Molecular

Oncology

'.) Check for updates

Discovery of novel DNA methylation biomarkers for
non-invasive sporadic breast cancer detection in the

Latino population

Ménica Cappetta’
Miguel Lépez®®, Manel Esteller

oo WwN =

Badalona, Spain

, Lucia Fernandez’, Lucia Brignoni', Nora Artagaveytia?, Carolina Bonilla®*,
7,8,9,10

, Bernardo Bertoni' and Maria Berdasco®®

Departamento de Genética, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay

Departamento Bésico de Medicina, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay

Departamento de Medicina Preventiva, Facultad de Medicina, Universidad de Sao Paulo, Brazil

Population Health Sciences, Bristol Medical School, University of Bristol, UK

Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain

Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute (IJC),

7 Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukaemia Research

Institute (IJC), Badalona, Spain

8 Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Spain
9 Centro de Investigacién Biomédica en Red Céncer (CIBERONC), Madrid, Spain
10 Institucié Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain

Keywords
biomarker; breast cancer; DNA methylation;
human diversity; non-invasive test

*Correspondence

M. Cappetta. Laboratorio de Epidemiologia
genética, Departamento de Genética,
Facultad de Medicina, Universidad de la
Republica. Gral. Flores 2125, Montevideo,
Uruguay

Tel: (+698) 29243414

E-mail: monicac@fmed.edu.uy

M. Berdasco. Josep Carreras Leukaemia
Research Institute (IJC), IJC Building,
Campus ICO-Germans Trias i Pujol, Ctra de
Can Ruti, Cami de les Escoles s/n 08916
Badalona, Barcelona

Tel: (+34) 93 557 28 00

E-mail: mberdasco@carrerasresearch.org

(Received 18 September 2020, revised 19
October 2020, accepted 23 October 2020),

available online 19 November 2020)

doi:10.1002/1878-0261.12842

Human diversity is one of the main pitfalls in the development of robust
worldwide biomarkers in oncology. Epigenetic variability across human
populations is associated with different genetic backgrounds, as well as
variable lifestyles and environmental exposures, each of which should be
investigated. To identify potential non-invasive biomarkers of sporadic
breast cancer in the Uruguayan population, we studied genome-wide DNA
methylation using Illumina methylation arrays in leukocytes of 22 women
with sporadic breast cancer and 10 healthy women in a case—control study.
We described a panel of 38 differentially methylated CpG positions that
was able to cluster breast cancer patients (BCP) and controls, and that also
recapitulated methylation differences in 12 primary breast tumors and their
matched normal breast tissue. Moving forward, we simplified the detection
method to improve its applicability in a clinical setting and used an inde-
pendent well-characterized cohort of 80 leukocyte DNA samples from BCP
and 80 healthy controls to validate methylation results at specific cancer-re-
lated genes. Our investigations identified methylation at CYFIPI as a novel
epigenetic biomarker candidate for sporadic breast cancer in the Urugua-
yan population. These results provide a proof-of-concept for the design of
larger studies aimed at validating biomarker panels for the Latin American
population.
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BMI, body mass index; CoGDMs, differentially methylated CpG sites; MS-HRM, methylation-sensitive high-resolution melting.
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Blood methylation in breast cancer in Latino population

1. Introduction

Breast cancer is a complex and heterogeneous disease
caused by the interactions of both genetic and non-ge-
netic factors. Age, gender, and family history are the
major factors for breast cancer. The known high-risk
inherited mutations in breast cancer susceptibility
genes, such as BRCAI, BRCA2, P53, PTEN, CHEK?2,
and ATM, together only explain 1.5-3% of all breast
cancer cases. Meanwhile, known variants with low-
penetrance risk to breast cancer only represent a pre-
dictive accuracy of 60% [1]. Therefore, genetic risk
factors are not enough to evaluate risk of breast can-
cer.

DNA methylation is a key process involved in the
regulation of gene expression. Interestingly, DNA
methylation is potentially modifiable and is related to
age, the strongest breast cancer risk predictor [2].
Alterations in DNA methylation patterns, both at the
global genomic level and loci-specific, have been suc-
cessfully explored as molecular biomarkers in cancer
management [3]. In our previous work, we reported
global DNA hypomethylation in leukocytes of spo-
radic breast cancer patients (BCP) compared with
healthy controls, supporting the potential use of DNA
methylation in leukocytes as a biomarker for cancer
[4]. Additionally, we found a negative correlation
between African ancestry and global DNA methyla-
tion in cancer patients, suggesting that the ancestral
genome structure generated by the admixture process
in the Uruguayan population influences DNA methy-
lation patterns [4]. This underscores the importance of
searching for population-specific DNA methylation
markers for sporadic breast cancer.

In addition, most studies that leverage DNA methy-
lation as potential biomarkers for cancer use primary
tumor tissues. However, a reliable biomarker should
meet criteria such as acceptable costs and feasibility in
preventive medicine to stratified population according
to risk scores or to detect cancer earlier. Detection of
CpG methylation changes in non- or minimal invasive
liquid biopsies including blood cells, saliva, or urine
would increase translation of molecular evidence into
clinical practice [3]. Several studies have investigated
peripheral blood DNA methylation biomarkers in dif-
ferent cancer types including head and neck, breast,
lung, bladder, gastric cancer, prostate, colorectal, and
ovarian cancers [5-10]. Few studies have attempted to
investigate the role of loci-specific DNA methylation
in leukocytes as a marker of breast cancer, most of
them by candidate gene approaches, and did not use a
validation set to confirm their results (reviewed in Ref.
[11,12]). However, the majority of the genome-wide
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studies were carried out in Europe, Asia, and USA
and must be validated in each population, especially in
those with admixed genetic ancestry like the Latino
population [13].

In the current study, we aimed to identify novel can-
didate sporadic breast cancer epigenetic biomarkers in
peripheral blood from the Uruguayan population.
Consequently, we analyzed genome-wide DNA methy-
lation signatures in leukocytes from sporadic BCP and
healthy women in a well-defined discovery cohort in a
case—control study. Epigenetic biomarkers observed in
specific candidate genes were replicated using a large
validation cohort.

2. Materials and methods

2.1. Study population

For genome-wide DNA methylation profiling analysis,
24 DNA samples from peripheral blood leukocytes of
patients with sporadic breast cancer and 12 DNA sam-
ples from unaffected controls were selected from a
group of individuals originally recruited in a previous
study described in Bonilla er al. [14]. After a quality
control analysis, a discovery cohort composed of 22
patients and 10 controls were included in the methyla-
tion study (Table S1). To validate candidate CpG
sites, we selected a large and independent validation
cohort of the same previous study consisting of 80
DNA leukocyte samples from sporadic BCP and 80
DNA leukocyte samples from healthy controls, paired
by age, socioeconomic status, and educational level
(Table S2). The procedures followed were approved by
the ethics committee of the Facultad de Medicina of
the Universidad de la Republica, Uruguay (Reference
number: 071140-000303-12). After obtaining written
informed consent from all participants of the study,
peripheral blood was drawn for DNA extraction and
participants answered an interview-based questionnaire
to record medical and epidemiological information. All
human samples included in the study were handled in
accordance with the tenets of the Declaration of Hel-
sinki.

All cases were originally selected according to the
following criteria: women with breast cancer over
35 years with no personal history of cancer and no
first-degree family history of breast and/or ovarian
cancer, and non-consanguineous parents. All patients
were sampled at the time of diagnosis and prior to sur-
gery and/or any therapy. The control group was
women over 35 years of age, with normal mammo-
grams, no first- or second-degree family history of
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cancer, and unrelated to any other project participant.
Controls were selected in the same hospitals as
patients. For inclusion in this study, all participants
were required to: (a) have a normal hemogram at the
time of sampling, and (b) have previous data of global
DNA methylation quantification by HPLC and indi-
vidual genetic ancestry [4]. Breast cancer cases and
controls were age- and individual genetic ancestry-
paired.

Genetic ancestry of all participants of this study was
previous determined by 59 ancestry informative mark-
ers (AIMs) selected from the AIMs panel for Hispanic
population described by Fejerman et al. [15]. Genotyp-
ing and individual admixture analysis were described
in Cappetta et al. [4].

Of all the epidemiological information collected
from the participants of the discovery and validation
cohorts, the following variables were analyzed in this
study: age, sex, genetic ancestry, body mass index
(BMI), smoking status (self-reported), and tumor char-
acteristics (Table S1,S2).

2.2. Genome-wide methylation analysis

Infinium HumanMethylation450 BeadChips were used
to analyze DNA methylation on a genome-wide scale
in the discovery cohort. DNA was extracted from
whole peripheral blood by standardized salting out
methods. Five hundred nanogram of DNA per sample
was first bisulfite treated using the Zymo EZ-96 DNA-
methylation kit (Zymo Research, Orange, CA, USA).
Next, about 200 ng of bisulfite-converted DNA was
used for hybridization on the HumanMethylation450
BeadChip (Illumina, San Diego, CA, USA) according
to the manufacturer’s protocol. Pre-processing and ini-
tial quality assessment of hybridizations was per-
formed using the Illumina BeadStudio METHYLATION
MODULE software, version 3.2 (Illumina, Inc.). Negative
control bead types were used to obtain an estimation
of the background intensity level that was subtracted
from the loci probe signals. Moreover, the distribution
of intensities at negative controls was used to compute
detection P-values which were assigned to each probe
as a measure of the signal-to-noise ratio. As quality
criteria, probes showing a detection P-value greater
than 0.001 in at least 6% of the samples and samples
with a detection P-value greater than 0.001 in more
than 10% of the probes were considered defective.
Thousand nine hundred and forty-seven probes (CpG
sites evaluated) did not reach these criteria and were
therefore excluded from further analysis. Beta values
were then computed from methylated and unmethy-
lated signals from each microarray assay, and potential
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bias of dye in the array was corrected using the methy-
lumi R package [16] from Bioconductor [17]. The
methylation percentage of a CpG site was reported as
a beta value ranging between 0 (no methylation) and 1
(full methylation). Once the normalized beta values
were obtained, a second phase of quality control was
performed. B values with a P-value detection > 0.01
and 23631 CpG sites exhibiting SNP with a frequency
of > 1% (1000 Genomes Project Consortium 2010) in
the probe sequence were removed from subsequent
analyzes. Since all DNA samples were from women,
the X chromosome probes were not removed. As a
result of the quality control process, we included in
subsequent analysis 459 999 probes (CpG sites) in 22
women with breast cancer and 10 control women. The
Infinium methylation data are available in the Gene
Expression Omnibus (GEO) database under the acces-
sion number GSE148663.

2.3. Independent public cohorts for in silico
studies

Methylation data for the independent European BCP
were obtained from the public data set GSE52865 [18].
This data set provided methylation from breast tumor
tissue samples and normal breast tissue of European
women hybridized to the Illumina HumanMethyla-
tion450 BeadChip array. We analyzed only 24 samples
corresponding to breast tumor tissue samples and their
paired adjacent normal breast tissue from this data set.
Clinical characteristics of these samples were provided
in Table S3.

DNA methylation and clinical data of 735 BCP of
The Cancer Genome Atlas (TCGA) database were
abstracted from GDC Data Portal of the National
Cancer Institute (https://portal.gdc.cancer.gov/). We
analyzed methylation data of 735 breast primary
tumors and 89 normal breast tissues.

2.4. Statistical analysis

All statistical analyses were carried out using the R
programming language (http://www.r-project.org/) and
no parametrical analyses. To identify consistently dif-
ferentially methylated CpG sites (CpGDMs) between
BCP and controls, Wilcoxon rank sum test was per-
formed for normalized beta values of each group. The
P-values were adjusted for multiple testing using false
discovery rate estimation (FDR), and those CpGs with
P-value < 0.05 were selected and termed ‘CpGDMs’.
Cluster analysis of the selected CpGDMs was per-
formed using unsupervised hierarchical clustering with
complete linkage and Euclidean distance as a measure
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of similarity between samples. We then used the
pvclust package in R using multiscale bootstrap resam-
pling (n =10 000) to define statistically significant
samples clusters [19]. Furthermore, in order to explore
the similarity of methylation data between BCP and
unaffected control groups, an analysis of multidimen-
sional scaling was performed using variable methyla-
tion values (B value) of CpGDMs of each individual.

Possible confounding effects on methylation status
were evaluated using generalized linear regression
models including age, genetic ancestry, smoking status,
and leukocyte cell composition as covariables. The es-
timateCellCounts function of the minfi Bioconductor
package was utilized to determine the proportions of
the white blood cell types (CD4+ and CD8+ T cells,
CD56+ NK cells, B cells, monocytes, and granulo-
cytes) in each sample [20].

Age, BMI, and genetic ancestry were analyzed as a
continuous variable and were assessed using Student’s
t-test, while the remaining parameters of the study
were considered qualitative variables. Smoking status
was categorized as yes/no considering the individual as
a smoker whether it was at the time of sampling and/
or in the past. Data obtention was not possible for all
individuals included in the study.

Association between clusters in BCP and epidemio-
logical or clinical covariates (tumor stage, tumor histo-
logical type, hormone receptors) was assessed using
Kruskal-Wallis test and Fisher’s exact test.

Overall survival for BCP from the TCGA database
was evaluated using Kaplan—Meier analysis grouping
patients with methylation values above and below the
median, and a proportional hazard Cox regression
model adjusted for the methylation level of the candi-
date biomarker evaluated and age at diagnosis of the
disease.

The receiver operating characteristic (ROC) curve
was plotted with R package pROC version 1.16.1 [21],
to estimate the discriminatory power of methylation at
the candidate region of the CYFIPI gene. The area
under the ROC curve (AUC) was calculated, and the
DeLong method was used to calculate the 95% confi-
dent interval (CI) for AUC.

2.5. Enrichment analyses of biological pathways
and common sequence features

The genes associated with CpGDMs sites were mapped
to discern their relation to cancer by gene ontology anal-
ysis using Genes to Systems Breast Cancer Database
(G2SBC, http://www.itb.cnr.it/breastcancer/) [22] and
searching in the COSMIC database (https://cancer.sa
nger.ac.uk/cosmic/) [23]. The Database for Annotation,
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Visualization, and Integrated Discovery (DAVID v6.8)
[24] and Kyoto Encyclopedia of Genes and Genomes
(KEGG database) were used for an analysis of molecu-
lar pathways. In the DAVID analysis, the set of genes
represented on the Illumina HumanMethylation450
array was used as the reference set and the set of
CpGDMs composed the gene set tested. Using the mani-
fest file provided by Illumina, we classified CpGDMs
according to their position relative to CpGs islands
(Island, Shore, Shelf or Open sea) or relative to repeti-
tive elements; or their genomic compartments feature
(Promoter, TSS, Exon, intron, intergenic region). The
genomic location of the CpGDMs was compared to the
distribution of the CpGs in the whole methylation data
set. P values were computed using Fisher’s exact test to
determine over- or under-representation of the
CpGDMs.

2.6. Bisulfite-treated DNA sequencing

We amplified by PCR four CpGDMs using bisulfite-
treated DNA from four BCP and four controls. PCR
amplification reactions in a final volume of 15 pL,
containing: 10x PCR buffer EcoStart (Ecogen),
50 mm MgCl, (Ecogen, Barcelona, Spain), 2 mm
dNTPs; 1 uMm specific primers to amplify the gene
sequence and 3 U of DNA polymerase enzyme
(DNA polymerase EcoStart; Ecogen). Primers were
designed to amplify the selected CpGDM region and
flanking sequences of the transcription start site of
the corresponding gene (Table S4). PCR amplified
sequences were visualized by electrophoresis and
extracted from the agarose gel using the QIAquick
Gel Extraction Kit (Qiagen, Hilden, Germany). The
extracted DNA was cloned into competent
Escherichia coli bacteria (NovaBlue SinglesTM) using
the pGEM-T® vector. Estimation of methylation sta-
tus of each CpG site was performed by automated
sequencing of 10 colonies of each study sequence
(Applied Biosystems, Waltham, MA, USA). The aver-
age methylation throughout the region assessed for
each gene between patients and controls was com-
pared using Student’s z-test.

2.7. Methylation-sensitive high-resolution
melting (MS-HRM) assay

DNA obtained from blood samples was subjected to
bisulfite modification using the EZ DNA methylation
gold kit (Zymo Research) following the manufacturer’s
protocol. Primers used for amplifying flanking regions
of ¢g14024502, cg26568226, cg04890607, cg09580608,
cg01229567, cgl19246761 and cg24840062 are listed in
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Table S4. PCR amplification and MS-HRM assay
were performed on Eco Illumina real-time PCR. The
final volume of each reaction system was 10 pL,
including 5 pLL of 2x Epitec HRM PCR Master Mix
(Qiagen), 10 ngr of sodium bisulfite-modified template
DNA, and 0.4 mm of each forward and reverse pri-
mer. A series of methylated DNA standards (100%,
75%, 50%, 25%, 15%, 10%, 5%, 2.5% and 0%
methylated DNA) were constructed by mixing univer-
sal unmethylated (0% methylated) and methylated
(100% methylated) human whole genomic DNA sam-
ples (Qiagen). Fluorescence of each sample was nor-
malized as a differential signal against unmethylated
DNA control. Area under the curve from the normal-
ized, difference curves was used to generate a standard
curve and determine the degree of methylation of each
DNA sample [25,26].

To identify differential methylation in flanking
regions of candidate CpGDMs between patients with
breast cancer and controls in the validation cohort,
Wilcoxon rank sum test was performed for methyla-
tion data from MS-HRM analysis of each group. Pos-
sible confounding effects on methylation status in
candidate genes were evaluated using generalized linear
regression models including age, BMI, smoking status,
and genetic ancestry.

3. Results

3.1. Blood DNA methylation profiling reveals a
panel of differentially methylated CpGs that
discriminates sporadic breast cancer patients and
healthy controls

We applied a case—control study to describe the key
genomic sequences involved epigenetically in the sus-
ceptibility to sporadic breast cancer in the Uruguayan
population. Consequently, we performed genome-wide
DNA methylation profiling in a discovery cohort using
DNA from leukocytes of women with sporadic breast
cancer (n=22) and healthy women as control
(n = 10). Comparison of mean methylation values of
all CpGs sites analyzed between BCP and control
groups showed a high correlation across all CpGs
(Spearman, *=0.997, P <22 x 107'%), indicating
that global DNA methylation patterns in all samples
are very similar (Fig. SIA). In addition, to avoid spu-
rious relationships due to technical or sampling proce-
dures we applied hierarchical clustering of samples
using the methylation values of random 45 000 CpG
sites and we were unable to cluster samples according
to their disease status (Fig. S1B).

Blood methylation in breast cancer in Latino population

To identify CpGDMs between BCP and healthy
controls, we applied a Wilcoxon rank sum test, deter-
mining 77 CpGDMs positions after correction for
multiple testing (Table 1). This panel of identified
CpGDMs was able to cluster BCP and healthy con-
trols separately using a hierarchical cluster approach
(Fig. 1A). These results indicate the existence of CpG
methylation differences at specific sequences between
cancer patients and controls at the leukocyte level,
which can be easily visualized by unsupervised classifi-
cation techniques and could function as a breast can-
cer signature in blood. Since we detected 3 defined
subclusters among the patient samples group
(Fig. 1A), we analyzed whether these subclusters were
associated with tumor characteristics or epidemiologi-
cal variables. However, no association was found in
samples from cancer patients between age (P = 0.868),
smoking status (P = 0.852), genetic ancestry (Euro-
pean P = 0.064; African P = 0.675; Native American
P = 0.898), tumor stage (P = 0.716), histological type
of tumor (P = 0.187), hormone receptors (ER P = 1;
PR P=0.112; Her2 P =0.494) and the subgroups
derived from cluster analysis.

It has been shown that age, genetic ancestry, smok-
ing status, and possible disease-related cell heterogene-
ity in blood may act as potential cofounders when
investigating DNA methylation differences between
cases and controls. Adjusting our analysis for these
epidemiological variables and the predicted cell-type
proportion in leukocytes, 38 of the CpGDMs still
showed significant differences between BCP and
healthy women (P < 0.05 adjusted, Table 1). This
panel of 38 candidate CpGDMs sites also groups sam-
ples by separating cancer patients from healthy
women, using cluster analysis (Fig. 1B).

Most of the candidate CpGDMs (37 of 38) were less
methylated in the leukocyte DNA from cancer patients
compared to controls, with only one CpGDMs hyper-
methylated. Out of 38 CpGDMs, 29 were associated
with 28 different genes: 11 in gene promoters and 18
in gene bodies (Fig. 1C). The remaining nine
CpGDMs mapped to intergenic regions. Considering
density and regional composition of CpG, the majority
(81.6%) of CpGDMs was located outside CpG-rich
regions (CpG islands), with 34.2% located in CpG
shores flanking the islands (Fig. 1C). The genomic dis-
tribution of the CpGDMs in relation to gene context
(promoter, UTR, 1st exon, body gene, or intergenic
region) was not different compared to the whole array
CpG distribution (Fisher exact test, P = 0.480)
(Table S5). Gene ontology analysis revealed a func-
tional enrichment of candidate CpGDMs in biological
processes  associated  with  signal transduction
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Table 1. Features of 77 differentially methylated CpG (CpGDM) among BCP and unaffected control group. CpG: identification of the probe
(from array). CHR: chromosome. TSS1500: 1500 bp of the start site of transcription. TSS200: 200 bp of the start site of transcription.

A B value

Genomic CpG island (cancer patients - P value P value
CpG CHR UCSC REFGENE context context controls) (FDR) adjusted*
cg01015663 1 TCEA3 gene body Open sea —0.0766 0.0494 0.0123
cg01229567 1 MIB2 TSS1500 Shore -0.1184 0.0494 0.0417
cg04400047 1 UBIAD1 TSS1500 Shore —0.0526 0.0494 0.0343
cg06432479 1 TAL1 gene body Island —0.0657 0.0494 0.0300
cg101569215 1 LPPR5 TSS200 Island -0.1014 0.0498 0.1404
cg14024502 1 MAP3K6 TSS1500 Shore —0.008 0.0498 0.0275
cg15452381 1 HIVEP3 5'UTR Open sea —0.0196 0.0498 0.0095
cg16727538 1 Clorf213 Shore —0.0714 0.0494 0.0271
cg19246761 1 MIB2 TSS1500 Shore -0.1116 0.0494 0.0353
€g26251270 1 GPX7 TSS1500 Shore —0.0571 0.0494 0.0197
€g26750487 1 CRIL TSS200 Island —0.0848 0.0494 0.9985
¢g02537909 2 COBLL1 gene body Island —0.0604 0.0494 0.9979
cg02738156 2 LINC00487 intergenic Open sea —0.0785 0.0494 0.0807
cg09408768 2 KCNJ3 TSS200 Island —0.0621 0.0494 0.0635
cg17165836 2 AFF3 gene body Open sea —0.0701 0.0494 0.0687
cg24130711 2 CCDC85A gene body Shore —0.0541 0.0494 0.0596
€g26175971 2 CYP27A1 gene body Island —0.052 0.0494 0.1145
cg26874367 2 intergenic Open sea —0.0904 0.0494 0.0220
cg01615258 3 intergenic Shore —0.0521 0.0494 0.0202
cg01814969 3 QARS gene body Shore —0.0468 0.0498 0.9991
cg15450445 3 intergenic Open sea —0.0141 0.0143 0.9991
924840062 3 CDCP1 gene body Open sea -0.1073 0.0494 0.0218
cg25616514 3 intergenic Open sea —0.0315 0.0498 0.0399
cg03002688 4 intergenic Open sea —0.0598 0.0498 0.0137
cg18860310 4 SLC10A6 gene body Open sea —0.05 0.0494 0.0946
€g26994377 4 intergenic Open sea —0.0587 0.0494 0.4133
cg00608540 5 TRIM7 gene body Open sea —0.0388 0.0498 0.0319
cg01204911 5 ARHGAP26 gene body Open sea —0.0406 0.0494 0.0949
cg06527989 5 UNC5A gene body Shore —0.0735 0.0494 0.0291
cg07475151 5 LOC100268168 gene body Open sea —0.1005 0.0494 0.0648
cg11953913 5 Cborf32 5'UTR Open sea —0.0542 0.0494 0.6035
cg21550107 5 intergenic Open sea —0.0261 0.0494 0.9987
cg02174359 6 MRPS18A gene body Shore —0.0494 0.0494 0.9963
cg04334016 6 CNKSR3 gene body Open sea —0.0324 0.0494 0.3819
cg09639771 6 intergenic Open sea —0.0442 0.0494 0.9975
cg02377685 7 GBX1 TSS200 Island —0.0645 0.0494 0.9980
cg03761471 7 ZYX TSS1500 Shore —0.0661 0.0494 0.1001
cg04153882 7 WipI2 gene body 0.0659 0.0494 0.1738
cg15602580 7 SDK1 gene body Shore —0.0553 0.0494 0.0258
cg18967180 7 DENNDZ2A gene body —0.068 0.0494 0.9978
€g21252523 7 intergenic Shore —0.0394 0.0494 0.0345
€g27403098 7 KIAA1908 gene body —0.0119 0.0498 0.1343
cg14681767 8 ARHGEF10 5'UTR Island —0.0913 0.0494 0.0718
cg17588094 8 intergenic Shelf -0.0167 0.0498 0.9987
cg05616472 9 EHMT1 gene body —0.0475 0.0494 0.9983
cg14223444 9 TSTD2 5'UTR Shore —0.0367 0.0498 0.0253
cg01311537 10 C100rf128 gene body Open sea —0.026 0.0494 0.0350
cg08560387 10 TSPAN14 5'UTR —0.1142 0.0498 0.0174
cg14770293 10 intergenic Island —0.0763 0.0494 0.9992
€g24168991 10 ITPRIP 5'UTR Shelf —0.0308 0.0494 0.0198
cg03611487 11 LOC100126784 gene body Shelf —0.0486 0.0494 0.0149
cg10141801 11 GUCYZ2E TSS200 Open sea —0.0456 0.0494 0.9599
478 Molecular Oncology 15 (2021) 473-486 © 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
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Table 1. (Continued).
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A B value

Genomic CpG island (cancer patients - P value P value
CpG CHR UCSC REFGENE context context controls) (FDR) adjusted*
cg13100962 11 intergenic Open sea —0.0544 0.0498 0.0233
cg17679104 11 STK33 TSS1500 Island —0.0612 0.0494 0.0351
€g22623080 11 AMOTL1 TSS200 Island —0.0437 0.0498 0.0314
923460961 11 intergenic Open sea —0.0752 0.0494 0.0227
cg04890607 12 HMGAZ2 gene body Open sea —0.1331 0.0498 0.0356
€Qg27292547 12 intergenic Open sea —0.0539 0.0498 0.0339
cg11398020 13 KLF5 gene body Island —0.0766 0.0494 0.0667
cg01972418 14 PAX9 TSS1500 Island —0.0386 0.0498 0.0272
cg18581173 15 CT62 TSS1500 Shore —0.0673 0.0494 0.9997
cg20172862 15 intergenic Island —0.0309 0.0498 0.9981
€g24359188 15 BUB1B TSS200 —0.0758 0.0494 0.1524
€g26568226 15 CYFIP1 5'UTR Island 0.0733 0.0494 0.0470
cg04470044 16 WFDC1 gene body Shelf —0.0259 0.0498 0.0274
cg10155261 16 LOC23117 gene body Open sea —0.0499 0.0494 0.0581
€g26591162 16 SRL 3'UTR Open sea —0.0149 0.0494 0.9956
cg07777703 17 TUBG2 gene body Shore —0.0491 0.0498 0.9984
cg07848706 17 intergenic Island —0.0722 0.0494 0.9987
cg08960549 17 intergenic Open sea —-0.0198 0.0494 0.9984
cg09580608 17 GNA13 1stExon Island —0.0852 0.0494 0.0142
Q922163463 17 PITPNM3 gene body Shore —0.056 0.0494 0.0489
cg01823541 19 GNG7 5'UTR Island —0.0744 0.0498 0.0641
cg03363633 19 TYROBP TSS1500 Open sea —0.0515 0.0494 0.0185
€g22313519 19 KIAA1683 TSS1500 —0.0386 0.0498 0.0496
cg20477147 20 NPEPL1 gene body Shore -0.0712 0.0494 0.0211
€g26468205 20 PCMTD2 TSS200 Island —0.015 0.0494 0.0487

Bold values indicate adjusted P value < 0.05.

*P value adjusted by age, genetic ancestry, smoking status, and cellular heterogeneity.

(GO:0007165) (Fisher exact test, P = 0.024) and regu-
lation of stem cell population maintenance
(GO:2000036) (Fisher exact test, P < 0.01).

Among the candidate CpGDMs, we found eight
genes with differential methylation previously associ-
ated with breast cancer susceptibility and pathology in
the G2SBC and COSMIC Databases (AMOTLI,
CDCPI, CYFIPI, MAP3K6, MIB2, SDKI, TALI,
and TYROBP) (Table S6). Broadening the search to
genes previously associated with other cancer types in
Cancer census, we identified three other genes overlap-
ping with CpG sites identified as candidate CpGDMs
(HMGA2, GNAI3, and STK33) (Table S6). Except
CYFIPI1, all CpGDMs in identified cancer genes are in
average hypomethylated in leukocytes of BCP com-
pared to healthy women. Furthermore, five CpGDMs
that show an average methylation difference > 10%
between patients and controls mapped to four different
genes: CDCPI, MIB2, TSPANI14, and HMGA2, three
of which were previously described as cancer genes
(Table 1).

To validate methylation status determined by the
microarray, we analyzed in four patients and four con-
trol methylation status of four candidate CpoGDMs and
their flanking regions by bisulfite-treated DNA sequenc-
ing. Selection criteria were CpGDMs located in regula-
tory regions of genes previously associated with breast
cancer. Hypermethylation of CYFIPI! gene (only
CpGDM hypermethylated in patients) was observed in
patients with breast cancer (P =2.22 x 107'%), while
MAP3K6 and MIB2 gene promoters showed a slight
hypomethylation in BCP (Fig. S2).

Next, we studied whether methylation at leukocytes
could recapitulate concomitant methylation changes in
the primary tumor. Because methylation data on pri-
mary breast tissues were not available for the Urugua-
yan BCP and there are no public methylation profiling
data of Latin American patients, an independent pub-
lic cohort of European BCP was used to validate
in silico the CpG differential methylation previously
identified in blood (Table S3). We analyzed methyla-
tion data of the 38 CpGDMs panel in primary breast

Molecular Oncology 15 (2021) 473-486 © 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. 479



Blood methylation in breast cancer in Latino population M. Cappetta et al.

Controls Breast cancer patients Controls Breast cancer patients

Methylation level
(BeadArray beta values)

(BeadArray beta values)
.0

0

L

o Methylation level 10

Cc D
23.7%
28.9% 4
///
//
k )f,,/«‘"""' . : 7 Breast tumors Normal breast tissues
— [ ]
= Intergenic
= Gene body
47.4%
® Promoter
18.4%
39.5%
/ 34.2%
‘ Island EEEEEENEBZECSS5SIEIVEEES
7.0% ® Shore L —
' = Shelf 00 Methylation level 1.0
Open sea (BeadArray beta values)

480 Molecular Oncology 15 (2021) 473-486 © 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.



M. Cappetta et al. Blood methylation in breast cancer in Latino population

Fig. 1. Definition of genome-wide CpG profiles in sporadic BCP. (A) Hierarchical heatmap clustering of 77 CoGDMs in 22 BCP (purple) and
10 healthy controls (blue) analyzed on methylation array. CoGDM were ordered by the difference in mean betas values between patients
and controls. Methylation level is color coded (green: lowest methylation level; red: highest methylation level). (B) Hierarchical heatmap
clustering of 38 selected candidate CoGDMs in 22 BCP (purple) and 10 healthy women (blue). Candidate CpGDMs were ordered by the
difference in mean betas values between patients and controls. Methylation level is color coded (green: lowest methylation level; red:
highest methylation level). (C) Genomic distribution of 38 candidate CpGDMs regarding their respective location to genes and CpG context.
(D) Hierarchical heatmap clustering of 38 candidate CpGDMs in 12 primary breast tumor samples (T, purple) and their matched normal
breast tissues (N, blue) analyzed on methylation array. Methylation level is color coded (green: lowest methylation level; red: highest

methylation level).

tumors samples and their paired-normal breast tissue
of this independent cohort. We found that the 38
CpGDMs previously identified in blood were capable
of clustering tumor breast samples and normal tissues
separately using hierarchical cluster analysis (Fig. 1D).
More interestingly, methylation levels of 38 CpGDMs
were able to separate primary tumor tissue from nor-
mal breast tissue in patients with familial breast cancer
mutation in the BRCA2 gene (pairs N4/T4, N5/TS,
NI11/T11) (Fig. 1D, Table S3). In addition, 9 of the 38
candidate CpGDMs showed differential methylation
between tumor tissues and paired healthy tissues in the
European cohort (Wilcoxon test, FDR adjusted P-
value < 0.05; Table S7).

3.2. Validation of aberrant CpG methylation at
the CYFIP1 gene as a sporadic breast cancer
candidate biomarker

With the aim to simplify the CpGDM panel for a
more suitable use in a clinical environment, we selected
seven candidate CpGDMs sites located at regulatory
sites of genes previously reported as associated with
cancer and/or having an average methylation differ-
ence > 10% between patients and controls. These CpG
sites correspond to the following selected regions:
MAP3K6 promoter region (cgl4024502), SUTR of

CYFIP-1  (cg26568226), HMGA2 body gene
(cg04890607), 1st exon of GNAI3 (cg09580608), MIB2
promoter region (cg01229567, cg19246761), and intron
1 of CDCPI (cg24840062). To validate the differen-
tially methylated regions selected, we used a larger and
independent Uruguayan leukocyte cohort of 80 spo-
radic BCP and 80 healthy controls using MS-HRM
PCR assay (Table S2). CYFIPI and CDCPI were dif-
ferentially methylated in patients compared to controls
in the validation cohort (Wilcoxon test, P < 0.01 and
P < 0.05 respectively, Table 2 and Fig. 2). Methylation
analysis of 147 bp containing nine CpG sites in the
evaluated region of the 5UTR of CYFIPI showed sig-
nificant consistent DNA hypermethylation in the can-
cer patients compared with healthy controls (Fig. 2),
while analysis of 124 bp containing two CpG sites in
intron 1 of CDCPI showed significant hypomethyla-
tion in cancer patients. Next, we analyzed whether
methylation levels in these regions were associated
with some epidemiological variables. Adjusting our
analysis for age, smoking status, and genetic ancestry
with methylation levels in evaluated regions of the six
candidate genes selected, CYFIP] still showed a signif-
icant difference between BCP and healthy women
(P=6.1 x 107, Table 2).

In order to study CYFIPI as a candidate sporadic
breast cancer biomarker in blood, we evaluated the

Table 2. DNA methylation in candidate genes evaluated in the independent validation cohort. TSS1500: 1500 bp of the start site of

transcription.

Methylation breast

Methylation controls

Gene Genomic context cancer (mean) (mean) P value P value adjusted*
MAP3K6 TSS1500 0.717 0.710 0.915 0.799

CYFIP1 5—UTR 0.39 0.10 7.29 x 1077 6.1 x 10°°
HMGA2 Body 0.469 0.433 0.277 0.515

GNA13 1st exon 0.0035 0.0035 0.878 0.947

MIB2 TSS1500 0.024 0.030 0.100 0.128

CDCP1 Body 0.807 0.758 0.044 0.088

Bold values indicate adjusted P value < 0.05.
*P value adjusted by age, smoking status, and genetic ancestry.
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strength to predict BCP against controls using ROC
curves in the validation cohort. Methylation of candi-
date CpGDM and the flanking region in the 5SUTR of
CYFIPI showed a good predictive ability with an area
under the ROC curve (AUC) of 0.732 (95% CI,
0.649-0.815) (Fig. 3).

With the aim to elucidate the possible functional
role of our candidate biomarker in breast cancer, we
analyzed in silico methylation data of CYFIPI
(cg26568226) in tissue samples from BCP from TCGA
Program. Comparing 735 primary breast tumors with
89 healthy breast tissues, we detected significant differ-
ential methylation of the candidate CpG site located in

CYFIP! (Wilcoxon test, P value=9.3 x 1074,
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Fig. 3. ROC curve assessing the discriminative power of the
methylation in 5’UTR region of CYFIP1 for validation cohort. Area
under the curve (AUC) of 0.732 (95% Cl: 0.649-0.815), with an
optimal cutoff point of 14.28% of methylation (red point).

Table S8, Fig. S3). This result suggested a potential
functional role of CYFIP1 methylation in breast can-
cer development. Next, we wondered whether CYFIP]
could be contributing to the overall survival of
patients with breast cancer. Since we do not have fol-
low-up data on Uruguayan patients, we studied overall
survival in BCP from the TCGA database in relation
to CYFIPI methylation in primary samples and age at
diagnosis of the pathology (Fig. S4). The results of
these analysis (Cox Regression, P value = 0.681) sug-
gest that 5UTR CYFIPI methylation would not be a
prognostic marker for BCP.

4. Discussion

Patients with localized breast cancer have a 5-year sur-
vival rate of 98%. However, if it is diagnosed after
metastasis, the survival rate drops dramatically to
27%. These results mark the benefit of screening and
early detection, and the vital importance of finding
new markers to supplement mammography results.
For sporadic breast cancer, a variety of changes in
DNA methylation were detected both in primary can-
cer samples [27] and in blood of BCP [11,13,28]. In
spite of the preclinical data, a meta-study to find stan-
dard candidate markers with potential clinical use has
not been performed. These difficulties may be attribu-
table to differences in the subject populations and
tumor pathologies, but most likely due to low power
in each of these studies. Genetic ancestry should also
be considered especially in populations with a high
admixed genetic background like Latino ones [4,29].

In this line, our study described for the first time
DNA methylation profiling in leukocytes from spo-
radic BCP in a Latin American population.
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Accordingly with the described global hypomethyla-
tion in primary breast cancer tissues and in peripheral
blood of BCP [4], we have also detected almost exclu-
sively hypomethylated CpGDMs in leukocytes taken
from cancer patients. Each tissue has a unique epige-
netic signature, which often reflects its differential
function [30,31]. Although the greatest variation in
DNA methylation is observed between tissues,
interindividual differences in DNA methylation of
internal tissues are correlated with blood cells for a
group of CpG sites [27,32-34]. This reinforces the
hypothesis that variation in DNA methylation at a
systemic level in many tissues could be associated with
predisposition to certain diseases, allowing to detect
differential DNA methylation in blood associated with
breast cancer several years before diagnosis [35,36].
Furthermore, in studies like our work that use breast
cancer cases recruited at diagnosis we must consider
the possibility that the cancer itself is causing the epi-
genetic changes detected in the blood DNA, including
circulating tumor DNA. Unfortunately, primary tumor
samples from the Uruguayan BCP were not available.
As a closer approach, we confirmed that the panel of
38 CpGDMs detected in leukocytes could be validated
in breast cancer tissue of women of European origin,
which supports the sensitivity of our current approach
using non-invasive specimens.

To our knowledge, DNA methylation blood
biomarkers associated with breast cancer have not
been previously described in Latin American countries.
If we compared the panel of 38 CpGDMs detected in
the Uruguayan population with CpGDMs detected in
blood samples of European BCP (GSE37965 [37],
GSES51057 [36]), none of our candidate CpGDMs
coincides with these panels (data not shown). The dif-
ferent genomic context in admixed populations such as
Uruguay as well as different lifestyles could determine
differences in epigenetic cancer biomarkers detected.
This reinforces the need for each population to detect
their own markers associated with breast cancer.

Although most CpGDMs detected have average dif-
ferences between patients and controls < 10%, these dif-
ferences are consistent. Blood biomarker identification
has the challenge of blood cell-specific events that can-
not be entirely excluded, and the marginal methylation
levels introduced by circulating tumor DNA. Therefore,
alterations are expected to present changes of small
magnitude between cancer patients and controls. Even
in the study of Heyn et al. [37], in which genetic noise
is removed and other sources of confounders are
reduced by analyzing identical twin pairs discordant for
breast cancer, they detected 403 differentially methy-
lated sites in blood DNA between discordant twins, all

Blood methylation in breast cancer in Latino population

with < 8% differences between the two groups. Despite
the small change in magnitude, the integration of multi-
ple epigenetic biomarkers as a predictive signature and/
or in combination with genetic markers could be of
high translational value [9].

Importantly, among the CpGDMs panel detected in
leukocytes, CpG sites in genes previously associated
with breast cancer are described, including Cytoplasmic
FMRI interacting protein 1 (CYFIPI), reinforcing the
utility of this approach in the search for biomarkers
associated with breast cancer in peripheral blood.
CYFIPI may play an important role in the occurrence
and development of cancers. Loss of CYFIPI expres-
sion has been found in a number of human cancers,
including breast cancer, colon cancer, lung cancer,
bladder cancer, cutaneous squamous cell carcinoma,
nasopharyngeal carcinoma, and acute lymphoblastic
leukemia [38—41]. CYFIPI expression was correlated
with tumor progression in epithelial cancers and it
raised the possibility that loss of CYFIP1 might corre-
late with clinical outcome [39]. Specifically, CYFIPI
would play a role in the suppression of breast cancer
cell migration/invasion and metastasis [42], although
its suppressive role has been contradicted in other
studies [43]. In sum, the functional role of CYFIPI in
tumor development is still unclear and controversial.

Finally, we are aware that our study should be com-
plemented with validation of the proposed candidate
on large sample size. Although methylation of candi-
date CpGDM and flanking region in 5UTR of
CYFIPI in blood showed a good predictive ability of
sporadic BCP against healthy women, additional epi-
demiological factor information including genetic fac-
tors and age and is needed to evaluate its potential
value as an independent biomarker. The cost of the
methylation array-based technologies limits its use as a
screening tool, but the identification of a panel of a
limited number of CpG sites as a cancer biomarker
would allow evaluation of it with other less expensive
technologies.

5. Conclusions

In summary, this work represents the first study in
Latin America that describes the search for epigenetic
markers in peripheral blood in a well-characterized
cohort of patients with sporadic breast cancer.
Although not yet adequate for use in clinical settings,
the description of a panel of 38 CpGDM associated
with breast cancer in the discovery sample and the val-
idation of CYFIPI as candidate biomarker in a larger
sample demonstrates the potential of blood DNA
methylation  for development of non-invasive
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applications for detection of sporadic breast cancer
biomarker in a Latin American population. Future
studies should be aimed at continued exploration of
blood DNA methylation biomarkers using prospective
studies.
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