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Abstract: We explore some rheological aspects of the yielding of gelled waxy crude oil on the
basis of a fractal model for the structural description of the waxy gel and Marrucci’s model for
the time evolution of the stress with mixed elastic and viscous effects. With some parameters of
the model directly obtained from classic theometry, and others by fitting the parameters to the
experimental data of one shear-rate condition, the flow curves for another shear-rate condition are
predicted. Both theoretical curves—the fitting and the predicted ones—share the basic features of the
experimental ones. Comparison with results of Maxwell model shows that Marrucci’s model used
here leads to much better results, as it incorporates nonlinear viscoelasticity of waxy crude gels in the
stress evolution equation. The strain dependence of the elastic modulus also plays a relevant role on
the prediction of the model, suggesting a double-network contribution for very small strain values.
Due to the inertia of rheometric device, the actual shear rate is often found to depart from the setting
one, and modification of shear rate history can be necessary in model validation.

Keywords: nonlinear viscoelasticity; rheological model; waxy crude oil; yielding; fractal gels

1. Introduction

The rheological behaviors of gelled waxy crude oils during yielding process is a
very relevant problem for theoretical rheology, as it exhibits the consequences of drastic
structural modifications at a microscopic level, leading the system from a solid-like behavior
to a thixotropic fluid behavior. Furthermore, it is also very useful because it may help
engineers make smart decisions on the operation strategies for pipelines. For instance,
before it enters the pipeline, waxy crude oil is often heated to a relatively high temperature
to keep it from gelation. While during pipeline shutdown, heat supplement no longer
enters the pipe and drastic temperature drop could happen. As a result, waxy components
once dissolved in waxy crude may precipitate from the oil when the temperature falls below
its wax appearance temperature (WAT). If the shutdown lasts for a long time, irreversible
gelation could happen in the pipe since a more stable structure has developed due to
high fraction of wax precipitates. Quantitative description of the viscoelastic behavior
of a waxy crude gel is helpful in estimating the minimum pressure and time needed to
restart the flow after a period of shutdown [1-4]. Such practical relevance and consequent
economic implications of yielding behavior add to its theoretical interest and experimental
challenges, making it a topic of great significance. In this work, we aim to model this
nonlinear viscoelastic behavior of waxy crude oil as the yielding of a fractal gel.

The yielding behavior of waxy crude oil has many complexities [5-11]. The flow curves
in Figure 1 (whose experimental details will be fully discussed in Section 3) are typical ones
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of yielding. To quantitatively describe them, two forms of thixotropy models have been
developed, both of which consist of an evolution equation for stress and for the structure,
characterized by an abstract structure parameter A, varying from 1 (pure elastic behavior)
to 0 (pure viscous behavior). Depending on the rheology of the stress equation, the two
categories are often named as the viscoplastic thixotropic models and the viscoelastic
thixotropic models.
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Figure 1. Experimental results of the evolution of shear stress during yielding of an initially gelled waxy crude oil: (a) as a

function of shear strain; (b) as a function of time t. Data provided by Zhang [12].

The viscoplastic thixotropic models widely adopted in the oil industry are developed
on the basis of a pseudo-plastic model, such as the Bingham model or the Herschel-Buckley
model [13-16]. These models consider the waxy gel as a rigid body before yielding and as a
viscous fluid with decreasing viscosity with time immediately after a critical stress is loaded.
The viscoelastic models, or the elasto-viscoplastic models, incorporate the description of
viscoelasticity during pre-yielding period by using stress equation [17-20]. In most of these
models, the yield stress term of a steady viscoplastic model is simply replaced with elastic
stress. Since the structure-dependent yield stress well reflects the qualitative features of
thixotropy during yielding, the predictive ability of these two kinds of models is usually
found to be quite satisfactory [21].

The shortcoming of the viscoplastic thixotropic models is obvious. They fail to give
a rheological description in the pre-yielding region. Moreover, the presence of the yield
stress even after yielding in those models is theoretically problematic. Further problems of
the existing viscoelastic-thixotropic models for crude oils are: (1) Their stress equations are
not developed on mechanical basis, and the steady-state shear stress-shear rate relationship
could not be recovered by setting the time derivatives in the evolution equation to zero;
(2) Too many parameters with no specific physical meaning have to be determined through
complex numerical fitting.

Alternatively, the models based on a linear viscoelastic stress equation developed
from classic mechanical models, such as Maxwell model or Jeffrey model, are able to
describe the pre-yielding rheological behavior, and thus enhance their theoretical inter-
est [22-27], among which the model proposed by de Souza Mendes and R. L. Thompson [27]
has been modified and applied to describe the rheological behavior of waxy crude oil by
Van Der Geest et al. [28]. However, quantitative description of the gel microstructure evolu-
tion in the early stage of yielding does not contribute to any of these models, since most
them are not developed on the basis of actual material, so that experimental aspects could
not be taken advantage of in understanding the yielding mechanics. As a result, all of
them use an ambiguous structure parameter A to describe the structure, which seems very
difficult to validate. Moreover, using a linear viscoelastic stress model (such as Maxwell
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or Kelvin-Voigt model), the effects of the thixotropy caused by drastic structural changes
during yielding process on the mechanical properties, i.e., the dependence of the elastic
modulus G and the viscosity # on time ¢, is not accounted for. However, since thixotropy
is caused by structural evolution of the gel, it should have been taken into consideration
as a main character when modeling the yielding of structured gels such as waxy crude oil
itself. Mendes et al. [29] have chosen a different way of modelling the rheological behavior
of waxy crude oil by involving both flow and temperature history dependence, based on
new findings about the structure destruction characteristics from the experimental results of
waxy crude oil. Since waxy crude oils are complicated mixtures with special characteristics,
their rheological modelling needs further studies.

In this paper, for the evolution equation of shear stress, we employ a nonlinear vis-
coelastic model proposed by Marrucci and used to model the viscoelasticity of structured
polymers [30-34]. We propose an explicit identification for the structure parameter A,
which is often used in an abstract way in other thixotropic models [16-19,22-27], and in-
corporate the structure change by relating A to the several material coefficients in the stress
equation. In order to do so, we consider the gel as a fractal structure with a characteristic
fractal dimension D. Based on a model for the yielding of weakly flocculated suspen-
sions [35,36], we are able to estimate the viscosity and the discussion of the yielding point
from a microscopic point of view, in terms of a characteristic radius Rg. Another particular
aspect we consider here is the time variation of shear rate y (and therefore of shear strain ).
Instead of assuming - as an imposed constant along the whole process, we find the inertial
transient behavior from 0 s ™! to the final imposed steady-state value of 7 with an overshoot
in between. We use expressions closer to the experimental observations and analyze their
influence on the results. This noteworthy influence occurs in the yielding experiments
when the imposed shear rate is driven by a controlled-stress rheometer, which is not rare
in References [7,8,20,29,37], considering the fact that controlled-stress rheometers are more
common than controlled-strain ones.

The article is organized as follows—in Section 2, we discuss the evolution of the
structure during yielding from the microscopic perspective, based on which the theoretical
justification of the model and its viscoelastic description for both elastic modulus G and
viscosity 7 is proposed. In Section 3, experimental protocols and material properties used
to obtain the rheological parameters of the model so as to validate the model are presented.
In Sections 4 and 5, we summarize detailed computing method of the model, and then
present the results under different hypotheses and comment on the merit and weakness
of each one. In Section 6, the concluding remarks are given and the direction of future
investigation is discussed.

2. Theory

Our aim is to express the shear stress ¢ as a function of strain < or of time ¢ in the
yielding region. First, we use a fractal model proposed by Snabre and Mills [35,36] to
interpret the structural evolution of the waxy crude gel corresponding to its mechanical
behavior in yielding, and to analyze the critical strain of yielding, which will be used in the
following modelization. For the macroscopic description of the evolution of ¢ containing
both elastic and viscous contributions, we use a thixotropy modelization similar to that in
earlier works [23,25,32,38].

2.1. Microscopic Description

In this section, we use a blob model to characterize the flocculated clusters in the waxy
crude gel. Under this assumption the critical transition conditions between two successive
stages and microstructural changes during each stage will be analysed, among which
the most important transition condition—the critical strain of fracture yielding—will be
estimated theoretically.
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2.1.1. Fractal Model of the Gel

Pioneer studies in References [8,39,40] show that rheological properties, for instance,
the viscosity and elastic modulus of waxy crude oil, may be well described by fractal models.
Also, waxy crude gels and fractal systems have been found to have many morphological
features as well as gelation mechanisms in common [9]. Therefore, from experimental point
of view, waxy crude oil shares many basic features with fractal models. Here, we consider
waxy crude gel as a fractal cluster network constituted by gel clusters of characteristic size
Ry accumulating primary spherical particles of smaller size a (precipitated wax crystals,
in our case), and characterized by fractal dimension D, meaning that the number N of
primary particles in each cluster depends on 4, and R as

N~ (EEyp, M
a

Furthermore, following Snabre and Mill’s work [35,36], we assume that the clusters in
waxy crude oil may be conceptually considered as spherical blobs of radius Rpy, filling the
volume of the system with a volume fraction of ¢ and a maximum packing volume
fraction of ¢ (64% for random packing of rigid spheres). The sketch of the configuration
of the blobs in different stage of yielding in Figure 2 is to help understand the yielding of
the gel from the microscopic prospective. As long as it is in the gel state, the blob radius
is assumed to stay Rpp, and the volume fraction occupied by the blobs ¢ will always
be ¢5. After the blobs are broken and the system enters the sol state, ¢ will decrease
with R following the time evolution equation which may be obtained from the kinetic
equation of the structure parameter A (see Section 2.2.2). Because of the fractal assumption
Equation (1), both ¢ and ¢; may be related to the volume fraction of the primary particles

¢o as [8]

pa ~ p(XE)D=3, g5~ p(RE0)D3 @)

a a

Thus, the relationship between ¢ and Rp, both before and after the breaking of the
blobs, could be described by

pa= G (STD. ©

2.1.2. Microstructure Evolution and Characteristic Transition Points

As from the macroscopic point of view, the mechanisms during different stages of
yielding—elastic deformation region, creeping stage, and fracture stage—are significantly
different, we put our focus on interpreting what happens to the microstructure in each
stage, and discuss the rheological behavior separately as well. From the flow curves in
Figure 1a, four distinct regions can be identified:

1. The initial overlapping part of the two curves (corresponding to different nominal
values of the shear rate ¢ )—from the beginning up to point A—can be interpreted as
an elastic deformation of the gel, with an infinite or extremely high viscosity;

2. Theregion between point A and peak-stress point B can be interpreted as to a viscoelas-
tic creep, where elastic modulus decreases and viscosity becomes finite, but elastic
behavior still dominates;

3. Intheregionbeyond the peak point B up to the inflexion point C, viscous flow becomes
increasingly dominant and the microstructure of the initial gel breaks in a steep way,
leading to a reduction in both elastic modulus and viscosity;

4.  The region between point C and the steady-state point D corresponds to thixotropic
behavior of the the remaining structure, mostly a viscous behavior with the viscosity
decrease slowing down until a steady-state is achieved.

Upon the blob assumption of the microstructure of the gel proposed in Section 2.1.1,
we may interpret the critical points on the flow curves in Figure 1a as follows: (1) point A
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as the elastic-limit point where bonds between gel particles inside the blobs begin to break
(when the spherical blobs are increasingly turned into ellipsoidal blobs); (2) point B as the
structure fractural yielding point (corresponding to the strain value 7y) where the blobs
become able to move relatively to each other because of the removing of the geometric
constrictions to their motion so that the gel network collapses as a whole and the blobs
begin to break; (3) point C (corresponding to the strain value <.) as the inflexion point,
where breaking process begins to slow down.

From the beginning up to point A, the gel deforms elastically and one may imagine
this as a relative deformation of the blobs with the density of bonds between them staying
constant (Figure 2a). From point A to Point B, further deformation breaks internal bonds
and stretches out the blobs from spheres into ellipsoids in the direction of shear. The break-
ing of the bonds will lead to a reduction of the elastic effects, while the orientation of the
blobs will make more space for them to move, thus generating viscous effect. But as long as
v < 7y, the bond density still stays high enough to hold all those primary particles inside
the blobs where they originally belong to (Figure 2b). And since the volume fraction of
the blobs does not change, it will remain in the gel phase. For 7y < v < 7, that is, from
point B to C, the bonds break with an increasingly reduced proportion and there are small
particles leaving their original blob. Thus, the blobs become small enough to freely move
with respect to each other, and the system enters the sol phase (Figure 2c). For v > 7. that
is, from point C to D, the bonds between particles in individual blobs become weaker due
to larger strain and more intense shear, and thus the radius of the blobs will decrease with
time (Figure 2d).
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Figure 2. Blob model illustrating the microstructure evolution during yielding: (a) intact gelation
structure; (b) microstructure during elastic dominant viscoelastic creeping; (c¢) microstructure with
tangency geometry at critical point of structural yielding; (d) breaking of colloidal aggregates after
the structural fracture of gel.

2.1.3. Estimation of the Yield Strain

While the thixotropy models of waxy crude oil have always given a satisfactory
description of the fourth stage (from C to D), our focus will, alternatively, be the first three
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stages, that is, from the beginning to C, which are closely related to the transition from gel
to sol state.

To estimate the value of -y, let us consider four of the spherical blobs in contact
in the compact gel, each one of radius Rpg, two in the upper line and the other two in
the lower line (see Figure 3a). The separation I between the upper and lower horizontal
planes in tangent contact with the spheres is I ~ (2 + v/3)Rpy. In the configuration of
the Figure 3a, the upper sphere cannot move with respect to the lower ones, because of
geometric restrictions. In Figure 3b, two deformed ellipsoidal blobs may stand vertically
one over the other, and thus relative motion is enabled. In such critical configuration,
the critical radius Rg of the inscribed circle of any blob ellipse, whose semi-minor axis is
equal to Rg., may be given by Rg. = L/4 = ((2+v/3)Rg)/4 = 0.93Rg.

A direct estimation of critical strain is given by the tangent of the angle 6 formed by the
lines AC and BC in Figure 3a. In order that the upper sphere may slide over the lower one
(with some vertical contraction of both of them), the contact point A of both spheres must
arrive at position B. The corresponding tangent is given by tan6’ = (24 1/3)~! = 0.27,
which provides an alternative estimation for the critical strain. In fact, the actual yield point
is expected be somewhat smaller than 0.27 if one takes into account that the spheres will be
compressed in the vertical direction as they are sheared one with respect to the other.

Alternatively, we may estimate the yield strain in a more accurate way. The deforma-
tion is a combined effect of shear and contraction. We assume a horizontal displacement
Ax along the upper surface due to simple shear, plus a vertical contraction. In order to
start relative motion, the blob must be tilted with an angle 6, whose cosine may be ex-
pressed as cos 8 = Rg./ Ry, with Ry half the distance between the two points (B” and C’
in Figure 3b) on the elliptical blob in contact with neighboring blobs, and Rg. equal to its
critical vertical projection. The vertical projection 2Rr = 2 x 0.93Rpy (as obtained in the
former paragraph), and B'C’ may be taken 2R as an approximation, in such a way that
cosf) = 0.93, and v = Ax/2Rp ~ tan 6 = 0.40. Actually, the distance between B’ and C’
is slightly lower than 2Rpy, so the actual yield strain must be lower than 0.40. We may
estimate this strain more precisely with the aid of analytic geometry, and the results is
shown to be 0.25 (see Appendix A).

In our analysis we will take . = 0.25 (see Table 3). The experimental results of yield
strain 0.2 at 31 °C to 1.0 at 35 °C [41] are indeed in this range.

=
b=
vy

\ 7/
A 4

(a) (b)

Figure 3. Sketch for an estimation of the yielding shear strain: (a) before elongation; (b) at critical elongation.

2.2. The Model

In this section, the theoretical concept of the development of the model will be given
in detail. Based on a viscoelastic model for the description of mechanics, a kinetic equation
for the structure and two material functions for the rheological parameters of the gel
at a certain structured level are also proposed.In the viscoelastic model, two material
parameters appear—the elastic modulus G and viscosity 7, which depend on the structure
of the material, and on < and . To close the description, an evolution equation of the
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structure and its relation to G and 7 are needed. Thus, two evolution equations, for the
stress o and for the structure parameter A are needed, complemented with functions for
G(A, v, 7), 1(A, 7, 7) appearing in the stress equation, and for the building-up and the
destruction terms of structure K and K™, appearing in the evolution equation for A,
respectively. For the sake of higher efficiency, we will slightly modify the general scheme
of modeling the kinetics for the structure by expressing it in terms of .

2.2.1. Mechanical Description: The Nonlinear Viscoelastic Model

In previous models, the evolution of shear stress ¢ is often described by linear vis-
coelastic models like Maxwell-like or Jeffrey-like models, which do not account for the
time-dependent behavior of G. In our model, instead, the shear stress o will be described
by the nonlinear viscoelastic model

d(c/G)

Crn—q =T 4)

Equation (4) could be seen as the nonlinear version of Maxwell model. It has the same
mechanical analogical model as Maxwell model, only with the time dependence, or the
strain dependence of the material parameters considered. And it reduces to the Maxwell
model upon constant 77 and G. This kind of model was first used by Marrucci et al. [30-34]
for the description of structured suspensions viscoelasticity, but so far has not been applied
to waxy crude oil, whose elastic modulus G dependence on time t or on shear strain
should not be ignored as well due to the dramatic structural changes during its yield-
ing. The shear modulus G(7) and the viscosity #(-y) will be given in Section 2.2.3 as
Equations (14) and (15) respectively. We will show that Equation (4) leads to better results
than using the linear Maxwell equation in the discussion Section 5.2.

2.2.2. Kinetic Equation and Physical Interpretation of the Structure Parameter A

The second aspect to be considered is the structure evolution of the system, which in
its turn influences G and 7. Since the microstructure is very complicated, it is usually
simplified as a scalar parameter A which goes from A = 1 for the completely structured
gel to A = 0 for the completely unstructured fluid [16-19,22-26]. Of course, this is a very
radical simplification, but it may cause ambiguity in modelling and validation. So in this
section, we will first make our definition for the structure parameter A on the basis of the
features of the microstructure of the gel.

a. Physical interpretation of A

In searching for an explicit physical interpretation for the structure parameter A, let us
recall the microstructure of the gel, which has been discussed in Section 2.1.1. Since Rp is
the main feature that describes the gel structure, we define our structure parameter A as

R
A Reg” ®)

In the system of a fractal gel, while the microstructure is often characterized by size
Ry, the material parameters such as the elastic modulus and viscosity are mostly affected
by the the concentration of gel clusters. Therefore, an expression for A in terms of the
volume fraction of the mentioned blobs ¢, rather than in terms of their radii Rp is needed.
According to the relation between ¢5 and Ry described by Equation (3), the structure
parameter A may also be interpreted as

A= (¢a/95)7D. (6)

Note that for the fully gel phase, Rr = Rpg and A = 1; and to the completely unstruc-
tured fluid Rp = Rss, and A = Ag;, as usually required to recover the steady-state viscosity
relation. Note, finally, that a yet more detailed analysis could assume a lamellar structure
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of the gel instead of an isotropic fractal structure, as observed in microscopic analyses [42],
but we will leave these details for future work. Furthermore, the fractal dimension D itself
could change along the yielding process, but here we kept it constant.

b. Kinetic equation for A

The evolution of the structure parameter A consists of a build-up term K™ describing
structure formation and a destruction term K™ describing structural degradation. Both terms
depend on the shear conditions, and thus may be expressed in terms of stress [25-27], of the
shear strain [37], or of the dissipation rate [18,23]. In the literature, this equation is often
expressed as

= (=A™ = (e, 7)
with 17, T the times characterizing the growth and decay of A, and my, my characteristic
exponents. f(co,¥) describes the structural evolution dependence on the instantaneous
shear condition, which could be assumed, for instance, to be a univariate dependence on y
as References [17,19,37] did in their work.

Departing from the assumption that A is decreasing from the very beginning of
loading (t = 0) made in other models [25-27], we assume that A = 1 as long as the gel
structure maintains intact, and only begins to decrease after the critical strain -y, for yielding
(which has been discussed in Section 2.1.2). Thus, f(c, ) in Equation (7) could be

£3) = Hiy = w) ()", ®)
70
in which H(x) is the Heaviside step function with a zero value for x < 0 and unit value for
x >= 0, 7 is the shear rate above which most of the blobs have become primary particles,
and 7 is an exponent. If we take m; = my = m for simplicity, we obtain the steady state
value of A

1

1+ (2B

)Lss(a/ ')/) = )

In the recent work of Mendes et al. [29], the microstructure evolution was found to
depend more directly on shear strain, rather than on shear rate. Moreover, as is discussed in
Section 2.1.2, the yielding point may also be interpreted in terms of shear strain, therefore,
instead of expressing the changing rate of structure in terms of t like Equation (7), here
we choose to express the evolution of A directly as a function of shear strain y. They also
proved that the extent of structure destruction depends on the most severe shear condition
that the oil gel has experienced during its yielding process, which in our case would be
the steady-state shear rate. Thus, we consider a same steady-state structure Ags as given
by Equation (9), and propose the evolution of structure parameter following relaxation
equation of A as

% _ _/\ - /\SS(,)/)SS

dy T
where 77 is a value of the shear strain characterizing the change of A from the initial value
to the steady-state value of A. Of course, the time-dependence rate of A may be obtained as
in Equation (10), by applying the chain rule dA/dt = (dA/dvy)(dy/dt). This is especially
easy if the dependence of shear rate on time 7(t) is explicitly given, for instance, if a
constant, stepwise or oscillatory shear rate is applied on the system. However, in the
particular situation under examination, where the shear rate depends on time in a more
complicated way (see Section 4.1), it would take some serious effort to obtain the solution
of Equation (7) as a function t, so we focus our attention on Equation (10) instead. Below,
once ¥(t) is given, we may obtain y(t). This is a further original aspect of the present work,

(10)
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which allows to consider the o — y curve in a more direct way. Anyway, after considering
F(t), in Section 6, we will also be able to express the time evolution of the shear stress o (t).

With the physical interpretation of A in Equation (5), a shear-strain dependence of
the evolution of Rg, describing how the blob breaking in the region from point B to C in
Figure 1a, may be obtained. Since the evolution equation of A as a function of  has been
given by Equation (10), thus by solving it, one obtains the transition behavior of R between
RF,O and RF,ss as

Re(7,7) = R exp(— L—"1) 4 R (7)[1 — exp(LT—"1)], (1)
T2 Y2

in which Rgy is the initial value of the blob radius corresponding to the radius of the
maximum packing situation (gel state), and Rpss the steady-state radius. According to
Equation (9), Rpgg is also to depend on the imposed 7 as

Rgg
14 a7y’
in which a is phenomenological parameter related to the relaxation time of both blob break
and particle reunion, v is the critical strain above which most blobs have been breaking
into primary particles, and q is an empirical exponent. This expression reflects the obvious
fact that the characteristic blob radius will decrease with increasing 7, because primary
particles will be stripped off more easily from the clusters. Thus, in the initial breaking
region B ~ C, Rg decreases with v, from its initial value Rg to its steady-state value Rps;.
Practically, all the parameters in Equation (12) could be obtained by fitting the steady-
state viscosity at several , which are related to Rggs() through relation Equation (15).
Technically, these parameter could also be obtained through microscopic experiments.
As for our analysis, it turns out g = 100!, & = 0.125 and q = 0.2 fits the results well.

RFSS = (12)

2.2.3. Material Functions and Rheological Properties

The other two functions needed to describe the process are G and 7 appearing in
Equation (4). The second one is dependent on Rf, because viscosity of suspensions is known
to strongly depend on the radius of particles. In contrast, no such strong dependence should
be expected for G, because in the gel phase Rp = RY, and the only effect on G is that internal
bonds between the blobs are increasingly broken with higher - in the gel phase when the
blobs deform.

a. Elastic modulus G(7)

We assume the elastic modulus G is proportional to the number density of full chains
of bonds times the elastic constant of each bond, and a certain number of such bonds break
at a given shear strain. According to this assumption, the nonlinear elastic modulus G(vy)
of the system is given by expression

_ Go
S = 0 oy

with Gy the equilibrium value of elastic modulus, g the characteristic shear strain, and p the
phenomenological exponent. Equation (13) of G exhibits a steep drop at g after a plateau
equal to Gy for ¥ < g, and followed by a very small value for 7y > 7o, with p controlling
the steepness of the reduction of G(7y) around <. This form of G(+y) is analogous to that
used in References [16,43], with the difference that they used elastic part of shear strain
Ye instead of the directly measured strain . Gy depends on the conditions of gelation,
for instance, whether it was in a quiescent state or under shear, and how fast the cooling
rate was [8]. It could be tested with rheometer by applying a small amplitude oscillatory
shear to the waxy gel sample after it rests at the test temperature for a long time. Comparing
the behavior of G(-y) to that of our situation, and since a sudden reduction in G reasonably
corresponds to the collapse of the gel network, o will be taken close to the yield strain -y.

(13)
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As the imposed shear rate is as low as 0.1 or 1 571, it is only reasonable to consider the
initial behavior as purely elastic. Therefore, the elastic modulus G within the strain range
¥ < 7o could be calculated by G = ¢ /. The calculated elastic modulus shown in Figure 4
is seen to start falling from a very high value at the very beginning of the deformation.
This could arise from a pre-collapse of gel network at a rather small strain g, which is
hardly noticed because of its short-term existence. Thus, one may imagine, that besides the
gel network which we have seen to break around the yield strain -yy, with an equilibrium
elastic modulus Gg, which can be obtained from rheometric test, there is another more
brittle and rigid network in the gel, with smaller characteristic strain of breaking <1 and
higher initial elastic modulus G ;. Such double network structure would have an elastic
modulus equal to the summation of moduli of both networks, each of which is given in the
form of Equation (13)

Go1 Go2
Gly) = ' 2 14
U T E AT A o

In practical terms, the critical shear strain -y, ; would imply the strain for which the
elastic modulus of the network i drops with a steepness characterized by p; (related to
the fractal dimension of each network) due to the breaking of the corresponding type of
bonds. Therefore, for small strains ¢ < (1, one would have a plateau of modulus G of
approximately Gg 1 + Go2, and between (1 and 1, there might be another plateau of
approximately Gpo, whose width and position depend on the separation between 7 ; and
70,2 and on steepness of the two drop behaviors, that is, on the values of exponents p;.
This behavior may be caused by asphaltene or resin macromolecules which coexist with
wax crystals. Its influence will be further explored and justified on experimental grounds
in Section 5.1.

1000

800

600

400

elastic modulus, Pa

200

m—l g om0

0 01 0.2 0.2
shear strain

Figure 4. Shear modulus dependence on shear strain G(y) in the early stage of yielding, obtained
from the experimental data of o and <y in Figure 1a by appling G(y) = o (y)/7v .

b. Viscosity 1(7)

To estimate the viscous effect beyond point A, we use the viscosity model for suspen-
sions with viscoelastic aggregates proposed by Snabre and Mills [35], which relates 7 to the
volume fraction of aggregates 774 and deformation tensor D as

1_
77(%)2770—[1_ ff o (15)
¢4 (1+Bexx)

where 7 is the solvent viscosity, ¢; the maximum packing volume fraction (64% for
random close packing of rigid spheres), £y is the xx component of the deformation tensor
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D, and B a parameter characterizing the viscous effect generated during creeping. For ey,
we take a simple assumption that it is proportional to o until the structural failure of the
network, beyond which it becomes a saturated constant. Equation (15) is developed on
the basis of a viscosity model for suspensions with rigidly flocculated blobs [35], by taking
into account the effect of the elastic deformation of the blobs. Instead of being constant
as in the model of the rigid-blob suspension, the effective maximum packing volume
fraction ¢* in Equation (15) is assumed to increase with deformation as ¢ (1 4 B7). This
correction makes the volume fraction of the blobs ¢4 smaller than ¢; so that a high but
finite viscosity is expected before fracture yielding. It reflects the physics discussed in
Section 2.1.1—since the blobs are elongated and become more orientated, bigger room
is made for their movement. Thus, the internal flow through the network becomes less
congested, leading to a higher fluidity, but still an inconspicuous viscous effect before the
blobs are broken.

3. Materials and Experiments

Rheometric tests are taken to obtain the data we need to verify the model and differ-
ential scanning calorimetry (DSC) is used to detect the wax fraction precipitated from the
oil varying with temperature. The material we use in the experiments is a typical waxy
crude oil sampled from the Daqing oil field in the northeast of China, which is famous for
its high wax content. In this section, a detailed description of the material as well as the
procedure of the rheometry experiments will be given.

3.1. Materials

The wax appearance temperature (WAT) of the specimen we use is 44.8 °C. It has a
total wax mass fraction of 21.7%, with only 1.1% mass fraction precipitated by the test
temperature 34 °C. In Figure 5, the concentration profile of alkanes with different number
of carbon atoms obtained by gas chromatography shows more detailed composition of
the waxy crude sample. In order to eliminate the memory effect of flow and thermal
history, all the samples were pretreated before the measurements. The samples sealed in
100-mL-gas-tight bottles were heated in a 80 °C water bath for 2 h, statically cooled to room
temperature, and maintained for 48 h before use.

Mass percentage of alkanes, wt. %

Q

© % ™
& ¥ &

S S Y T G AN S G S

Mumber of carbon atoms in alkanes

Figure 5. Concentration profile of alkanes with different numbers of carbon atoms in the crude oil sample.

3.2. Differential Scanning Calorimetry

The Differential Scanning Calorimetry (DSC) test of the crude oil sample was con-
ducted with a modulated DSC instrument (TA 2000/MDSC 2910,New Castle, DE, USA),
and according to the regulation SY /T 0545-2012, China’s standard method for differential
scanning calorimetry of the oil and gas industry. With the data of heat flow transmitted at
each tested temperature (Figure 6a), the mass fraction of the precipitated wax as a function
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of temperature was obtained (Figure 6b). Figure 6a shows that the WAT (wax appearance
temperature) of the waxy oil, corresponding to the point where heat flow slope turns non-
zero, is 44.8 °C. Figure 6b shows the sample has a total mass fraction of wax ¢ota1 = 21.7%,
but only 1.1% mass fraction has precipitated by the test temperature T = 34 °C.

0.4 25

-20°C: 21.7%

20

=3
w
a

WAT 44.8°C sl

10 |

Heat Flow, W/g
= |
w

o
g
precipitated wax, mass fraction %

34°C: 1.1%

0.2

=20 -10 0O 10 20 30 40 50 e0 J0O 80 20 -10 0 10 20 30 40 50

temperature, °C temperature, °C

(@) (b)

Figure 6. Differential Scanning Calorimetry (DSC) curves of the waxy crude oil obtained in laboratory: (a) heat flow varying
with temperature T. (b) mass fraction of precipitated wax varying with temperature T.

3.3. Small Amplitude Oscillatory Shear (SAOS)

A controlled-stress rheometer (HAAKE MARS 1II, Karlsruhe, Germany) equipped
with a sensor system Z38 Ti of geometry of concentric cylinder was used to test the viscosity
and shear modulus. The pretreated specimen sealed in blue cap bottles were heated from
ambient temperature to 50 °C (higher than WAT) in the water bath and were kept for
30 min. Then it was loaded into the concentric cylinder gap preheated to 50 °C. The oil
samples were cooled at a rate of 0.5 °C/min from 80 °C to 30 °C, loaded with a small
amplitude oscillatory shear, of a frequency of 1 Hz and a dynamic shear strain of 0.0002,
which is small enough to preserve the structure. Meanwhile, the storage and loss moduli
as well as the complex viscosity were tested and recorded. The data are presented in
Figure 7. According to Figure 7, the gelation point of the waxy crude oil is 36 °C, and the
order of dynamic moduli at this point are as small as 1 Pa, meaning that a fully developed
gel structure has not been achieved and yielding behavior is not notable. The yielding
experiments were carried out 2 °C below, at which the tested storage modulus is 41 Pa,
and the loss modulus is 14 Pa, and the equilibrium elastic modulus of the oil gel can be
much higher than that as a result of ageing. One could also read from Figure 7 that the
complex viscosity is 0.016~0.028 Pa-s above WAT, which may be taken as a reference range
for the solvent viscosity.

3.4. Viscosity-Temperature Relation

Viscosities of the waxy crude oil sample were tested at every 5 °C from 37 °C down to
35 °C with the rotational rheometer (Rheolab QS, Anton Paar, Graz, Austria). The pretreated
oil sample was loaded in the rheometer which had been heated to 60 °C for 15 min and
then was cooled to each test temperature at a cooling rate of 0.5 °C/min and stood still for
30 min. At each test temperature, viscometry was conducted under 3 different constant
shear rate, 20 s1, 50 s~ and 100 s~!. The measured viscosity was recorded every 5 min
until the difference between two successive tested viscosities was below 5%, that is, until
the steady state was achieved. The steady-state viscosities at all the test temperatures are
presented in Table 1. From Table 1, one could see that the viscosities of different shear rates
at each temperature above coincide, while the viscosity of different shear rates at 37 °C
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have separated (not shown here), indicating the test temperatures between 40 °C and 70 °C
are above the abnormal point, above which the flow behavior is completely Newtonian.

Table 1. Newtonian viscosity at different temperatures, tested under different shear rates 20 s,
5051, 100 s !. Data provided by Zhang [12].

Temperature °C Viscosity Pa-s
70 0.00785
65 0.00810
60 0.00855
55 0.01005
50 0.01256
45 0.01580
40 0.02497
10,000 3
R —a— loss modulus
1000
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o —+— storage modulus

g 100

=

o
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Temperature, °C

Figure 7. Storage and loss moduli of the waxy crude oil varying with temperature.

3.5. Rheological Flow Curves

The flow curves presented in Figure 1, relating shear stress ¢ to shear strain y and
to time t, were obtained with the coaxial cylinder sensor system of a controlled-stress
rheometer (HAAKE RS 150,Karlsruhe, Germany). The oil sample was statically cooled
from 60 °C to the test temperature 34 °C and stood for 2 h until steady gel structure formed.
Then the rheometer was set to a constant shear rate (the actual shear rate will increase from
zero to its set value with delay due to system inertia, though) 0.1 s~ and 1 s~! respectively,
and the waxy oil gel is exposed under shear. As a particular stimulus for our work, we
consider the flow curves ¢ — < and ¢ — t in the yielding region, corresponding to the shear
strain range 0.001~10.

4. Results

This section deals with the computing methods of the shear stress ¢ as a function of
shear strain 1, or of time ¢, for different shear rate histories j(t) (or equivalently, for dif-
ferent input functions for (). The connection between ¢(-y) and ¢ (t) comes from the
dependence of y on t, in such a way that we may give o(7y), or o (y(t)) = o(t). Also, we will
discuss an unusual finding related to the imposed shear rate history we encountered in
analysing the experimental data. The evolution equations, material functions proposed in
previous chapters are summarized in Section 4.2. Later, the parameters in each functions,
both the directly and the indirectly obtained ones, are given respectively in Tables 3 and 4.
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4.1. Imposed Shear Rate History

The input function on the boundary, that is, ¥ or < as a function of time ¢, plays an
influential role on the results of the model prediction. The different curves in Figure 4 are
supposed to correspond to different constant values of 3, but it will always take some time to
get the actual value of imposed shear rate 7 to its set value ., especially for the controlled-
stress rheometers. And there might even be overshoots around the yielding point. In previous
literature, this feature has only been briefly mentioned by Tracha et al. [11], and the influence
of the particular history of ¥(t) still needs detailed investigation.

In experiments, the actual ¥ starts from a small value close to 0, and for a short
time stays very low, when the gel has an infinite (or very high) viscosity. When yielding
happens, viscosity reduces by several orders of magnitude within rather narrow strain
interval, and the stress applied to the system suddenly becomes higher than the viscous
resistance, so the shear rate ¢ will increase sharply around yield strain. Eventually, it
will reach the time-independent set value ¥« imposed by the controlled-stress rheometer.
The dynamical reasons for the delay and the overshoot might be inertia of the experimental
device, and it will be examined in the future. Here, for the shear rate history under
examination, the experimental curves of j(vy) will be mathematically approached as a
empirical equation

my
(1) = Y00 + (Foo — 700)1*”’;”—2+’7ml’ (16)
in which g is a small initial, 1, m, phenomenological parameters controlling the increas-
ing slope of the () curve, and a relating to the overshoot value. If 4 < 1, Equation (16)
predicts a shear rate history 7§y starting from g9 and increasing smoothly without over-
shoot to its set value joo, Whereas if a > 1, it predicts a overshoot in shear rate history.

To examine the role of shear rate plays in the model prediction, shear rate history
with and without overshoot are both approximated with Equation (16). The values of the
parameters are listed in Table 2 and the fitting results are presented in Figure 8. The dash
line (color: navy blue) corresponds to shear rate history without overshoot, the solid line
(color: light grey) to the shear rate history with overshoot, and the curve with discrete
points (color: light blue) the observed one. The time evolution of shear strain () could be
obtained by integrating Equation (16) with respect to time ¢.

Table 2. Values of parameters of the function Equation (16) for shear rate history.

my my a Yoo

0.1s 1no 1.65 0.1 1 0.0004
overshoot

1s 1no 1.5 0.15 0.7 0.003
overshoot

0.1s71 1.4 0.55 1.8 0.0004
overshoot

1571 overshoot 1.4 0.9 1.55 0.003

4.2. Summary of the Model

First, let us recall the evolution equation for stress ¢ in terms of the two material
functions G(7y), 7(¢a ), and the evolution equation for the structure parameter A = Rg/ Ry,
which is given by the particular solution Equation (9) of Equation (7), and related to ¢
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through the structural relation Equation (6). Thus, the model we have proposed in the
above sections becomes

o+ = (17)
G(y) = ZGO,:‘W (18)

1— *)\S—D
n(A,y) = 770%?132 (19)

(17 1+ﬁ7)

dA _ A—Ass(Tss) _ 1

dy = T2 'ASS T T4ar(Yss/70)7 (20)
F(7) = o+ (o = F0) rgh (21)

The input of the model is the shear rate (7) described by Equation (21) with param-
eters listed in Table 2 in Section 4.1, whereas the output is the shear stress o(t) varying
with time t, which is obtained in the experiment mentioned in Section 3.5. The time-,
strain-dependent rheological variables necessary to obtain the output include the shear
modulus G(vy) given by Equation (18) and the viscosity #(, A), which may be obtained
from Equation (19) along with Equation (20), in which A is estimated to be 0.95 for
4 =0.1s71,and 0.97 for 4 = 1 s~! by using Equation (12) and Equation (5).

7 1
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Figure 8. Fitting curves of shear rate history with and without overshoot in comparison with
measured ones: (a,b) for ¥ = 0.1s71; (¢,d) for y = 1s71.

Equation (17) will be solved by the finite-difference method to obtain evolution
of stress

_ Op—gt + GiAtye
Ot = FAL\ G
L+ Gt/ — (57 ) (G )

, (22)
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with ¢} the stress at time .

4.3. Summary of the Parameters

The parameters of the presented model fall into two categories. Ones are rheological
parameters with explicit physical meanings which can be directly measured or theoretically
estimated under certain assumptions. Actually, their values are objective and are not
supposed to be obtained through fitting process. The other category are the unknown
parameters which are indirectly obtained through fitting of experimental curve, which in
our case, is one of the curves for 0.1 s~ ! in Figure 1.

4.3.1. Directly Obtained Parameters

Five out of eleven parameters in the model may be obtained directly, including:

(1) The equilibrium elastic modulus of the relatively resistant network Gy, the char-
acteristic strains 7 1, 0,2 in Equation (18); (2) Solvent viscosity 79 in Equation (19); (3) The
characteristic strain 7 and D in Equation (10).

Among them, the characteristic strains yg» and 7 which are very much relevant
to yielding are taken 0.25, according to the estimations of yield strain -y in Section 2.1.3.
The equilibrium shear modulus of the resistent network is taken Gg, = 177 Pa, the equi-
librium elastic modulus of Daqing crude oil at 34°C as is tested in Teng and Zhang's
previous work [16]. We take the maximum packing volume fraction ¢; = 0.64 as Snabre
and Mills [35,36] took. As for the fractal dimension of waxy crude gels, Yi and Zhng [44]
obtained the box fractal dimension in experiments to be around 1.5, and thus it is taken
here. In Section 5.4, we will take D = 2 to see the consequences of different values frac-
tal dimension.

For the solvent viscosity 7o we employ an Arrhenius-type equation 179 = Aexp(E,/RT)
to extrapolate 77 at test temperature T = 34 °C from the experimental Newtonian viscosities
at several different temperatures above WAT in Table 3. The parameters are A = 5.6 x 108
and E; = —33.4 k], obtained by fitting the experimental data. As a result, 7o in the condition
of the experiment is theoretically extrapolated to be 0.026 Pa-s (Figure 9).

-3.00
-3.50
y=4017.6x-16.723 "
3k

v 400 RZ=0.9037 /
- {
- /
S 450 /
ic /

-5.00

—#—— measured oil viscosity
20 fitting curve of oil viscosity
" extrapolated value for temperature 34 °C
-6.00 i i 8
0.002 0.0025 0.003 0.0035 0.004

1 AP

Figure 9. Viscosity variation with temperature above wax appearance temperature (WAT) (exper-
imental and ftting curves) and extrapolation of viscosity by Arrhenius equation, with parameters
A=56x10"8and E, = —33.4K].

Table 3. Values of directly obtained parameters of the model.

Go,2 1o Yo,2 7 D
177 Pa 0.026 Pa-s 0.25 0.25 1.5
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50

4.3.2. Indirectly Obtained Parameters

The other category of indirectly obtained parameters includes 6 unknown parameters:

(1) Go, 0,1 and py, p2 in Equation (18); (2) B in Equation (19); (3)72 in Equation (20).

In this paper, we adjusted their values according to the flow curve ¢ () in Figure 1la
of the shear rate 0.1 s~1. Since these parameters are restricted to a certain range, rather
than confined by certain objective values (at least the values could not be validated through
experiments as far as we are concerned), they do not have to be taken the exact same values
in all the figures corresponding to different conditions. The parameter values used in each
figures in Section 5 are slightly different under the different conditions. The values used for
the parameters of the main results in Figure 10 are the listed in Table 4, and others will be
given under the each figure being discussed in next section. Compared to a numerical way,
these fitting parameters are relatively rough estimations to help us get the main features of
the proposed model under a given shear condition (yet it is satisfactory enough as will be
shown in the following section). Note that the curves corresponding to 7 = 1 s~! have been
predicted by using the same values obtained from the curve for 7 = 0.1 s~! . Their reasonable
agreement with the observed curves of agreement with the observed curves of 4 = 157!
shows that our model is not only a fit of curves, but also has predictive capability.

Table 4. Values of parameters estimated through rough fitting.

Goa Yo1 P1 p2 B 72
1000 Pa 0.03 1.2 1.3 0.01 60

4.4. Fitting and Predicted Results: o(vy) and o (t)

To obtain o (t) we use the evolution equation of ¢ Equation (17), in combination with
expressions Equations (18) and (19) for the viscoelastic material properties, and Equation (20)
for structure parameter. To examining the actual shear rate in the experiment, and to remove
influence of the fluctuations in experimental data, we use the shear rate history with
overshoot predicted by the empirical equation Equation (21). In Figure 10 the fitting curves
for ¥ = 0.1 s~ (red solid line) obtained by the model almost coincide with the experimental
ones (red dotted lines).

50
------- 0.1 57" experiment cvessns 0157 experiment
A | S 157" experiment » s [ PR 157 experiment
0.1s7 fitting 0.157 fitting
- = 157" prediction 5 157 predition
n.- 30 a. 30
g g
E %
= 20 | 8 20 |
2 c
2 @
w
10 10
0 . . . " . 0
0.00001 0.0001 0.001 0.01 0.1 1 10 100 0.01 01 1 10 100 1000

time, s

(b)

shear strain

(a)

Figure 10. Fitting curves for shear rate ¥ = 1s~! and 4 = 0.1 s~! using the elastic modulus. model under the double-
network assumption, and the shear rate history with inertial overshoot Equation (21) (with the fitting values in Table 2):
(a) shear stress as a function of shear strain; (b) shear stress as a function of time.

The curves for 7 = 15! are predicted by the model with the same parameters used to
fit the 0.1 s~! curves, and are presented in Figure 10 with navy blue solid lines. The overall
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shapes of both ¢(7) and o (t) curves are of good analog with the measured ones (navy
blue dotted line), especially in the pre-yielding region. The small deviation after yielding
could be raised by the difference between the shear history described by the input function
Equation (21) and the actual history. Moreover, it could be seen that the predicted yield
stress is 39 Pa, 1 Pa less than the measured one, while the predicted yielding time is 10s,
same as the measured ones, both of which are quite satisfactory.

5. Discussion

From Sections 24, we present the theoretical justification from both microscopic
and macroscopic prospective of the modelization of a nonlinear viscoelastic model used
to describe the yielding of gelled waxy crude oil, and the experimental protocols used
to obtain the data for model validation. The results of the model prediction shown in
Figure 10 is found to be rather satisfactory. Several original aspects we have considered in
modelling may have made a contribution: (1) the assumption of double-network gel; (2) the
modification of the input shear history which deviates from the setting constant shear
rate; (3) the employment of Marrucci’s viscoelastic model for the description of the stress
evolution. In this section, we will plot the results of the model prediction in absence of the
consideration of the above aspects and by comparing them with the results in Figure 10,
the influence of each one of them will be evaluated respectively.

5.1. Double-Network vs. Single-Network Gel

In obtaining the theoretical curves in Figure 11, same calculation is used as in Figure 10,
except that Gp; in Equation (18) is taken as 0 so that the gel is viewed as the conventional
single network structure, and the value for the remaining network were changed to p, =1
to fit the curve as much as possible. By comparing with experimental curves, the theo-
retical curves in Figure 10 obtained with the modulus model under the double network
assumption (with an additional network whose elastic modulus is Gp 1 = 1000 Pa, and char-
acteristic shear strain is g ; = 0.03) clearly exhibit a better description than the ones under
the single network assumption.

50 50
....... 015’? ssasess 01577
experiment experiment
LI ) PR, 157 . .l |- 151
experiment experiment
I q.1.s-1 =3 0.157
ot 30 } fitting g 30 fitting
E —_—1 9’1_ _ g —15
£ prediction i prediction
E 20 | 3
2 G
10 ¢ 10
0 agm s 0 .
0.00001 0.001 01 10 0.01 0.1 1 10 100 1000
shear strain time, s

(@ (b)

Figure 11. Fitting curves for shear rate y = 1 s~1and 4 = 0.1 571 of shear stress as a function of shear strain and of time,
taking the whole calculation same as in Figure 10, but using the elastic modulus under the assumption of a single network
structure by Gy = 0 Pa in Equation (18) and changing value for the remaining network to p, = 1: (a) shear stress as a
function of shear strain; (b) shear stress as a function of time.

Generally speaking, the main problem of the single-network elastic modulus model
is that it results in a rather low stress before yielding. In Figure 11a, the () curves for
different imposed shear rates j(-y) begin to separate at a strain of the order of 0.1, one
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order of magnitude higher than experimental curves. The fitting curve for 7 = 0.1 s~
reaches a maximum value equal to the experimental one, 30 Pa, while the predicted peak
stress on the curve of 7 = 1 s~ ! reaches a peak stress 3 Pa lower than the experimental one.
Also, the shear strains corresponding to the peak stresses for both the fitting curve and the
predicted curve are more than one order of magnitude higher than the experimental ones.
In Figure 11b, the o (f) curves show yielding times for both shear rates which are of the
same order as experimental ones, with ¥ = 157! curve around 10 s and the 7 = 0.1 57!
curve around 100 s. But in the region before the stress peak, in both Figure 11a,b the
predicted stresses are relatively small compared to the actual ones, so that the raise of the
predicted curves is steeper than that of the experimental curves, while after the maximum
value, the decreasing rates plotted with solid line are slower than the experimental ones.

5.2. Effect of the Non-Constant Input Shear Rate History

In Figures 12 and 13, we explore the consequences of shear rate history, with all the
parameters kept the same as in Figure 10. Rather than the actual shear rate history in
experiments described by Equation (21), in Figure 13 we consider a constant shear rate and
in Figure 12, we use a relaxational time history of shear rate without overshoot. This turns
out to have relevant consequences. As we can see in Figure 13, the shapes of the curves
change significantly upon using a constant shear rate input. Two most noticeable changes
are, the small difference between the peak stress of different shear rate curves, and the very
short yield times the model has predicted. This means that the fitness of previous models
considered in the literature might be affected by the shear rate history, especially when the
same type of rheometer (controlled-stress rheometer) is used. One problem of using the
Maxwell-type stress equation is that the stress ¢ would have a non-zero initial value at time
0's, as shown in Figure 13b, which however, does not agree with the experiments (discrete
black points in Figure 8). With the inertial delay taken into account in Equation (21), this is
no longer a limitation of the Maxwell-type model.

The curves in Figure 12a and the region below the stress peak in Figure 12b are
satisfactory, whereas the decreasing rates of shear stress o for both the fitting and predicted
curves (plotted with solid lines) in Figure 12b are slightly higher than the corresponding
experimental ones (plotted with dash lines). Also, the decreasing rate of the consequent
curves at both shear rates are not as closer to the experimental one as those in Figure 10b.
This comparison shows influence of the overshoot of input on the predicted curves.
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Figure 12. Model predictions of shear stress as a function of shear strain and of time using a relaxational time history of
shear rate Equation (21) (with the fitting values in Table 2: (a) shear stress as a function of shear strain; (b) shear stress as a
function of time).
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Figure 13. Model predictions of shear stress as a function of shear strain and of time using constant shear rate  without

inertial delay: (a) shear stress as a function of shear strain; (b) shear stress as a function of time.

5.3. Marrucci Model vs. Maxwell Model

In Figure 14, the curves are also obtained by using the same material functions
Equations (14) and (10) as in Figure 10, and the same input shear rate history without over-
shoot described by function Equation (16), but instead of Marrucci’s non-linear viscoelastic
model we have used the Maxwell viscoelastic equation ¢ + (17/G)(do/dt) = 5. We use
a different parameterization from that used to obtain Figure 10, by taking the value of
equilibrium modulus Gy; = 700 Pa, p, = 1.0, B = 0.17 and others kept the same. As a
result, although the yield stress for the fitting curve of 0.1 s~ is of the same order of the
experiment alone, the height of the predicted curve of 1s~! is far from the experimental
ones. Moreover, the peak heights of the fitting and predicted curves (plotted with solid
lines) are not to the scale as the experimental curves (plotted with dash lines). In Figure 14,
the decreasing rate after yielding obtained by Maxwell model are unrealistically slow.
Comparison of Figures 10 and 14 shows the use of Marrucci’s model clearly improves the
description of this situation. It is probably because the dynamics of shear modulus taken
into consideration in Marrucci’s model has incorporated the thixotropic behavior of waxy
gel and makes the description closer to its true mechanics.
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Figure 14. Predictions of shear stress as a function of shear strain and of time with Maxwell viscoelastic model for stress

instead of Marrucci model Equation (17): (a) shear stress as a function of shear strain; (b) shear stress as a function of time.
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5.4. Effect of Fractal Dimension

Another factor to be considered related to structure is the value of the fractal dimension
D. Generally speaking, fractal dimension is a parameter that may characterize the feature
of the gel structure. The deviation of the value of fractal dimension from the dimension of
Euclidean space D = 3 may be used as a measure for the complexity of the gel structure,
which depends on the mechanism of aggregation. The actual value of fractal dimension
found for waxy crude gel is often between 1.5 and 2.5 [40,44]. In the prediction results
shown in Section 4.4, as well as in the anylasis in Sections 5.1-5.3, we have taken it as
D = 1.5, which is noted in the literature as possible value of D [44]; here we compare
it with the results obtained for D = 2. From Figure 15, we see that with lower fractal
dimension assumed, the blob radius as well as the stress after yielding decrease faster with
strain than curves for D = 2. The curves in Figure 15b share with Figures 10b and 11b the
steep uprise for 7y between 1 and 10.
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Figure 15. Model predictions of shear stress as a function of shear strain and of time with taking fractal dimensions D = 1.5
and D = 2.0: (a) shear stress as a function of shear strain; (b) shear stress as a function of time.

6. Conclusions

We have presented a simplified theoretical model for the yielding of a waxy crude oil
by assuming the gel as a fractal structure. The predicted results of the model show a very
close form in comparison with experimental curves. It gives a quantitative description of
the isothermal nonlinear viscoelastic behavior of waxy crude gels formed under a given
constant cooling rate, and may be used to estimate the minimum pressure and time needed
to restart the flow after a period of shutdown. It has sufficient simplicity and wide flexibility
to explore the influence of different physical factors, such as fractal dimension, shear rate
history or the initial elastic modulus. Moreover, since we have not used any specific
details of a waxy crude oil in the modeling process, the main framework of our model is
sufficiently general to be also applicable to the yielding of other fractal gels.

Our model is based on evolution equations for stress o and for structural parameter
A, and on a modelization for G(vy) and #(7y, A, 7). It starts from a definite physical model
for the structure parameter A instead of from more abstract parameterizations. Compared
to previous works, five novel factors especially considered in our work have consequent
advantages, namely: (1) the use of Marrucci’s nonlinear viscoelastic model in descriptions
for the stress evolution; (2) The use of an explicit microscopic interpretation for the structure
parameter A in terms of the radius R of the gel clusters, which allows us to estimate a range
of the yield strain with simple arguments; (3) the material function for shear modulus G
inspired by the double-network model; (4) the application of well-established sophisticated
viscosity model to the description of the viscosity # of a transient process; and (5) the
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modification the actual imposed shear rate history ¥(¢) which deviates from the setting
one due to device inertia.

Though the main framework of the model is very general, we have focused our
attention on a concrete application. Further studies should be the following ones:

(1) An extension to more values of nominal shear rate should be examined. Furthermore,
applications to other typical rheometric situations such as oscillating shear and small-step
increase of strain should also be carried out.

(2) Physical grounds for the inertia effect of device as well as the double-network structure
of elastic modulus still need further exploration. The empirical function Equation (21) for
the actual shear rate history and the material function Equation (18) for the elastic modulus
should be improved accordingly.

(3) Based on the presented model developed for the yielding region and applied to a
fixed temperature history and composition situation, a comprehensive description of
the rheological behavior may be extended to. First, the composition and temperature
dependence of the material functions should be studied to compare the predictions of the
model in different circumstances. Secondly, the structural evolution needs to be understood
microscopically, leading to a more detailed evolution equation on the basis of a rate function
incorporating the build-up and destruction of structure.
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Appendix A. Estimation of the Yield Strain with Analytical Geometry

y=xly.

Figure A1. Geometric graph of elongated of blobs.

We will use analytical geometry method to estimate the strain at the fracture
(See Figure A1l). The circle in the coordinate represents one of the blobs with its origi-
nal shape and location before deformation, and the closed curve represents its status when
flow begins. The origin of the coordinate is where the undeformed blob contacts its under-
neath neighboring blob. When a shear rate equal to y is imposed on the blobs, the upper
part will move faster than the lower part due to the gradient of velocity. Point O(0, 0) does
not move during deformation, whereas point A (0, 2Rpy), the top, moves Ax = yRp. If the
horizontal displacement of each point on circle is assumed to be proportional to its y-axis
value, it will be translated with respect to the line y = x /. Assuming P(x, y) is any point
on the circle, then we have

(x —7y)* + (y — Rro)® = Rfy (A1)

Equation (A1), which can be identified as an elliptic equation, would be the equation

of the blob after deformation. If we move the center of the ellipse to the origin of the
coordinate, its equation will become

(x=7)* +y* = R (A2)

Note that the equation of an origin-centered ellipse, with semi-major axis [y and
semi-minor I, rotated by angle 6’ has the following normalized form

(xcosf —ysin®)?  (xsin6 —ycosf')?

=1 A3
Equations (A2) and (A3) may be respectively rewritten as
2 Y2 V2
= 4+ J 2xy<7)2 =1 (A4)
RZ,  R:/(1++2) Rpo
2 g/ in2 o/ a2 g/ 2 n/
(< Y4 s1n29 ) yz(sm29 Cosze )—2xysin9'cos€'(lz n 12) —1  (A5)
13 I5 I I5 R

By comparing the correspondent coefficient in Equations (A4) and (A5), one gets the
following equation set
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cos? ¢’ n sin? ¢’ 1
Pt E TR
sin“0’  cos?@ 14197

= (A6)
12 11% 1 RZ, ,
- / _ (T2
sin 0 cosG(E—i-g)— RTSO)

With the relation sin? 20" + cos? 26’ = 1 and the restriction condition I, < 0.93R;extrmF0,
we eliminate I1, I and Rpp in Equation (A6), and find the equation of -y as

375 — 4.867) +2.767; + 6.1075 — 0.38 = 0 (A7)

Since the strain is rather small by the time of yielding, we neglect the high-order
infinitesimals 'yg and ’yg’,, thus obtaining the approximate estimation of the critical shear
strain vy = 0.25.
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