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Cross-sectional study of human 
coding- and non-coding RNas in 
progressive stages of Helicobacter 
pylori infection
Sergio Lario  1,2,7 ✉, María J. Ramírez-Lázaro  1,2,7, Aintzane González-Lahera1,3, 
José L. Lavín3, Maria Vila-Casadesús1,4, María E. Quílez2, Anna Brunet-Vega5,7, 
Juan J. Lozano1,4,7, Ana M. aransay  1,3,7 & Xavier Calvet1,2,6

Helicobacter pylori infects 4.4 billion individuals worldwide and is considered the most important 
etiologic agent for peptic ulcers and gastric cancer. Individual response to H. pylori infection is complex 
and depends on complex interactions between host and environmental factors. The pathway towards 
gastric cancer is a sequence of events known as Correa’s model of gastric carcinogenesis, a stepwise 
inflammatory process from normal mucosa to chronic-active gastritis, atrophy, metaplasia and gastric 
adenocarcinoma. This study examines gastric clinical specimens representing different steps of the 
Correa pathway with the aim of identifying the expression profiles of coding- and non-coding RNAs that 
may have a role in Correa’s model of gastric carcinogenesis. We screened for differentially expressed 
genes in gastric biopsies by employing RNAseq, microarrays and qRT-PCR. Here we provide a detailed 
description of the experiments, methods and results generated. The datasets may help other scientists 
and clinicians to find new clues to the pathogenesis of H. pylori and the mechanisms of progression of 
the infection to more severe gastric diseases. Data is available via ArrayExpress.

Background & Summary
Helicobacter pylori is one of the most successful human bacterial pathogens, infecting 4.4 billion individuals 
worldwide1. Infection can induce gastric pathologies ranging from chronic gastritis in all infected individuals to 
peptic ulcers (in 15–20% of patients) and gastric cancer (0.5–1% of patients)2.

Individual response to H. pylori infection is complex and depends on a combination of environmental factors, 
genetic background, host response and strain virulence3. The pathway towards gastric cancer is a sequence of 
events known as Correa’s model of gastric carcinogenesis, a stepwise inflammatory process from chronic-active 
gastritis (CAG), atrophy (AT), intestinal metaplasia (IM) and gastric adenocarcinoma4.

This study examines gastric clinical specimens representing different steps of the Correa pathway with the 
aim of identifying the expression profiles of coding- and non-coding RNAs (microRNAs and small RNAs) that 
may have a role in Correa’s model of gastric carcinogenesis and, potentially, to develop novel clinical biomarkers.

RNAseq (for microRNAs and non-coding RNAs) and microarrays (for coding RNAs) were used to screen for 
differentially expressed genes in gastric biopsies (antrum/corpus). The expression of a selection of genes was con-
firmed in a validation cohort of patients using quantitative real-time PCR (RT-qPCR). The general study design 
is illustrated in Fig. 1. Here we provide a detailed description of the experiments conducted, methods used and 
results generated. The datasets may help other scientists and clinicians to find new clues to the pathogenesis of 
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H. pylori and the mechanisms of progression to severe disease states. The transcriptomics data is available in the 
ArrayExpress database5.

Methods
Patient selection. The Digestive Service has assembled a collection of samples from dyspeptic patients. The 
study was undertaken in accordance with the Declaration of Helsinki, with the approval of the ethics committee 
at our institution (code: 2005511; approval date: 2006/1/11).
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Fig. 1 Outline of the experimental design and workflow for this study from biopsy collection to data analysis. 
During the endoscopy procedure, antrum and corpus biopsies were collected for molecular analysis, rapid 
urease test and histology. Each specimen was analyzed for H. pylori, chronic-active gastritis, atrophy and 
intestinal metaplasia. Patients with H. pylori and neutrophil infiltrate (activity) were classified as chronic-active 
gastritis (CAG). Patients without activity and negative for H. pylori were classified as non-active gastritis (NAG).
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At the time the transcriptomic experiments were performed, the collection included samples from 439 
patients, enrolled from 2007–2012. The enrolment process was as follows: Dyspeptic patients referred for upper 
gastrointestinal endoscopy because of dyspepsia were contacted by phone and invited to participate. Those who 
agreed were instructed not to take antisecretory drugs for two weeks before undergoing the procedure. Exclusion 
criteria were: patients who were not able to stop antisecretory drugs, those who had received antibiotics in the 
four weeks before the endoscopy and those with a history of prior treatment for H. pylori. Before the endoscopy, 
a 13[C]-urea breath test (UBT) (Cat.No. 654057, UBiTest 100 mg, Otsuka Pharmaceutical Europe Ltd, UK) was 
administered. During the endoscopy procedure, biopsies were taken for histology, rapid urease testing (RUT, Cat.
No. 1100090, JATROX HP test CHR Heim Arzneimittel GmbH, Germany) and molecular analysis (RNAlater, 
Cat.No AM7021, ThermoFisher, MA, USA). After a positive RUT test, biopsies were plated on Pylori Agar (Cat.
No. 413193, bioMérieux SA, Spain) in microaerophilic jars (Jar Gassing System, Don Whitley Scientific Limited, 
UK). After a maximum of a week, grown H. pylori isolates were subcultured on Columbia plates (Cat.No. 43041, 
bioMérieux) and identified by colony morphology, Gram-negativity and positivity for urease, catalase, and oxi-
dase tests. VacAs, VacAm and cagA virulence factor genes of H. pylori were determined by PCR on isolated strains 
or biopsy samples by using custom locked nucleic acids primers (LNA, Exiqon, Denmark) and SensiMix SYBR 
Low-ROX Kit (Cat. No. QT625-05, Bioline, UK). Details on VacAs, VacAm and cagA amplification are described 
in detail elsewhere6. For histopathological evaluation, sections were stained with haematoxylin-eosin (Fig. 2) and 
evaluated for H. pylori, CAG, atrophy, intestinal metaplasia, and presence of lymphoid follicles by a pathologist 
specializing in digestive diseases.

Patients were considered to be H. pylori positive when two or more diagnostic tests (RUT, UBT, histology, cul-
ture) were positive and /or two or more H. pylori virulence PCR assays were positive. Patients with less than two 
positive diagnostic tests and with less than two positive PCR assays were considered uninfected.

Seventy antral and 26 corpus biopsies from 76 patients were selected. Due to chip restrictions, 2 antral biop-
sies (B294, B311) were not included in microarray analysis. In 18 cases, antrum and corpus biopsies were paired. 
The biopsy samples were classified into different groups based on histology: non-active gastritis (NAG, n = 16), 
chronic-active gastritis (CAG, n = 28), atrophic gastritis (AT, n = 15) and intestinal metaplasia (IM, n = 37). 
Demographic and clinical characteristics of patients can be found in Online only Table 1.

RNA extraction and quality control. Two antrum and two corpus biopsies were used to isolate total 
RNA. Total RNA was extracted using the mirVana miRNA isolation kit (ThermoFisher, MA, USA) as per the 
manufacturer’s protocol and stored at −80 °C for downstream analysis. DNase treatment was performed as 
described in the DNA-free Kit protocol (Cat. No. AM1906, ThermoFisher, MA, USA). Total RNA was quantified 
with the Qubit® RNA Assay Kit (ThermoFisher, MA, USA). Quality was assessed using Agilent RNA 6000 Nano 
chips (Cat.No. 5067-1511) on an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA), including 
calculation of the RNA integrity number (RIN). The RIN score was 7.72 ± 0.6 (Fig. 3).

mRNA microarrays. Biotin-labeled cRNA samples for hybridization were prepared from 200 ng total 
RNA using Epicentre TargetAmp Nano-g Biotin-aRNA Labeling Kit for Illumina system (Cat. No. TAN091096; 
Epicentre, WI, USA). Labeled cRNA was hybridized to the HumanHT-12_V4.0 expression arrays (Cat. No. 
BD-103-0204; Illumina Inc., San Diego, CA) as described in the protocol/instructions. HumanHT-12 v. 4 
Expression arrays were scanned with the iScan system (Illumina Inc., San Diego, CA, USA) and raw data were 
decoded using GenomeStudio Gene Expression Module (Illumina Inc., San Diego, CA, USA). Intensities were 
quantile-normalised and differentially detected transcripts were calculated using the Bioconductor limma 
package7.

miRNA and small RNA sequencing. TruSeq miRNA and small RNA library preparation. Briefly, 3′ 
adapter ligation was performed by incubating 1 µg of total RNA of each sample with the adapter for 2 minutes at 

Fig. 2 Microscopic images from representative 10x hematoxylin-eosin–stained cases of non-active gastritis (a, e),  
chronic-active gastritis (b,f), atrophy (c,g) and intestinal metaplasia (d,h) are shown for antrum (a–d) and corpus 
(e–h).
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Fig. 3 Quality control of the RNA samples, sequencing libraries and sequencing reads. (a) Agilent Bioanalyzer 
electropherogram showing total RNA from sample #47 (left) and violin plot of RIN values according to disease 
state (right). (b) Library Size Selection by resolution of total RNA on 6% Novex TBE PAGE Acrylamide 
gels. Original acrylamide gel for sample #47 (left), after 145–160 bp miRNA bands (middle) and small-
RNA fragments (200–300 bp) (right) were excised. (c,d) Final library QC. Precise library quantification was 
performed using real-time PCR and size distribution was assessed with Agilent BioAnalyzer High Sensitivity 
DNA Chips. Upper and lower panels show sample #47 miRNA and small-RNA libraries, respectively. (e) 
Sequencing of the 192 libraries generated over 9.8 × 108 raw reads. Mean library counts were 5.9 × 106 and 
4.4 × 106 for miRNAs and small RNAs, respectively. The panels show the distribution of quality scores per base 
(upper panels) and the read count per library (lower panels) for both miRNA (left panels) and small-RNAs (right 
panels).
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70 °C. Then 5′-adapter was added alongside using a truncated T4-RNA ligase 2 (Cat. No. M0351S, New England 
Biolabs, MA, USA) in an incubation at 28 °C for 1 hour. Half of the ligation product was used for the reverse 
transcription performed with SuperScript II reverse transcriptase (Cat. No. 18064-014, ThermoFisher, MA, USA) 
in a thermocycler for 1 hour at 50 °C. Next, enrichment of the cDNA was performed using PCR cycling: 98 °C 
for 30 secs; 11 cycles of 98 °C for 10 secs, 60 °C for 30 secs and 72 °C for 15 secs; a final elongation of 72 °C for 
10 mins, and pause at 4 °C. PCR products were resolved on 6% Novex TBE PAGE gels (Cat. No. EC6265BOX, 
ThermoFisher, MA, USA). microRNA and Small_Non-coding-RNA fragments between 145–160 and 200–300 bp 
respectively, were cut from the gel. microRNA and Small_Non-coding-RNA libraries were extracted from poly-
acrylamide gel with the MinElute gel extraction kit (Cat. No. 28604, Qiagen, Germany) using an adapted proto-
col, in which gel slices were dissolved in a diffusion buffer (0.5 M ammonium acetate; 10 mM magnesium acetate; 
1 mM EDTA, pH 8.0; 0.1% SDS) overnight at room temperature plus 3 hours and 30 min at 50 °C. The libraries 
were visualized on an Agilent 2100 Bioanalyzer with the Agilent High Sensitivity DNA kit (Cat. No. G2938-
90320, Agilent Technologies, Santa Clara, CA) and quantified using quantitative PCR with the Kappa Library 
Quantification Kit (Master Mix and DNA Standards, Cat.No. KK4824, Roche-Kappa, Basel, Switzerland).

Next-generation sequencing (NGS). The libraries were pooled, and 12pM 12xmicroRNA-libraries and 14pM 
12xSmall_Non-codingRNA-library pools were sequenced. Multiplexed libraries were hybridized to flow cells 
on a cBot Cluster Generation System (Illumina, San Diego, CA, USA) using TruSeq SR Cluster Kit v3-cBot-HS 
(Cat. No. GD-401-3001; Illumina, San Diego, CA, USA). The clustered flow cells were loaded onto a HiScanSQ 
sequencer. The sequencing was performed using the TruSeq SBS Kit v3-HS (Cat. No. FC-401-3002; Illumina, San 
Diego, CA, USA) for 50 cycles.

NGS Data analysis. Base calling was performed with the Illumina Real Time Analysis software (RTA, version 
1.13.48) and the FASTQ files were generated with CASAVA (version: 1.8.1). Secondary data analysis was done 
using the sRNAbench package8. Briefly, reads were aligned to the human genome (UCSC hg19) using Bowtie 
1.1.29. miRNA annotations were obtained from miRBase10 (version 21). Sequencing analysis was done by using 
the sRNAbench package11. Briefly, after adapter trimming and unique read grouping, reads were aligned to the 
human genome (UCSC hg19) using Bowtie9 allowing for one mismatch. To provide annotations for RNA ele-
ments that mapped to the human genome, miRBase (version 21) for mature and pre-miRNA sequences was used 
and a matrix of counts were created. To process count and to identify differentially expressed miRNAs we use 
edgeR package12.Transcripts were considered differentially expressed provided their edgeR FDR-adjusted P value 
was < 0.05.

Quantitative PCR validation. Twenty-five RNAs were reanalyzed to validate 24 messenger RNAs and 12 miR-
NAS. The RNAs used were a subset (n = 25) of the aliquots of the same RNA samples we used for sequencing and 
microarray analysis. Studied genes are summarized in Table 1.

cDNA synthesis. miRNA validation was performed using the miRCURY LNA Universal RT microRNA PCR 
system (Exiqon, Denmark). miRNAs were reverse transcribed according to the manufacturer’s protocol using 
10 ng of total RNA (Cat. No. 203301; miRCURY LNA™ Universal RT microRNA PCR, Polyadenylation and 
cDNA synthesis kit II). For coding RNAs, 1.0 µg of total RNA was converted into cDNA using PrimeScript RT 
Reagent Kit (Cat. No. RR037A, Takara, Japan).

Quantitative PCR. Coding RNAs were amplified using predesigned PrimeTime 5’ Nuclease Assays (IDT, Iowa, 
USA) (assay catalog numbers are in Table 1) and PremixExTaq Probe qPCR mastermix (Cat. No. RR390W; 
Takara, Japan). miRNAs were quantified using predesigned microRNA LNA PCR Primer sets (Exiqon, Denmark) 
and SensiMix SYBR Low-ROX Kit (Cat. No. QT625-05, Bioline, UK). Amplification was performed in duplicate 
on a QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) using 384-well 
plates.

qPCR data analysis. The raw PCR data was exported from QuantStudio Real-Time PCR Software v1.2 (Applied 
Biosystems) onto a RDML13 file and imported into LinRegPCR (v2016.1)14. LinRegPCR was used to determine 
PCR efficiencies (E) and to calculate the starting concentration per sample (N0). First, the program determines 
the baseline fluorescence and performs baseline subtraction. Then a Window-of-Linearity for all PCR samples 
per amplicon is set and then the algorithm determines: the mean PCR efficiency per amplicon (Emean), the quanti-
fication cycle (Cq) value per sample and the fluorescence threshold set to determine the Cq (Nq). With these data, 
N0 is calculated using N0 = Nq / (Emean)Cq.

Data Records
Individual miRNA and small-RNA FASTQ files and a tab-delimited file for the processed microarray data have 
been deposited in the ArrayExpress public repository5. The accession numbers are: E-MTAB-889015 for miRNAs, 
E-MTAB-889616 for small RNAs and E-MTAB-888917 for mRNAs. The sample metadata records are provided in 
Online only Table 1.
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technical Validation
Quality control. Sample collection. In order to ensure the collection of biopsy tissue samples would pro-
vide high-quality results for microbiology, molecular analysis and histology, a two round biopsy protocol was 
followed. During the endoscopy, a first set of biopsy samples was collected for microbiological (in sterile saline) 
and molecular analysis (in RNAlater) and a second set were fixed in formalin for histopathological examination. 
By doing this, we ensured that formalin contamination of biopsy forceps did not interfere with the RUT and H. 
pylori culture. Histological examination was performed by a pathologist specialized in digestive diseases. In order 
to increase the total RNA yield and because intestinal metaplasia is typically present as small mucosal patches, 
we isolated RNA from two gastric biopsies per anatomical location. The reason is that the biopsy cores examined 
by the pathologist are different from the biopsy specimens used for molecular analysis. By using two biopsies, we 
were more confident that if the pathologist reported intestinal metaplasia in the histology specimens, intestinal 
metaplasia would also be present in the molecular biology cores. Additionally, two biopsies are the minimum 
recommended by the Updated Sydney System18.

RNA processing. Figure 2 shows the quality control procedures used in this study for RNA integrity, library 
preparation and sequencing.

GENE Symbol Refseq accession Detects all variants(a) Exon location(a) Mean PCR efficiency(b) Company and catalogue number

AGPAT2 NM_006412(1) No 4–5 1,86 IDT Hs.PT.58.1470724

ACTB NM_001101(1) Yes 6–6 1,86 IDT hs.PT.56a.40703009.g

ANXA13 NM_004306(2) Yes 10–11 1,90 IDT Hs.PT.56a.20938889.g

APOB NM_000384(1) Yes 8–9 1,87 IDT Hs.PT.56a.19389676

C3 NM_000064 Yes 27–28 1,90 IDT Hs.PT.56a.2840009

CDX1 NM_001804(1) Yes 1–2 1,89 IDT Hs.PT.58.468499

CFH NM_001014975(1) No 9–10 1,89 IDT Hs.PT.58.41054235

CPS1 NM_001122633(3) Yes 27–28 1,88 IDT Hs.PT.58.2708374

CREB1 NM_134442 No 3–5 1,89 IDT Hs.PT.58.4988504

CXCR5 NM_001716(1) No 1–2 1,89 IDT Hs.PT.56a.1692541

EIF4G2 NM_001042559(3) Yes 3–5 1,91 IDT Hs.PT.58.6917393

FUT9 NM_006581 Yes 2–3 1,89 IDT Hs.PT.58.22395619

HIPK3 NM_005734(2) Yes 3–4 1,89 IDT Hs.PT.58.2927056

HNF4G NM_004133(1) Yes 2–3 1,86 IDT Hs.PT.58.26995600

IL8 NM_000584(1) Yes 3–4 1,82 IDT Hs.PT.58.38869678.g

KRT20 NM_019010(1) Yes 5–6 1,89 IDT Hs.PT.58.39027228

MEG3 NR_002766(8) No 5–10 1,86 IDT Hs.PT.58.25426100

MMP9 NM_004994(1) Yes 3–4 1,84 IDT Hs.PT.58.22814824.g

MTTP NM_000253(1) Yes 18–19 1,87 IDT Hs.PT.58.94887

MUC2 NM_002457(1) Yes 28–30 1,89 IDT Hs.PT.58.4321237

POFUT1 NM_015352(1) No 6–7 1,78 IDT Hs.PT.58.19361092

RUNX2 NM_001024630(3) Yes 6–7 1,88 IDT Hs.PT.56a.19568141

SDHA NM_004168(1) Yes 3–4 1,88 IDT Hs.PT.58.41017719

TFF3 NM_003226(1) Yes 1–2 1,89 IDT Hs.PT.58.1814807

WDR1 NM_017491(1) No 4–5 1,88 IDT Hs.PT.58.40308614

MIR103A1 NR_029520.1 NA NA 1,89 Exiqon 204063

MIR146A NR_029701 NA NA 1,86 Exiqon 204688

MIR153–1 NR_029563 NA NA 1,81 Exiqon 204338

MIR155 NR_030784.1 NA NA 1,90 Exiqon 204308

MIR182 NR_029614.1 NA NA 1,89 Exiqon 206070

MIR191 NR_029690.1 NA NA 1,86 Exiqon 204306

MIR192 NR_029578.1 NA NA 1,91 Exiqon 204099

MIR196B NR_029911.1 NA NA 1,88 Exiqon 204555

MIR19B1 NR_029490.1 NA NA 1,85 Exiqon 204450

MIR204 NR_029621.1 NA NA 1,89 Exiqon 206072

MIR215 NR_029628.1 NA NA 1,87 Exiqon 204598

MIR340 NR_029885.1 NA NA 1,89 Exiqon 206068

Table 1. qPCR Primer assays used for mRNA and miRNA validation. aPrimer assays targeting all splicing 
variants were chosen for validation purposes, and when possible, in the same exon where the Illumina probe 
was positioned. bPCR efficiency was calculated by LinRegPCR software. Using the raw qPCR data, the algorithm 
computes iteratively a Window-of-Linearity for a specific amplicon and calculates the Cq and PCR efficiency for 
each individual reaction and amplicon. NA: not applicable.
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Gene expression validation by qPCR. We used LinRegPCR14 for calculating individual and mean PCR efficien-
cies. Amplicons showed high PCR efficiencies, ranging from 1.78 to 1.91. PCR inhibition can be detected using 
individual PCR efficiency values. Samples showing PCR efficiencies greater than 5% of the PCR mean efficiency 
per amplicon were excluded. The algorithm also calculates N0. N0 is the starting quantity of mRNA or miRNA 
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Fig. 4 Validation of miRNAs (a) and messenger RNAs (b) by RT-qPCR. A panel 12 of miRNAs and 24 mRNAs 
were selected for validation of 25 RNA samples. Aliquots of the same RNA samples were used for sequencing, 
microarray and qPCR measurements. Raw qPCR data was exported to LinRegPCR software. N0 (an estimate 
of the target starting concentration per reaction) was calculated using the formula N0 = Nq/ECq where E is the 
amplicon PCR efficiency and Nq is the fluorescence threshold set to determine Cq. The Pearson correlation 
coefficient (R), the p-value and 95% confidence interval are indicated. Additional correlations to genes having 
multiple probes can be found in ref. 29.
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(expressed in arbitrary fluorescence units). Quantitative N0 values have been used in previous publications19–24. 
Determining N0 has several advantages over relative quantification. First, the selection of a housekeeping gene is 
often controversial since the expression of all genes is regulated. Second, the expression of a housekeeping gene 
varies to a greater or lesser extent under experimental conditions25. Third, to solve this issue a quantitative PCR 
approach with a correction factor according to the starting amount of RNA used in the reverse transcription has 
been recommended (i.e. µg of RNA)26 instead of relative quantification.

To evaluate the concordance in gene expression between microarray or RNA-seq and qPCR, we calculated 
the correlation between normalized microarray/RNA-seq and qPCR log transformed N0 values (Fig. 4). Overall, 
high R and low p-values values (R > 0.8, p < 0.001) were observed between microarray and qPCR measurements. 
Some of them were probe dependent (i.e. C3 probe ILMN_1762260: R = 0.79, p < 0.001, but C3 ILMN_1662523 
was not correlated). Five miRNA showed high correlation (R > 0.7, p < 0.001), 4 were poorly correlated (R ∼ 0.4, 
p < 0.05) and 3 were not correlated.

Usage Notes
miRNA, small-RNA raw sequencing data (FASTQ) and normalized microarray data can be analysed by a variety 
of freely accessible packages and platforms, such as R/Bioconductor27. Some R/Bioconductor packages can be 
used without prior programming knowledge by using the Galaxy platform28.

The authors encourage proper citation of data sources for any work based on this dataset.
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