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Abstract. We deal with non–autonomous Hamiltonian systems of one
degree of freedom. For such differential systems we compute analytically
some of their periodic solutions, together with their type of stability.
The tool for proving these results is the averaging theory of dynamical
systems. We present some applications of these results.

1. Introduction and main results

We consider the following perturbed first order differential systems

(1)
dp

dt
= −∂H

∂q
+ εP1 (q, p, t) ,

dq

dt
=
∂H
∂p

+ εP2 (q, p, t) ,

where H = H(q, p) is a Hamiltonian function defined in an open set U of
R2, q is the position, p its associated momentum, the functions Pi defined
in U × R are smooth 2π− periodic in t, and ε is a small parameter.

All the lemmas, theorems and corollaries stated in this section are proved
in the next two sections. The theorems are proved using the averaging
theory, see in the appendix a summary of the results on this theory that we
need for proving our theorems. For computing analytically periodic solutions
of the differential equations we shall use the averaging theory, see for instance
[2, 3, 4], but in those papers we studied periodic solutions of autonomous
Hamiltonian systems, and in the present one we are working with non-
autonomous differential systems.

We assume that the Hamiltonian H is expressed in action–angle variables
(I, θ) as H(p, q) = H0(I). If the change of variable (p, q) 7→ (I, θ) is given
by I = I(p, q) and θ = θ(p, q), then we consider the functions

F1(I, θ, t) =
∂I

∂p
P1 (q, p, t) +

∂I

∂q
P2 (q, p, t) ,

F2(I, θ, t) =
∂θ

∂p
P1 (q, p, t) +

∂θ

∂q
P2 (q, p, t) .

The following result holds taking into account that the change of variables
to action–angle variables is canonical.
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Lemma 1. System (1) in action–angle variables (I, θ) becomes

(2)
dI

dt
= εF1(I, θ, t),

dθ

dt
= ω(I) + εF2(I, θ, t),

where ω(I) = dH0(I)/dI.

The next result provides sufficient conditions for the existence and the
stability of 2π–periodic solutions of system (2) when the functions Pi’s are
independent of t, and consequently the functions Fi’s are also independent
of t.

Theorem 2. If the functions Fi’s do not depend on the time t, are 2π–
periodic in the variable θ, and if I0 is a simple zero of the function

F(I) =
1

2π

∫ 2π

0

F1(I, θ)

ω
dθ,

then there exists a 2π–periodic solution Iε(θ) of system (2) such that Iε(0)→
I0 when ε → 0. Moreover, if F ′(I0) > 0 then the periodic solution Iε(θ) is
unstable, and if F ′(I0) < 0 it is stable.

Assume that the functions Pi are periodic in the variable t with period
T = 2π/ω0, being ω0 a real positive number. We shall study the existence
of T periodic solutions of system (2). We shall consider the Hamiltonian H
linearizable with ω(I) = ω0 constant. In this case by means of the change
of variables (I, θ)←→ (I, ϕ) given by I = I and θ = ϕ+ ω0t, system (2) is
transformed into the system

(3)
dI

dt
= εF1(I, ϕ+ ω0t, t),

dϕ

dt
= εF2(I, ϕ+ ω0t, t).

The following result provides sufficient conditions for the existence and
the stability of T–periodic solutions of system (3).

Theorem 3. If the perturbed functions Fi are T -periodic in the variable t
and (I0, ϕ0) is a zero of the function

F(I, ϕ) =
1

T

(∫ T

0
F1 (I, ϕ+ ω0t, t) dt,

∫ T

0
F2 (I, ϕ+ ω0t, t) dt

)
,

and the Jacobian det(DF(I0, ϕ0)) 6= 0, then there exists a T–periodic solu-
tion γε(t) of system (3) such that γε(0)→ (I0, ϕ0) when ε→ 0. Moreover, if
one of the two roots of the characteristic polynomial of the Jacobian matrix
DF(I0, ϕ0) have positive real part the periodic solution γε(t) is unstable.
If the two roots of that characteristic polynomial have negative real part, then
the periodic solution γε(t) is stable.

Now we are going to present some applications of the previous theorems.
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Using Theorem 2 we will study the periodic solutions of the following
second–order differential equation

(4)
d2x

dt2
+

k

x2
= εP

(
x,
dx

dt

)
,

where k ∈ R+ and ε is a small parameter. Note that when ε = 0 we have
the 1–dimensional Kepler problem, see for instance [6] and [7].

As we shall see in subsection 3.1 doing the change of time t 7→ E given
by t = (E − sinE)/ω, the elliptic collision solutions of the 1–dimensional
Kepler problem become periodic solutions. We recall that the variable E is
named as the eccentric anomaly. We want to study which of these periodic
solutions persist under the perturbation given in (4).

Theorem 4. If I0 is a simple zero of the function

F(I) =
1

2π

∫ 2π

0

k

2ω2I
sinE P

(
I2

k
(1− cosE),

k sinE

2I(1− cosE)

)
dE,

then it exists a 2π–periodic solution xε(E) of the differential equation (4)
such that xε(0)→ I0 when ε→ 0. Moreover, if F ′(I0) > 0 then the periodic
solution xε(E) is unstable, and if F ′(I0) < 0 it is stable.

See a numerical example of the periodic solution of Theorem 4 after the
proof of this theorem.

Corollary 5. For ε 6= 0 sufficiently small the differential equation

d2x

dt2
+

k

x2
= ε(a+ bxn)

dx

dt
,

where n ∈ N and a, b ∈ R, has a periodic solution if ab < 0.

Corollary 6. For ε 6= 0 sufficiently small and for any positive integer N
the differential equation

d2x

dt2
+

k

x2
= ε sin

(
x
dx

dt

)
,

has at least N periodic solutions.

Using Theorem 3 we will study the periodic solutions of the second–order
differential equation

(5)
d2x

dt2
+ ω2

0x = εx2(a+ bx2) sin(ω0t),

with ω0 > 0 and ab > 0.

Corollary 7. The differential equation (5) has at least four periodic solu-
tions

xi(t, ε) =

√
2Ii
ω0

cos(ϕi + ω0t) +O(ε),
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for i = 1, 2, 3, 4, with (I1, ϕ1) = (aω0/b, 0), (I2, ϕ2) = (aω0/b, π), (I3, ϕ3) =
(2aω0/(3b), π/2), (I4, ϕ4) = (2aω0/(3b), π). The periodic solution x1 is sta-
ble and the periodic solutions xi for i = 2, 3, 4 are unstable.

A numerical application of Corollary 7 and consequently of Theorem 3
appears after the proof of Corollary 7.

2. Proofs of our main results

Proof Lemma 1. The unperturbed system of system (1)

dp

dt
= −∂H

∂q
,

dq

dt
=
∂H
∂p

,

has a very simple formulation in action–angle variables, namely

dI

dt
= 0,

dθ

dt
= ω.

Since the Poisson Bracket of two smooth functions f and g is defined as

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
,

we have that
dI

dt
=
∂I

∂q

∂H
∂p
− ∂I

∂p

∂H
∂q

= {I,H} = 0

and
dθ

dt
=
∂θ

∂q

∂H
∂p
− ∂θ

∂p

∂H
∂q

= {θ,H} = ω.

The variation with the time of the action I of the perturbed system (1)
satisfies

dI

dt
=

∂I

∂p

dp

dt
+
∂I

∂q

dq

dt

=
∂I

∂p

(
−∂H
∂q

+ εP1 (q, p)

)
+
∂I

∂q

(
∂H
∂p

+ εP2 (q, p)

)

= ε

(
∂I

∂p
P1 (q, p) +

∂I

∂q
P2 (q, p)

)
.

The variation with the time of the angle θ satisfies

dθ

dt
=

∂θ

∂p

dp

dt
+
∂θ

∂q

dq

dt

=
∂θ

∂p

(
−∂H
∂q

+ εP1 (q, p)

)
+
∂θ

∂q

(
∂H
∂p

+ εP2 (q, p)

)

= ω + ε

(
∂θ

∂p
P1 (q, p) +

∂θ

∂q
P2 (q, p)

)
.
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Then the differential system (1) is transformed into the differential system
(2). �

Proof Theorem 2. If the functions Fi are independent of the time t, then
system (2) is autonomous. Taking as new independent variable the variable
θ system (2) becomes the differential equation

(6)
dI

dθ
=

εF1(I, θ)

ω + εF2(I, θ)
= ε
F1(I, θ)

ω
+O(ε2).

Now using the first order averaging theory (see Theorem 8 of the appendix)
we obtain the averaged function

1

2π

∫ 2π

0

F1(I, θ)

ω
dθ,

and the statements of the theorem follows. �

Proof Theorem 3. Applying again the first order averaging theory but now
to the differential system (3) we obtain the averaged function F(ρ, ϕ). Then
the statement of Theorem 3 follows directly from the statement of Theorem
8 of the appendix. �

3. Applications of our main results

As an application of Theorems 2 and 3 we will study the following prob-
lems.

3.1. Periodic solutions of the perturbed 1–dimensional Kepler Prob-
lem.

Proof of Theorem 4. Doing the change of variables x = q and
dx

dt
= p, the

second order differential equation (4) becomes the first order differential
system

dp

dt
= − k

q2
+ εP (q, p) ,

dq

dt
= p.

We compute the action–angle variables for the HamiltonianH : R×(0,+∞)→ R

given by H(p, q) =
p2

2
− k

q
. The action is given by I =

1

2π

∮
p dq computed

in a closed curve of the phase space at the energy level H = h < 0. Then

I =
1

π
lim
s→0

∫ −k/h

s

√
2k

q
+ 2h dq =

k

2
√
−h

.
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Solving the equation I =
k

2
√
−h

we obtain h = − k2

4I2
. Then H(p, q) =

− k2

4I2
= H0(I). We consider the generating function

W(q, I) = ±
∫ 4I2/k

q

√
2k

s
− k2

2I2
ds.

Then we obtain

p =
∂W
∂q

= ∓
√

2k

q
− k2

2I2
, θ =

∂W
∂I

=
∂

∂I

(
±
∫ 4I2/k

q

√
2k

s
− k2

2I2
ds

)
.

Since
dθ

dt
= ω =

dH0

dI
=

k2

2I3
, we get θ =

k2

2I3
t = ωt.

Fixed the energy level h, from
p2

2
− k

q
= h and using p =

dq

dt
, we obtain

dq

dt
= ±

√
2k

q
+ 2h and dt = ± dq√√√√2k

q
+2h

. From the relation h = − k2

4I2
,

we obtain

(7) t = ±
∫ 4I2/k

q

1√
2k

s
− k2

2I2

ds.

Note that the t in this last equality is the time that needs the particle for
going from the position q to the maximal value of its position obtained
solving the equation

dq

dt
=

√
2k

q
+ h = 0.

Doing the change of variable q =
I2

k
(1− cosE) in (7) we obtain

t =
2I3

k2
(E − sinE) =

1

ω
(E − sinE),

and consequently θ = E − sinE.

Since − k2

4I2
=
p2

2
− k

q
, we have

∂

∂p

(
− k2

4I2

)
=

k2

2I3
∂I

∂p
=

∂

∂p

(
p2

2
− k

q

)
= p,

therefore p =
k2

2I3
∂I

∂p
.
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Using ω =
k2

2I3
we obtain

∂I

∂p
=

p

ω
. By the chain rule and the equation

of motion we get

ω =
dθ

dt
=
dθ

dp

dp

dt
=
dθ

dp

(
− k

q2

)
.

Then
dθ

dp
= −ω

k
q2 = − I

2k
(1− cosE)2 .

Finally, from

q =
I2

k
(1− cosE), p =

k

2I

sinE

1− cosE
and

∂I

∂p
=
p

ω
,

we obtain

F1(I, θ, t) =
∂I

∂p
P (q, p)

=
k

2ωI

sinE

1− cosE
P
(
I2

k
(1− cosE),

k sinE

2I(1− cosE)

)

= G1(I, E),

and using
∂θ

∂p
=
I

k
(1− cosE)2,

we have

F2(I, θ) =
∂θ

∂p
P (q, p)

=
I

k
(1− cosE)2P

(
I2

k
(1− cosE),

k sinE

2I(1− cosE)

)

= G2(I, E).

Then from Theorem 2 and since dθ/dE = 1− cosE, we obtain

dI

dE
= ε

k

2ω2I
sinE P

(
I2

k
(1− cosE),

k sinE

2I(1− cosE)

)
+O(ε2).

Again from Theorem 2 it follows the statement of Theorem 4. �
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Figure 1

1 2 3 4 5 6

7.662

7.663

7.664

7.665

Figure 2
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The two periodic solutions of the 1-D Kepler differential equation with
P(x, ẋ) = (x2 − 1)ẋ and P(x, ẋ) = sin(xẋ). In the first figure k = 1,

ε = 1/100 and I(0) = 21/4. In the second figure k = 1, ε = 10−6 and
I(0) = 7.663411940415026 the first zero of the Bessel function of first kind.
The horizontal axis there is the eccentric anomaly E varying from 0 to 2π,
and the vertical axis the action I(E).

3.2. Periodic solutions of the differential equation
d2x

dt2
+
k

x2
= ε(a+

bxn)
dx

dt
.

Proof of Corollary 5. From the statement of Theorem 4 and since P(q, p) =
(a+ bqn)p we have

F(I) =
1

2π

∫ 2π

0

k

2ω2I
sinE P

(
I2

k
(1− cosE),

k sinE

2I(1− cosE)

)
dE

=
1

2π

∫ 2π

0

k2 sin2E

4ω2I2(1− cosE)

(
a+

bI2n(1− cosE)n

kn

)
dE

=
1

2π

∫ 2π

0

I4 sin2E

k2(1− cosE)

(
a+

bI2n(1− cosE)n

kn

)
dE,

because ω = k2/(2I3). Therefore

F(I) =
I4

k2

(
a+

2n b I2nΓ
(
n+ 1

2

)
√
π knΓ(n+ 2)

)
,

where Γ(z) is the Euler gamma function, see for more details [1].

The function F(I) has the unique positive zero

I0 = π
1
4n

(
− a knΓ(n+ 2)

2n bΓ
(
n+ 1

2

)
) 1

2n

.

if ab < 0. So, from Theorem 4 the corollary follows. �

3.3. Periodic solutions of the differential equation
d2x

dt2
+
k

x2
= ε sin

(
x
dx

dt

)
.

Proof of Corollary 6. From the statement of Theorem 4 and since P(q, p) =
sin(qp) we have

F(I) =
1

2π

∫ 2π

0

k

2ω2I
sinE P

(
I2

k
(1− cosE),

k sinE

2I(1− cosE)

)
dE

=
1

2π

∫ 2π

0

2I5

k3
sinE sin

(
I sinE

2

)
dE,



PERIODIC SOLUTIONS OF PERTURBED HAMILTONIAN SYSTEMS 9

because ω = k2/(2I3). Therefore

F(I) =
2I5J1 (I/2)

k3
,

where J1(z) is the Bessel function of first kind. The function J1(z) has
infinitely many positive simple zeros accumulating at infinity, see for instance
[1]. Hence, from Theorem 4 the corollary follows. �

3.4. Periodic solutions of the differential equation
d2x

dt2
+ ω2

0x =

εx2(a+ bx2) sin(ω0t).

Proof of Corollary 7. The corresponding first order differential system of the
second–order differential equation of the statement of this corollary is

dp

dt
= −ω2

0q + εq2(a− bq2) sin(ω0t),
dq

dt
= p.

The Hamiltonian H(p, q) =
p2 + ω2

0q
2

2
has the action–angle variables (I, θ)

given by p =
√

2ω0I sin θ and q =

√
2I

ω0
cos θ, see [5] for details on the

computation of these action–angle variables.

The Hamiltonian H in the action–angle variables is H(I) = ω0I. Com-
puting F1 and F2 we obtain

F1(I, θ, t) =
2I
√

2ω0I
(
aω0 − 2bI cos2 θ

)
cos2 θ sin(ω0t)

ω3
0

and

F2(I, θ, t) = −
√

2ω0I
(
aω0 − 2bI cos2 θ

)
cos θ sin (ω0t)

ω3
0

.

The map F is given by

F(I, ϕ) =

(
I
√

2ω0I (aω0 − bI) cosϕ

4ω3
0

,

√
2ω0I (2aω0 − 3bI) sinϕ

4ω3
0

)
.

The system F(I, ϕ) = (0, 0) has the four solutions (I1, ϕ1) = (aω0/b, 0),
(I2, ϕ2) = (aω0/b, π), (I3, ϕ3) = (2aω0/(3b), π/2), (I4, ϕ4) = (2aω0/(3b), π)
and

DF|(I,ϕ)=(I1,ϕ1)
= − DF|(I,ϕ)=(I2,ϕ2)

=

(
λ 0
0 λ

)
,

DF|(I,ϕ)=(I3,ϕ3)
= − DF|(I,ϕ)=(I4,ϕ4)

=

(
0 λ1
λ2 0

)
,

with

λ = − a
√
a

2
√

2bω0

, λ1 = −
√

3a2
√
a

27b
√
bω0

, λ2 = −
√

3ab

2ω2
0

√
b
.
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The two eigenvalues corresponding to the linearized Poincaré map asso-

ciated to the periodic orbit γ1 are λ = − a
√
a

2
√

2bω0

and λ = − a
√
a

2
√

2bω0

.

The two eigenvalues corresponding to the linearized Poincaré map asso-

ciated to the periodic orbit γ2 are λ =
a
√
a

2
√

2bω0

and λ =
a
√
a

2
√

2bω0

.

The two eigenvalues corresponding to the linearized Poincaré map asso-
ciated to the periodic orbit γ3 and γ4 are ±

√
λ1λ2.

Applying Theorem 8 and the canonical change of variables we obtain
immediately the results stated in the corollary. �
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0.00005

0.00010
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Figure 3

0.99970 0.99975 0.99980 0.99985 0.99990 0.99995 1.00000

3.14150

3.14155

Figure 4

1.4980 1.4985 1.4990 1.4995 1.5000

0.0001
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0.0003
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0.0005

Figure 5

1.4980 1.4985 1.4990 1.4995 1.5000

3.1412

3.1413

3.1414

3.1415

3.1416

Figure 6

The four periodic solutions of Corollary 7 corresponding to the differential
equation (5) with a = b = ω = 1 and ε = 1/1000 are shown in Figures 3, 4,
5 and 6. In the horizontal axis there is the action I(t) and in the vertical
one the angle ϕ(t).

4. Conclusion section

In this paper we consider non–autonomous Hamiltonian systems of one
degree of freedom, and we show how to compute analytically some of their
periodic solutions, together with their type of stability, using the averag-
ing theory. We illustrate this tool studying two kinds of non–autonomous
Hamiltonian systems of one degree of freedom, see Theorems 2 and 3 and
its applications Corollaries 5, 6 and 7.

Appendix: Averaging theory of first order

We deal with the two initial value problems

(8) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0,
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and

(9) ẏ = εf(y), y(0) = x0,

where the variables x, y and x0 are in the open set Ω ⊂ Rn, t ∈ [0,∞) and
ε ∈ (0, ε0]. The functions F1 and F2 which appear in (8) are T–periodic in
the variable t. The averaged function of system (8) is defined by

f(y) =
1

T

∫ T

0
F1(t,y)dt.

Theorem 8. Suppose that the functions F1, DxF1, DxxF1, F2 and DxF2

are continuous, bounded by a constant independent of ε in [0,∞)× Ω×(0, ε0],
and that y(t) ∈ Ω for t ∈ [0, 1/ε]. Then the following statements hold.

(a) x(t)− y(t) = O(ε) as ε→ 0 for t ∈ [0, 1/ε].
(b) If p 6= 0 satisfies f(p) = 0 and the Jacobian det(Dyf(p)) 6= 0, then

there is a T–periodic solution x(t, ε) of the differential system (8)
such that φ(0, ε) = p+O(ε).

(c) If a real part of some eigenvalue of the Jacobian matrix Dyf(p) is
positive, then the periodic solution x(t, ε) is unstable. The periodic
solution x(t, ε) is stable if all the real parts of the eigenvalues of the
Jacobian matrix Dyf(p) are negative.

For a proof of Theorem 8 see for instance Chapter 11 of [8].
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1 Departamento de Matemáca Aplicada y Estad́ıstica. Universidad Politécnica
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