C/T NM_001007248.2:c.1354G > A p.(Glu452Lys)
chr19_35260373_C/T NM_001007248.2:c.106G > A p.(Glu36Lys)
chr19_35250567_G/T NM_001007248.2:c.1139C > A p.(Ser380*)

ZC3H13 chr13 6 13% chr13_46616368_C/− NM_015070.4:c.270del p.(Asn91Thrfs*37)
chr13_46539442_C/T NM_015070.4:c.4447G > A p.(Asp1483Asn)
chr13_46542026_CGCG/− NM_015070.4:c.3931_3934del p.(Glu1314Glyfs*48)
chr13_46563072_G/A NM_015070.4:c.1105C > T p.(Arg369Cys)
chr13_46584507_G/A NM_015070.4:c.722C > T p.(Ser241Phe)
chr13_46563125_C/T NM_015070.4:c.1052G > A p.(Arg351Gln)

FAM208B chr10 6 13% chr10_5784388_T/C NM_001321783.1:c.2656 T > C p.(Leu886=)
chr10_5781712_G/A NM_001321783.1:c.1579G > A p.(Val527Ile)
chr10_5762722_G/C NM_001321783.1:c.31G > C p.(Glu11Gln)
chr10_5782394_C/A NM_001321783.1:c.2261C > A p.(Ala754Glu)
chr10_5789623_G/C NM_001321783.1:c.4239G > C p.(Glu1413Asp)
chr10_5781667_G/C NM_001321783.1:c.1534G > C p.(Glu512Gln)
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function as a tumor suppressor is well known [25]. Genetic variants in this
gene have been previously described in 15% of ASCC patients. FAT1, which
presented high-impact variants in two patients of our cohort, has also been
described as a tumor suppressor gene involved in the Wnt pathway [26].
FAT1 genetic variants have also been described in ASCC patients [9].

Strikingly, each patient presented a unique set of high-impact variants.
The most frequent alterations were nonsense stop-gain variants. However,
the pathway analysis showed that, despite the individual variant diversity
between patients, the affected biological pathways were shared between
patients. This has already been seen in other tumors from The Cancer Ge-
nome Atlas studies [27]. Moreover, the implicated pathways are tradition-
ally associated with tumor progression and cancer development such as
angiogenesis or metabolism pathways [28]. The presence of high-impact
variants in the EGFR pathway in 7% of patients or in immunological pro-
cesses may be relevant when proposing new therapies such as EGFR-
targeted therapy or immunotherapy.
Figure 5. Survival curves obtained after considering the presence of high- and
moderate-impact genetic variants in BRCA2, FAM208B, ZNF750, ZNF599, and
ZC3H13 (0 genetic variant, n = 23 patients; 1 genetic variant, n = 11 patients; 2-
5 genetic variants, n = 7 patients).

6

With the aim of determining the most frequent alterations in our cohort
and identifying variants related to the progression of the disease, less re-
strictive filtering criteria were used. This led us to the identification of
high- or moderate-impact genetic variants in 382 genes. These genes are
mainly involved in DNA repair, chromatin binding, cytoskeleton, and adhe-
sion processes. Chromatin remodeling was previously suggested as a pro-
cess with an important role in ASCC [9].

Survival analyses identified five genes associated with DFS. ZNF750
was recently associated with prognosis in esophageal squamous cell carci-
noma [29,30]. Variants of BRCA2 were also associated with esophageal
squamous cell carcinoma and head and neck squamous cell carcinoma,
both of which are related to HPV infection [31,32]. Moreover, BRCAmuta-
tions are associated with response to PPAR inhibitors in pancreatic, breast,
and ovarian tumors [33–35]. Therefore, the prevalence of BRCA2 muta-
tions may have therapeutic implications. Other genes associated with DFS
(FAM208B, ZNF599, and ZC3H13) had not been previously associated
with cancer.

The two analyses performed offer complementary insights. Themost re-
strictive filtering identified those genetic variants with a highly deleterious
impact upon the resulting protein and proposed a list of variants that may
be related to tumor development. In addition, based on the affected
genes, the principal altered pathways involved were identified. In contrast,
the alternative filtering pipeline yielded the most frequent variants in our
cohort, some of them also associated with tumor progression and DFS.

ES analysis allowed us to identify candidate genes potentially involved
in the etiology of ASCC without the bias of previous knowledge. On the
other hand, our study led to the identification of genes that presented ge-
netic variants associated with DFS in ASCC. As far as we know, this is the
first time that an analysis of these characteristics has been performed. An-
other important point is the sample size. With ASCC being a rare tumor, it
is difficult to gather a representative and homogeneous cohort. Our study
analyzed 46 samples, the second largest cohort in ASCC from localized tu-
mors treated with chemoradiotherapy so far.

This study has some limitations. A validation with an independent co-
hort, especially for the prognostic genetic variants, is still needed. Unlike
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the traditional genetic diseases, where an analysis pipeline is well
established, in tumor sequencing data, it is still necessary to establish a con-
sensus analysis workflow.

Conclusions

To summarize, we analyzed 46 ASCC tumor samples by ES, an impor-
tant cohort taking into account that ASCC is a rare tumor. Our study iden-
tified a set of variants having a high impact upon the corresponding
protein and proposed a list of candidate geneswhichmay play an important
role in the etiology of ASCC. On the other hand, our study yielded a list of
genetic variants apparently associated with poor disease progression. In
conclusion, sequencing of ASCC clinical samples seems to be a promising
tool for the molecular characterization of this pathology, which may aid
the clinician in the prognostic stratification of patients and open new ave-
nues for drug development.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.tranon.2020.100778.
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