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Abstract: The heterogenous distribution of both COVID-19 incidence and mortality in Catalonia
(Spain) during the firsts moths of the pandemic suggests that differences in baseline risk factors
across regions might play a relevant role in modulating the outcome of the pandemic. This paper
investigates the associations between both COVID-19 incidence and mortality and air pollutant
concentration levels, and screens the potential effect of the type of agri-food industry and the overall
land use and cover (LULC) at area level. We used a main model with demographic, socioeconomic
and comorbidity covariates highlighted in previous research as important predictors. This allowed
us to take a glimpse of the independent effect of the explanatory variables when controlled for the
main model covariates. Our findings are aligned with previous research showing that the baseline
features of the regions in terms of general health status, pollutant concentration levels (here NO2

and PM10), type of agri-food industry, and type of land use and land cover have modulated the
impact of COVID-19 at a regional scale. This study is among the first to explore the associations
between COVID-19 and the type of agri-food industry and LULC data using a population-based
approach. The results of this paper might serve as the basis to develop new research hypotheses
using a more comprehensive approach, highlighting the inequalities of regions in terms of risk factors
and their response to COVID-19, as well as fostering public policies towards more resilient and
safer environments.

Keywords: COVID-19; air pollutants; cardiovascular diseases; psychological disorders; cancer;
agri-food industry; land use and land cover data
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1. Introduction

The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2), has become a leading health concern worldwide. As of 31 May
2020, there were 5,939,234 confirmed cases and 367,255 deaths globally [1]. The severity
and mortality have been related to aging and pre-existent health conditions, including
respiratory and cardiovascular diseases, as well as psychological disorders and cancer [2,3].
Nevertheless, the geographic COVID-19 distribution within countries or regions has been
uneven [4]. Socioeconomic status has also been pointed out as a community determining
factor, but inconsistently for both richer and poorer populations [5,6]. In the same direction,
inconclusive results have been found regarding population density [6–8]. Previous studies
have reported the association between population physical distancing and COVID-19
spreading dynamics [9–11], as well as other weather conditions such as humidity and
temperature [12]. These links might lie behind the local outbreaks of the pandemic in
certain agri-food sectors such as meat and leather and fur industries [13,14]. However,
other studies have recently pointed out that COVID-19 incidence correlates to ultraviolet
radiation, rather than temperature-humidity [15,16].

Air pollution remains one of the main threats for human health worldwide and can
also play a relevant role in the COVID-19 crisis mainly in two ways: increasing the severity
of the virus’ clinical effects in chronically exposed populations and, probably to a lesser
extent, promoting the virus’ airborne dispersion [17–19]. On one hand, according to the
World Health Organization (WHO), there are 4.2 million deaths every year mostly due
to cardiorespiratory diseases as a result of exposure to outdoor air pollution [20]. Recent
studies have shown that ambient air pollution may be linked to the lethality of COVID-19 in
Asia, Europe and America [21–26]. Thus, regions chronically exposed to nitrogen dioxide
(NO2) and particulate matter (PM2.5 and PM10) seem to be more susceptible to the virus.
Still, many of those studies do not include well identified health covariates [27–29] and
are focused only on mortality. On the other hand, some authors have studied the role of
particulate matter in the spreading of SARS-CoV-2 [12,30–32], principally in industrialised
areas [33].

Air pollution and aerosol formation and distribution have been widely linked to Land
Use and Land Cover (LULC) [34–36], with an especial concern regarding particulate matter
(PM2.5 and PM10) [37–39]. In this sense, urbanised and industrial areas are associated with
worse air quality than other LULC categories such as agricultural or forested areas [39].
LULC information is useful open source data which is associated with other factors like
population density, biodiversity and economic activities [40], and has been identified as
a suitable describer of the environment in studies relating the environment to human
health [41]. For the aforementioned, research encompassing the associations between
COVID-19 and LULC data appears to be relevant, since this spatial data (LULC) leverage
socioeconomic and biophysical information of the environment.

In Catalonia (Spain), there was a heterogenous distribution of both COVID-19 inci-
dence and mortality in the early stages of the pandemic. This suggests that differences in
baseline risk factors across regions might have modulated the outcome of the pandemic.
The purposes of this study are to:

1. Analyse the associations between both COVID-19 incidence and mortality and long-
term exposure to pollutant concentration (NO2 and PM10), while adjusting for demo-
graphic information, socioeconomic status and general health status (cardiovascular
diseases, psychological disorders and all-cause cancer);

2. Explore the potential links between agri-food industry and COVID-19 incidence and
mortality as observed from the outbreaks in these particular industries;

3. Screen, for the very first time, the potential use of the overall Land Use and Cover
data on describing the geographical COVID-19 incidence and mortality.
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2. Materials and Methods
2.1. COVID-19 Cases and Deaths

The number of patients infected with SARS-CoV-2 (cases) and deaths attributed to
COVID-19 in Catalonia were gathered until 18 May 2020, after the first peak decreased and
the incidence of new cases started to stabilise.

The number of cases was obtained from the RSAcovid19 records from the Catalan
Health Department. We collected both the positive cases (patients positively diagnosed by a
PCR—Polymerase Chain Reaction—or rapid diagnostic test) and suspicions cases (patients
who presented symptoms compatible with COVID-19 and were classified as a possible
case, even though they were diagnosed neither by a PCR nor by a rapid diagnostic test).
All of them were active cases under the control of Epidemiologic Surveillance Service in
Catalonia and were attributed to their residential Basic Health Area (BHA), the fundamental
territorial unit through which Catalan Healthcare System is articulated and the unit of
analysis of this paper. In total, 372 BHA compose the Catalan territory.

The number of registered deaths due to COVID-19 was obtained from the Catalan
Agency for Health Quality and Evaluation (AQuAS) and the Central Register of Insured
Persons of the Catalan Health Department. These data included not only people who
were positively diagnosed by a laboratory test but also people who presented symptoms
compatible with the illness. These open data are updated several times per day, so analyses
and figures might change depending on the date. Furthermore, death observations might
be modified by the Mortality Register of Catalonia once all death certificates have been
collected [42].

Both data sets were provided already segmented by sex (male and female). Inci-
dence and mortality rates were calculated using the number of cases and the number
of deaths divided by the total amount of population within each BHA. Figures S1 and
S2 show the COVID-19 incidence and mortality rates, respectively (see Supplementary
Information Section).

2.2. Comorbidities

During the first wave of the pandemic in Catalonia, COVID-19 tests were not con-
ducted on every person showing symptoms. Rather, people with more severe symptoms
or having pre-existent health conditions were more likely to be tested and thus, finally
diagnosed. To control for the general health status of each BHA, we created three groups
of principal health conditions explored by previous literature: cardiovascular diseases;
psychological disorders and all-cause cancer. Pre-existent respiratory conditions could not
be considered as the health dataset was incomplete.

The percentages of people presenting cardiovascular diseases (congestive heart failure,
hypertension, ischemic cardiomyopathy and patients who suffered cerebrovascular acci-
dent), psychological disorders (depression, schizophrenia, intellectual disability, conduct
disorder, attention deficit disorder and psychosis), and all-cause cancer were obtained
from historical observational data from 2014 provided by the Catalan Health Department
and the Catalan Agency for Health Quality and Evaluation (AQuAS). We lacked more
recent data to control for the general health status of BHAs. However, the health outcomes
assessed were prevalent illnesses with generally slight changes from one year to another.
The data was aggregated by BHA and sex (male and female).

2.3. Demographic and Socioeconomic Data

Some authors have highlighted the prominent impacts of COVID-19 on elderly people,
especially in nursing homes [43]. Others have also focused their studies in the importance
of sex [44]. We controlled for sex and elderly people by calculating the percentage of
people over the age of sixty-five in each BHA and distinguishing the COVID-19 cases
and deaths between males and females. In addition, socioeconomic data were extracted
from the Catalan Health Observatory. We used the Composed Socioeconomic Index
(CSI) [45], that is calculated for each BHA. This index is used in the assessment of resources



Int. J. Environ. Res. Public Health 2021, 18, 3768 4 of 20

for Primary Health, which includes a set of socioeconomic variables: economic income,
education, professional occupation, life expectancy, premature death rate and preventable
hospitalizations rate. This is a continuous variable measured from 0 to 100 (0 being the
poorest and 100 the richest). Previous works have suggested dividing such data into
septiles [3]. However, after testing the model, we opted for using quintiles from a very low
(E; CSI ≥ 0 and <20) to a very high (A; CSI ≥ 80) socioeconomic status (SES).

2.4. Air Pollution

Long-term exposure to air pollutants was assessed using the modelling of the NO2
and PM10 annual average (µg/m3) in Catalonia, corresponding to the 2016 assessment
from the General Direction of Environmental Quality and Climate Change of the Catalan
Government.

We calculated the annual weighted average for each BHA through GRASS GIS
(GRASS Development Team, 2017. Geographic Resources Analysis Support System (GRASS)
Software, Version 7.2. Open Source Geospatial Foundation. Electronic document: http:
//grass.osgeo.org (accessed on 23 May 2020)) (see Figures S3 and S4 of Supplementary
Information Section showing the annual weighed average of NO2 and PM10 (µg/m3) for
each BHA (2016)).

Besides air pollution data from 2016, we created a dataset for the period 2018–2019
(the most up-to-date period with data available). We combined three data sources (pol-
lution data from the Catalan Government; Smart Citizen, a citizen science project from
the European Community’s H2020; and pollution data from the European Environment
Agency). Then, we calculated the annual average for each pollutant in each BHA containing
sensors, which yielded 63 BHAs with values for NO2 and 91 with values for PM10. After
controlling for possible differences between both periods (2016 and 2018/2019) and finding
no significant differences, we chose the modelling of the NO2 and PM10 annual average
for 2016 because it provided information for all Catalonia. Results of the two independent
t-tests assessing significant differences between pollutant concentration levels (NO2 and
PM10) in 2016 and in 2018/2019 are provided in the Results section.

Other air pollutants have been widely used to assess pollution levels. Previous
research hypothesised that long-term exposure to O3 and PM2.5 adversely affects the
respiratory and cardiovascular systems, increasing mortality risk and also exacerbating
the severity of COVID-19, worsening the prognosis of the disease [46,47]. In this sense,
O3 levels has been found to be associated with COVID-19 confirmed cases [48] and PM2.5
to be a highly significant predictor of the number of confirmed COVID-19 cases, deaths
and hospital admissions [48,49]. Although assessment of the independent effect of the
abovementioned pollutants would have been of interest, we only used NO2 and PM10 data,
as they were provided for all Catalan territory.

2.5. Agri-Food Industry

Agri-food industry geographic information was extracted from Catalan Agri-food
industry Records (http://agricultura.gencat.cat/ca/serveis/registres-oficials/agroaliment
acio/registre-industries-agraries-alimentaries-catalunya/ (accessed on 1 June 2020)). The
industries are classified depending on their industrial sector: slaughter of livestock, conser-
vation and elaboration of meat products; preparation and conservation of fish, crustaceans
and molluscs; preparation and preservation of fruits and vegetables; manufacturing of
vegetables and animal oils and fats; manufacturing of milk products; manufacturing of
grain mill products, starches and starch products; manufacturing of bakery and pasta
products; manufacturing of other food products; manufacturing of products for animal
feeding; manufacturing of beverages; forest industries; and other agricultural industries.

We split the category “other agricultural industries” into two main subtypes: “Leather
and fur industry” (industries based on preparation, tanning and dyeing animal skins)
and “Garden industry” (industries based on seed conditioning and handling, substrate
production and ornamental plant conservation), as we considered that these two sectors

http://grass.osgeo.org
http://grass.osgeo.org
http://agricultura.gencat.cat/ca/serveis/registres-oficials/agroalimentacio/registre-industries-agraries-alimentaries-catalunya/
http://agricultura.gencat.cat/ca/serveis/registres-oficials/agroalimentacio/registre-industries-agraries-alimentaries-catalunya/
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were poorly represented in the above classification. The total number of industries of each
type was collected within each BHA.

2.6. Land Use and Land Cover Data

To describe the environment of each BHA we used the most updated and detailed
Land Use and Land Cover data of Catalonia, the Land Use and Cover map for 2017. This is a
tool generated with automated image classification of a 30-m resolution. The images are ob-
tained thought Landsat satellite (Landsat-5, Landsat-7, Landsat-8 and Sentinel-2) using both
their sensors Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Opera-
tional Land Imager (OLI) and Multispectral Imager (MSI), and complementary information
such as the Urban Map of Catalonia and the graph of the Catalonia infrastructures network.
It also incorporates the cartographic database of forest fires from the Ministry of Agriculture,
Livestock, Fisheries and Food of Catalonia, and the LIDAR database from the Institut Car-
togràfic i Geològic de Catalunya (ICGC) (http://territori.gencat.cat/ca/01_departament/1
2_cartografia_i_toponimia/bases_cartografiques/medi_ambient_i_sostenibilitat/bases_mi
ramon/territori/mapa-dusos-i-cobertes-del-sol/index.html (accessed on 30 May 2020))

As Table 1 shows, we reclassified the 25 Land Use and Land Cover (LULC) categories
into four broader categories: urban areas; industrial, commercial and transport units;
agricultural areas; and forest and semi-natural areas. In this classification, categories
referring to water bodies (inland and marine waters) and bare land were not considered
due to their low significance.

Table 1. Reclassification of the 25 LULC categories of the Land Use and Cover Map of Catalonia (2017) into four broader
categories.

Urban Areas Industrial, Commercial and
Transport Units Agricultural Areas Forest and Semi-NATURAL

Areas

Discontinuous urban fabric Industrial or commercial units Permanently irrigated land Lowland natural grasslands

Continuous urban fabric Road and rail networks and
associated land Non-irrigated arable land Montane natural grasslands

Unirrigated Fruit tress Alpine natural grasslands
Irrigated Fruit trees Transitional woodland/shrub

Vineyards Wetland vegetation
Rice fields Coniferous forest

Citrus trees Broad-leaved forest
Sclerophyll forest

When proportions of land use and cover composing geographical regions are anal-
ysed, each observation is a vector of proportions of specific LULC categories [50]. This
characteristic raises the problem of singularity (a constant sum constraint) as the vectors
(also called compositions) describe the relative contribution of each part (the components)
on the whole. So the information is present in the ratios of the components rather than
in each component [51–53]. Following Müller et al. (2018) [54], we avoided the singu-
larity constraint by applying an isometric logratio (ilr) transformation to the four LULC
variables. This transformation moves the compositions isometrically from the simplex
with the Aitchison geometry to the standard real space with the Euclidean one [53]. As
recommended [54], we used a Log2 transformation, as it facilitated the understanding of
the estimates. With this transformation, a unit additive increment in the ilr-transformed
variable is equal to a two-fold multiplicative increase in the relative dominance of the
original composition variable x, as a base-2 logarithm is used. In other words, this means
that the relative dominance of a specific LULC category is doubled in comparison to the
geometric mean of all the rest LULC variables [54].

http://territori.gencat.cat/ca/01_departament/12_cartografia_i_toponimia/bases_cartografiques/medi_ambient_i_sostenibilitat/bases_miramon/territori/mapa-dusos-i-cobertes-del-sol/index.html
http://territori.gencat.cat/ca/01_departament/12_cartografia_i_toponimia/bases_cartografiques/medi_ambient_i_sostenibilitat/bases_miramon/territori/mapa-dusos-i-cobertes-del-sol/index.html
http://territori.gencat.cat/ca/01_departament/12_cartografia_i_toponimia/bases_cartografiques/medi_ambient_i_sostenibilitat/bases_miramon/territori/mapa-dusos-i-cobertes-del-sol/index.html
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2.7. Statistical Analysis

To assess the associations between COVID-19 incidence and mortality and the explana-
tory variables, we fitted a generalised linear model, in the binomial family, with a logit link.
This model fit was selected as the dependent variable followed a Binomial distribution.

Yi ∼ Bernoulli(pi) for i = 1, . . . , n.

Logit(µi) = log
(

pi
1 − pi

)
= β0 +

n

∑
i=1

βi × Xi,

where Yi was the binary (Bernoulli) response variable; pi was the probability of successes
P(Yi = 1), in this case, 1 stands for a confirmed COVID-19 case or death; µi is the expected
value of each Yi which is equal to the probability of successes pi; β0 is the intercept, and βi
denotes the logistic regression coefficients for the design matrix X of covariables i.

Logistic regression analyses with 95% Wald confidence intervals (95% CI) were per-
formed to assess the association between both incidence and mortality rate of COVID-19
(number of confirmed COVID-19 cases or deaths within a given BHA/total number of peo-
ple living within such BHA) and the rest of covariates, while adjusting for demographics,
socioeconomic and comorbidity covariates. The model was fitted using population size of
each BHA as weights. We built a main model using the demographics, socioeconomic and
comorbidity covariates and then, human activity covariates, as well as land use and cover
covariates, were included in the model separately (see Table 2).

Table 2. Covariates tested in the model. All the variables were calculated within each BHA, the unit of analysis.

Covariate (Units) Description

Demographics, socioeconomic status, and comorbidity (Main model)

Sex: Females Categorical variable comparing females to males, used as a reference level.

Percent > 65 (%) Percentage of people aged above 65 years.

SES A
Socioeconomic status categorised with 5 levels, comparing very high, high, low and very low (A,

B, D, E) socioeconomic status to normal (C), used as the reference level. Data from 2014.
SES B
SES D
SES E

Cardiovascular diseases (%) Group variable. Percentage of people with congestive heart failure, hypertension, ischemic
cardiomyopathy or who suffered cerebrovascular accident in 2014.

Psychological disorders (%) Group variable. Percentage of people with depression, schizophrenia, intellectual disability,
conduct disorder, attention deficit disorder or psychosis in 2014.

All-cause cancer (%) Group variable. Percentage of people with any type of cancer in 2014.

Human activity

NO2 (µg/m3) * Nitrogen dioxide annual weighed average in 2016.

PM10 (µg/m3) * Particulate matter with diameter of 10 µm annual weighed average in 2016.

Meat industry * Number of industries based on slaughtering of livestock, conservation and elaboration of meat
products in 2020.

Fish industry * Number of industries based on preparation and conservation of fish, crustaceans and molluscs
in 2020.

Vegetable industry * Number of industries based on preparation and preservation of fruits and vegetables in 2020.

Animal oils and fats * Number of industries based on manufacturing of vegetable and animal oils and fats in 2020.

Milk products * Number of industries based on manufacturing of milk products in 2020.

Grain mill industry * Number of industries based on manufacturing of grain mill products, starches and starch
products in 2020.
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Table 2. Cont.

Covariate (Units) Description

Bakery industry * Number of industries based on manufacturing of bakery and pasta products in 2020.

Other food products * Number of industries based on manufacturing of other food products in 2020.

Animal feeding * Number of industries based on manufacturing of products for animal feeding in 2020.

Beverage industry * Number of industries based on manufacturing of beverages in 2020.

Forest industry * Number of forest industries in 2020.

Leather and fur industry * Number of industries based on preparation, tanning and dyeing animal skins in 2020.

Garden industry * Number of industries based on seed conditioning and handling, substrate production and
ornamental plant conservation in 2020.

Land use and Land cover

ilr-Urban areas * Isometric logratio (ilr) transformation of the percentage of urban areas in a given BHA.
Numerical variable.

ilr-Industrial areas * Isometric logratio (ilr) transformation of the percentage of industrial, commercial and transport
unit areas in a given BHA. Numerical variable.

ilr-Agricultural areas * Isometric logratio (ilr) transformation of the percentage of agricultural areas in a given BHA.
Numerical variable.

ilr-Forested areas * Isometric logratio (ilr) transformation of the percentage of forested and semi-natural areas in a
given BHA. Numerical variable.

* Variables were included in the model separately.

Statistical analysis were conducted using the R language environment for statistical
computing, R version 3.6.2 (12 December 2019) [55].

3. Results

Homogeneity of groups in terms of pollutant concentration levels was assessed using
two independent t-tests (Table 3) for the specific BHA which we had available information
(63 BHA, for NO2; and 91 BHA, for PM10). Based on the t-tests outcomes, no significant
differences were noted between the annual average of pollutants in 2016 and in 2018/2019
for neither pollutant (NO2; t = 0.792, p = 0.428, and PM10; t = −1.559, p = 0.119).

Table 3. Independent t-tests between mean pollutant concentration levels in 2016 and in 2018/2019.

Mean ± SD Statistical Results

Variables 2016
Concentration Levels

2018/2019
Concentration Levels df t p-Value

NO2 20.23 ± 12.163 21.37 ± 10.700 246 0.792 0.428
PM10 21.52 ± 4.397 20.72 ± 5.241 351.37 −1.559 0.119

The adjusted odds ratio (OR) with 95% confidence intervals for the association between
COVID-19 incidence and mortality and the explored covariates are shown in Table 4 and
also represented in Figure S6 (see Supplementary Information section).
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Table 4. Associations between COVID-19 incidence and mortality and the rest of covariates. The main model controlled for demographics, socioeconomics and comorbidity covariables.
Human activity covariates as well as land use and cover covariates were included in the model separately.

Incidence of COVID-19 Mortality of COVID-19

Adjusted Main Model Unadjusted Adjusted Main Model Unadjusted

Covariates Odds Ratio (95% CI) p-Value Odds Ratio (95% CI) p-Value Odds Ratio (95% CI) p-Value Odds Ratio (95% CI) p-Value

Main Model
Sex: Female 1.772 (1.7577–1.7870) *** 1.723 (1.7087–1.7366) *** 1.034 (0.9974–1.0724) - 0.990 (0.9551–1.0257) -
Percent > 65 1.006 (1.0047–1.0072) *** 1.018 (1.0171–1.0189) *** 1.023 (1.0171–1.0281) *** 1.052 (1.0481–1.0562) ***

SES A (very high) 1.199 (1.1832–1.2150) *** 1.171 (1.1568–1.1848) *** 1.547 (1.4556–1.6434) *** 1.523 (1.4414–1.6093) ***
SES B (high) 1.126 (1.1116–1.1402) *** 1.153 (1.1387–1.1674) *** 1.241 (1.1696–1.3166) *** 1.346 (1.2702–1.4271) ***
SES D (low) 0.967 (0.9542–0.9800) *** 0.998 (0.9849–1.0114) - 0.914 (0.8573–0.9754) * 1.015 (0.9517–1.0815) -

SES E (very low) 0.956 (0.9432–0.9688) *** 0.994 (0.9806–1.0067) - 0.908 (0.8511–0.9677) ** 1.011 (0.9493–1.0778) -
Cardiovascular diseases 1.003 (1.0020–1.0049) *** 1.016 (1.0153–1.0173) *** 1.007 (1.0006–1.0136) * 1.038 (1.0336–1.0423) ***
Psychological disorders 1.148 (1.1418–1.1545) *** 1.057 (1.0517–1.0627) *** 1.312 (1.2809–1.3435) *** 1.255 (1.2282–1.2827) ***

All-cause cancer 1.021 (1.0153–1.0258) *** 1.084 (1.0805–1.0883) *** 1.102 (1.0774–1.1272) *** 1.239 (1.2205–1.2584) ***
Human activity

NO2 0.999 (0.9989–0.9996) *** 1.002 (1.0014–1.0020) *** 1.013 (1.0118–1.0151) *** 1.017 (1.0154–1.0182) ***
PM10 1.003 (1.0015–1.0038) *** 1.009 (1.0077–1.0098) *** 1.048 (1.0421–1.0541) *** 1.050 (1.0451–1.0559) ***

Meat industry 1.002 (1.0012–1.0019) *** 1.001 (1.0006–1.0014) *** 0.995 (0.9926–0.9965) *** 0.992 (0.9900–0.9938) ***
Fish industry 0.993 (0.9911–0.9951) *** 0.982 (0.9799–0.9840) *** 0.964 (0.9536–0.9755) *** 0.929 (0.9177–0.9412) ***

Vegetable industry 0.988 (0.9867–0.9885) *** 0.985 (0.9839–0.9856) *** 0.941 (0.9340–0.9478) *** 0.923 (0.9154–0.9300) ***
Animal oils and fats 0.982 (0.9812–0.9836) *** 0.980 (0.9789–0.9813) *** 0.909 (0.8988–0.9189) *** 0.888 (0.8781–0.8991) ***

Milk products 1.000 (0.9982–1.0013) - 1.001 (0.9995–1.0024) - 0.973 (0.9650–0.9806) *** 0.975 (0.9675–0.9822) ***
Grain mill industry 0.948 (0.9441–0.9523) *** 0.944 (0.9397–0.9478) *** 0.777 (0.7502–0.8047) *** 0.753 (0.7266–0.7811) ***

Bakery industry 0.984 (0.9809–0.9873) *** 0.977 (0.9740–0.9801) *** 0.974 (0.9589–0.9891) ** 0.938 (0.9236–0.9517) ***
Other food products 0.984 (0.9829–0.9861) *** 0.977 (0.9752–0.9783) *** 0.933 (0.9244–0.9412) *** 0.910 (0.9019–0.9178) ***

Animal feeding 0.998 (0.9967–0.9994) ** 0.999 (0.9975–1.0001) - 0.970 (0.9630–0.9768) *** 0.967 (0.9605–0.9739) ***
Beverage industry 0.999 (0.9994–0.9996) *** 0.999 (0.9994–0.9996) *** 0.998 (0.9970–0.9983) *** 0.997 (0.9963–0.9978) ***

Forest industry 1.004 (1.0011–1.0077) * 0.990 (0.9869–0.9931) *** 0.945 (0.9278–0.9632) *** 0.907 (0.8911–0.9240) ***
Leather and fur industry 1.070 (1.0624–1.0779) *** 1.078 (1.0702–1.0856) *** 1.110 (1.0776–1.1441) *** 1.115 (1.0823–1.1489) ***

Garden industry 0.922 (0.9122–0.9329) *** 0.922 (0.9119–0.9321) *** 0.717 (0.6715–0.7649) *** 0.709 (0.6649–0.7560) ***
Land use and cover

ilr-Urban areas 1.006 (1.0048–1.0076) *** 1.013 (1.0114–1.0136) *** 1.050 (1.0440–1.0569) *** 1.062 (1.0566–1.0669) ***
ilr-Industrial areas 0.990 (0.9884–0.9921) *** 0.991 (0.9892–0.9926) *** 1.039 (1.0304–1.0477) *** 1.036 (1.0281–1.0442) ***

ilr-Agricultural areas 0.982 (0.9806–0.9835) *** 0.977 (0.9762–0.9786) *** 0.936 (0.9303–0.9422) *** 0.925 (0.9200–0.9300) ***
ilr-Forested areas 1.014 (1.0131–1.0158) *** 1.012 (1.0111–1.0136) *** 0.991 (0.9856–0.9971) ** 0.987 (0.9816–0.9925) ***

- non-statistically significant; * p-value < 0.05; ** p-value < 0.005; *** p-value < 0.0005.
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In the main model using demographic, socioeconomic and comorbidity covariables,
BHAs with more percentage of people aged above 65 years, of A (high) and B (very low)
socioeconomic status (SES) showed a positive association with both COVID-19 incidence
and mortality. In these cases, estimates for mortality were greater than for incidence.
Contrarily, BHAs of D (low) and E (very low) SES were associated with decreased levels of
COVID-19 incidence and mortality. However, when tested alone (without adjusting for the
rest of covariates), they showed a non-significant effect.

All three comorbidity variables were positively associated with both COVID-19 inci-
dence (OR 1.003 95% 1.0020–1.0049 for cardiovascular diseases; OR 1.148 95% 1.1418–1.1545
for psychological disorders; and OR 1.021 95% 1.0153–1.0258 for all-cause cancer) and mor-
tality (OR 1.007 95% 1.0006–1.0136 for cardiovascular diseases; OR 1.312 95% 1.2809–1.3435
for psychological disorders; and OR 1.102 95% 1.0774–1.1272 for all-cause cancer). Again,
the estimates for mortality were found higher than for incidence in all three comorbid-
ity variables.

Finally, sex (comparing females to males) showed a positive significant effect on
the incidence of COVID-19 (OR 1.772 95% 1.7577–1.7870) and a non-significant effect on
the mortality (OR 1.034 95% 0.9974–1.0724). It also showed a non-significant effect on
COVID-19 mortality when tested unadjusted.

We found a positive association between COVID-19 mortality and the annual average
of both pollutants (NO2 and PM10). Our model showed that, when the rest of covariates
held constant, an increase of 10 µg/m3 in NO2 and PM10 annual average multiplied the
odds of COVID-19 mortality by 1.138 (95% 1.1245–1.162) and by 1.598 (95% 1.5104–1.6936),
respectively. Regarding COVID-19 incidence, PM10 also showed a positive association
with COVID-19 incidence (OR 1.003 95% 1.0015–1.0038), while NO2 showed a negative
association when tested adjusted for the rest of covariates (OR 0.999 95% 0.9989–0.9996).

As to the type of agri-food industries, we found several types that showed a reduced
risk of both COVID-19 incidence and mortality (fish industry, vegetable, animal oils and
fats, grain mill, bakery, other food products, animal feeding, beverage industry and garden
industry). Milk products showed a non-significant effect on COVID-19 incidence and a
negative effect on COVID-19 mortality. In addition, meat and forest industry showed
a positive effect on the incidence of COVID-19 (OR 1.002 95% 1.0012–1.0019 for meat
industry and OR 1.004 95% 1.0011–1.0077 for forest industry) but a negative effect on the
mortality (OR 0.995 95% 0.9926–0.9965 for meat industry and OR 0.945 95% 0.9278–0.9632
for forest industry. However, unlike forest industry, meat industry showed a positive
significant effect when tested unadjusted, as well. Finally, leather and fur industry were
the only type of agri-food industry that were associated with increased levels of both
COVID-19 incidence (OR 1.070 95% 1.0624–1.0779) and of COVID-19 mortality (OR 1.110
95% 1.0776–1.1441).

Regarding LULC data, we found a decreased risk of COVID-19 incidence for ilr-
Industrial areas and ilr-Agricultural areas. In other words, when the relative dominance
of industrial areas and agricultural areas were doubled in a given BHA with respect to
the rest of LULC categories, the odds for COVID-19 incidence was expected to be reduced
by a 0.010% (95% 0.0079–0.0116) and 0.018 % (95% 0.0165–0.0194), respectively. On the
other hand, for ilr-Urban areas and ilr-Forested areas the odds for COVID-19 incidence was
expected to be increased by 0.006% (95% 0.0048–0.0076) and 0.014% (95% 0.0131–0.0158),
respectively. As for the COVID-19 mortality, ilr-Urban and ilr-Industrial areas showed
positive significant effects (OR 1.050 95% 1.0440–1.0569, and OR 1.039 95% 1.0304–1.0477,
respectively), while ilr-Agricultural and ilr-Forested areas showed negative significant
effects (OR 0.936 95% 0.9303–0.9422 and OR 0.991 95% 0.9856–0.9971, respectively)

Main Model Adjustment

For illustrative purposes, the main model adjustment is shown for COVID-19 cases
and deaths instead of the incidence and mortality rate. We noted no important differences
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between the expected values for males and for females for the main model. Thus, we
assessed the model with the total number of cases and deaths (females + males).

Figure 1 shows a scatter plot were the observed number of COVID-19 cases (on the left)
and deaths (on the right) are plotted against the expected number of COVID-19 cases and
deaths predicted by the model. Those BHA which fulfilled the criterion that the difference
between the observed rate and the fitted rate was either >0.03 or <0.03 (for COVID-19
cases), and >0.004 or <0.004 (for COVID-19 deaths) were identified as outliers.
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Figure 1. Scatter plot of the observed number of COVID-19 cases (left) and deaths (right), and the expected value predicted
by the main model, logarithmic transformation has been performed.

The outliers coincide with either northern BHAs with high amounts of forest and
semi-natural areas, low population and high incidence and mortality cases, or with regions
from Central Catalonia where incidence and mortality were also high (“Barcelona 05D”,
“Girona-4”, “Alt Berguedà”, “la Pobla de Segur”, “Sant Quirze de Besora” and “Igualada-2”
for COVID-19 cases, Figure 1 left; and “Cardona”, “Alt Berguedà”, “Capellades”, “Vilanova
del Camí” and “Igualada-2” for COVID-19 deaths, Figure 1 right). As a matter of fact, two
of the observed outliers (“Vilanova del Camí” and “Igualada-2”) were BHAs in which the
early outbreaks of the pandemic occurred.

Additionally, Figures 2 and 3 show the observed number of COVID-19 cases and
deaths (on the left) and the expected number of cases and deaths (on the right) for each
BHA predicted by the main model. In purple, there are represented those BHAs where
the expected value was overestimated (difference between observed cases or deaths and
expected cases or deaths < Q1) by the main model. On the other hand, in orange there are
represented those BHAs where the expected value was underestimated (difference > Q3)
by the main model. In green, those BHAs where the difference between the observed value
and the expected fell within the Q1 and the Q3 are plotted.
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4. Discussion

This cross-sectional study aimed to evaluate the associations between COVID-19
incidence and mortality and long-term exposition to air pollution (NO2 and PM10) while
adjusting for demographic (sex, percentage of people aged above 65 years), socioeconomic
(quintile division of the Composed Socioeconomic Index) and comorbidity data (percentage
of people presenting cardiovascular disease, psychological disorders and all-cause cancer).
Additionally, for the first time, the contribution of agri-food industry type and the overall
Land Use and Land Cover data was also explored to explain the geographical distribution
of COVID-19 incidence and mortality, leading to novel results.

4.1. Demographics

Registered cases of COVID-19 in Catalonia have a clear female predominance (165,597
cases in females compared to 95,317 cases in males). Compared to other nations, the
proportion of women in the incidence rate is only surpassed by Wales (63.46% vs. 64.18%),
while being still slightly higher than the Netherlands (62.45%), Scotland (62.01%), Northern
Ireland (61.94%), or Sweden (59.37%) [56]. Mortality was also higher among females
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(50.41%), but below what has occurred in Finland (52.00%) and the Republic of Ireland
(50.50%) [56]. Catalonia has a positive small prevalence of female population (50.9%). In
addition, this predominance positively increases for people older than 65 years (57.0%),
while being reversed in 0–24-year-old children (around 48.6%) [57]. With older people
being the most affected by COVID-19 and the younger the least (in the early stages of the
pandemic), women might be expected to carry most of the burden. In addition, research has
highlighted women as composing the majority of the healthcare workforce in the US, and
also with roles requiring more close and prolonged contact with patients [58]. Furthermore,
for employed women or single parents, gender disparities may even be accentuated, as
women are disproportionally responsible for the bulk of domestic tasks, including not only
childcare but also eldercare [59]. These factors might explain our results showing women
having 77.2% more risk of COVID-19 infection than males.

However, other countries with comparable age-gender pyramids (younger male
population and older female population), such as Italy or the United States [60], have not
experienced this phenomenon, following the global trend of male predominance [61,62].

However, we did not find greater risk of COVID-19 mortality for females, as the
number of deaths for females and males was not significantly different (6098 and 5998,
respectively).

Recent studies have pointed out that older age is as a major individual risk factor
for severity of the COVID-19 infection and mortality [58,63]. We detected this effect
in the adjusted and non-adjusted models for both COVID-19 infection and mortality.
Nevertheless, the effect of age was reduced when adjusted for the rest of covariates.

4.2. Socioeconomics

Previous studies have suggested that socioeconomically deprived groups were asso-
ciated with a higher risk of confirmed COVID-19 infection [64]. At the beginning of the
outbreak, some authors suggested that working class people might be more exposed to
the virus, as they were associated with the use of public transport [65]. However, other
reports encouraged its use as the incidence of COVID-19 attributed to public appeared to
be very low [66], even though safety countermeasures should be taken into account [67].
Regarding deprived people, some authors suggest that this group might face several disad-
vantages which make physical distancing a difficult issue [68]. That is, besides showing
greater mobility due to the impossibility of working from home, lower-income population
might tend to visit denser places (grocery stores, religious establishments, etc.), and spend
longer times than upper class populations [69]. In Catalonia, some studies observed higher
incidence of COVID-19 in poorer areas of Barcelona city [70].

Despite all the research showing a greater impact of COVID-19 on lower SES classes,
our results seem to point to the other way around. We found higher incidence and mortality
ratios for higher SES BHAs compared to medium SES. This effect was significant before
and after adjusting for the rest of the covariates. In addition, although a non-significant
effect was found for low (D) and very low (E) SES BHAs when tested unadjusted, when
adjusting them into the model, they showed a significant negative association with both
COVID-19 incidence and mortality. It is possible that differences between SES classes in
Catalonia were not as noticeable as they were in other regions (in the UK, for example [64]).
However, it is also possible that the Composed Socioeconomic Index used to measure the
SES at area level might be weak measurement to detect individual-based characteristics.
Nevertheless, as shown elsewhere [69], using a more detailed unit of analysis (e.g., census
area) or completing SES information with individual-based information [64] might result
in better estimations as to the impact of SES on COVID-19 incidence and mortality.

4.3. Comorbidities

Chronic medical conditions have been linked to disproportionate morbidity due to
SARS-CoV-2 virus [58]. Regarding previous literature on SARS-CoV, some authors have
reported that cardiovascular comorbidities might be the most important components for
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predicting adverse outcome, increasing the risk of death by twice as much as other risk
factors [71]. In a recent meta-analysis [72], the proportion of cardia-cerebrovascular disease
in patients with COVID-19 was found to be 16.4%. A proportion much higher than what
is found in the general population [72]. In this sense, many researchers acknowledge the
consistent association between cardiovascular disease and SARS-CoV-2 [2,73–75].

In another sense, some researchers have reported that people diagnosed with psycho-
logical disorders had significantly higher odds of COVID-19 infection than people without
a psychological disorder, with the strongest effect for depression and schizophrenia [76].
In the same way, these authors reported that the death rate for patients with both a recent
diagnosis of psychological disorder and COVID-19 infection was higher than patients with
COVID-19 infection but with no psychological disorder [76].

Other research also states the role of cancer in aggravating the prognostics of COVID-
19 [73]. In this regard, people with ongoing cancer treatments have shown higher risk
because their immune system is compromised [77].

Our results are aligned with previous literature showing increased risk for both
COVID-19 infection and mortality for those areas with more percent of people suffering
from cardiovascular disease, psychological disorders and all-cause cancer. Similar to
previous literature, we used these variables to control for the general health status of the
BHAs, building our main model. They all showed a positive significant association with
both COVID-19 infection and mortality before and after adjustment. This research adds
evidence that these comorbidity variables are significant predictors.

Additionally, other relevant comorbidities such as obesity [78] or respiratory illnesses
(e.g., COPD [79] and asthma [2]) have also been found to be positively associated with
both infection and mortality for COVID-19. Our study was not able to control for these
variables as we lacked the information. However, future studies might also use respiratory
illnesses to describe the general health statutes of the unit of analysis.

4.4. Air Pollution

The major route of transmission for COVID-19 is through small droplets and aerosols
of different sizes exhaled by an infected person when breathing, talking, coughing or sneez-
ing [29,80,81]. Additionally, some research suggests the rapid spread of the SARS-CoV-2 could
be explained by air pollution-to-human transmission (e.g., airborne transmission) [17–19].
Considering that the data used in this paper was historical (2016), we could not assess the
relationship between short-term exposition to high levels of air pollutants (e.g., PM10) and
the COVID-19 incidence or mortality and hence, provide evidence neither supporting these
hypotheses nor against them.

In our opinion, the principal pathway linking air pollution to increased levels of
COVID-19 incidence and mortality is the worse health status of more exposed popula-
tions [29,82,83].

Long-term exposure to air pollution has been widely linked to cardiovascular diseases,
respiratory illnesses, psychological disorders and cancer [84–86]. We believe that this might
explain the association between more polluted areas and more severe and lethal forms of
COVID-19 [26,80]. In this sense, areas more chronically exposed to higher air pollution
levels would presumably be in worse health status and thus, showing increasing levels of
COVID-19 mortality. Regarding the incidence of the virus, the positive association between
increased pollutant levels and increased incidence levels of COVID-19 (at least for PM10)
would be explained as during the early stages of the pandemic, people with pre-existent
health conditions, or with more severe symptoms, were more likely to be tested, and thus,
to finally be diagnosed as a new case.

As shown elsewhere [87], NO2 and PM10 effects on COVID-19 mortality remained
significant after adjusting for socioeconomic, demographic and health-related variables.
When adjusted in the model, NO2 showed a negative association with COVID-19 infection
levels. In this sense, other relevant research conducted in Catalonia [88] highlights an
association between NO2 and COVID-19 incidence, but the association was only found in
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more polluted BHAs. Our approach of using this data for all Catalonia without stratifying
for more polluted areas might prevent us from detecting the aforementioned effect.

4.5. Forest, Meat, and Leather and Fur Industry

Our results show a significant positive effect of forested areas on COVID-19 incidence.
Although forest industries might apparently be more abundant in BHAs with more forested
areas, its positive effect was only found when it was adjusted, showing a significant
negative effect when tested alone. We hypothesise that, rather than a positive independent
effect for forest industry on COVID-19 incidence, possible associations with some main
model covariates might have contributed to changing the direction of the effect.

In Catalonia, there is a huge production of pork meat, with a degree of self-sufficiency
of 228.73%, that has been constantly growing in recent decades [89]. While swine breeding
is concentrated in Lleida region and Central Catalonia, most slaughterhouses and pork
meat industries are located in Central Catalonia and Girona region [89]. Working condi-
tions in slaughterhouses and meat industries such as low temperatures, high humidity,
overcrowding, physical effort and other things may contribute to amplifying virus viability
and transmission [90]. These conditions might also be found in other types of industries
with high working density, making them prone-to-infection industries. However, apart
from forest industries, we only found animal-related industries, namely the meat industry
and the leather and fur industry, to be related with COVID-19 incidence and mortality
(only the leather and fur industry).

In other coronavirus infections such as MERS, there was a high prevalence of infection
in slaughterhouse workers compared to the general population [91]. COVID-19 transmis-
sion has been reported in the meat and poultry industry [13] and slaughterhouses are now
considered a new front line in the COVID-19 pandemic [92]. In the same direction, local out-
breaks in the fur industry have also been reported, particularly in the mink furriery [93,94].
The fact that this particular economic activity is significantly increasing both the incidence
and the mortality rate in our model makes it plausible that this kind of industry poses a
unique and independent risk for COVID-19 transmission.

In a recent study from the Netherlands [94], the authors reported that minks are
susceptible for SARS-CoV-2. In addition, that infected animals are able to transmit the virus
among each other. The authors also claim that although mink farms are present in other
countries in Europe, China and the US, only the Netherlands has reported SARS-CoV-2
infections in these animals. In our study, we did not identify the animal species of the
leather and fur industries we assessed. However, and given the results shown, more
attention and research should be placed upon this specific industry.

In this sense, it is advised that COVID-19 pandemic should trigger a profound trans-
formation of industrial animal agriculture by improving living conditions and increasing
their space through extensive farming, diversify the protein source industry to increase far
more sustainable plant-based market shares, and empowering the ecological transition of
animal farmers [95].

4.6. Land Use and Cover

LULC data has been shown to be a suitable describer for the environment surrounding
individuals in studies linking the environment to human health [41]. Unlike other envi-
ronmental data sets, they combine both the biophysical (e.g., temperature, humidity, soil
features) and socioeconomic (e.g., political, economic, cultural) drivers of a territory [40,96].
Given the uneven geographical distribution of the virus in Catalonia, we wanted to screen
whether environmental composition of the BHAs (seen as urban, industrial, agricultural
and forested areas) might be related with the impact of COVID-19.

Urban areas and industrial, commercial and transport units are known to be more
associated with air pollution, aerosol emission, human mobility and higher population
density [97]. These factors might be the reasons behind the increased risk of COVID-
19 mortality shown by the two ilr-transformed LUC categories, and an increased risk of
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COVID-19 infection for urban areas. Industrial areas showed a negative association with the
incidence of COVID-19. This suggests that rather than the extension of the LULC category,
the type of industry might be more relevant (as appreciated for agri-food industries).

On the other hand, agricultural areas and forested areas are more related to better air
quality [34,38,98,99], which might lead to higher general health status. That, in turn, might
explain the negative association for both categories with COVID-19 mortality. However,
despite people remaining under lockdown during most of the period analysed in this paper,
agricultural tasks were considered essential services. These tasks mainly include individual
work and are frequently done outdoors. Additionally, agricultural areas tend to be less
populated which increases social distancing. We hypothesise that these aspects might have
prevented regions with higher agricultural areas to easily register COVID-19 cases.

Although forest and semi-natural areas showed a decreased risk of COVID-19 mortal-
ity, the increased risk for COVID-19 incidence was somewhat a surprising result. Forested
areas are widely known for their air purification role [38]. Furthermore, vegetation can also
lessen other determinant variables for aerosol dispersion such as wind speed. In the same
direction, areas with an increased amount of forest are associated with less population
density and hence, more physical distancing. In Catalonia, the BAHs with the highest
amount of forest and semi-natural areas tend to be sparsely populated. Moreover, many of
these BAHs held second residences, mainly belonging to people living in the Metropolitan
Area of Barcelona, who may have commuted to the countryside as soon as the emergency
state was declared [100]. In these regions, few cases can be translated into high incidence
rates, which might explain the increased risk of COVID-19 infection for higher levels of
forested areas.

During the first wave of the pandemic, people remained at home, decreasing human
interactions. In future studies, LULC data might be leveraged encompassing variables such
as population density, air quality, biodiversity and economic activities to further validate
LULC data in scenarios with mobile people.

4.7. Limitations

We implemented a cross-sectional design, so we could not escape from many of
the limitations of ecological regression analysis highlighted elsewhere [46]. One of the
major constraints is that, when using these designs, causal inference cannot be spotted.
Nevertheless, these studies do leverage data for an entire population (Catalonia in our
case) and are able to make conclusions at the area level (e.g., BHAs), which might be useful
for policy-making [46]. Furthermore, the associations detected in this paper can provide
justification for ongoing or future research.

We did not study the evolution of the epidemic taking place later than the 18 May 2020.
As for age groups, we only controlled for the percentage of elder people (>65 years). How-
ever, the advance of the epidemic has shown that many other age groups are vulnerable
and should be considered in further analyses.

Controlling for other pre-existent health conditions such as obesity or respiratory
illnesses and incorporating a greater variety of human mobility data (in scenarios with
mobile people) such as the public transport network may enhance future research.

Although we controlled for significant differences for the pollutant concentration
levels between 2016 and 2018/2019, accounting for the most recent modelling of the NO2
and PM10 annual average (µg/m3) in Catalonia may have improved the analysis as well.
Furthermore, controlling for other air pollutants such as O3 or PM2.5, which have been
described as relevant in previous research, might enhance future research.

In the same direction, the incapability for acquiring more updated data led us to
use different datasets from different years for all the assessed covariates. However, the
estimations found are consistent with previous research, which adds evidence as to the
independent effect of the covariates assessed.
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5. Conclusions

Recent literature has highlighted the importance of controlling for covariates in studies
linking air pollution to COVID-19. We used a main model with demographic, socioe-
conomic and comorbidity covariates highlighted from previous research as important
predictors. This allowed us to take a glimpse of the independent effect of each explanatory
variable when controlled for the main model covariates. Our findings are aligned with
previous research showing that the baseline features of the regions in terms of health
status, pollutant concentration levels (NO2 and PM10), type of agri-food industry and type
of land use and land cover have modulated the impact of the COVID-19 at a regional
scale. A warning is made regarding future pandemics caused by respiratory infectious
diseases. Thus, actions that improve air quality, diversify economic activities and enhance
overall public health should be considered, not only to weaken the intensity of the current
coronavirus, but for other virus-related problems expected to come.

Supplementary Materials: The following are available online at https://www.mdpi.com/article
/10.3390/ijerph18073768/s1, Figure S1: COVID-19 incidence rate, data from the beginning of the
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the epidemic to the 18th of May 2020, Figure S3: NO2 annual weighed average in µg/m3 at BHA
level (2016), Figure S4: PM10 annual weighed average in µg/m3 at BHA level (2016), Figure S5:
Reclassification of the 25 categories of the Land Use and Land Cover map of Catalonia (2017) into
the 4 broader categories, Figure S6: Odds ratios and 95% CI. Associations between COVID-19
incidence (in blue) and mortality (in red) and the rest of covariates. The main model controlled for
demographics, socioeconomics, and comorbidity covariables. Human activity covariates as well as
land use and cover covariates were included in the model separately.
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