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Abstract. Given a ¢°° family of planar vector fields {Xﬂ}ﬂew having a hyperbolic saddle, we study the
Dulac map D(s; i) and the Dulac time T'(s; /i) between two transverse sections located in the separatrices
at arbitrary distance from the saddle. We show (Theorems A and B, respectively) that, for any fig € 144
and L > 0, the functions T'(s; i) and D(s; i) have an asymptotic expansion at s = 0 for 4 ~ fio
with the remainder being uniformly L-flat with respect to the parameters. The principal part of both
asymptotic expansions is given in a monomial scale containing a deformation of the logarithm, the so-
called Roussarie-Ecalle compensator. The coefficients of these monomials are 4 functions “universally”
defined, meaning that their existence is established before fixing the flatness L of the remainder and
the unfolded parameter [io. Moreover the flatness L of the remainder is preserved after any derivation
with respect to the parameters. We also provide (Theorem C) an explicit upper bound for the number
of zeros of T'(s; fi) bifurcating from s = 0 as fi & fip. This result enables to tackle finiteness problems
for the number of critical periodic orbits along the lines of those theorems on finite cyclicity around
Hilbert’s 16th problem. As an application we prove two finiteness results (Corollaries D and E) about
the number of critical periodic orbits of polynomial vector fields.
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1 Introduction and statement of main results

In this paper we study "> unfoldings of planar vector fields having a hyperbolic saddle. The study of the so-
called Dulac map of the saddle has attracted the attention of many authors (see for instance [5, 6, 7, 9, 22, 26]
and references there in), mainly due to its close connection with Hilbert’s 16th problem (see [10, 28] for
details). The Dulac map D(-; 1) of a saddle is the transition map from a transverse section X, in its stable
separatrix to a transverse section ¥, in its unstable separatrix, whereas the Dulac time T'(-; i) is the time
that spends the flow to do this transition, see Figure 1. In a previous paper, see [19], we proved a local
version of some results presented here. By local we mean that >, and ¥, cannot be at arbitrary distance
from the saddle but close enough in order that a suitable (local) normal form for the saddle unfolding can
be used. As we will see, those local results constitute a basic building block for the more general ones that
we will prove here.

A polycycle is a graphic T' with a well-defined return map on one of its sides. The cyclicity of T in an
unfolding of the vector field is the maximum number of limit cycles that bifurcate from it. If the polycycle
is hyperbolic then the return map can be written as the composition of the Dulac maps associated to the
passage through each one of its vertices. The limit cycles are fixed points of the return map and to study
its number (or even to prove that there are finitely many) a key tool is the asymptotic expansion of the
Dulac maps. To this end it is essential that the remainder of the expansion is uniformly flat with respect to
the unfolding parameters (see [28, Chapter 5] and the references in the previous paragraph). In case that
the return map of I' is the identity then there is an annulus foliated by periodic orbits where the period
function (i.e., the time of the return map) is defined. In this context the object of study are the so-called
critical periodic orbits, which are the critical points of the period function. Similarly as with Hilbert’s 16th
problem, it arises the notion of criticality of a polycycle I'; i.e., the maximum number of critical periodic
orbits that bifurcate from T', see [13, 24]. In the same way as for the cyclicity, an asymptotic expansion
of the Dulac time with remainder uniformly flat constitutes a key tool to investigate the criticality of a
polycycle.

We will consider a ¥°° unfolding of a hyperbolic saddle with poles along its separatrices. The reason why
we permit this “polar” factor is because, when dealing with polynomial vector fields, a special attention must
be paid to the study of those polycycles with vertices at infinity in the Poincaré disc. The factor can come
from the line at infinity in a saddle at infinity or, more generally, appear in a divisor after desingularizing
more general singular points at infinity of a polycycle. It is important to remark that (by means of a
reparametrization of time) this factor can be neglected to study the Dulac map but, on the contrary, this
cannot be done when dealing with the Dulac time. More precisely, setting fi:= (A, ) € W= (0, +00) x W
with W an open set of RV, let us take the family of vector fields {X i} With
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X, y) = = (2P @,y )0, + yQ( y: )9 ). (1)

where
o n:=(n1,n9) € Z3,,

e P and @ belong to ¥ (V x W) for some open set V of R? containing the origin,
o P(z,0; ) >0 and Q(0,y; 1) < 0 for all (x,0),(0,y) €V and i € W,

__ Q(0,0;2)
* A= —F0on

Note that the hyperbolicity ratio of the saddle is an independent parameter although in the applications we
will have A = A(p). The hyperbolicity ratio turns out to be the ruling parameter in our study and, besides,
having it uncoupled from the rest of parameters simplifies the notation in the computations we shall deal
with. Furthermore, see Remark 1.5, we do not lose generality assuming that it is uncoupled.



Figure 1: Definition of T'(-; 1) and D(-; ) in Theorems A and B, respectively.

Let 0: (—¢,6) x W — £, and 7: (—¢,e) x W — %, be two € transverse sections to X, defined by

o(s; ) = (01(s; 1), 02(s; 1)) and 7(s; 2) = (T1(s; 1), 72(s; /1))

such that o1 (0; /1) = 0 and 75(0; ) = 0 for all i € W. We denote the Dulac map and Dulac time of X,
between the transverse sections ¥, and X by R(-; i) and T'(-; f1), respectively. More precisely, see Figure 1,
if o(t, po; ft) is the solution of X passing through py € V at t = 0, for each s € (0,¢) we define R(s; /1) and
T(s; i) by means of the relation

©(T(s; ), 0(s); 1) = T(R(s; fu); fu)

Definition 1.1. Consider K € Zso U {400} and an open subset U € W c RN*1. We say that a function
¥ (s; i) belongs to the class €5 (U), respectively EX(U), if there exist an open neighbourhood V' of

{(s,0) eRNT2: 5 =0,0 €U} = {0} x U
in RV*2 such that (s, i) — ¢(s; ) is €% on V N ((0,400) x U), respectively V. Finally we denote
EX(U):={¢(s; ) € EX(U); ¥(0; 4) > 0 for all i € U}.
Here the letter € stands for functions in €% (U) having extension to s = 0. O

More formally, the definition of €% ((U) and ¥ (U) must be thought in terms of germs with respect to
relative neighborhoods of {0} x U in (0,+00) x U. In doing so these sets become rings and we have the
inclusions €% (U) c EX(U) c €K ,(U).

We can now introduce the notion of (finitely) flatness that we shall use in the sequel.

Definition 1.2. Consider K € ZsU{+00} and an open subset U ¢ W ¢ RN*!. Given L € R and jiy € U,
we say that 1(s; i) € €5,(U) is (L, K)-flat with respect to s at fig, and we write 1) € FX (fio), if for each
v = (to,...,vn+1) € ZY? with |v] = v + -+ + vy < K there exist a neighbourhood V' of fig and
C, 59 > 0 such that -

M (s; fr)

| < st for all s € (0, dpev.
88”0811’1’“-6;1]\,”;11 s or all s ( 80) and f

If W is a (not necessarily open) subset of U then define Ff(W):= (N, ew Fr (fio)- O
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Figure 2: The filled dots are points (i, j) € Z2%, in the set A for k = (k1, k2).

The principal part of the Dulac map and Dulac time will be expressed in terms of the following defor-
mation of the logarithm.

Definition 1.3. The function defined for s > 0 and « € R by means of

s~ -1 :
w(s; a) :{ o if a #0,

—logs ifa=0,

is called the Ecalle-Roussarie compensator. O

Definition 1.4. Given any k = (k1,k2) € 22207 throughout the paper we shall use the following notation:

o A= (Z>p, x {0}) U (Z>0 X Z>p,), see Figure 2.

DF;:= {\ > 0 : there exits (i, j') € A \ {(¢,j)} such that i + Xj =i’ + \j’} for each (i, ]) € Ay.

%i,L = {(i,j) €A i+ Aj < L} for each L € R and X > 0, see Figure 4.

Dy = {\ > 0: there exits (,j) € #% | such that A € Df;}.

For A =p/q € Qs with ged(p,q) = 1 and (¢,5) € Ay,

I 0 if (i 4+7rp,j —rq) € Ay for some r € N,
g {reZsy: (i—rp,j+rqg € Ay} otherwise.

Note that if ko = 0 then A, = ZQ>O = Ag regardless of the value of k1. One can prove on the other hand

that Df; and D} are discrete subsets of Qs0, see Remark 3.3. O

Let us point out that in the previous definition k stands always for a two-dimensional vector with components

in Z>o. That being said, if k = (0,0) then we write Ao, Df;, 2 1, D} and o7, for shortness.



We are now in position to state our main results. Let us begin with the one regarding the asymptotic
development of the Dulac time. In its statement we use the notation introduced so far and denote

o 0 if n #(0,0),
To(u){ Foa ifn=(0,0), Y

where recall that the components of the vector n = (ny,n2) € Z2, are the orders of the poles of X.

Theorem A. Let T(s; i) be the Dulac time of the hyperbolic saddle (1) between the transverse sections Y.,
and X;. For each (i,7) € A, there exists T;; € € (((0,400) \ Diy) W) such that, for every L > 0 and
Ao > 0, the following properties hold:

(a) If Ao ¢ D7 then

T(s;p) = To(W)logs+ Y Ty()s™™ + F2({A} x W).

(6,)€PB%, 1
(b) If Ao € DY then

T(s;) =To(@)logs+ Y T (wals); i)s™™N + F2({he} x W),
(i,))€B%, 1.

where Ao = p/q with ged(p,q) =1, a(fi) =p — Aq and

T;‘j"(w;ﬂ):: Z Tirpjtrq(1)(1 4 aw)".

n
TEJZ{U)\O

Moreover the coefficient of these polynomials in w extend € to {\g} x W.

This result is a very significant improvement of the ones that we obtained previously in [15, 18]. Indeed,
the main result in [15] can be viewed as an embryonic version of Theorem A that (with the notation
introduced here) is addressed to the case n = (0,n2) and L = min(1, \gn2) + €, so that its principal part
contains just two monomials. More important, it is proved in the analytic setting and assuming additionally
that family {X ﬂ};levi/ is locally equivalent to its linear part. We referred to this assumption as the family
linearization property (FLP, in short). Afterwards we extended in [18] that previous result to n = (ny,n2)
but still with the same L and the FLP assumption.

Next we state our main result about the Dulac map. Before that let us observe that this map is
independent of n = (n1,n2) because it does not change after a reparametrization of time in the differential
equation. Related with this, and also with regard to the applicability of the theorem, it is important to
mention that, thanks to Lemma 4.3, it is not necessary that the separatrices of the saddle are straight lines.

Theorem B. Let D(s; i) be the Dulac map of the hyperbolic saddle (1) between the transverse sections X,
and .. For each (i, j) € A there exists A;j; € €°°(((0, +00) \ DY) x W) such that, for every L >0 and
Ao > 0, the following properties hold:
(a) If \o & DY then

D(s; fr) = s* > Aij()s™N + F2({Ao} x W).

- 0
(l’])G@AO»L*AO

(b) If Ao € DY then

D(s;p) =" > AN (wals);@)s™ + F({Ae} x W),

(L.1)EBS L2



where N\g = p/q with ged(p,q) =1, a(ft) = p — Aq and

A?JQ (w; )= Z Airpjtrg(f)(1+ aw)".
T‘EJZ{%AO

Moreover the coefficient of these polynomials in w extend € to {\g} x W.
Finally, Aoo(f1) > 0 for all e W.

Theorem B is closely related with the seminal results by R. Roussarie and his collaborators on the
structure of the Dulac map (see [20, 22, 25] and [28, §5.1.3]). Our contribution improves the previous ones
in following three aspects (that are also valid for Theorem A with regard to [15, 18]):

1. The monomials appearing in the principal part are completely described, even in the resonant case

(i-e., Ao € Q). Note moreover that max;zfi’;f)\ < i/p for any k = (k1,k2) € Zzzo and that if i < koA
then @k, = {0}. This gives a bound on the degrees of Tf‘jo (w; i) and Af‘f (w; ). (We remark in
this respect that all over the paper we follow the usual convention that a summation with the index
varying in an empty set is equal to zero.)

2. The coefficients T;; and A;; are € functions “universally” defined. More precisely, their existence is
established before fixing the flatness L of the remainder and, more important, the parameter A\ (see
the order of quantifiers in the statements).

3. The remainder is given by a function Z(s; i) in F5°({ Ao} x W). The application of Lemma A.1 shows
that if we take any K € Z>o with K < L then % extends to a €% -function % defined in some open
neighbourhood of {0} x {\o} x W inside R x R x RN and satisfying 8% (0; i) = 0 for all v € ZY 2 with
|v| < K. To the best of our knowledge this constitutes a new result. The flatness of the remainder
in the previous results (see [9, §3] and [25] for the Dulac map) holds for derivation with respect to s,
which suffices to bound the number of critical periodic orbits or limit cycles. However it does not
enable to conclude that Z extends smoothly with respect to the parameters (see [19, Appendix A] for a
counterexample), which is crucial to study the smoothness properties of the corresponding bifurcation
diagram (see [27] for limit cycles). We refer the interested reader to [19, Remark 1.4] for more details
on this issue.

With regard to second point above let us comment that in a forthcoming paper we will give the explicit
expression of T;; and A;; for particular (¢,7) in terms only the parametrization of the transversal sections
and the functions P and @ in (1). For instance, in the context of Hilbert’s 16th problem, to have these
expressions when dealing with a particular polycycle is essential in order to compute its cyclicity and to
fully understand the bifurcation diagram of emergence/disappearance of limit cycles.

Remark 1.5. As we already mentioned we consider the hyperbolicity ratio A > 0 of the saddle as an
independent parameter in i = (A, u). This is by no means a restriction because if we deal with a family

X, (z,y) =

(xP(x, Y )0 + yQ(x,y; V)ay)

xrn1 yn2

with hyperbolicity ratio A(v) = —% then instead we can consider

X()\,V) (l‘, y) =

(J?P(l‘, Y A, )0 + yQ(, y; A, V)(%)

xrn1 yﬂz

with P(x,y; A\, v) := P(z,y;v) and Q(x,y; \,v) := P(0,0;v)(=\ + A(v)) + Q(z,y; ). Clearly {X()\’V)} is a
family with a saddle with hyperbolicity ratio A that restricted to A = A(v) coincides with {X,}. O



Next we make some further considerations about the consequences of Theorem A. Let us point out that
although we focus on the Dulac time for simplicity in the exposition, they are also valid for Theorem B
on the Dulac with the obvious modifications. On account of the second point above the coeflicients Tj;
(and so the polynomials Tf‘;’) are independent of the remainder’s flatness L. This endows the asymptotic
development of the Dulac time given in Theorem A with a property similar to the unicity of the Taylor
series. More precisely, we have a well defined (formal) series

> Ty(j)s™V if Ao ¢ Q,

To(i)logs+4 3)
o) logs Ly
> TZ.A]F’ (wa(s); ) s if Ag € Q,
(1,5)EAn

which is asymptotic to T'(s; 1) as (s, 1) — (0, fio) in the sense established by Theorem A. In this respect it
is to be referred the works of Saavedra on the Dulac time of (single) analytic vector fields (see [29, 30]). She
proves that the Dulac time T (and its derivative T”) of a hyperbolic saddle is asymptotic to a formal series

T(s) = 3 5" Py(logs), (4)
keN
where {1} }ren is a strictly increasing unbounded sequence of real numbers and Py, is a real polynomial. In

other words, |T'(s; fi0) — Zle s¥i P;(log s)| < o(s**) for all k£ € N. We note that in her result a finite number
of exponents v; may be negative because she contemplates the case ni,ny € Z.o as well.

Definition 1.6. For )\ ¢ Q we write s'T2 <, sU A" if, and only if, i + Aoj < i’ + Aoj’. If Ao € Q then
we write
i+ Noj < i+ Aoj’

SN WE < TN GE o or
(4,5) = (i, ') and k > &
where as usual, setting Ao = p/q with ged(p, ¢) = 1, w stands for w,(s) = w(s;p — Aq). O

It is clear that <), is a strict partial order among the monomials s**Mw* with 4,5,k € Z>o. Moreover, if
f and g are two monomials such that f <y, g then, by applying (a) in Lemma A.3,

lim g(s; A)
(s 0= (0.20) f(s5A)

where the limit is taken with (s, A) € (0,¢) x (0, +00).

For a fixed fig = (Ao, st0) € W, our main concern is to study the number of zeros of T”(-; i) that are
close to s = 0 when [ =~ [ip. We shall define precisely this notion below but let us advance that, in this
respect, the case n = (0,0) is trivial. This is so because, by applying Theorem A and (d) in Lemma A.3,

lim  sT'(s; 1) = To(fo),
ity *T () = Tolfo)
which is different from zero due to (2). Clearly this fact prevents the existence of zeros of T"(s; i) with

(s,f1) = (0, fip). This is the reason why we will suppose n # (0,0) in the statement of Theorem C, which
constitutes our third main result. Before that let us make the following key observation.

Remark 1.7. We note that <), is a strict total order among the monomials that can appear in the formal
series (3) of the Dulac time, namely st for \g ¢ Q and s'tMw* for \g € Q. Indeed, this is obvious
for Ao ¢ Q because then i + \gj # @' + Aoj’ for (i,5) # (i',7’). In case that A\g € Q, say A\g = p/q with
ged(p, ¢) = 1, this is due to the fact that if i+ Aoj = ¢/ + Aoy’ with (4, 5) # (¢, j') then there exists r € Z\ {0}
such that (i’,j") = (i —rp,j + rq) and consequently (see Definition 1.4) either </}, = 0 or &7, =0,
which implies T = 0 and T}, = 0, respectively. O



On account of the previous remark, for a given \g > 0 we denote by ¢;(f1) the coefficient of the monomial
in the i-th position (with respect to <y,) among all the monomials appearing in the formal series (3).

Definition 1.8. Assume n # (0,0) and take fig = (Ao, o) € W. Let {ti}ien be the sequence of coefficients
with respect to <, in the formal series (3). We define ¢, := inf{i € N : ¢;(f10) # 0} —n, where n = 1 if
ning = 0 and 1 = 0 otherwise. O

Notice that if n # (0,0) but nyne = 0 then the first monomial (with respect to the order <,) in the formal
series (3) is the constant one, which follows taking (4, j) = (0,0) € A,. This monomial does not appear in
the asymptotic development of 77( -; fi) and this is the reason why we subtract n in the previous definition.

Definition 1.9. Let h(s; 1) be a function in €2 (U) for some open set U C W. Given any fig € U
we define Zy(h(-;f),fip) to be the smallest integer N having the property that there exist § > 0 and a
neighbourhood V' of fip such that for every i € V' the function h(s; i) has no more than N zeros on (0, 6)
counted with multiplicities. O

We can now state our third main result, that gives a uniform bound for the number of zeros of T'(-; i)
bifurcating from s = 0 when i =~ fig.

Theorem C. Consider the family of vector fields {X},y in (1) and assume that n # (0,0). Let T'(-; 1)
be the Dulac time between the transverse sections ¥, and X, and fix fig € W. Then Z, (T'(-; ), fro) < Lpg-

If ¢;, < +oo then Theorem C gives an upper bound for the number of zeros of 7"(-; /) that can
emerge/disappear from s = 0 when we perturb /i = fip. It is important to remark, and this is a key feature,
that £;, depends only on the vector field X, and not in the family {Xﬂ}ﬂeW' Note in this respect, cf. (4),
that if 77(s; f19) = Bs” log™ s + o(s” log™ s) with 3 # 0 then ¢;, < 4+o00. Indeed, Theorem A shows that

#‘%;\low - if )‘0 ¢@7
bpo = > (max{re g +1)-m—n ifreQ
(.0)ER3, ,

where n = 1 if nyny = 0 and n = 0 otherwise. It is to be referred here the paper by Saavedra and
Mardesi¢ [17] because (in the analytic context) they prove that if T77(-; fig) Z 0 then there exist some v € R
and m € Zx>o such that T'(s; fig) = Bs”1og™ s + o(s”log™ s) with 8 # 0. By analytic context we mean
assuming that the functions P(-;fig) and Q(-; o) in (1), together with the parametrizations o( -; fip) and
7( 5 fug) of the transverse sections, are analytic. On a rather different tack, but also in this setting, it is to
be mentioned that the application of Proposition 4.2 provides a lower bound for Zo(T"( -; i), fig)-

We conclude this section by explaining two applications of the tools and results introduced so far in the
context of the study of the period function, which was our initial motivation for considering this kind of
problems. To this end some additional definitions are needed. A singular point p of a planar differential
system is a center if it has a punctured neighbourhood that consists entirely of periodic orbits surrounding p.
The period annulus of the center is the largest punctured neighbourhood with this property and we will
denote it by 2. We embed & in RP? and denote its boundary by 2. Clearly the center p belongs to 9.2,
and in what follows we will call it the inner boundary of the period annulus. We also define the outer
boundary of the period annulus to be IT:= 9.2 \ {p}. We point out that II is a nonempty compact subset
of RP%. The period function of the center assigns to each periodic orbits in &2 its period. Since the period
function is defined on the set of periodic orbits in &, in order to study its qualitative properties usually
the first step is to parametrize this set. This can be done by taking a transverse section to the vector field
on &, for instance an orbit of the orthogonal vector field. If {vs}¢(0,1) is such a parametrization, then
s — P(s):={period of ~,} is a function that provides the qualitative properties of the period function that
we are interested in. (Note that the function P is as smooth as the vector field and the parametrization used.)



The critical periods are the isolated critical points of P, i.e. § € (0,1) such that P'(s) = a(s—3§)*+o((s—3)%)
with o # 0 and k& > 1. In this case, more geometrically, we shall say that ~; is a critical periodic orbit of
multiplicity k& of the center. One can easily see that this definition does not depend on the particular
parametrization of the set of periodic orbits used.

In the next definition dj stands for the Hausdorff distance between compact sets of RP?.

Definition 1.10. Consider a € family {X, },cy of planar vector fields with a center and fix some vy € U.
Suppose that the outer boundary of the period annulus varies continuously at vy € U, meaning that for any
€ > 0 there exists 6 > 0 such that dg(II,,II,,) < ¢ for all v € U with ||v — vp|| < 0. Then, setting

N (8, ) = sup {# critical periodic orbits v of X, in &, with dg(v,11,,) < € and ||v — || < 6},

the criticality of (I1,,, X,,) with respect to the deformation X, is Crit((l_[,,07 Xuo), XV) :=1infs . N(d,e). O

Let us stress that the number of critical periodic orbits v of X, in &2, is counted with multiplicities.
Note furthermore that in this definition each vector field X, is assumed to be ¥°°. To define the outer
boundary II,, of the period annulus &2, of X, we do not compactify the vector field but only the set &, and
to this end there is no need that X, is polynomial. Certainly Crit((HuO, Xuo), XV) may be infinite but, if it
is not, then it gives the maximal number of critical periodic orbits of X, that tend to II,, in the Hausdorff
sense as v — 1. It is clear on the other hand that, for a given vy € U, the contour of the period annulus &,
changes as we move v = 1. The assumption that the period annulus varies continuously ensures that these
changes do not occur abruptly. In this regard note that X, = —yd, + (z + va® + 2°)9,, with v € R, is a
polynomial family of vector fields with a center at the origin for which the outer boundary does not vary
continuously at v = 2. Indeed, the period annulus &2, is the whole plane for v < 2, whereas is bounded for
v =2 (see [14] for details). Clearly in this situation the criticality of II,, at ¥ = 1y has no point.

Definition 1.11. Let X be a vector field on R? (or S?). A graphic T for X is a compact, non-empty
invariant subset which is a continuous image of S' and consists of a finite number of isolated singular
points {p1, ..., Pm,Pm+1 = p1} (not necessarily distinct) and compatibly oriented separatrices {si,...,Sm}
connecting them (i.e., such that the a-limit set of s; is p; and the w-limit set of s; is p;4+1). A graphic
is said to be hyperbolic if all its singular points are hyperbolic saddles. A polycycle is a graphic with a
return map defined on one of its sides. Consider now a ¢*° family of vector fields {X,} such that, for
v = 1y, I' is a hyperbolic polycycle for X,,. Then, in the context of Hilbert’s 16th problem, in order
to study the cyclicity of (X,,I") it is sometimes assumed that some connections between the hyperbolic
saddles in T remain unbroken inside the family {X,}, see for instance [5, 12, 21]. Here, in case that all the
separatrix connections remain unbroken we shall say that the hyperbolic polycycle I is persistent inside the
family {X,}. When studying the criticality this will be a non-degeneracy condition for the polycycle at the
outer boundary of the period annulus. O

In order to study the behaviour of the trajectories of a polynomial vector field Y near infinity we can
consider its Poincaré compactification p(Y), see [1, §5] for details, which is an analytically equivalent vector
field defined on the sphere S?. The points at infinity of R? are in bijective correspondence with the points
of the equator of S?, that we denote by £,,. Furthermore the trajectories of p(Y) in S? are symmetric with
respect to the origin and so it suffices to draw its flow in the closed northern hemisphere only, the so called
Poincaré disk. Taking this notation into account we can now state two finiteness results for polynomial
vector fields that follow from our main results.

Corollary D. Let {X,},ev be a € family of planar polynomial vector fields. Assume that, for all v € U,

(a) X, has a center such that the outer boundary 11, of its period annulus is a hyperbolic polycycle that is
persistent and varies continuously inside the family,



(b) the infinite line o is invariant for p(X,) in case that 11, Nl # 0, and

(¢) not all the singularities of X, in II, are in l.
Then Crit((I,,, Xy, ), X,) = 0 for any vy € U.

Recall that, for a given polynomial vector field Y, it is well known that the infinite line £, is invariant
for p(Y) if, and only if, the homogeneous part of highest degree of Y is not a multiple of the radial vector
field 0, + y0,. On the other hand, if the family {X,}, ey is analytic (instead of €°°) and each center is
non degenerated then Corollary D implies the existence of a uniform finite upper bound for the number of
critical periodic orbits in the whole period annulus. With regard to this aftermath it is to be referred a paper
by Chicone and Dumortier [3] because from their main theorem it follows that a center of a (single) analytic
vector field with a bounded period annulus cannot have an infinite number of critical periodic orbits.

Turning to Hilbert’s 16th problem, the saddle loop constitutes the first type of polycycle that was proved
to have finite cyclicity (see [25, Theorem A] and also [9, Theorem 9]). Corollary D shows that the saddle
loop has zero criticality, so the next polycycle to consider is the one having two hyperbolic saddles as
vertices. Our last result is addressed to this situation and let us advance that the non-trivial case is when
both saddles are at infinity, see Figure 7.

Corollary E. Let {X,},cu be a € family of planar polynomial vector fields. Assume that, for allv € U,

(a) X, has a center such that the outer boundary I, of its period annulus is a hyperbolic polycycle with
exactly two singularities that is persistent and varies continuously inside the family, and

(b) the infinite line Loy is invariant for p(X,) in case that I, N lo # 0
Then Crit((Huo,Xyo),X,,) < 400 for any vy € U such that the center q,, is non-isochronous.

The paper is organized as follows. In Section 2 we prove Theorem 2.5, which constitutes a fundamental
preliminary result addressed to both, the Dulac map and the Dulac time. Briefly, for every [y € W, KeN
and L > 0, Theorem 2.5 provides an asymptotic expansion of D(-; /i) and T(-; 1) with the coefficients €%
functions in a neighbourhood of fip and the remainder in FX (fig). Next, relying on this result, Theorems A
and B follow by showing that in fact these coefficients do not depend on fig, K and L. More concretely,
that we can change the order of the quantifiers V...3 in the statement of Theorem 2.5 to 3...V. The
formalization of this simple idea is rather long and technical but let us advance that the proof of Theorem A
from Theorem 2.5 gives as particular case the proof of Theorem B. That being said, Section 3 is devoted
to the proofs of Theorems A, B and C. Next, in Section 4, we prove Corollaries D and E, together with a
result, namely Lemma 4.3, that straightens globally the separatrices of a saddle depending on parameters.
This result, which is well-known to be true locally, is relevant with regard to the applicability of Theorems A
and B because it enables to set aside the condition that the separatrices lay on the coordinate axis. Finally,
for reader’s convenience, in Appendix A we state some results from [19] about the class of functions F (W)
that we shall use in the present paper.

2 A preliminary result

This section is completely devoted to the proof of Theorem 2.5. With this aim in view we begin with two
results about the class of functions £ (U), recall Definition 1.1.

Lemma 2.1. If f € E8(U) with K € N verifies f(0; ) =0 for all i € U then f = sg some g € EX-Y(U).

Proof. By definition f(s; /i) € €% (V) for some open neighborhoud V of {0} x U. Fix any (so, i) € V and
observe that the existence of g is clear in a neighbourhood of any point with sy £ 0. So assume that sg = 0

10



and take £ > 0 small enough and a closed disc D centered at fig with D C U such that [—¢,e] x D C V.
Then, by Proposition 2 and Remark 3 in [31, §17.1.3|, g(s; i) := fol Osf(st;p)dt is €K1 on [—¢,¢] x D.
Furthermore

1 s
sg(s; p) = /O 50, (st @)t = /0 O (us f)du = f(s:) — F(03 ) = £(5: 1),

for all (s, 1) € [~¢,¢] x D. This proves the existence of g € €% (V') with V':= {(s, i) € V : i € U}, which
is an open neighborhood of {0} x U, verifying f = sg as desired. |

Corollary 2.2. If f € EX5(U) and m € N with m < K then there exist f; € €¢5~(U),i=0,1,...,m — 1,
and g € EX=™(U) such that f(s;f1) = Z?Z)l fi(p)st + s™g(s; ). In particular, for any L >0,

EX(U) ceRWU)ls) + FE W),
provided that K' > K + L.
Proof. The first assertion follows by applying Lemma 2.1 recursively. The second assertion for L = 0

follows by (¢) and (d) in Lemma A.2, which show that X' (U) ¢ F&'(U) ¢ FE(U). The second assertion
for L > 0 follows by applying the first one with m = [L] > 1 and using then Lemma A.2 to show that

sFlg(s; 1) € Fegy(U)ER ~TEV W) ¢ Fopy(U)FE(U) € Fi, (U) € FE(U),

thanks to sI*1 € Fp,(U) and K’ — [L] > K. [ |

In the previous statement %% (U)[s] stands for the set of functions h(s; /i) that are polynomial in s with
coefficients in €% (U), i.e., that can be written as h(s; i) = ho(ft) +h1(1)s+. ..+ hy, (1)s™ for some n € Zxg
and h; € €% (U) for i = 0,1,...,m. In the next result we extend this compact notation in the obvious way,
for instance to refer to functions h(s; ) € €% (U)[s] + FX(U). The following is a key result in order to
study the composition of functions inside these type of sets. For the sake of clarity let us remark that, given
h(s; i) and g(s; 1), by h o g we mean h(g(s; i); fi)-

Lemma 2.3. Let us consider o, 3 € €¥(U) with K € N and suppose that (1) > 0 for all p € U. Then,
for L € R>g and p € N, the following holds:

(a
(b

s 0 sEX'(U) € s (€K (U)[s] + FE(U)) € s"6K(U)[s] + FEU) if K > K + L.

sPwq 0 sEK(U) € €K (U)[s, sPwa] + FE({a=0}) if K’ > K + L.

(d) sPEE(U)[s, sPwa] + FE({a=0}) € Fo({a=0,8 > {}) for every £ < L.

(e) If L > 0 and g(s; i) € sPEK(U)[s, sPwa] + FE({a = 0}) with g(s; i) > 0 for all s > 0 small enough,
then

)
)
() ("€ (U)ls, sPwa] + FE ({a = 0})) 0 s (U) € 8°CF(U)[s, Pwa] + Ff ({a=0}) if K' > K + L.
)
)

(sm%K(U)[s} + FE({a = 0}))og C sPMEE(U)[s, 57, sPwa) + FE({a=0,8> L/L'})

for every L' > 1 and m € Zxo.

Proof. For shortness we will write €%, £ and £ instead of €% (U), £5(U) and EX(U), respectively.
The assertion in (a) follows noting that

s% 0 sEK" PN C P (K s] + FEU)) C P €K[s] + FE ().
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Here we apply Corollary 2.2 in the second inclusion whereas in the third one we use that s® € Fy(U) by (c)
in Lemma A.3 (thanks to the asumption 5 > 0) and that Fo(U) - Fr(U) C Fr(U) by (g) in Lemma A.2.
This proves (a). Due to {a =0} C U, by applying (a) in Lemma A.2, the second inclusion above yields

% 0 sEK" P (GK[s] + FEU)) C s° (€5 [s, sPwa] + FE ({a = 0})). (5)

We claim at this point that €% [s, sPw,] + FE ({a = 0}) is closed under sum and product. That it is
closed under the sum follows directly from (e) in Lemma A.2. In order to show that it is also closed with
respect to the product we note that sPw, € F5°({ae = 0}) by (d) in Lemma A.3 and that, on the other
hand, s € F§°(U) C F5°({a = 0}). Consequently, by applying (g), (¢) and (e) in Lemma A.2, we can assert
that €% [s, sPw,] C FE ({a = 0}). Hence, by (g) in Lemma A.2 again,

s, s'wa] - FL ({a = 0}) € Fg* ({a = 0}) - F ({a = 0}) € FL ({a = 0}).

Thus, since FX ({a = 0}) - FE({a = 0}) € FE ({a = 0}) € FE({a = 0}) by (g) and (d) in Lemma A.2,
and €K [s, sPw,] - €5 [s, sPwa] C €K |[s, sPw,], the claim is true with respect to the product as well.

To prove (b) we observe that
sPwy o sé'f' C spﬁf’(ﬁf’wa + Wq o&'f/) C s”é‘f/(wa +&5 ¢ Ef/(spwa + &K
C(CF[s] + FEU))(sPwa + CX[s] + FE(U)) € € s, sPwa] + FE ({a = 0}),

where we use wq,(su) = 4~ %wq($) + we (u) in the first inclusion and in the second one that w, o Ef/ cex’

due to wy(s) = F(alogs)logs with F(z) = 6—1717 which is an entire function. Finally, in the fourth
inclusion we apply Corollary 2.2, and the last one follows by taking the claim into account.

Let us turn now to the proof of (¢). With this aim in view note that, taking assertions (a) and (b) into
account together with the claim, we get

G (s, Pwa) 0 SEX C s, Pwa) + FE ({a = 0}).
Accordingly, using also (5) and applying the claim once again,
sPEK [s, sPwa] o sfi’f/ C P (K s, sPwa] + FE({a=0})) C sPCK[s, sPwa] + FE ({a = 0}).

In the second inclusion above we use first that s# € F$°(U) by (c) in Lemma A.3 and 8 > 0, and then
Lemma A.2 to conclude that F5°(U) - FX ({a = 0}) € FE({a = 0}). On account of the above inclusion
and (e) in Lemma A.2, to prove (c) it suffices to verify that FF ({a = 0}) 0 s€X" ¢ FE({a = 0}). To show
this we firstly note that, by (¢), (d), (g) and (a) in Lemma A.2,

s c Fo) - FE () ¢ FEY () ¢ FEU) ¢ FE({a=0}),

and secondly we apply (h) in Lemma A.2. This proves the validity of (¢).

In order to prove (d) note first that s°¢X[s, sPw,] € FE({a =0,8 > ¢}) by (c) in Lemma A.3. On the
other hand, since ¢ < L by assumption, FX ({a = 0}) ¢ FX({a =0}) ¢ FEX({a = 0,8 > £}) by (d) and
(a) in Lemma A.2. Hence s?6X[s, sPw,| + FE ({a=0}) € FX({a=0,8> (}) by () in Lemma A.2, and
this proves the assertion in (d).

Finally let us show (e). To this end observe firstly that, since g(s; i) € s°€K(U)[s, sPwa] +FE ({a = 0}),
(s™ & [s] + Fls({a = 0})) 0 g C s™CF [s] o (s"CF s, s"wa] + FL ({a = 0})) + FL({a =0}) og.  (6)

Note next that, thanks to assertion (d) in the present result, g € FX({a = 0,8 > ¢}) with £ = L/L’ because
L' > 1 by assumption. Hence, since g > 0 and ¢ > 0, the application of (a) and (h) in Lemma A.2 yields

Fi{a=0})ogc Ff({a=0,> L/L'}).
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It is clear on the other hand that the first summand in (6) is a finite linear combination of terms of the
form (sP6K [s, sPw,| + FE ({a = 0}))™*? with coefficients in % and i € Z>. In this respect note that
(s9CK s, 5Pwa] + FE ({a = 0}))™F  PSMHIGK s sPw,] + FE ({a = 0})
C P s, 57, sPwa] + FE ({a = 0}),
where the first inclusion follows from the fact that s#€%[s, sPw,] C F& ({a = 0}), due to 8 > 0 and (d) in
Lemma A.3, and that F& ({a = 0})- FE({a = 0}) € FE({a =0}), by (g9) in Lemma A.2. Finally, from (6)

and due to FEX({a=0})+ FE({a=0,8> L/L'}) C FE({a=0,8 > L/L'}), the inclusion in (e) follows.
This concludes the proof of the result. ]

The next result is addressed to regularity properties of the Poincaré transition map (and its associated
time) between two transverse sections.

Lemma 2.4. Let U be an open set of RN and consider a family of vector fields {Y, },cu of the form
1

Y, =——7—+

y f(@,y;v)

where { € Z, and f,h € €5(V x U) with V = (a,b) x (—¢,c) C R? for some a < b and ¢ > 0. Suppose also
that f(z,0;v) > 0 for all € (a,b) and v € U. Consider two € families of transverse sections

£(v) i (—e,e) = I and ¢(+5v) : (—e,e) = 1T

to the straight line {y = 0} with &(0) = (2(0) = 0 and £5(0)¢5(0) > 0. If P(s;v) and T'(s;v) are, respectively,
the Poincaré and time maps from Iy to Iy of Y, then the following holds:

(a) P e €5((—e,e) x U), P(0;v) =0 and P'(0;v) > 0.
(b) T(s;v) =s'T(s;v) with T € €K1((—¢,¢) x U).
Proof. Let us consider the vector field 9,+h(z,y; v)9,, which is equivalent to Y,,, and denote by ¢(t, po; V) its

solution passing through py € R? at time t = 0. Clearly if pg = (20, y0) then ¢ (¢, po;v) = (t+x0, oa(t, po; 1/))
Therefore, by definition,

G(P(s) = ¢2(C1(P(s)) — &1(s),&(s)) for all s € (—¢,¢€).

(Here, and in what follows when there is no risk of ambiguity, we omit the parameter dependence for the
sake of shortness.) Then the assertion in (a) follows easily by the implicit function theorem, the smooth
dependence of solutions with respect to initial conditions and parameters (see [4, Theorem 1.1]) and the
assumption &5(0)¢5(0) > 0. In order to prove (b) note first that if we define O(z, s;v):= ¢a(x — &1(8),&(8)),
which is a €¥ function, then

G (P(s))
T(s;v) = / O(z,s) f(x,0(x, s))d.
£1(s)
Since ©(z,0) = 0 due to the invariance of {y = 0}, Lemma 2.1 shows that there exists a ¢K-1 function
O(x, s;v) such that O(z, s) = s6(z; s) and then we can write T'(s;v) = s*T'(s; ) with
_ G(P(s)) _
T(si)im [ Ows)' (2.0, 5))do
£1(s)

which is also %! in (—¢,g) x U for € > 0 small enough. This shows (b) and completes the proof. [ |
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We can now state and prove the following fundamental result concerning the Dulac map D(-; ) and
the Dulac time T'(-; /i) of the hyperbolic saddle (1) between the transverse sections 3, and X.

Theorem 2.5. For every fig = (Ao, po) € W, K €N and L > 0 there exists a neighborhood U of fig so that
D(s;p) =" > Aij(wals);@)s™N + F£ (o),
(L3)EBS L-xg

and

T(s; i) = To(i)logs+ Y Tij(wals); i)s™™ + Ff (fu),
(i])eﬂ’;o L

where Ty is given in (2) and Az;(w; i), Tij(w; i) € €% (U)w)]. Furthermore deg,, A;; = deg,, Ti; = 0 if
Xo € Q and, otherwise, « = p— Aq if \g = p/q with ged(p, q) = 1. In the latter case the following additional
properties hold:

(a) A;j =0 (respectively, T;; =0) if (i +rp,j — rq) belongs to Ay (respectively, A,) for some r € N,

(b) deg,, Aij <i/p and deg,, Ty; < i/p,

(¢) ifp/q ¢ D?j (respectively, p/q ¢ D}%) then deg,, A;; = 0 (respectively, deg,, T;; = 0),

In particular deg,, Agop = 0 and, in case that L = o, Aoo(0; ) >0 for all € U.

Proof. Consider the parameter jig = (Ao, o) € (0, 400) x W, the integer K and the real number L > 0
given in the statement and let us define

K' = K + 1+ [max(L,2L/o)]. (7)

By applying [16, Theorem A], the family {X} aeiw 18 ¢K' conjugated by a diffeomorphism of the form
(z,y, 1) = (Pa(x,y), i) defined in a neighbourhood of (0,0, fig) € R? x W to

1
NF _ _ .
Iz nrmiynz 4 uéA( ) (xax + ( A+ B(uv ,U'))yay), (8)
where 1 = W’ /€N and

(7) if Ao ¢ Q then A = B =0, and

(i) if Ao = p/q with ged(p,q) = 1, then A(u; i) and B(u ,&) are polynomials in the resonant monomial
w:= 2Py? with coefficients in %K (W), ie., A,B € ‘KK( )[u].

Without lost of generality, we can assume that the normalizing domain of ® is V' x U, where V and U are,
respectively, neighbourhoods of (0,0) € R? and jig € W.

During the computation of the development of the Dulac map and Dulac time we shall lose order of
differentiability of the involved functions. As it is usual in this kind of study, the idea is that we can take K’
arbitrarily large and that the lost of differentiability is well controlled. In any case, in order to avoid any
ambiguity, we give a specific value of K’ in (7) which is large enough for our purposes.

Fix 6 > 0 and £ > 0 small enough so that the points (0, ) and (e, 0) are inside V. We define two auxiliary
transverse sections X5 and X, to X, see Figure 3, parametrized by s — ®,(s,6) and s — ®(e, s), respec-
tively. Let Py(-; ), Do(-; 1) and P3( i) be respectively the transition maps from X, to X5, X5 to X, and
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Figure 3: Auxiliary transverse sections in the decomposition of 7.

Y. to ¥,. (Here P stands for Poincaré and D stands for Dulac.) Consider also T3 (-; i), Ta(-; it) and T5(-; 1)
the corresponding time functions. Omitting the dependence on /i we have that D(s) = P3(Dy(Pi(s))) and

In what follows, for the sake of shortness we shall use the compact notation €%, £X and Ef instead of
¢K(U), EX(U) and EF (U), respectively. That being said, by Lemma 2.4 and Corollary 2.2 we have that

Py(s;f) € sé'f/_l Ti(s; i) € s EX' 1 ¢ sm @K [s] + FK (fuo),

/ , 9
Py i) € €51 C @[5 4 (o) Ty(si ) € €K1 C smigK [ 1 FE(g), )

where we set
L' :=max(1,2L/\o)

and we take (7) into account. Furthermore, setting n = (ny,ns), if Ay ¢ Q then the local Dulac map and
the local Dulac time are given by

sn2 S>\"25n1_)‘"275"2 .
— if n # (0,0),
Dy(s; 1) = 6e s and Ty(s; 1) = P(oio) ANz ) (10)
mlog(g) if n = (0,0),

respectively. (Here local means that we work close enough to the saddle so that the normalizing coordinates
provided by the normal form YﬂN Fin (8) can be used.) Of course these maps cannot be computed explicitly
when g € Q, and in this case we apply Theorems A and B in [19] which show, respectively, that if Ao = p/q
with ged(p, ¢) = 1 then

Da(s; ) € MK [P, sPwal + FE (fio) (11)
and, setting k:= {max (%, %ﬂ,
Ty(s: 1) € To(j1)(log s — loge) + s*™2 % [P, sPwa] + s™ N [sP] + PG [P, sPwa] + F[ (f10).  (12)

Here Ty is the one given in (2), o = a(fi) = p — Ag, so that a(fig) = 0, and we use the compact notation
wa = w(s; a(f1)). There are some remarks to be made about the application of Theorems A and B in [19]:
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e They provide the local Dulac map and local Dulac time with transversal sections mormalized to
e =0 =1, say Dy and Ty, respectively. To bypass this technical inconvenience we consider the
new local change of coordinates ® = ® o h where h(z,y) = (ex,8y), so that Dy(s; i) = 6D (s/e; i)
and Tu(s; i) = Tn(s/e;f1). Then the principal parts in (11) and (12) follow noting, firstly, that the
pull-back of (8) by h preserves the normal form (it only changes n and the coefficients of A and B)
and, secondly, that wy(s/e) = €®wqa(s) + wa(€).

e In both results the coefficients of A and B are treated as independent parameters, i.e.,

1 1 N-1
Yo = - (faz'i‘*(—l?'f' Q; 1Ui)ya )7
/ Boxmiynz + uf Zij\il Biut—1 q ZZ:% ’ !

where a1 := p— Ag. In particular, they show that the remainder of Dy (s; «) and T (s; a, 8) belong to
F£2(Up) and F°(Uy x RMH1) respectively, where Uy is a neighbourhood of {a; = 0} in RY. In our

application we have a; = a;(f1) and 3; = 3;(j1), which are €% " functions, and consequently to obtain
the remainder in (11) and (12) we must also use (h) in Lemma A.2.

Let us consider the case A\ = p/q € Q first. Then, from (9) and (11), by applying (¢) in Lemma 2.3 and
taking (7) also into account, we get

(Dy o Py)(s; 1) € s[5, sPwa] + FE (fio)- (13)

(Here, and in what follows, we take a(fip) = 0 also into account.) Moreover, from (9) and (12), the
application of (a) and (¢) in Lemma 2.3 shows that

(Too P)(s; o) € Tp (logs + %K[SD + s [s] + gk [s, sPwa] + SHP%K[S, sPwa] + ff(ﬂo), (14)

where we also use that log(sé’fl) =logs+ &X' Clogs+ €X[s] + FX (i) thanks to Corollary 2.2. Finally,
if f(s;0) € sm€K[s] + FE(jio) then, from (13) and applying (e) in Lemma 2.3,

(f o Dz o Py)(si 1) € M E"[s, 87, sPwal + Fi (fio)

due to A(fi) = No > L/L' = min(L, \p/2). Using the above inclusion with {f = T3,m = nyp} and
{f = P3s,m =1}, from (9) and (14) we get, respectively,

T:T1 +T20P1 +T3OD20P1
€ Tologs + ToE X [s] + s G X [s] + sPCK |5, sPwa] + 22 C K [s, 87, sPwa] + FE (fio) (15)

and D = P3o Dyo Py € s*6%[s, %, sPwa] + F[ (o). Recall that B85 | = {(i,7) € A i+ A\j < L} with
A = (Z>i, x {0}) U (Z>¢ X Z>k,) by definition (see also Figure 4). On account of this the above two
inclusions imply, respectively, that we can write

T(s;p) = To(i)logs+ D> Ti(wals): @)s™N + F£ (jio) (16)
(i.)EBY, 1
and

D(sip) =5 > Aylwals)i)s'™ + FL (o), (17)
(1I)EB, 1
where Ay;(w; i) and Tjj(w; fi) are polynomials in w with coefficients €% functions in a neighbourhood of fi.

Here we use that, thanks to (c) in Lemma A.3, if i + \gj > L then s w’ € F(fig) for any £ € Zs.
Observe moreover that these polynomials can be taken with deg,, A;; < i/p and deg,, T;; < i/p.
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Figure 4: The set %Y ; (filled dots) with two pairs (in red) yielding to a replacement.

Let us focus now on the expression in (16) and consider the summation’s grid where (i, j) varies. For
each fixed (i,7) € &y, | we define, see Figure 4,

Ty = max {T € ZZO : (Zvj) + T(p, _q) € An} and (i*7j*) = (Z,j) + 7"*(}7, _q)
Accordingly (ix, jx) € %Y, ;, and we can write

SiHA gl p A FTd) _ ghat M T (P—Ag) si*+>‘j*(1 + owa)™ .

(Certainly r, depends on the particular pair (7, ) considered as well as on n and Ao = p/q. We omit this
dependence for the sakg of shortness.) Then, for each pair (i,j) € £y ; and £ = 0,1,...,deg, A;;, we
replace the monomial s**Mw! in (16) by s +*+w’ (1 + aw,)™ to obtain

T(s;p) =To(W)logs+ Y Tij(wal(s);a)s"™ + FL (fo),
(1.5)€2, 1

with new polynomials T';;(w; f) such that T;; = 0 if (i +rp,j —rq) € A,, for some r € N, i.e., assertion (a)
in the statement.

Next we replace similarly the monomials in the grid %3 ;_, for the Dulac map in (17). (Note that
in this case if A\g > L then the grid is empty.) We proceed exactly the same way as before but taking Ag
instead of A,, in the definition of r, given above. In doing so we get

D(s; 1) = s* Z Ajj(wals); 2)s"™ + FL (fuo)

(1.5 EBS . L-xg

with new polynomials A;;(w; i) satisfying the assertion in (a).

Let us turn to the proof of the other assertions. That deg,, A;; < i¢/p and deg,, T';; < i/p follows noting
that this is true for the polynomials Aij and Tij and that, on account of this, after the replacement of
sHNWE by s TANWE (1 4+ awy)™ we have r, + £ < 1y +4/p = (i +1rp)/p = ix/p. This proves (b).

Let us prove the validity of (¢). We prove first the assertion with regard to the polynomials T';; by
contradiction. Suppose \g = p/q ¢ Dy, which implies T';; = Tj;, and £:= deg,, T';; > 0. We distinguish the
cases j =0 and j > 0:
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e If j = 0 and ny > 0 then, due to T;; = T}, the monomial s‘w’ in T(s) comes necessarily from the

summand s"P¢ " [s, sPw,] in (15), where recall that £ = [max (%, %ﬂ Hence i = (k + O)p+ ¢’
for some i’ € Z>¢. Then, setting j' := (k + £)g, on account of ¢ > 0 and k > ng/q, it follows that
(7/,7") € Ay \ {(4,0)} satisfies ¢ + Agj = ¢/ + Aoj’, which implies A\ € D}, a contradiction.

If 5 = ny = 0 then s'w’ can also come from the summand s*"2€K[s, s}, sPw,] = €K s, s*, sPw,]

n (15). Then i = ¢’ + €p for some i’ € Z>( and setting j' = {q it follows that (i, ') € ZQZO (which is

equal to A,, due to ny = 0) with (¢, j") # (¢,0) and, on the other hand,

A

Z+>\00:ZI+€p:Z/+£q>\0 :i/+>\0j/.
Consequently Ao € Djj, which contradicts the assumption on Ay again.

e Consider finally the case j > 0, which implies j > ny (see Figure 4). Then, due to T;; = Tij, the
monomial s°+Mw! in T(s) comes unavoidably from the summand s*2¢ ¥ [s, s*, sPw,] in (15). Thus
i =4’ + fp for some i’ € Z>¢. In this case, setting j':= j + €q € Z>,,, we have (¢, j') € A, \ {(4,))},
due to £ > 0, and i + \gj = ¢/ + Agj’, which implies \g € Dy, a contradiction.
We show next that if p/q ¢ D?j then ¢:= deg,, A;; = 0. To this end note first that A;; = Aij by construction.
Moreover, due to D(s; i) € s*¢K|[s, s}, sPwa|+FE (fio), the monomial s+ w? in (17) verifies that i = i’ +pl
for some i’ € Z>¢. Thus, setting j':= j+£q, we have (7', ") € Ag and i+ Xoj = 7'+ Aoj’. Since (i,7) # (', j')
if and only if £ > 0, this implies that £ = 0, otherwise Ao € D}, a contradiction.
This concludes the proof for the case A\ € Q. Let us consider next the case Ag ¢ Q. Note first that, on
account of (9) and (10), the preceding expressions are valid without using the compensator, i.e.,

Dyo Py € s*65[s] + FE (jig) and Ty 0 Py € 1o(logs + €5 [s]) + s C K [s] + 26X [s] + FE (o).

Then, exactly as before, using that if f € s™%X[s] + FE (o) then f o Dyo Py € s*EK[s,s*) + FE(fio),
we can conclude that D = Py o Dyo Py € s’6K([s, 8] + FE (j1y) and

T=T +To0oP, +T30Dy0P, € mglogs + 10K [s] + s™ G [s] + 26K [s, 5] + FF (jio).

write as (17) and (16), respectively, but with deg,, Aij = deg,, Tij = 0. This shows the validity of the result
for the case Ao ¢ Q.

With regard to the last assertion in the statement we can already assert that deg,, Agop = 0 in both
cases, A\g € Q and A9 ¢ Q. Recall on the other hand that D(s) = P3(D2(Pi(s))) with P; and P3 regular
transitions maps, verifying P;(0; i) = 0 and P/(0; 1) > 0 by Lemma 2.4, and D(s; i) = Dn(s/e; i), where
Dy is the local Dulac map with transversal sections normalized to ¢ = § = 1. Since lim,_,q+ w =1
thanks to [19, Theorem A], we conclude that

Ao (05 1) = Aoo(f2) = P3(0; )8 (P{(0; 1) /2)" > 0

and so the last assertion is true. This completes the proof of the result. ]

3 Proof of the main results

This section is devoted to the proofs of Theorems A, B and C. In order to show the first one we shall apply
the following two lemmas.

Lemma 3.1. Let U be an open subset of RN and C a closed subset inside U. Assume that f € €U\ C)
and that, for each K € Zxq, there exist a collection of functions {g%}men and a collection of open subsets

{ViYmen with gt € €5 (Vi) and C C U,,en Vi verifying that

18



(a) gf =gp in V2 OVE NC,
(b) f =gk in (U\NC)NVE".
Then the function
flp) ifpeU\C,
gr(p) ifpeCnVg,
is well defined and belongs to €>°(U).

Proof. We will prove that f € €K (U) for all K € Z>o by induction on K. The base case K = 0 is clear.
For the induction step assume that f € €% (U). Let us fix any py € C and take m such that py € C'N Vit
Then the partial derivatives of f of order K + 1 at po exist and are continuous because

5 o 0Egm . (po+ hw) — 0K g™ (po) m m
Ou (9 F) (po) = Jim “- T Zn 20 ST — 9,01 gt (p0) = L5 051 (o)
for any v, w € Zgo with |v] = K and |w| = 1. This proves the validity of the result. |

Lemma 3.2. For any k € 2220 and (ix, jx) € Ag, the set

DE = {\>0: there exist (i, ), (', ') € Ay, with (i,5) # (i',5") and i+ N\j =i’ + \j’ < iy + Nja}

TxJx "

is discrete in (0, 400).

Proof. Suppose that lim,,—00 Ay, = Ay € (0, +00) with A, € Df*j* for all m € N. Then, for each m € N
there exist two different pairs (i,,, jm) and (i}, 4..) in A,, such that

T + /\mjm = Z;-n + )\qu/n <y + /\mj*~

Therefore, since jp, — jl, # 0, Ay, = ;:7:%;: In addition, due to A, € (0,+00), it follows that the sequences
(Jm)m and (j.,)m are bounded. Thus (j,, — ji,)m is a bounded sequence of integers and, consequently, A,
belongs to the set of rational numbers with bounded denominator, which is discrete. Hence \,,, = A, for all
m € N large enough and the result follows. [ ]
Remark 3.3. By Lemma 3.2 we can assert that DY, is a discrete subset of (0,+00) because DF ; C DF .
see Definition 1.4. Exactly the same proof shows that D} is a discrete set in (0, +00) as well. 0

We are now ready to tackle the proof Theorem A, that follows fundamentally by applying Theorem 2.5.
Notice that basic difference between Theorem 2.5 and Theorem A is the order of quantifiers in the statements,
V...3in the first one and 3...V in the second one. The key idea to prove that the coefficients Tj; in the
asymptotic expansion of T'(-; 1) are € is to reverse the order of these quantifiers. Before starting the
proof let us make the following easy observation that we shall use several times.

Remark 3.4. If > a;s™ + f(s) = 0 for all s € (0,e), where \; € R with A < Xg < -+ < A,
ai,as,...,a, € Rand f(s) = o(s*) then a1 = ay = --- = a,, = 0. O

Proof of Theorem A. The application of Theorem 2.5 shows that, for every fig = (Ao, o) € W, KeN
and L > 0, there exists a neighborhood U = U, k1, of fig such that the Dulac time can be written as

T(s;p) =To()logs+ > T (wals); o)™ + Z(s; o), (18)

(1,5)€2%, 1
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where Tj is given in (2), TZOKL (w; o) € €% (U)[w] and Z € Ff(jio). Furthermore we know that if Ao ¢ D7
then deg,, Tﬂ oKL _q, Taking this property (and notation) into account, we shall prove the following claim,
where recall that D} C Qs is a discrete set in (0, +00), see Definition 1.4.

KEY ASSERTION: For each (i,j) € A, there exists T;; € € (((0,+00) \ D) x W) such that, for every
fio € ((0,+00) \ D}%) x W, K € N and L > 0 large enough, we have

Tii(f1) = Tf‘j“KL(O; f1) for all fi = (X, 1) € Ugoir with A ¢ DI (19)

The proof of this is rather long and technical but the theorem will follow almost right away once we
prove it. With this end in mind let us fix any (i, j») € A, and recall that, by Lemma 3.2, Dp ; is a discrete

set in (0, +o0) that contains D} ; . We write (0, +00) \ Dl*j as a disjoint union

0,+00)\ D7, = | | J75. (20)
reN

where each J; ; is a open interval in (0, +00). Since sup Dl-"*j* < oo if and only if j, = 0, it turns out that
there exists an unbounded interval J; ; if and only if j, = 0. Therefore
M‘T;j* i=sup{ix + Ajx: AEJ] .}

2 TxJx

is well defined and finite for all r € N. Furthermore, for each r € N such that J; ; # () we also define
27 ={(,) e Ap i+ Nj i+ Ajuforall X e J] ;). (21)

Observe that this is a finite subset that contains the pair (i, j,) by definition. Moreover if we say that

E)@Etiﬁde:xe{éi;(;j;})l;ii%jg), <oy (ims jm), (ix, 4. )} then, on account of (20) and the definition of D7 ., it can
11+ Aj1 <o+ Ajo < - <l + N < ix + Ajy for all A € J{*j*. (22)

We claim at this point that
i+ Aj >+ Ay for all (i,5) € Ay \ 277, and A€ Jj ;. (23)

Let us show this by contradiction. If there exists Ay € J; ; such that ¢ + A\1j < i + A1j, then the fact
that (i,7) ¢ 27";, implies the existence of some Ay € J ; such that i + Xaj > i, + Aaji. Accordingly, by
continuity, there exists A3 € J; ; verifying i + A3j = ix + A3j. and then A3 € D{‘ ;. by definition, which
contradicts (20). This proves the validity of the claim.

Let us fix now 7 € N and take any Ao € J/ ; . Then, by applying Theorem 2.5 with any fio = (o, ft0),
K € Nand L > M; ; (which in particular implies 277, C %} 1), we can assert the existence of an open
neighbourhood U of fig such that T'(s; i) can be written as in (18) with TijKL(w;ﬂ) € €K (U)[w)] for all
(i,5) € A%, 1, and Z € Ff(jio). On account of this there exist a neighborhood V of jip and constants

C,s0 > 0 such that |Z(s; 1)| < Cs” for all i € V and s € (0,s0). At this point we replace U by a smaller
open neighbourhood of iy given by the finite intersection

N {O,p) €UNV ti4Aj—iy — Nju —at(N) >0}, (24)
(7' -7)6@,\0 L\ 1*1*

where we use the notation ™ = max(z, 0) for shortness. Note that fip belongs to the above set due to (23)
and the fact that a(fig) = 0.
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Next we show that deg,, T%OKL = 0 for all (i,7) € 2, . By contradiction again, if deg,, T%OKL >0
then Ao € Dj; by assertion (c) in Theorem 2.5, which implies the existence of some pair (i’, j') € A, \{(4,7)}
such that ¢/ + Xgj’ = i+ Aoj < ix + AoJx, where the inequality holds thanks to (22). Accordingly A\g € ﬁ;’*j*,

that contradicts (20). Thus the assertion is true and, from (18), we can write

T(sip) =To(@logs+ > TP ws™™N+ Y7 TR wals): 4)s™ + % (s: ),
(4,9)eZy, (i.5)eRBY, L \Z], ;.

Tk Ik

where T[;OKL (i) := TijKL(O; ) is a €K function in U. Note that the two last summands above belong to
o(s***A3+) for each fixed (\, i) € U. Indeed, the assertion with regard to the third summand is a consequence
of (24) using that, by applying (a) in Lemma A.3 with v = (0, 0), for each fixed « there exists C' > 0 such
that |w(s;a)| < Cs |logs| for all s € (0,1/¢). On the other hand, the fact that Z € o(s™**+) is clear
because Z € O(s”) and, by construction, L > M ;. > s+ Ajy for all A € J] ;. Therefore

T(S,ﬂ) — TO(ﬂ) log s + Z Tl_l;oKL(ﬂ)Si-l-)\j + O(si*+)\j*). (25)
(i,5)eZ]

ik Jx

Now we take any other Ay € J] ; and apply Theorem 2.5 with iy = (A\y, pg), K’ > K and L' > M, .

In doing so, exactly as before, we obtain an open neighborhood U’ of fij, and Ti’;OK L egk "(U”) so that

T(s;p) = To(@)logs+ Y TEN ()5 4 o(s™TA0),

(L.1)EZ],;,
Consequently, for each fixed i = (\, ) € UNU' with A € J] ; , we get that
N N oKL A poK'L [ i+A\j ITESYN
0=T(s:p)~T(ssp) = > (T4 @) =T (1) s + ofs )
(L.1)EZ],;,

for all s > 0 small enough. This equality, on account of (22) and Remark 3.4, shows that Ti’?OK L _ oK'l

on UNU’ for each (i,7) € 27, . Hence, since (i, j.) € 2, , all the local functions Ti’z[}fﬂ and TZ‘:‘]{( L

glue together and provide a well defined function T, j, on J; ; x W, which is of class ¢X for arbitrarily
K e N, ie., T;;, € ¢%(J]; x W). In addition, due to (20) and the fact that r is arbitrary, we get that

T;,;. € € (((0,+00) \ D) x W). It is clear then that T;, ;, does not depend on K, and we remark that

1w J*
it does not depend on iy or L neither.

So far we have proved the existence of T, ;, € € (((0, +00) \ﬁﬁj*) x W) verifying the equality in (19)
for every fig € ((0,+00) \ Df*; ) x W, K € N and L > 0. In other words, that the key assertion is true
replacing D7 ; by D7’ ; .

Our next goal (recall that D ; C ZA)?*]-*) is to prove that T;_;, extends smoothly to (ﬁ?*j* \Dl; ) xW.
With this aim in view we fix A\g € D', \ D, and apply Theorem 2.5 with any fio = (Ao, p0), K € N
and L > 0 large enough to obtain a neighbourhood U of fig such that the Dulac time T'(s; /i) can be
written as in (18), where Ty is given in (2), TZ-OKL(w; i) € €K (U)w] and Z € FE(fio). Let us note that
deg,, Tf*offL =0 due to A\g ¢ D? . , by (¢) in Theorem 2.5, and define Tﬁgfﬂ () := T (0; i), which is a

TiJx? [
¢* function in U. Take an open interval I C (0,4o00) verifying INDY ;= {Ag}, which exists because D} ;
is a discrete set in (0,400), and define V:=U N (I x W). We claim that

T, () = TLGEE () for all € V\ {A = Ao}, (26)

(Note that T;, ;, € €°(V\{\ = Ao}), whereas Tz’f‘;f(L € €% (V). This will be the key point later on.) With
regard to the proof of this claim we stress that although we have already proved the key assertion replacing
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D} ;. by f)ﬁ ;,» We can neither apply this weaker version because fip ¢ ((0, +00) \f)Z ;) x W. That being

said, in order to prove (26) we observe first that, taking s~ = 14w, (s) into account and working on « # 0,

we can “deconstruct” any polynomial in w,(s) and write it as a polynomial in s~®. More generally, one
can readily show using the Newton’s binomial formula that the identity Zi:o ApwF(s;a) = Zf:o B,s™o"

holds on « # 0 if, and only if,
L sy ¢ 1
_ .k _ —k k—r
A =« TE:]C <I<;> B, and B, = g:ra <r> (=) A (27)

In this way, since a = 0 if and only if A = Ao (recall that a:= p— Ag and A\g = p/q) and, on the other hand,
deg,, TijOKL < |i/p] by (b) in Theorem 2.5, we can write

li/p]
TR (wa(s); f)s™™N = Y TROSE ()™ FAUTRD for all i e V\ {A = Ao}, (28)
k=0
where the functions i"_“,f;L] kg for k=0,1,...,|i/p] are defined univocally in terms of the coefficients of the

polynomial TZ-”KL € €% (V)[w] by means of the second equality in (27) with £ = |i/p|. Thus, in particular,
i@]gf;+kq € €K (V\ {\ = Xo}). In doing so for all the polynomials in (18) we obtain that
T(sip) = To(W)logs + 3 TEFE(@)sHN 4 FR (i) forall i€ VA (A= Ao}, (29)
(z‘,j)e%’go‘L

(We remark that the summation grid is %9 ; instead of %} ;.) In this respect we observe that
05 0>

oKL o KL
TR =105 on VA {A = Ao},
i.e., the coefficient of s***+ remains unchanged after the “deconstruction process” that brings (18) to (29).
This equality is a consequence of the following facts:

(a) deg, Tffj[fL =0 due to Ao & D}’ , by (c) in Theorem 2.5, and

(b) the values of the exponents in s** and s~ *P+AU+ka) in (28) are the same at A = \g = p/q.

Thus, on account of the above equality and setting I\ {\o} = I_ U I, the claim in (26) will follow once we
show that .
Tpj, =T on VN (I x W) and VN (I- x W), (30)

?

In order to prove this let Jii‘j* and J;;;* be the intervals of (0, 4+o00) \Dﬁj* with 11 C J;;ij* and note that if
A€ Jj% then A ¢ Dy, for all (i, j) € %/, . (This is so because otherwise there would exist (i,j) € Z; ; and
two different pairs (i1,41), (i2,j2) € Ay, such that iy + A\j1 = i2 + Aj2 < i+ Aj < 4y + Ajx, which would imply
A € D}, , contradicting that A € J;ij*.) Taking L > 0 large enough, specifically L > maX{Mii’j*,Mii;-* ,

this implies that

T(s; 1) = To()logs + Y Tyy()s™™N +o(s™ V) for all € VN (Ix x W), (31)
(4,)ez

G Jx

Indeed, to verify this at some fi; = (A1, 1) € V with Ay € I C Jl-rfj* we use first the identity in (25) taking
fi1 instead of fip (we can do this due to the fact that \; ¢ lA)f* ;) and then the equality follows by applying
the key assertion in (19) to each (i,7) € Zii (For this effect recall that the key assertion has already been
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proved on ((0,+00) \ D) x W and that A; € J;% implies A, ¢ DI} for all (i, j) € 2% .) Let us define in

addition the sets 2 := {(z J) € No i+ <iv+Ajy forall A e Ii} Note that if (3, j) e A1\ % then
T+ AJ > iy + Ajy for all A € 1. This is so because if there exists A\; € Iy such that i 4 )\13 < ix + A1Jx
then the fact that (i, ) ¢ P, implies the existence of some Ay € I such that i + Aaj > i, + A2j,. Then, by
continuity, there would exist A3 € I4 such that i + A3j = i, + A3j, and so, by definition, A3 € D ; which

contradicts that I N D?* ;. = {0} Accordingly, from (29),

T(s; /i) = To(fr) log s + Z T”OKL )N po(st M) forall e VN (Ie x W). (32)
(i,4)€Z

Notice that fflii C %4 due to, recall (21), I+ C J;fj* and A,, C Ag. Consequently, from (31) and (32),

o (T - Ty@) S YT TR S (s =0 (33)
(L)EZ; (i) €F\2 %

G Jx T K

for all i € V N (I x W). Therefore, since i + A\j # i’ + A\j’ for all A € I1 and any two different pairs
(i,9),(i',j') € %%, by Remark 3.4 we deduce that T[}"KL =T;; on VN (Iy x W) for any (i,5) € %*i
This, on account of (i, j.) € 2, N 27, shows (30) and proves that the claim in (26) is true.

At this point we are in position to apply Lemma 3.1. To this end, for reader’s convenience, let us denote
C = {Ao} x W and observe that T; ;, € €°((I x W)\ C). Furthermore the claim in (26) shows that for
each jigp € C' and K € N there exist a neighbourhood VI’;“’ of jip and a function Ti’z gf(L c ¢k (V}?”) such that
T, = Tf“’KL on Vﬂo \ C. We take a sequence {[LT}TGN with fi, € C = {Ag} x W for all r € N such that
C C Uyen V[’{ and we apply Lemma 3.1 with f =
extends smoothly to C' = {Ao} x W. Since A\g € Di* ;. \ DP'; is arbitrary and we have previously proved
that T;,;, € ¢°°(((0, 400) \ﬁﬁj*) x W), we can assert that T;,;, € €°°(((0,+00) \ D', ) x W).

So far we have proved the key assertion in (19) with regard to the functions T;; with (4, j) € A,, is true.
Let us fix now Ag > 0 and L > 0 and, in order to prove (a), suppose that A\g ¢ D7, i.e., Ao ¢ D} for all
(i,7) € &, - Then, on account of (19), the application of Theorem 2.5 to any K € N and po € W yields

T(s:p) = To(Wlogs— Y, Ty(ms™™ e () () Fi (o, po)).

(i,j)eé&goyL KeN poeWw

and g = Tl’f ;f(L in order to conclude that T}, ;,

*7*

This proves the assertion in (a) because from Definition 1.2 one can readily verify that

() () FE(om0) = () Fi (o} x W) = F22({ Ao} x ).

KeNpoeWw KeN

Let us proceed with the proof of (b). So assume A\g € D} and take any po € W, K € N and L > 0 large
enough. We claim that if (ig, jo) € Ao \ A, then there exists a neighborhood V of fig = (Ao, po) such that

TPRL () =0 for all fi € V'\ {\ = Ao}

i0jo
Indeed, this follows from (33) pgrticularized with (ix, ) := (f0,J0 + n2) € A, because in this case one
can easily verify that (ig,j0) € 24 \ Q‘;j and, exactly as before, by applying Remark 3.4 we deduce that
TZ’S‘;({{L =0on VN (IL x W). (Let us remark in this respect that, regardless of Ao € D}’ ; , to obtain (33)
we only need to work in an interval I such that I N D?* ;. = {Xo}.) Consequently, together with (30), this
shows that for all uyp € W, K € N and L > 0 large enough, there exists a neighbourhood V' of iy such that
m={ Y RGN EA A
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for all i € V'\ {\ = Ao}. Accordingly, if 1 € V' \ {\ = Ao} then we can assert that

Li/p]
T/\O Z Timrp,jtrq()(1 + aw)" Z TZM07{;I;+rq )1+ aw)” TétjoKL(u” fi) € %K(U)[w}v
76.97[;)\0

where the third equality follows from (28) and s*~*PHtAG+ka) — gitAig—ak — i +Xi(] 4 qw,(s))*. Thus, the
coefficients of the w-polynomial T;\O (w; i), which are € on the open set

{ fi=(u) €W Ag Uncarn, D;?_Tp,jm} :

are €% on a neighborhood of C' = {\g} x W. Exactly as before, the application of Lemma 3.1 shows that
these coefficients extend smoothly to C'. The above equality also shows the application of Theorem 2.5 to
any K € N and pg € W gives

T(s;p) = To()logs — Y T (wals)i)s ™ e () [ FE (o) = F({Ao} x W),

(5.9)€B% L KeN poeWw
This shows the validity of the assertion in (b) and completes the proof of the result. [ |

Proof of Theorem B. The application of Theorem 2.5 shows that, for every fig = (Ao, po) € W, K eN
and L > 0, there exists a neighborhood U = U, k1, of fig such that the Dulac map can be written as

D(s;p)=s > AREE(wg(s); f)s" ™V + FL (fuo),

(i,j)egggw_m

where AAZ?’KL(w; i) € €K (U)[w] verify assertions (a), (b) and (c). Moreover deg,, AggKL =0andif L > N\
then ALSF(0; ) > 0 for all 4 € U.

The idea now is to put the factor s* inside the summation in order to get a more convenient expression.
With this aim let us fix € > 0 small enough such that %?\O,L_‘_E = %20;1/ and shrink U so that A\ — )y < ¢ for

all i = (A, 1) € U. On account of this, if i € U and (i,5) € A3 ;_y, then i+A(j+1) < L—Ao+A < L+e
and, setting

A

2R )= | A0
K ’ 0 if j =0,

we can write
D(sip)= Y Z5" " (wals); i)s"™N + FL (jro)-

(i7J)E%>\0,L

Certainly Z%OKL (w; i) € €K (U)[w] and, more important, one can easily show that these polynomials also
verify assertions (a), (b) and (c) in the statement of Theorem 2.5. Taking this into account it is clear from
the above expression that the proof of Theorem A from Theorem 2.5 gives as particular case, taking Ty = 0
and n = (0,0), the proof of the present result. That being said, since it is only a matter of adapting the
notation in the obvious way, we do not include it for the sake of shortness. ]

Proof of Theorem C. Suppose that ¢;, < 400, otherwise there is nothing to be proved. To show the
result we adapt the derivation-division algorithm used by R. Roussarie to bound the cyclicity of an unfolding
of a saddle loop (see Theorem 19 in page 113 of [28]). Here for convenience we will use the derivation 2:= s0,
instead of the usual one.

Let us take the given figp = (Ao, to) and consider the case Ag € Q first. Suppose that A\g = p/q with
ged(p,q) = 1 and denote a(A) = p — Ag for the sake of shortness. Note in particular that a(X\g) = 0.
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In addition, when there is not risk of confusion, we simply write w or w(s;«) instead of w(s;p — Aq).
In what follows the notation w® + --- will mean that after the sign + there is an unwritten polynomial
a;(N)wP~1 4. .. +ap()\) with the coefficients a;(\) continuous in a neighbourhood of \g. Taking this notation
into account one can readily show the following properties:

(a) 2(s"w") = (a — ka)s"wh — ks"wF~! = s"wF~1((a — ka)w — k) for any continuous function a() in a
neighbourhood of A\g. In particular, Z(w) = —(1 + aw) = —s~ % and

P(5°wk) = 5% (xwk + --) in case that a()\g) # 0,

where here (and in what follows) we use the symbol * to replace any continuous function of A which is
non-zero at A = Ag.

(b) On account of the chain rule, Z(R(w)) = R (w)Z(w) = —R/(w)s~* for any function R. Hence

k... _ ktr—1 4 ..
9<w + )_s”‘(k rw +
wr 4 - (wr+...)2

(¢) If a(N) is a continuous function with a(Ag) # 0 then, from (b),

awk+... a wk+ 7a(k_r)wk+"'71+...
D|s*— | =5 a———— + S8
w""_i'_... wT'_i_... (wT'J’_...)Q

w'f‘_|_..
Sa(a+a(k—7“))wk+7'+--- R

(@ + )2 T o2

k... _ k+r—1 4 ..
=g (aw—i_ + (14 aw) (k= r)w i )

(W +---)2

That being said, for any L > 0, by applying Theorem A we can write
T(s3 1) = By + sV (B +B1w ™1+ ) +
+ st (Bt 4+ B T L B ) + R(s: ),

where k; € Zx¢ for ¢ = 1,2,...,m and R € F°(iy). Here we do not have logarithmic term since the
assumption n = (nq,n2) # (0,0) implies Ty = 0, see (2). Note on the other hand that the constant term 3
only appears if njny = 0 because otherwise (0,0) ¢ A,. Furthermore (recall Remark 1.7)

o 0 < iy + Aoj1 <iz2+ Aofa2 < <+ AoJm < L.

e The coefficients 8¢ = 8%(j1) are labelled according to the position of its corresponding monomial with
respect to the order <), see Definition 1.6. More precisely, 3¢ is the coefficient of s+ Mdawke=" and

d<d
Sid+)\jdwkd7’r _<>\0 Sid’+>‘jd'wkd’7rl = or

d=d and r <.

In particular, if {t;};en is the sequence as introduced in Definition 1.8 then it turns out that ¢; = 8¢
withi=r+d+1—-—n+ Z‘fn;ll km, where recall that n =1 if nyne =0 and n = 0 if nyng # 0.

o We fix a,b € Z>o with a < k; to be the ones that ¢, =a+b+1—n+ an_:ll k., see Definition 1.8.
Then, and this is crucial,

Bb(fi0) = te,, (fo) # 0.
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Define &y(s; fi):= s~ M1 9T, (s) and note that Zo(T'( -5 1), fio) = Z0(&o, fio). Due to iq + Agja # 0 for
alld=1,2,...,m, by applying (a) we get

Eo(s; i) :53(4@’“ +..)+ ﬁ%(*wkl*l +oe )+ 4 *ﬁ,ﬁl

m
4 57T Z slatAia [Bg(*wkd o)+ Bk oy 4 *Bgd} + Ro(s; 1),
d=2

where the remainder is given by Ry:= s~ ~*19%(R).With regard to the flatness properties of the remainder
note first that Z(R) = sR' € Fi°(fig) by applying (f) and (¢) in Lemma A.2. On the other hand, setting
Ly := i1 + Aoj1, by applying (c) in Lemma A.3 we get s~ =M1 ¢ F2%, _(fig) for some ¢ > 0 (that we fix
from now on). Accordingly (g) in Lemma A.2 shows that Ry = s~ "1 9(R) € ff‘iLrE(ﬂo).

From this point on we will make ¢ = ¢;, steps of a derivation-division algorithm to construct a sequence
of functions &1, &s, ..., & such that the last one is locally non-zero and the bound for Zy (o, fig) will follow
from a recurrent application of Rolle’s Theorem. We gather these steps in several stages. In the first stage
we eliminate, one by one and in this order, the coefficients £, 31, ..., 3, , in the second stage we get rid
of the coefficients 82, 57, ... ,@32, and so on until the last stage, in which we remove £, 3%, ..., 3% ;. Since
all the steps in each stage are exactly the same, we only explain in detail the first and last stages for the
sake of shortness. Certainly the flatness of the remainder will decrease in each step but this will not be
a problem because, thanks to Theorem A, the coefficients B; are independent of L and we can take this
number arbitrarily large. This will guarantee that the remainder in the last step is flat enough for our
purposes. However, but only in the first steps of the algorithm, we will pay attention on the flatness of the
remainder for reader’s convenience.

FIRST STAGE:

Let u1(s;A) = #wk + .-+ be the function multiplying the coefficient 43 in &. This function does not
vanish in a neighbourhood of (0, fig) because u;(s; \)/w** tends to some non-zero value as (s, \) — (0, \g)
since lim s x)—(0,x0) ﬁ =0 by (a) in Lemma A.3. Consequently if we define & := s*(u1)?2(&o/u1) then,
by Rolle’s Theorem, Zq(&o, f1o) < Z0(&1,fio) + 1. Due to ig + Aoja — (i1 + Xoj1) # 0 for d = 2,3,...,m,
taking properties (b) and (c¢) into account we get

& =5 () P(Eo/un) = (M0 ) B (b )
4 gi-Aita isiﬁm [53(*wk1+kd Fo )+ BTy B (k4 )]
d=2
+ s*(2(Ro)u1 — RoZ(u1)).
Moreover, since Z(w) = —s~ %, the remainder can be written as
Ry:= s*(Z(Ro)us — RoZ(u1)) = s*P(Ro) (+w™ + ) + Ro(xw™ 1 ).

Note that the functions s®, *w** 4 --- and *w*~! + ... belong to F>(jip) thanks to (c¢) in Lemma A.3
and, consequently, Ry € F7° ;3 (flo) by applying Lemma A.2. Exactly for the same reasons as before, if
uy = *w?F1=1 4 ... is the function multiplying the coefficient ] in & then Z (&1, fio) < Zo(&2,fu0) + 1
with

G257 (1) D61 fuz) = A (s 0 4 ) 4 B (BB )

+ g A t2a Zsid+)\jd {Bg(*w3k1+kd72 NI ) NI Bgd(*w3k172 4. ) + Ry
d=2
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and where Ry := s*(Z(R1)us — R1P(u2)) € F;°p _5.(jf1o). We get in this way a sequence of functions
1,82, -, &k, 1 such that Zo(&-1, fio) < Z0(&i, fio) + 1 and where

m

§k1+1 — 57i17)\j1+(k1+1)a Z SidJr)\jd [ﬂg(*wT+k)d N ) L+ Bgd (*wr NI )] + Rk1+1
d=2

with Ry, 41 € ff7L17(2k1+3)€(ﬂ0). Here r is a natural number depending on k; that we do not specify
because its expression is not relevant. Thus, at the end of the first stage we removed the first k141 coefficients
of the asymptotic development of &y and we get &g, 11 such that Zy(&o, fro) < Z0(Ek, 41, flo) + k1 + 1.

Next, in the second stage, we begin with the function

SRR DG =B (T ) o B (T )
sz N Y gt [ﬁg(*wwkd Foee )b B (e )}
d=3

i1+Aj1—(ia+Aj2)—(k1+1
+811+ J1—(i2+Aj2)—(k1+ )aer‘rl'

The application of Lemmas A.2 and A.3 shows that the remainder belongs to F7° Lo—2(k1+2) _(f1p) where

Ly:= iy + Agjo since st TA1=(2 i) =(kitle ¢ 7 (f1). We eliminate, one by one and in this order,
the coefficients 32, 3%,. .., 6,%2 following verbatim the steps that we carried out in the first stage. (It is in
this stage that we use the inequalities iq + Agjq # i2 + Aoj2 for d = 3,4,...,m.) In doing so we get a
sequence of functions &k, 42, k43, - - - » Eky+ko+2 Such that, exactly as before, Z¢(&—1, fio) < Z0(&;, fio) + 1.

LAST STAGE:
In the final stage, since Zf;ll(kn + 1) = ¢ — a by construction, we begin with

Comar=B(w™ R 4 ) L B TR T ) L+ B (" )
+ g7 b Z glatAia [53(*wr+kd+~~~)+-..+Bﬁd(*wr+-~)} + Ryu,
d=b+1

where r is now a natural number that depends on ki, ks, ..., ky—1. Consequently, with a additional steps of
the derivation-division algorithm as we did to &y in the first stage, by using properties (b) and (c¢) we get

€ B (xR ) B (RO ) B (s )

4 g A taa Z gtatXa [ﬁg(*wf’-‘rkd"!‘a + .- ) + ...+ 6gd(*wf+a + .- )} + Ry,
d=b+1

where 7 is once again a natural number and, taking L > 0 large enough, we can guarantee that R, € F7°(fig).
Finally, after dividing by the function multiplying the coefficient 32,

e

s Tho—a=1 1 ... LI

_nb b b
sl tke—a 4 ... _ﬂa+ﬂa+1 sl tke—a ... ++ﬂkb s The—a ...
m Ptkata 4 .. Pta 4
+S—ib—Ajb+aa sld—‘r)\jd d *W + 4 + /Bd W + + R[
Z O gftko—a 4.0 T ka g tke—a .. st the—a {0

d=b+1

Accordingly, on account of iy + \jg — i — Ajp + ac |/\:/\0 =iqg+Aoja—(ipb+Aogp) > 0foralld =b+1,...,m,
by applying (a) in Lemma A.3 with v = (0,0) and thanks to the flatness of the remainder, from the above
expression we can conclude that

&

. by
(o 0 oy s - Pallio) 70
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Hence Zy(&y, fig) = 0. Consequently, due to Z¢(&;_1, fto) < Zo0(&;, fio) + 1 for all ¢, this implies that

ZO(T/( : vﬂ)aﬂ@) = ZO(gOvlaO) < éa

as desired.

Consider finally the case A\g ¢ Q. This is an easier situation than the previous one because, by Theorem A,
we know that

T(s;f1) =ty + tosT TN ftgsi2tN2 1t gimTAm L R(s: 1),

where, once again, R € F7°(fio) and, on the other hand, 0 < i1 + Aoj1 < iz + Aoj2 < -+ < im + Aojm < L
Note then that we can treat this case using the previous approach particularised with k; = ... = k,, = 0.
We obtain in this way the desired bound Zo(T"( -; 1), fio) < £. This concludes the proof of the result. ®

Remark 3.5. It is clear from its proof that Theorem C is valid if {T'(s; m}ﬂelfv is any family of functions
in ‘KS";O(W) verifying the conclusion of Theorem A. O

4 Applications

Theorem C establishes an upper bound for Zo(7"( -; i), fip). It will be also convenient to have some tool in
order to ensure a lower bound. We begin this section with a result that is addressed to this issue. It is in
fact an adaptation of a well-known technique used to study the bifurcation of zeros (see [2, Theorem 2.1]

or [9, Lemma 15] for instance).

Definition 4.1. Consider the functions g;: W =R fori=1,2,...,k The real variety V(g1, 92, .-, 9x)
is defined to be the set of i € W such that g;(i1) = 0 for i = 1, 2 ,k. We say that ¢1,92,...,9x are
independent at [i, € V(g1,92,--.,9x) if the following conditions are satlsﬁed:

(1) Every neighbourhood of fi, contains two points fi1, fi2 € V(g1, ..., gk—1) such that gi(fi1)gr(fiz) <0 (if
k =1 then we set V(g1,...,95—1) = V(0) = W for this to hold).

(2) The varieties V(g1,...,9:), 2 < i < k — 1, are such that if fip € V(g1,...,9:) and g;4+1(f0) # 0, then
every neighbourhood of [ig contains a point i € V(g1,...,g;—1) such that g;(1)g;+1(f0) < 0.

(3) If fio € V(g1) and go(jip) # 0, then every open neighbourhood of fig contains a point ji such that
91(1)g2(f0) < 0.

It is clear that if g; € ‘fl(W) fori =1,2,...,k then a sufficient condition for g1, g2, . . ., gr to be independent
at fi, is that the gradients Vg (jix), Vga(iix) - - ., Vgr(fix) are linearly independent vectors of RV*1, O

Proposition 4.2. Consider F(s; i) = SO0, 8:(1) fi(s;: /1) + fas1(s;f1), where f; € €°((0,e) x W) and
6 € €OW). If i, € V(61,02,...,0,) satisfies

(a) F(s; i) s not identically zero on (0, p) for every p € (0,¢),

(d) fi(s;fr) >0, 1 <4< n, for all (s,fr) in a neighbourhood of (0, i),
(¢) limg_yq ff*(ls( M’)L) =0, 1 <i<n, for every i in a neighbourhood of [i., and

(d) 41,02,...,0, are independent at iy,
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Proof. Fix any p > 0 and any neighbourhood U of ji,. Then, by the assumption (a), there exists s; € (0, p)
such that F(s1;fix) = fnt+1(81;[ix) # 0. Suppose for instance that F(s1;fix) > 0. Then, on account of (1)
in Definition 4.1, we can take iy € U NV (d1,02,...,0,—1) such that §,(fi1) < 0 and close enough to [, so
that, by continuity, F'(s1; fi1) > 0. Observe that

F(s;11) = 6n(j11) fr(s; 1) + frea(s; fin)-

Thus, by (b) and (c), lims_o f((ss;%ll)) = d,(f11) < 0 and we can take so € (0,s1) such that F(so;fi1) < 0.
Next, thanks to (2) in Definition 4.1, we can choose fio € U NV (01,02, ...,0n—2) with §,-1(fi2) > 0 and

close enough to fi1 so that F(s1;fiz) > 0 and F(s2;fi2) < 0. Note that

F(s;fi2) = 6n—1(f12) frn—1(s; fi2) + 0n(fi2) fr(8; fiz) + fry1(s; fi2).

Consequently, by (b) and (c), lim,_o % = 0p—1(fi2) > 0 and we can choose s3 € (0, s2) such that
F(ss3;fi2) > 0. Next we take fis € U NV (61,09,...,0,—3) with §,_2(fi3) < 0 and close enough to iz so
that F(s1;fi3) > 0, F(s2;f3) < 0 and F(ss3;i3) > 0. We repeat this process n — 2 times after which we
find a parameter ji,11 € U and 0 < s,41 < 85 < ... < 83 < 81 < p, such that (—=1) 1 F(s;;lpy1) > 0
forall t =1,2,...,n+ 1. By applying Bolzano’s theorem we can assert the existence of at least n zeros of

F(-;fint1) inside the interval (0, ). Accordingly Zo(F'( -; i), fix) = n and this concludes the proof. [ |

We prove next an auxiliary result that enables to straighten globally the separatrices of a saddle de-
pending on parameters. This result, which is well-known to be true locally, is relevant with regard to the
applicability of Theorems A and B. It will be essential, for instance, in the proof of Corollaries D and E, in
which we do not have any assumption regarding the separatrices of the saddles.

Lemma 4.3. Consider a ¢°° family {X,},crn of planar vector fields defined in some open set W of R?.
Let us fix some vy € RY and assume that, for all v =~ vy, X, has a hyperbolic saddle point at p, € W
with (global) stable and unstable separatrices S and S, , respectively. Consider two closed connected arcs
* c Sl,io, having both an endpoint at p,,. In case of a homoclinic connection (i.e., St = S, ) we require
additionally that ¢+ N0~ = {p,,}. Then there exists a neighborhood V of ({T UL~) x {v} in R? x RN and
a € diffeomorphism ® : V — ®(V) C R? x RN with ®(x,y,v) = (¢, (x,y),v) such that

(S x{wHnNV)c{x =0} x{v} and ®((S, x {vr})NV)C {y =0} x {v}].
In other words, (¢,)«(X,) = X, where Xy(x,y) =aP(x,y; )0, +yQ(z, y; v)0y, with P,Q € € (®(V)).

Proof. The existence of such a diffeomorphism in a neighbourhood U of (p,,,vs) € RV*2 is well-known
(see for instance [9, p. 11] or [28, p. 92]). The proof of this local result is based on the existence and
smoothness of the center-stable and center-unstable manifolds (see [8, 11]) for the system of differential
equations in R? x RY obtained by adding the equation = 0 to (4,9) = X, (x,%), and the fact that (in this
context) these manifolds are unique (see [23, p. 165]). Let ®1: U — &1, (U) C RV*2 be this diffeomorphism
that straightens locally the separatrices S*. We also denote by X the vector field associated to the above-
mentioned system in RV+2 and by ¢ its flow. Furthermore let ) be the flow of the “straightened” vector
field (@1 )+(X) that leaves the coordinate planes invariant.

The idea is to extend &1 : U — RV *? taking advantage of the fact that small enough neighbourhoods of
£+ x {rp} and £~ x {vg} will be mapped by ¢ (in forward and backward time, respectively) inside U. With
this aim in view we take 6 > 0 and consider the open set B, C R? in Figure 5. The boundary of B, consists
in four (pieces of) trajectories of the flow v, together with four segments (inside = +6 and y = +4) where
the straightened vector field is transversal. We define B:= {(p,v) € R¥N*2:p e B,,|v —vo| < 3§} C @1(U),
which is an open neighbourhood of (0,0, 1) by the continuous dependence with respect to initial conditions.
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Figure 5: Slice v = 14 of the sets involved in the construction of V.= M, U E U M_.

Next we take a 4> bump function p: RN*2 5 R such that plg =1 and p|, . =0, where A is an open
set with B € A € ®1(U), and define Y := p (®1),(X), which is a complete vector field in RN*+2 that leaves
invariant v = constant. By abuse of notation we also refer to the flow of this new vector field by .

We define E:= (®)~!(B), which is an open neighbourhood of (py,, ) € RVNT2. Since Y|z = (®1).(X),
we have that ® is a conjugacy between the flows of X[, and Y|, that we shall denote by ¢r and 9p,
respectively. We take open neighbourhoods L* of £+ x {1} in RV*2, see Figure 5, such that LY NL~ C E,

LYNOE C (o) ' (BNn{y=46}) and L™ NIE C (®) (BN {x = d}).

Similarly we take open neighbourhoods T+ and T~ of {x = 0,y > 0} X {rp} and {y = 0,z > 0} x {vp}
in RV*2, respectively, such that Tt NT~ C B,

TTNOB C{y=4}and T~ NOB C {x = §}.

Hence, in particular, L* NOF is a transversal section for X and T N @B is a transversal section for Y. This
will be a key point in the forthcoming reasoning.

Let us denote the endpoint of £+ not being p,,, by p+ and take 7_ < 0 < 7, such that (74, (p+,v0)) € E.
By the continuous dependence with respect to initial conditions there exists a neighbourhood Wy of (p4, vg)
such that

(CL) QO(T:‘UW:I:) Cc F.
(b) ¢(< 0,272 >, W) C L*.

(¢) My:= (< 0,7+ >, W) are disjoint.

(d) 1/)( <0,=2m% >, @y (p(< 0,272 >, W) N E)) C T,
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(Here < a,b > stands for the smallest closed interval containing a,b € R.)
For a given z € V:= M, UE U M_ C RN*2 we define

D(2):=(—to, Pr(p(ts,2)),

where ¢, is any ¢t €< 0,71 > such that ¢(¢,2) € E for z € My, whereas t, = 0 for z € E. We must prove
that the function ®: V — RV*2 is well defined, smooth and injective.

Let us show first that ® is well defined. To this end we remark that My N E # ). Let us fix for instance
any z € M, and suppose that

(p(t1,2) =:w; € F and @(tg,z) =:wy € F with t5 > t; > 0.

Then we must show that (—t1, ®r(w1)) = ¥(—t2, Pr(ws2)). Note that we = p(ty — t1,w1). Moreover,
thanks to the inclusion in (b), the definition of M, in (c¢) and the transversality of X at LT NOFE, it turns
out that ¢(t,w1) € E for all t € [0,t5 — t1]. Likewise, due to (d) and the transversality of Y at Tt N 9B, it
follows that ¥(—t, @1 (¢(t,w1)) € B for all t € [0,¢2 — t1]. Accordingly, using also that ®;, is a conjugacy
between ¢ and ¥p,

Y(ty — b2, Pr(wa)) = (t1 — ta, Pp((tz — t1,w1)) = ¥ (t — t2, Pr(pp(ts — t1,wr))
= Or(pr(t1 —t2, pE(ta — t1,w1)) = Cr(w1),

that implies ¥(—t1, @r(w1)) = Y(—t2, P (w2)), as desired.

Let us turn next to the smoothness of ®. To this end we observe that we can take t, = 7+ for any
z € My, which implies that ® is smooth on M, U M_ because ¢(1y, - ), ¥(—7x, -) and &, are smooth.
The smoothness on E is clear since ®|, = @1 by definition.

With regard to the injectivity we take 21,29 € V with 21 # 29 and we claim that then ®(z1) # ®(z2).
There are four cases to consider:

1. 21,22 € E. The claim is obvious in this case because ®|, = ®r.

2. z1,29 € My. Since we can take t,, = t,, = 74, the claim follows from the injectivity of ¢(74, -),
(=74, -) and D

3. 21 € ML \ E and 2 € E. Due to ®(z3) € B, it suffices to show that
®(ML\ E)NnB=0. (34)

We take z € My \ F, so that ¢(t,,2z) € L* N E with t, €< 0,7+ > and w:= ®1(p(t.,2)) € T+ N B.
By contradiction, if ®(z) = 1(—t,,w) € B then, due to (d) and the transversality of Y at T* N 9B,
the compact set K = {¢(—t,w) : t €< 0,t, >} is inside B. However C = {¢(t,2) : t €< 0,t, >}
intersects OF and it is easy to verify that ®(C') C K, which contradicts ®(OF) C dB.

4. 21 € My \ E and zp € M_\ E. We have ®(My) C T* and thus, from (34), ®(My \ E) C T*\ B. On
account of Tt NT~ C B, the claim follows in this case as well.

Finally we remark that, by construction, if z = (p,v) € R? x RY then ®(z) = (¢, (p), ). This completes
the proof. m

Proof of Corollary D. Consider the given vy € U C RY and let us fix that the outer boundary II, has k
hyperbolic saddles, p.,p2,...,p", that for convenience we label according to the sense of the flow with the
first one not being in £,. (Here we use the assumption that II, is a persistent polycycle, see Definition 1.11).
Denote the hyperbolicity ratio of p!, by A;(v) and set A\ := X\;(p). Let us suppose first that k > 2. (We
postpone the case k = 1 because the proof is slightly different.)
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)\/\.pi
J
Figure 6: Following the proof of Corollary D, polycycle II,, for kK =5 in the Poincaré disc (left)
and a v-slice of the sections ¥; and sets V; (right).

Since by assumption the infinite line £, is invariant for the flow of p(X,), if p!, € £, then exactly one
of its separatrices is contained in f,. (This easily implies that IT, has an even number of singularities at
infinity, assembled in pairs, see Figure 6.) For each ¢ = 1,2,...,k we place a transversal section 3; in the
heteroclinic connection between p®, and pit!. In addition we denote the Dulac map and the Dulac time
of X, from ;1 to 3; by D;(-;v) and T;( -;v), respectively. Thus, setting D;:=D;0D;_10---0Dy, the
return time from Yg:= X to X is given by

T(s) =Ti(s) + (To 0 D1)(s) + ...+ (Th o Dy_1)(s). (35)

In order to study each Dulac time it is more convenient to compactify the vector field X, by means of a
projective change of coordinates rather than to use the Poincaré compactification p(X,). To this end we
note that, since the center is not global, there exists a straight line £,:= {ayx + asy = [} not intersecting
P, for all v ~ vg and such that p?, ¢ £, N{y for all i = 1,2,..., k. Without lost of generality, by means of
a rotation and a translation, we can assume that ¢, = {y = 0}. That being said we perform the projective
change of coordinates {u = ¥,v = %}, which brings X, (z,y) to

Xy (,0) = oy (Pl v30)0, 4 0Q(w,v51),).

Here d > 2 is the degree of X, whereas P and Q are polynomials with the coeflicients depending ¥’° on v.
(Let us remark that X, and X, are conjugated, which is essential to study the return time, whereas X,
and p(X,) are only equivalent.) Note that in doing so the infinite line is mapped to {v = 0}. On account
of this, by applying Lemma 4.3, for each ¢ = 1,2,..., k there exists a neighbourhood V; of (piuo, vp) and a

¢ diffeomorphism ®;: V; — ®;(V) with ®;(z,y,v) = (¢} (x,y),v) such that (¢)),(X,|v.) = X%, where
d—1 ifp’ €ty
0 ifp ¢ leo,

and P;,Q; € €(®;(V;)). We choose ¢ > 0 small enough so that 2¢ < min(1,\}) for all i = 1,2,...,k,
which in particular implies that %9, ,_ = {(0,0)}. Then, for each i =1,2,...,k,
07

X,ﬁ(u,v) =

(upi(u,v; )0y + vQ;i(u, v; u)ay) with x; =

phi
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e we apply Theorem B to the family { X!, v~ 1o} with L = A} + 2¢ to conclude that the Dulac map D;

1284

of the hyperbolic saddle p!, from ¥, ; to ¥; can be written as
Di(s;v) = Ajos™ ™) + F53 1, (1) = s (Afy + F2* (o)),

where Al (v) > 0. (In the second equality above we use Lemmas A.2 and A.3.) Note in particular
that D, € ]—";\’gfs(yo) C F>(vp) due to \§ > 2e.

e we apply Theorem A with L = ¢ and n = (n1,n2) = (0, k;) to show that the Dulac time T; from ¥;
to X; writes as 4 ,
T;(s;v) =T log s + Tyy + F2(vo), (36)

where T¢(v) = W}Oﬂ’) > 0 if pl, ¢ o and, due to d > 2, Ti(v) = 0 if p’, € loo.

Since Dy € F2°(1p), an easy application of Lemma A.2 shows that
Da(s) = (5™ (A + F2= (1)) (A2 + FF () = A2(Alg) 5™ (1 + F22(0))* (1 + FX (o)
= AZ(AL 2 (14 F () (1+ FE (v0)) = ™ (A30(Ad)™ + F ()
where in the third equality we use that the map (s,v) + (1 + s)*2(*) — 1 belongs to F°(1p). Similarly,
Di(s) = sM N (Al + F2P(vo)) for some Al, >0,
so that D; € F2*(10). Hence, by applying Lemma A.2 again, from (36) we get that if s € {1,2,...,k} then
(T 0 Di—1)(s) = Tylog s + Tio + T log Ady + Fo2, (v) with Ty:= T [T}=) Ae =0
and where we set Dy = Id for the sake of convenience. This equality, together with (35), shows that
T(s;v) = To(v)log s + Too(v) + F4 (vo) with To:= S8 T,

Observe that, and this is the key point, To(v) = Ty (v) = T2 (v) > 0 due to pl, ¢ £ by construction. Hence,
from (f) and (g) in Lemma A.2,

30T (s;v) = To(v) + sFoxer_(v0) = To(v) + Fori (vo) — To(vo) # 0 as (s,v) — (0,vp).

Therefore we can assert the existence of some § > 0 such that if s € (0,0) and ||v — || < § then
95T (s;v) # 0. Consequently Zo(T"(-;v), 1) = 0 and we claim that this implies Crit((IL,,, X,,), X)) = 0.
By contradiction, if the criticality is not zero then there exists a sequence {v,, }ien, where each v, is a
critical periodic orbit of X,,., such that v; — vy and dg(v,,,11,,) — 0 as i — 4o00. Then, since II, varies
continuously at vy and

du (71/1" Hw) <dm (’7%: ) HVO) +dy (Huia Hl/o)a

we have dg(v,,,I1,,) — 0 as i — 400, which contradicts that Zo(T'(-;v),) = 0. (Let us remark that
this last implication is not true without the assumption that II, varies continuously at vy because the
parametrization 7(s;v) of the transversal section Xy is taken such that 7(0;v) € II, for all v.) This proves
the claim and so the result for the case & > 2 is true.

Let us consider finally the case k = 1, i.e., assume that II,, is a (finite) saddle loop. In this case we place
two transversal sections X7 and X5 in the heteroclinic connection. By applying Lemma 4.3 and Theorem A
exactly as we did before we can assert that the Dulac time from ¥; to X5 is Tp(s;v) = Ty log s+Too+F° (o)
with Ty = Tp(v) > 0. Then the return time from ¥; to ¥, is given by T' = Tp + Tr, where Tgr(s;v) is
the regular time of —X,, from %; to Xg, which is a €°° function in a neighbourhood of (s,v) = (0,v) by
Lemma 2.4. Hence s9,T'(s;v) = To(v) 4+ F°(vo) + s0sTr(s;v) and lim (s ) (0,00) 59sT'(s;v) = To(vo) # 0.
Then, exactly as before, this shows the validity of the result for £k = 1 as well and completes the proof. B
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Figure 7: Following the proof of Corollary E, phase portrait of X, in the Poincaré disc with the
shape of the period annulus of the center at ¢, and the placement of the transversal sections in
the outer boundary II,. (To be more precise V; and V5 are in fact open sets in RP? x U.)

Proof of Corollary E. Note first of all that we can assume that both hyperbolic saddles are at the infinite
line 4, because otherwise the result follows by applying Corollary D.

For each v € U, let &2, be the period annulus of the center ¢, and denote the two saddles at its
outer boundary II, by p. and p2. (Here we use the assumption that II, is a persistent polycycle, see
Definition 1.11). Let us also denote the respective hyperbolicity ratios by Ai(v) and Aa(v). It is well
known that A;(v)A2(v) = 1 for all v € U, otherwise the return map defined near the polycycle II, cannot
be the identity. Moreover the center is not global since the infinite line /., is invariant for the flow of
p(X,) by hypothesis and the two singularities in II, are hyperbolic saddles. Thus there exists a straight
line ¢, := {a1z + apy = B} not intersecting &, for all v ~ vy and such that p* ¢ £, Nl for k = 1,2.
Without lost of generality, by means of a rotation and a translation, we can assume that ¢, = {y = 0},
so that the shape of the period annulus &, in the Poincaré disc is as we draw in Figure 7. We place a
transversal section ¥; in the finite heteroclinic connection between the saddles and denote by Txr(-;v) the
corresponding return time for X,. Note that T is a parametrization of the period function of the center ¢,
near the outer boundary of &2,. In order to study Tg we take an auxiliary transversal section Y5 in £, so
that T'= T} + T, where T} is the Dulac time of X, from ¥ to X5 and 75 is the Dulac time of —X,, from
31 to 3a. Our goal is to apply Theorem A to obtain the asymptotic development of T and T5. With this
aim in view we perform firstly the projective change of coordinates {u = %, v = %}, that brings X, (x,y) to

X, (u,v) =

) (P(u,v; )0y + vQ(u, v; V)8v> .

Here d > 2 is the degree of X,,, whereas P and Q are polynomials with the coefficients depending 4> on v. By
an abuse of notation we still denote the two hyperbolic saddles of X,, at v = 0 coming from the two vertices
of TT,, at £+, by p. and p2. Secondly, by Lemma 4.3, for k = 1,2 there exists a neighbourhood V}, of (pl’fo, )
and a ¢ diffeomorphism ®y: Vi, — @5 (Vi) with @ (z,y,v) = (¢F(x,y),v) such that (¢%).(X,|v,) = XF,
where

Xf(u, v) = (upk(u, v; )0y + vQp (u, v; u)ay)

pd—1

with Py, Qr € €°(®x(V%)). Note in addition that each X* has a hyperbolic saddle at the origin with
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hyperbolicity ratio A\x(v). It is important to observe at this point that T, is the Dulac map of —X?2 and
that, for this vector field, the hyperbolicity ratio of the saddle is 1/A\3(v) = A1(v). Therefore, and this
is crucial, we will apply Theorem A to two different families of vector fields that have saddles with equal
hyperbolicity ratio A(v):= A (v) = 1/A2(v). In doing so for X!, setting Ao := \(vp) and taking n = (0,d—1),
we have a well defined formal series

> T(p)sttAI if Ao ¢ Q,
N (1,7)EAn
Ti(s;v):= Ty (v)logs + ’ , _
Y T(wals);v) s if A € Q,
(i,5)€An

which is asymptotic to T1(s;v) as (s,v) = (0,1p). Note that Tj = 0 because n # (0,0) due to d —1 > 0
(otherwise the given vector field X, would be linear). Similarly, by applying Theorem A to —X?2 we have
a well defined formal series

LT TR iAo ¢ Q.
To(s;v):=T2(v)log s + T ' .
0 > Tfj (wa(s);v) AT Ny € Q,
(4,5)EAn

which is asymptotic to Ty (s;v) as (s,v) — (0,) and where T§ = 0 again. Note that if Ay € Q then

Tfj(w;l/) = Z Tik_rp,j+rq(1/)(l +aw)" for k=1,2,
re,gzﬁ_;m

17

where a(v) = p—A(v)q and Ao = p/q with ged(p, ¢) = 1. Thus, setting T3 := T}, + T2 and T3, := T}, + T}

S TE(v)sttA if Ao ¢ Q,
Tr(siv)i=Ti(siv) + To(siv) = {7
R(S;V):= L1(s7V 2(83V) = ) .
> Tfj (wa(s);v) AT Ny € Q,
(i,j)e/\n

is a well defined formal series that is asymptotic to Tr(s;v) = T1(s;v) + Ta(s;v) as (s,v) — (0,1p) in the
sense established by Theorem A. We use at this point the assumption that the center g, is non-isochronous.
On account of this, by applying the result of Saavedra and Mardesi¢ in [17] we can assert that the formal
series T' r(8;vp) is not constant. This implies that ¢,,, computed as explained in Definition 1.8 with respect
to the formal series Tg(s;v), is finite (i.e, £,, € N). Then the application of Theorem C (see Remark 3.5)
shows that

Zo(Tr(+5v),10) < by, < 00

and, since II,, varies continuously at v, Crit((Hl,O,X,,o), X,,) < 4y,. This shows the validity of the result in
case that the period annulus is unbounded and completes the proof because, as we already mentioned, the
bounded case follows by Corollary D. ]

We conclude this section by pointing out that, even in an unfolding of polynomial centers, the fact that
the outer boundary of its period annulus is a hyperbolic polycycle varying continuously does not imply its
persistence as required in Corollaries D and E. Indeed, let us consider the 1-parametric family of quadratic

differential systems
T =—-y+zy,
X, { Y Y

y=ax+ (v—2)a%+ 2%

which has a center at the origin for all v € R. Figure 8 displays its phase portrait in the Poincaré disc for
v =~ 0. (The reader is referred to [15] for the complete bifurcation diagram of the phase portrait of the
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Figure 8: Phase portrait of the unfolding {X, ;v = 0} in the Poincaré disc, where the origin is
shifted to the left for convenience.

quadratic centers.) One can verify that the outer boundary II, of its period annulus varies continuously at
vy = 0. Following the notation in Definition 1.11, the hyperbolic polycycle I' is the triangle with an edge
at infinity and it occurs that both separatrix connections with the finite saddle are broken for v # 0. The
outer boundary becomes a saddle loop for ¥ < 0 and an unbounded 2-cycle for v > 0. Our goal for further
research is to develop tools to study the criticality of this type of unfolding.

A Results about the class FX (W)

In this appendix, for reader’s convenience, we collect some technical results from [19] about the class of
functions FX (W) that we use in the present paper.

Lemma A.1. Let U be an open set of RN, K € Z>o and g(s; ) € €5 (U) such that, for some W C U and
LEeR, g(s;u) € FE(W). If L > K then g extends to a €% -function §, defined in some open neighbourhood
of {0} x W in RNTY and satisfying 0V §(0; ) = 0 for all u € W and v € Z]ZVO+1 with [v] < K.

Lemma A.2. Let U and U’ be open sets of RN and RY respectively and consider W C U and W' C U’.

Then the following holds:

(a) FE(W) c FE(W) for any W ¢ W and (), FE(W,,) = FE (U, Wa).

(b) FE(W) c FEW x W").

(¢) €K (U) c EX(U) c FEW).

(d) If K > K" and L > L then FK(W) c FE'(W).
) FL

(e) Fi* (W) is closed under addition.

(f) If f € FE(W) and v € ZNF with [v] < K then 8" f € F_ ) (w).

(9) FEW)- FEW) € FE_(W).

(h) Assume that ¢: U' — U is a €% function with p(W') C W and let us take g € FE(W') with L' > 0

and verifying g(s;n) > 0 for allm € W' and s > 0 small enough. Consider also any f € FE(W). Then
h(s;n) = f(g(s;n); 6(n)) is a well-defined function that belongs to F& ,(W').

36



Next result gathers some interesting properties of the Ecalle-Roussarie compensator. In the statement
we use the notation 27 := max(z,0) and x~ := max(—z,0) for, respectively, the positive and negative part
of a given € R. Note in particular that then x = 2 — 2~ and |z| =2t + 2.

Lemma A.3. The following assertions hold:

(a) For each compact set I C R and v € 7%, there exists a constant C > 0 such that

|0"w(s; )| < C’s_o‘+_”0|logs\|”‘+1for alla €I and s € (0,1/e).

Moreover limg_, o+ y = uniformly on o € R so that, in particular, lim, o) o+ ,0) ﬁ =0.

_1
w(s;o

(b) For each e >0, (s,a) — w(s;a) belongs to F2L({a < €}) and (s;a) — belongs to F>2(R).

1
w(s;a)

(c) For each LER and £ € Z, (s,a, ) + sPwh(s; ) belongs to Fi°({(a, B) € R?; B> L+ ¢Ta™}).

(d) Ifp(z;p) € €5 (U)[z,271], where U is some open set of R | then the function (s, a, 8, 1) = sPp(w(s; a); )
belongs to FX({(a, B, 1) ER2xU; a=0,8> L}).
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