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Abstract. Using the Euler-Jacobi formula there is a relation between
the singular points of a polynomial vector field and their topological
indices. Using this formula we obtain the configuration of the singular
points together with their topological indices for the polynomial differ-
ential systems ẋ = P (x, y), ẏ = Q(x, y) with degree of P equal to 2
and degree of Q equal to m when these systems have 2m finite singular
points.

1. Introduction and statement of the main results

Consider in R2 the polynomial differential system

(1) ẋ = P (x, y), ẏ = Q(x, y),

where P (x, y) and Q(x, y) are real polynomials of degrees 2 and m, respec-
tively, or simply of degree (2,m).

The motivation of our paper comes from the fact that for the planar
quadratic polynomial differential systems (i.e. the ones of degree (2, 2)) the
characterization of all configurations of the indices of the singular points
of all systems that have four singular points is the well-known Berlinskii’s
Theorem proved in [2, 6] and reproved in [4] using the Euler-Jacobi formula.
More precisely, the Berlinskii’s Theorem can be stated as follows: Assume
that a real quadratic system has exactly four real singular points. In this
case if the quadrilateral formed by these points is convex, then two opposite
singular points are anti-saddles (i.e. nodes, foci or centers) and the other
two are saddles. If this quadrilateral is not convex, then either the three
exterior vertices are saddles and the interior vertex is an anti-saddle or the
exterior vertices are anti-saddles and the interior vertex is a saddle.

We want to extend the Berlinskii’s Theorem from degree (2, 2) to degree
(2, 2m) for all m ≥ 2, i.e., we shall obtain all configurations of the polynomial
differential system of degree (2,m).
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Assuming that the differential system (1) has 2m finite singular points,
then using the Euler-Jacobi formula we obtain a relation between the finite
singular points of the polynomial differential system (1) and the topological
indices of their singular points.

In the complex projective plane, and taking into account all the multiplic-
ities of the singular points of a polynomial differential system, if the number
of singular points is finite, then it is at most 2m, see for more details the
Bézout’s Theorem (see [7] for a proof of this theorem). When all the sin-
gular points have multiplicity one and are located in the finite part of the
projective space, we can apply the Euler-Jacobi formula (see [1] for a proof
of such formula). For system (1) if the set of zeroes contains exactly 2m
elements, then the Jacobian determinant

J =

∣∣∣∣
∂P/∂x ∂P/∂y
∂Q/∂x ∂Q/∂y

∣∣∣∣
evaluated at each zero does not vanish, and for any polynomial R of degree
less than or equal to m− 1 we have

(2)
∑

a∈A

R(a)

J(a)
= 0.

We denote by A the set of finite singular points of system (1). Given a

finite subset B of R2, we denote by B̂ its convex hull, by ∂B its boundary,
and by #B its cardinal.

Set A0 = A and for i ≥ 1 Ai = Ai−1 \ (Ai−1 ∩ ∂Âi−1). There is an integer
q such that Aq+1 = ∅.

We say that A has the configuration (K0;K1;K2; . . . ;Kq) where Ki =

#(Ai ∩ ∂Âi).

We are also interested in the study of the (topological) indices of the
singular points of system (1). We say that the singular points of system (1)

which belong to Ai ∩ ∂Âi are on the i-th level.

We recall that if we assume that #A = 2m then the Jacobian determi-
nant J is non-zero at any singular point of system (1), consequently the
topological indices of the singular points are ±1, and then the number Ki

of the i-th level is substituted by the vector (n1i +, n
2
i−, . . . , nmi−1

i +, nmi
i −),

where nji are positive integers such that
∑

j n
j
i = Ki. More precisely, since

Ai∩∂Âi is a convex polygon, these numbers take into account the number of
consecutive points with positive and negative indices, viewing the ith level
oriented counterclockwise: n1i corresponds to the string with largest number
of consecutive points with positive indices. If there are several strings with
the same number of points we choose one such that the next string (that
has points with negative indices) is as large as possible. We continue the

process with n2i and so on. Furthermore, when Ai ∩ ∂Âi is a segment, the
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numbers take into account the number of consecutive points with positive
indices, beginning at one of its endpoints.

We denote by i(a) the index of a singular point a ∈ A of system (1). To
introduce the main results of the paper we introduce some notations

4(k) = (4; . . . ; 4), ∆− = (+, 2−), ∆+ = (2+,−), Γ = (2+, 2−),

Rk = (+,−, . . . ,+,−), Ok
+ = (2+,−,+,−,+, . . . ,+,−),

Ok
− = (+, 2−,+,−,+, . . . ,+,−),

where k is the length of the strings 4(k), Rk and Ok
±. We take the convention

that O1
− = − and O1

+ = +.

In our notation Berlinskii’s Theorem corresponds to the case m = 2 and
can be stated as follows.

Theorem 1 ( Berlinskii’s Theorem). For planar quadratic polynomial dif-
ferential systems such that #A = 4 the following statements hold:

(a)
∑

a∈A i(a) = 0 or |∑a∈A i(a)| = 2.

(b) If
∑

a∈A i(a) = 0, only the configuration (4) = R4 is possible and
there are examples of such configuration.

(c) If |∑a∈A i(a)| = 2, only the configurations (3) = (3+, O1
−) and (3) =

(3−, O1
+) are possible and there are examples of such configurations.

With the notation introduced above we can state the first main theorem
in the paper that deals with m ≥ 3 odd.

Theorem 2. For planar polynomial differential systems of degree (2,m)
such that #A = 2m with m ≥ 3 odd, the following statements hold.

(a)
∑

a∈A i(a) = 0.
(b) Only the following configurations are possible

(i) (2m) = R2m;

(ii) (4(j); 2m − 4j) = (Γ1; . . . ; Γj ;R
2m−4j) for j = 1, . . . , (m − 3)/2

where Γk = Γ for k = 1, . . . , j;
(iii) (4(j); 3; 2m − 4j − 3) = (Γ1; . . . ; Γj ; ∆+, R

2m−4j−3) for j even

and (4(j); 3; 2m − 4j − 3) = (Γ1; . . . ; Γj ; ∆−, R2m−4j−3) for j
odd, where j = 0, 1, . . . , (m− 3)/2 and Γk = Γ for k = 1, . . . , j.

There exist examples of all these configurations.

The proof of Theorem 2 is given in section 2. Note that the particular
case m = 3 was proved in [4].

Now we introduce the second main result of the paper which deals with
the case m ≥ 2 even.

Theorem 3. For planar polynomial differential systems of degree (2,m)
such that #A = 2m with m ≥ 2 even, the following statements hold.
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(a)
∑

a∈A i(a) = 0 or |∑a∈A i(a)| = 2.
(b) If

∑
a∈A i(a) = 0, only the following configurations are possible

(i) (2m) = R2m;

(ii) (4(j); 2m− 4j) = (R4
1; . . . ;R4

j ;R2m−4j) for j = 1, . . . , (m− 3)/2

where R4
k = R for k = 1, . . . , j.

There exist examples of such configurations.
(c) If |∑a∈A i(a)| = 2, only the following configurations are possible

(iii) (4(j); 3; 2m − 4j − 3) = (S1+;S2−; . . . ;Sjδj ; 3(−δj);O2m−4j−3
− )

or (4(j); 3; 2m−4j−3) = (S1−;S2+; . . . ;Sj(−δj); 3δj ;O
2m−4j−3
+ )

for j = 1, . . . , (m − 3)/2, where Sk = 4 for k = 1, . . . , j and
δj = + if j is odd and δj = − if j is even.

There exist examples of such configurations.

The proof of Theorem 3 is given in section 3. The particular cases m = 2
is the well-known Berinskii’s Theorem and m = 4 was proved in [9].

2. Proof of Theorem 2

First of all we observe that if a configuration exists for a polynomial vector
field X with degrees (2,m) and #A = 2m, then it is possible to construct
the same configuration but interchanging the indices of the singular point,
i.e. the points with index +1 become with index −1 and vice versa. For
doing that it is enough to take Y = (−P,Q) instead of X = (P,Q).

In the proof of Theorem 2 we will denote by {p1, . . . , p2m} the set of
points of A if there is no information about their indices, by {p+1 , . . . , p+k }
the set of points of A with positive index, and by {p−1 , . . . , p−2m−k} the set
of points of A with negative index. Also we will denote by Li,j the straight
line Li,j(x, y) = 0 through the points pi and pj where i ∈ {1, . . . , 2m}, and

by Li a straight line through a point pi ∈ ∂Â such that for all q ∈ A we
have Li(A) 6= 0 and it is zero only at q.

We will also use the following auxiliary result proved in [3].

Lemma 4. Let X = (P,Q) be a polynomial vector field with max(degP, deg Q) =
n. If X has n singular points on a straight line L(x, y) = 0, this line is an
isocline. If X has n+ 1 singular points on L(x, y) = 0 then this line is full
of singular points.

2.1. Proof of statement (a) of Theorem 2. It was proved in [8] that
in the case of polynomial vector fields of degree (2,m) with m odd it holds
that

∑
a∈A iX(a) = 0. This proves statement (a).

2.2. Proof of statement (b) of Theorem 2. By statement (a) we have
m points with positive index and m points with negative one. Note that
configurations (2m−1; 1), (2m−2; 2), (2m−3; 3), (2m−4; 4), (2m−4; 3; 1),
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(2m−5, ∗), . . . , (5; ∗) are not possible because any convex hull of 2m−1, 2m−
2, . . . , 5 points on a conic has at most four points in the boundary of the
convex hull except for the ellipse, but in the case of the ellipse cannot be
points in the 1–level. Furthermore, the unique possible configurations of
the form (3; ∗) are (3; 2m − 3). Indeed, since the polynomial P has degree
2, P (x, y) = 0 is a conic and the 2m finite singular points of system (1)
are on this conic. Therefore any real conic (ellipse, parabola, hyperbola,
two parallel straight lines, two straight lines intersecting in a real point,
one double straight line or one point) do not allow the configuration of
the form (3; ∗; ∗). In a similar manner a configuration of the form (4; 5; ∗),
or (4; 4; 5; ∗) or (4; 3; ∗; ∗). Clearly configurations of the form (2; ∗) cannot
occur because the 2m singular points would be on a straight line, and by
Lemma 4 this straight line will be full of singular points, a contradiction.
Moreover, configurations of the form (1; ∗) have no meaning. In short, the

unique possible configurations are (2m), (4(j); 2m− 4j − 4), (3; 2m− 3) and

(4(j); 3; 2m − 4j − 3) for j = 1, . . . , (m − 3)/2. Moreover we will show that
each configuration mentioned above is realizable.

We will study each configuration separately.

Configuration (2m): Assume that the subscripts of the points in A are in

such a way that p1, . . . , p2m are ordered in ∂Â in counterclockwise sense.
Also we consider the subscripts in Z/2mZ. Take

Ci(x, y) =
m−2∏

j=0

Li+2j,i+2j+1, for j = 1, 2, . . . , 2m.

Then the Euler Jacobi formula applied to Ci yields

Ci(pi+2m)

J(pi+2m)
+
Ci(pi+2m+1)

J(pi+2m+1)
= 0.

Since all the points p1, . . . , p2m are in an ellipse, the polynomial Ci(x, y) has
the same sign on the two points pi+2m and pi+2m+1. So J(pi+2m)J(pi+2m+1) <
0 for all i. Hence the indices of pi and pi+1 are different and the configuration
of A must be (2m) = (+,−, . . . ,+,−) = R2m.

The configuration R2m can be realized intersecting an ellipse with m
parallel straight lines each one having two points in the ellipse.

Configurations (4(j); 2m− 4j − 4) for j = 0, 1, . . . , (m− 3)/2. We will only
prove the cases j = 0 and j = 1 since the other cases are done in a similar
manner. So, we study the cases (4; 2m− 4) and (4; 4; 2m− 8).

Configuration (4; 2m− 4). Clearly the configuration (4; 2m− 4) only can be
realizable being P (x, y) = 0 a hyperbola or a conic formed by two straight
lines which intersect.
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First we prove it for the case when P (x, y) = 0 is a hyperbola. Since all
the singular points lie in a hyperbola and in the 1st-level of A we must have
2m− 4 points, it is clear that two points are in one branch of the hyperbola
and the other 2m−2 points in the other branch of the hyperbola. Denote by
p1, p2 the points in one branch of the hyperbola (ordered in clockwise sense)
and by p3, . . . , p2m the remaining points which are in the other branch of the
hyperbola and ordered in counterclockwise sense. Applying the Euler-Jacobi
formula to

C(x, y) =
m−2∏

j=0

L3+j,2m,

and taking into account the convex hull of p1, p2, p3, p4 and the convex hull
of p5, . . . , p2m we get that p1 and p2 have different indices. Now applying
again the Euler-Jacobi formula successively to

Ck(x, y) = L1,2

m−2∏

j=0,j 6=k

L3+j,2m−j ,

with k = 0, . . . ,m− 2 we get that p3+k and p2m−k have different indices for
k = 0, . . . ,m − 2. Without loss of generality we can assume that p3 = p+3
and p2m = p−2m. Moreover, applying the Euler-Jacobi formula to

C(x, y) = L2,2m

m−2∏

j=1

L3+j,2m−j ,

we get that p1 and p3 have the same index (because the number of straight
lines is m− 2 which is odd) and so p1 = p+1 and p2 = p−2 . Finally, applying
the Euler-Jacobi formula to

Ck(x, y) = L1,2

k−1∏

j=0

L3+j,2m−j
m−k−3∏

j=0

L5+j+k,2m−j−k,

for k = 0, . . . ,m − 3 we get that pk = p+k for k odd and pk = p−k for k
even. Hence the unique possible configuration is (2+, 2−; +,−, . . . ,+,−) =
(Γ, R2m−4).

If the conic is the product of two intersecting straight lines at the real point
p, by Lemma 4 on each straight line we must have exactly m points, and the
point p on every straight line separates 1 point from the other m− 1 points
of the same straight line. In this configuration we can repeat the arguments
done on the hyperbola for obtaining the configuration (Γ, R2m−4).

The configuration (Γ, R2m−4) can be realized intersecting the hyperbola
x2 − y2 = 1 by the m− 1 straight lines x = −m, 2, 3, . . . ,m.

Configuration (4; 4; 2m − 8). The configuration (4; 4; 2m − 8) only can be
realized being P (x, y) = 0 a hyperbola or a conic formed by two straight
lines which intersect. Since the proof in both cases follow the same lines,
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we only do it for the hyperbola. In that case, observe that since all the
singular points lie in a hyperbola and in the 1st-level and 2nd level of A we
must have four points, it is clear that four points are in one branch of the
hyperbola and the other 2m−4 points in the other branch of the hyperbola.
Denote by p1, p2, p3, p4 the points in one branch of the hyperbola ordered
in clockwise sense and by p5, . . . , p2m the remaining points which are in
the other branch of the hyperbola and ordered in counterclockwise sense.
Applying the Euler-Jacobi formula to

C(x, y) = L1,4

m−3∏

j=0

L5+j,2m−j and C(x, y) = L2,3

m−3∏

j=0

L5+j,2m−j ,

we get that p2 and p3 have different indices and p1 and p4 have different
indices. Moreover, applying the Euler-Jacobi formula to

C(x, y) = L1,4L2,3

m−3∏

j=0,j 6=k

L5+j,2m−j

with k = 0, . . . ,m − 3 we get that p5+k and p2m−k have different indices.
Without loss of generality we can assume that p5 = p+5 and p2m = p−2m.
Applying the Euler-Jacobi formula to

C(x, y) = L4,2mL2,3

m−3∏

j=1

L5+j,2m−j ,

we get that p1 and p5 have the same index (because the number of straight
lines is m− 2 which is odd). In short p1 = p+1 and p4 = p−4 . Now we apply
the Euler-Jacobi formula to

C(x, y) = L4,2mL3,2m−1
m−3∏

j=1

L5+j,2m−j−1,

with Lm+2,m+2 being a straight line through the point pm+2 which separates
the points {p1, p2, p3, p4} from the points {p5, . . . , pm+1, pm+3, . . . , p2m}. Do-
ing so, we get that p2 and p5 must have different indices (because the number
of straight lines is m−3 which is even) and so p2 = p−2 and p3 = p+3 . Finally,
applying the Euler-Jacobi formula to

Ck(x, y) = L1,4L2,3

k−1∏

j=0

L5+j,2m−j
m−k−4∏

j=0

L7+j+k,2m−j−k,

for k = 0, . . . ,m− 4 we get that pk = p+k for k odd and pk = p−k for k even.
Hence, the unique possible configuration is (2+, 2−; 2+, 2−; +,−, . . . ,+,−) =
(Γ; Γ;R2m−8).

The configuration (Γ; Γ;R2m−8) can be realized intersecting the hyperbola
x2 − y2 = 1 with the straight lines x = −3,−2, 2, 3, . . . ,m− 1.
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Configurations (4(j); 3; 2m − 4j − 3) for j = 0, 1, . . . , (m − 3)/2. We will
only prove the cases j = 0, j = 1 and j = 2 since the other cases are done
in a similar manner. So, we study the cases (3; 2m − 3), (4; 3; 2m − 7) and
(4, 4, 3, 2m− 11).

Configuration (3; 2m−3). In this case it is clear that this configuration only
can be realized being P (x, y) = 0 a hyperbola. Since all the singular points
lie in a hyperbola and in the 1st-level of A we must have 2m−3 points, it is
clear that one point is in one branch of the hyperbola and the other 2m− 1
points in the other branch of the hyperbola. Denote by p1 the point alone in
one branch of the hyperbola and by p2, . . . , p2m the remaining points which
are in the other branch of the hyperbola ordered in counterclockwise sense.
Applying the Euler-Jacobi formula to

C(x, y) =
m−2∏

j=0

L2+j,2m−j

we get that p1 and pm+1 have different indices. Now applying again the
Euler-Jacobi formula successively to

Ck(x, y) = L1,m+1

m−2∏

j=0,j 6=k

L2+j,2m−j ,

with k = 0, . . . ,m− 2 we get that p2+k and p2m−k have the same index for
k = 0, . . . ,m − 2. Without loss of generality we can assume that p2 = p+2
and so p2m = p+2m. Now applying the Euler-Jacobi formula to

C(x, y) = Lm+1,m+2

m−2∏

j=1

L2+j,2m−j+1,

we get that p1 and p2 have opposite indices (because the number of straight
lines is m− 1 which is even). So p1 = p−1 and pm+1 = p+m+1. Now applying
the Euler-Jacobi formula to

Ck(x, y) = L1,m+1

k−1∏

j=0

L2+j,2m−j
m−k−2∏

j=0

L4+j+k,2m−j−k,

for k = 0, . . . ,m − 2, where Lm+2,m+2 is a straight line through the point
pm+2 that separates the point p1 from {p2, . . . , pm+1, pm+3, . . . , p2m}, we
get that p2+k = p+2+k and p2m−k = p+2m−k for k even and p2+k = p−2+k

and p2m−k = p−2m−k for k odd. Hence, the unique possible configuration is

(2+,−; +,−, . . . ,+,−) = (∆+, R
2m−3).

The configuration (∆+, R
2m−3) can be realized intersecting the hyperbola

x2 − y2 = 1 with the straight lines x = −1, 1, 2, . . . ,m− 1.

Configuration (4; 3; 2m − 7). In this case it is clear that the configuration
(4; 3; 2m− 7) only can be realized being P (x, y) = 0 a hyperbola. Since all
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the singular points lie in a hyperbola and in the 0-level of A we must have
four points and in the first level we must have three points, it is clear that
three points are in one branch of the hyperbola and the other 2m− 3 points
in the other branch of the hyperbola. Denote by p1, p2, p3 the points in one
branch of the hyperbola ordered in clockwise sense and by p4, . . . , p2m the
remaining points which are in the other branch of the hyperbola and ordered
in counterclockwise sense. Applying the Euler-Jacobi formula to

C(x, y) = L1,3

m−3∏

j=0

L4+j,2m−j ,

we get that p2 and pm+2 have different indices. Now applying again the
Euler-Jacobi formula to

C(x, y) = L2,m+2

m−3∏

j=0

L4+j,2m−j and Ck(x, y) = L2,m+2L1,3

m−3∏

j=0,j 6=k

L4+j,2m−j ,

with k = 0, . . . ,m − 3 we get that p1 and p3 have the same index and
p4+k and p2m−k have the same indices for k = 0, . . . ,m − 3. Without loss
of generality we can assume that p4 = p+4 and so p2m = p+2m. Moreover,
applying the Euler-Jacobi formula to

C(x, y) = L2,m+2L3,2m

m−3∏

j=1

L4+j,2m−j ,

we get that p1 and p4 have opposite indices (because the number of straight
lines is m − 1 which is even). So p1 = p−1 and p3 = p−3 . Now we apply
successively the Euler-Jacobi formula to

Ck(x, y) = L1,3L2,m+3

k−1∏

j=0

L4+j,2m−j
m−k−4∏

j=0

L6+j+k,2m−j−k,

for k = 0, . . . ,m− 4 and we get that pk = p−k for k odd with k 6= m+ 2, and

pk = p+k for k even with k 6= 2. Finally, applying the Euler-Jacobi formula
to

C(x, y) = L1,3L2,m+1

m−4∏

j=0

L4+j,2m−j ,

we get that pm+2 = p−m+2 and p2 = p+2 . In short the configuration is

(2+, 2−; +, 2−; +,−, . . . ,+,−) = (Γ,∆−, R2m−7).

The configuration (Γ,∆−, R2m−7) can be realized intersecting the hyper-
bola x2 − y2 = 1 with the straight lines x = −2,−1, 1, 2, . . . ,m− 2.

Configuration (4; 4; 3; 2m − 11). As before, in this case it is clear that the
configuration (4; 4; 3; 2m − 11) only can be realized being P (x, y) = 0 a
hyperbola. Since all the singular points lie in a hyperbola and in the 0-level
and 1-st level of A we must have four points and in the 2nd level of A we
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must have three points, it is clear that five points are in one branch of the
hyperbola and the other 2m−5 points in the other branch of the hyperbola.
Denote by p1, p2, p3, p4, p5 the points in one branch of the hyperbola ordered
in clockwise sense and by p6, . . . , p2m the remaining points which are in
the other branch of the hyperbola and ordered in counterclockwise sense.
Applying the Euler-Jacobi formula to

C(x, y) = L1,5L2,4

m−4∏

j=0

L6+j,2m−j ,

we get that p3 and pm+3 have different indices. Now applying again the
Euler-Jacobi formula to

C(x, y) = L3,m+3L1,5

m−4∏

j=0

L6+j,2m−j , C(x, y) = L3,m+3L2,4

m−4∏

j=0

L6+j,2m−j

and

Ck(x, y) = L3,m+3L1,5L2,4

m−4∏

j=0,j 6=k

L6+j,2m−j ,

with k = 0, . . . ,m− 4 we get that p2 and p4 have the same indices, p1 and
p5 have the same indices and p6+k and p2m−k have the same indices for
k = 0, . . . ,m − 4. Without loss of generality we can assume that p6 = p+6
and so p2m = p+2m. Moreover, applying the Euler-Jacobi formula to

C(x, y) = L3,m+3L5,2mL2,4

m−4∏

j=1

L6+j,2m−j ,

we get that p1 and p6 have opposite indices (because the number of straight
lines is m − 3 which is even). So p1 = p−1 and p5 = p−5 . Now we apply the
Euler-Jacobi formula to

C(x, y) = L5,2mL4,2m−1L3,m+2

m−5∏

j=0

L6+j,2m−j−2,

and we get that p1 and p2 have opposite indices. So p2 = p+2 and p4 = p+4 .
Now we apply the Euler-Jacobi formula to

C(x, y) = L1,5L2,4L3,m+4

k−1∏

j=0

L6+j,2m−j
m−k−5∏

j=0

L8+j+k,2m−j−k,

and we get that p3 = p−3 , pk = p−k for k ≥ 7 odd with k 6= m+4 and pk = p+k
for k ≥ 6 even. Finally, applying the Euler-Jacobi formula to

C(x, y) = L1,5L2,4L3,m+2

m−5∏

j=0

L6+j,2m−j ,
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we obtain that pm+4 and pm+3 have opposite indices, and so pm+4 = p−m+4.
In short the unique possible configuration is

(2+, 2−; 2+, 2−; 2+,−; +,−, . . . ,+,−) = (Γ,Γ,∆+, R
2m−11).

The configuration (Γ,Γ,∆+, R
2m−11) can be realized intersecting the hy-

perbola x2 − y2 = 1 with the straight lines x = −3,−2,−1, 1, 2, . . . ,m− 3.

3. Proof of Theorem 3

3.1. Proof of statement (a) of Theorem 3. It was proved in [8] that in
the case of polynomial vector fields of degree (2,m) with m even it holds
that

∑
a∈A iX(a) = 0 or |∑a∈A iX(a)| = 2. This proves statement (a).

3.2. Proof of statements (b) and (c) of Theorem 3. Proceeding as in
the same manner as in the proof of Theorem 2 we have that the only possible
configurations are (2m), (4(j); 2m−4j−4), (3; 2m−3) and (4(j); 3; 2m−4j−3)
for j = 1, . . . , (m− 3)/2.

We will study each one of the configurations separately.

Configuration (2m): Proceeding exactly in the same way as in the proof of
Theorem 2 we get that the unique possible configuration is (+,−, . . . ,+,−) =
R2m. Again, the configuration R2m can be realized intersecting an ellipse
with m parallel straight lines each one having two points in the ellipse.

Configurations (4(j); 2m− 4j) for j = 1, . . . , (m− 3)/2. We will only prove
the cases j = 1 and j = 2 since the other cases are done in a similar manner.

Configuration (4; 2m− 4). We take the same notation as in the proof of the
configuration (4; 2m − 4) in Theorem 2 and proceeding exactly as in that
proof we get that p1 and p2 have different indices and p3+j and p2m−j have
also different indices for j = 0, . . . ,m− 2. Without loss of generality we can
assume that p3 = p+3 and p2m = p−2m. Moreover, applying the Euler-Jacobi
formula to

C(x, y) = L2,2m

m−2∏

j=1

L3+j,2m−j ,

we get that p1 and p3 have opposite index (because the number of straight
lines is m− 2 which is even) and so p1 = p−1 and p2 = p+2 . Now proceeding
as in the final part of the proof of Theorem 2 we get that pj = p+j for j

odd and pj = p−j for j even. Hence, the unique possible configuration is

(R4; +,−, . . . ,+,−) = (R4, R2m−4).

Note that here
∑

a∈A i(a) = 0. The configuration (R4, R2m−4) can be

realized intersecting the hyperbola x2 − y2 = 1 by the m − 1 straight lines
x = −m, 2, 3, . . . ,m.
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Configuration (4; 4; 2m− 8). We take the same notation as the proof of the
configuration (4; 4; 2m− 8) in Theorem 2. Proceeding as there we get that
p1 and p4 have different indices, p2 and p3 have different indices and p5+j

and p2m−j have different indices. Without loss of generality we can assume
that p5 = p+5 and p2m = p−2m. Applying the Euler-Jacobi formula to

C(x, y) = L4,2mL2,3

m−3∏

j=1

L5+j,2m−j ,

we get that p1 and p5 have opposite index (because the number of straight
lines is m− 2 which is even). In short p1 = p−1 and p4 = p+4 . Now applying
the Euler-Jacobi formula to

C(x, y) = L4,2mL3,2m−1
m−4∏

j=0

L5+j,2m−j−2,

we get that p1 and p2 must have opposite indices and so p2 = p+2 and p3 = p−3 .
Now proceeding as in the last part of the proof of this configuration in
Theorem 2 we get that pj = p+j for j odd and pj = p−j for j even. Hence, the

unique possible configuration is (R4;R4; +,−, . . . ,+,−) = (R4;R4;R2m−8).

Note that here
∑

a∈A i(a) = 0. The configuration (R4;R4;R2m−8) can

be realized intersecting the hyperbola x2 − y2 = 1 with the straight lines
x = −3,−2, 2, 3, . . . ,m− 1.

This proves statement (b) of the Theorem.

Configurations (4(j); 3; 2m − 4j − 3) for j = 0, 1, . . . , (m − 3)/2. We will
only prove the cases j = 0, j = 1 and j = 2 since the other cases are done
in a similar manner. So, we study the cases (3; 2m − 3), (4; 3; 2m − 7) and
(4, 4, 3, 2m− 11).

Configuration (3; 2m− 3): We take the same notation as in the proof of the
configuration (3; 2m − 3) in Theorem 2 and proceeding as in the first part
of that proof we get that p1 and pm+1 have different index, and p2+j and
p2m−j have the same index for j = 0, . . . ,m− 2. Without loss of generality
we can assume that p2 = p+2 and so p2m = p+2m. Moreover, applying the
Euler-Jacobi formula to

C(x, y) = Lm+1,m+2

m−2∏

j=1

L2+j,2m−j+1,

we get that p1 and p2 have the same indices (because the number of straight
lines is m−1 which is odd). So p1 = p+1 and pm+1 = p−m+1. Now proceeding

as in the last part of the proof of Theorem 2 we get that p2+j = p+2+j and

p2m−j = p+2m−j for j even and p2+j = p−2+j and p2m−j = p−2m−j for j odd.

Hence, the unique possible configuration is (3+; +, 2−,+,−, . . . ,+,−) =
(3+;O2m−3

− ).
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Note that here
∑

a∈A i(a) = 2, so when
∑

a∈A i(a) = −2 we would

have the configuration (3−;O2m−3
+ ) . The configuration (3+;O2m−3

− ) can

be realized intersecting the hyperbola x2 − y2 = 1 with the straight lines
x = −1, 1, 2, . . . ,m− 1.

Configuration (4; 3; 2m − 7). We use the notation in the configuration
(4; 3; 2m− 7) in the proof of Theorem 2. Proceeding as there we get that p2
and pm+2 have different indices, p1 and p3 have the same index and p4+j and
p2m−j have the same index for j = 0, . . . ,m− 2. Without loss of generality
we can assume that p4 = p+4 and so p2m = p+2m. Moreover, applying the
Euler-Jacobi formula to

C(x, y) = L2,m+2L3,2m

m−3∏

j=1

L4+j,2m−j ,

we get that p1 and p4 have the same indices (because the number of straight
lines is m − 1 which is odd). So p1 = p+1 and p3 = p+3 . Now proceeding as
in the last part of the proof of this configuration in Theorem 2 we get that
p4+j = p+4+j and p2m−j = p+2m−j for j even and p4+j = p−4+j and p2m−j =

p−2m−j for j odd. In short the configuration is (4+; 3−; 2+,−,+,−, . . . ,+,−) =

(4+, 3−, O2m−7
+ ).

Note that here
∑

a∈A i(a) = 2, so when
∑

a∈A i(a) = −2 we would have

the configuration (4−, 3+, O2m−7
− ). The configuration (4+, 3−, O2m−7

+ ) can

be realized intersecting the hyperbola x2 − y2 = 1 with the straight lines
x = −2,−1, 1, 2, . . . ,m− 2.

Configuration (4; 4; 3; 2m − 11). We use the notation in the configuration
(4; 3; 2m − 7) in the proof of Theorem 2. Proceeding as there we get that
p3 and pm+3 have different indices, p1 and p5 have the same index, p2 and
p4 have the same index and p6+j and p2m−j have the same index for j =
0, . . . ,m− 2. Without loss of generality we can assume that p6 = p+6 and so
p2m = p+2m. Moreover, applying the Euler-Jacobi formula to

C(x, y) = L3,m+3L5,2mL2,4

m−4∏

j=1

L6+j,2m−j ,

we get that p1 and p6 have the same index (because the number of straight
lines is m− 2 which is even). So p1 = p+1 and p5 = p+5 . Now, proceeding as
in the last part of the proof of configuration (4; 4; 3; 2m− 11) in Theorem 2
we get that p2 = p−2 , p4 = p−4 , p6+j = p+6+j and p2m−j = p+2m−j for j even

and p6+j = p−6+j and p2m−j = p−2m−j for j odd, p3 =+
3 and pm+3 = p−m+3. In

short the unique possible configuration is (4+; 4−; 3+;O2m−11
− ).

Note that here
∑

a∈A i(a) = 2, so when
∑

a∈A i(a) = −2 we would

have the configuration (4−; 4+; 3−;O2m−11
+ ). Moreover, the configuration
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(4+; 4−; 3+;O2m−11
+ ) can be realized intersecting the hyperbola x2− y2 = 1

with the straight lines x = −3,−2,−1, 1, 2, . . . ,m− 3.

This proves statement (c) of the theorem and concludes the proof of it.

Acknowledgements

The first author is supported by the Ministerio de Economı́a, Indus-
tria y Competitividad, Agencia Estatal de Investigación grant MTM2016-
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de Lisboa, Av. Rovisco Pais 1049–001, Lisboa, Portugal

Email address: cvalls@math.ist.utl.pt


