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THE LIMIT CYCLES OF DISCONTINUOUS PIECEWISE
LINEAR DIFFERENTIAL SYSTEMS FORMED BY CENTERS
AND SEPARATED BY IRREDUCIBLE CUBIC CURVES II

REBIHA BENTERKI!, LOUBNA DAMENE? AND JAUME LLIBRE?

ABSTRACT. In this paper we provide a lower bound for the maximum number
of crossing limit cycles of some class of planar discontinuous piecewise linear
differential systems formed by centers and separated by an irreducible algebraic
cubic curve. First we prove that the systems constituted by three zones can
exhibit 0, 1, 2, 3 or 4 crossing limit cycles having four intersection points with
the cubic of separation. Second we prove that the systems constituted by two
zones can exhibit 0, 1, or 2 crossing limit cycles having four intersection points
with the cubic of separation.

1. INTRODUCTION

1.1. Classification of the irreducible cubic polynomials. A cubic curve is
the set of points (x,y) € R? satisfying P(x,y) = 0 for some polynomial P(x,y)
of degree three. This cubic is irreducible (respectively reducible) if the polynomial
P(z,y) is irreducible (respectively reducible) in the ring of all real polynomials in
the variables x and y.

A point (zg, yo) of a cubic P(x,y) = 01is singularif P,(xo,yo) = 0 and Py(xo,y0) =
0. A cubic curve is singular if it has some singular point, as usual here P, and P,
denote the partial derivaties of P with respect to the variables  and y respectively.

A flex of an algebraic curve C'is a point p of C such that C' is nonsingular at p and
the tangent at p intersects C' at least three times. The next theorem characterizes
all the irreducible cubic algebraic curves.

Theorem 1. The following statements classify all the irreducible cubic algebraic
curves.

(a) A cubic curve is nonsingular and irreducible if and only if it can be trans-
formed with affine transformations into one of the following two curves;

ci(zmy)=v? —z(@*+bz+1)=0 withbe (-2,2), or
ez, y)=y?—z(x—1)(z—7r)=0 withr > 1.
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(b) A cubic curve is singular and irreducible if and only if it can be transformed
with affine transformations into one of the following three curves:

03(38,3/) :y2_'7;3 :Oa or

ca(z,y) =y* —2*(z - 1)
es(x,y) =y? — 2%(x + 1)

, or

0
0.

Statement (a) of Theorem 1 is proved in Theorem 8.3 of the book [4] under the
additional assumption that the cubic has a flex, but in section 12 of that book it is
shown that every nonsingular irreducible cubic curve has a flex. While statement
(b) of Theorem 1 follows directly from Theorem 8.4 of [4].

1.2. Crossing limit cycles. For k = 1,...,5 let C be the five classes of planar
discontinuous piecewise linear differential systems formed by centers and separated
by the irreducible cubic curve cx(z,y) = 0, or simply the irreducible cubic curve
Ck.

Piecewise linear differential systems appear in the characterization of many real
processes such as switches in electronic circuits, see for instance [2, 12, 13].

In the qualitative theory of piecewise linear differential systems one of the impor-
tant and difficult problems is the determination of the existance and the number
of limit cycles. We recall that a crossing periodic orbit, is a periodic orbit of a
piecewise linear differential system with a cubic separation curve c; with at least
two points in c. If this periodic orbit is isolated we call it a crossig limit cycle.
In recent years, much progress has been made in studying the existance and lower
and upper bounds of crossing limit cycles of piecewise linear differential systems,
see for example [1, 5, 6, 7, 8,9, 15, 17, 18, 19].

There are previous results on the number of crossing limit cycles of discontinuous
piecewise linear differential centers separated by a curve X. More precisely, if ¥ is
one straight line then such systems have no crossing limit cycles see [14, 16]. If ¥
is a conic the number of crossing limit cycles have been studied in [10], and if 3 is
a reducible cubic curve the number of crossing limit cycles have been analyzed in
[11].

In [3] we started the study of crossing limit cycles of the discontinuous piecewise
linear differential centers in R? separated by an irreducible algebraic cubic curve.
We proved that these differential systems only can exhibit at most three crossing
limit cycles having two intersection points with the cubic of separation.

The objective of this paper is to provide lower bounds for the maximum number
N of crossing limit cycles for the planar discontinuous piecewise linear differential
centers which intersect the irreducible cubic curves ¢;, with ¢ = 1...5, and have
four points of intersection with the cubic of separation. First, we study the number
N when the crossing limit cycles intersect the curves ¢z and cs, in four points in
three different zones. Second, we give N when the crossing limit cycles intersect ¢;
with ¢ = 1...5, in four points in two different zones.

Figures 1 and 2 show the different regions separated by the cubic curves ¢;, with
i=1...5.



FIGURE 1. The three regions Ry, Re and Rj3 of the plane separated
by the curves co on the left and c¢5 on the right.

R2

R2 R1

FI1GURE 2. The two regions R; and Ry of the plane separated by
the curves c¢; on the left, c3 on the middle and ¢4 on the right.

1.3. Crossing limit cycles contained in three regions intersecting the two
cubic curves ¢; and c¢; in four points. In this subsection we are interessted to
provide lower bounds for the maximum number of crossing limit cycles of piecewise
linear differential centers separated by the irreducible cubic curves ¢y or ¢s5, having
four points of intersection with the cubic of separation. We note that such piecewise
systems are formed by three pieces in each one there is a linear differential center.

Our first main result is the following.

(b)

Theorem 2. We study the crossing limit cycles contained in three regions
of the discontinuous piecewise linear centers in the class Co or Cs and
having four points of intersection with the cubic of separation.

There are systems in Co and in C5 ezhibiting exactly one crossing limit
cycle which intersect co or cs in four points. The class Cy has one possible
configuration see Figure 3, while the class Cs has two possible configurations
see (C3) and (C2) of Figure 4.

There are systems in Cy and in Cs exhibiting exactly two crossing limit
cycles which intersect co or c5 in four points. The class Cy has one possible
configuration see Figure 5, while the class Cs has two possible configurations
see (C) and (C2) of Figure 6.
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There are systems in Cy and in C5 exhibiting exactly three crossing limit
cycles which intersect co or c5 in four points. The class Co has one possible
configuration see Figure 7, while the class Cys has two possible configurations
see (C) and (C2) of Figure 8.

There are systems in Co and in Cs exhibiting exactly four crossing limit
cycles which intersect ca or cs in four points see (C2) and (Cs) of Figure 9
for the classes Cy and Cl, respectively.

Theorem 2 is proved in section 2.

1.4. Crossing limit cycles contained in two regions intersecting the irre-
ducible cubic curves ¢; in four points. Now we give our second main result
which provides information on the number of crossing limit cycles of the discontin-
uous piecewise linear differential systems formed by two centers and intersect the
cubic curves ¢;, with ¢ = 1...5 in four points.

Our second main result is the following.

Theorem 3. We study the crosssing limit cycles contained only in two regions of
the discontinuous piecewise linear centers in the class Cy for k =1...5, and having
four intersection points with the cubic of separation.

(a)

There are systems in Cy, exibiting exactly one crossing limit cycle intersect-
ing the cubic curves ¢; in four points. The classes C1, C3 and Cy have one
possible configuration, see (C1), (Cs) of Figure 10 and (C4) of Figure 12, re-
spectively. The classes Co and Cs have two possible different configurations
see (C3) and (C2) of Figure 11, and (C}) and (C2) of Figure 13.

There are systems in Cy exibiting exactly two crossing limit cycles inter-
secting the cubic curves c; in four points. The classes C1, C3 and Cy have
one possible configuration see (C1), (Cs) and (C4) of Figure 14, respectively.
The classes Cy and Cs have two possible different configurations see (C3)
and (C3) of Figure 15 for the class Co, and (C}) and (C2) of Figure 16 for
the class C'.

Theorem 3 is proved in section 3.

2. PROOF OF THEOREM 2

Proof of statement (a) of Theorem 2. First we prove the statement for the class Cs.
We consider the first linear differential center in the region R;

(1)

. T 5y+5 . +y+1
r=-—— — — = — —
41161 Y 4"

this system has the first integral

_ A% TSN, e
Hl(x,y)—4<z+4) +8<2 4>+y.

The second linear differential center in the region R, is

(2)

1
g’cz%(14a:—7y—79)7 y=r—— —



FIGURE 3. The unique limit cycle of the discontinuous piecewise linear
differential system (1)—(3) contained in three zones.

(C3) (&)

FIGURE 4. The unique limit cycle of the discontinuous piecewise
linear differential system (C2) for (5)-(7), and (C2) for (9)—(11)
contained in three zones.

this differential system has the first integral

211 1
Hy(z,y) = 4% + 2 <—2y - 8> + ﬁy(’?y + 158).
Now we consider the third linear differential center in the region Rg
5y 1
3 P = —x — —= — ) = -2
(3) p=—e- il g=aty-2,

this differential system has the first integral

Hy(w,y) = Az +)° +8 (=20 - £) +42

The discontinuous piecewise linear differential system formed by the linear differen-
tial centers (1), (2) and (3) has exactly one crossing limit cycle, because the system
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(C2)

FiGURE 5. The two limit cycles of the discontinuous piecewise
linear differential system (12)—(14) contained in three zones.

(&) ()

FIGURE 6. The two limit cycles of the discontinuous piecewise
linear differential system (C}) for (15)—(17), and (C2?) for (18)—(20)
contained un three zones.

of equations

Hl(a7ﬁ) _Hl(%é) =0,
HZ(a7B) _HQ(.fag) _07
Hs(v,0) — Ha(h, k) =0,
(4) H3(f7g) - H3(h?k) =Y,
B% —ala—1)(a—3) =0,
02 —y(y=1)(y =3) =0,
g = f(f=1(f-3)=0,
12— h(h—1)(h—3) =0,

has a unique real solution (a, 3,7, 6, f, g, h, k) = (5, —2+/10,5,2+/10,1/2,
—/5/2v/2,1/2,/5/2+/2). This completes the proof of statement (a) for the
class Cs.



(C2)

FIGURE 7. The three limit cycles of the discontinuous piecewise
linear differential system (21)—(23) contained in three zones.

FiGURE 8. The three limit cycles of the discontinuous piecewise
linear differential system (C%) for (24)—(26), and (C2) for (27)—(29)
contained in three zones.

Now we prove the existence of two different configurations of one crossing limit
cycle for the class C5. For the first possible configuration we consider the linear
differential center

3 Yy
il AT Z 1
(5) & tg y=r+g-L

in the region R;, with its first integral

_ CARSNPY SR /) s
Hl(x,y)f4(x+8) +8< x 8>+y.
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(C2) (Cs)

FIGURE 9. The four limit cycles of the discontinuous piecewise
linear differential system (Cz) for (30)—(32), and (Cs) for (33)—(35)
contained in three zones.

In the region Ry we consider the linear center

x 101y 3800v/2 + 3584+/5 + 2203113

=3 )
4 16 320 (95v/2 + 561/5 — 4380)
(6)
LY, —H48604v2 — 315662v/5 + 48V/10 + 22560621
’ ! 160 (95v/2 + 56/5 — 4380) ’

with its first integral

1
40(95v/2 + 56+/5 — 4380)
(160(95v/2 + 561/5 — 4380)22 + 2(—80(95v/2 + 56/5 — 4380)y
—897208v/2 — 631324+/5 + 961/10 + 45121242) + y(1010(95v/2
+56+/5 — 4380)y — 3800v/2 — 3584+/5 — 2203113).

HQ(JZ,?/) =

In the region R3 we consider the following linear differential center

1
(7) a'c:—a:—l()y—i, y=x+y—2,

this differential system has the first integral

5 81 288
H =4 R ST G A E Rty R 165",
3(z,y) = 4z +y) +8(12( 3V2+ o 25\/5>3; y>+ o

The discontinuous piecewise linear differential system formed by the linear differen-
tial centers (5), (6) and (7) has exactly one crossing limit cycle, because the system



of equations

Hy (o, B) — Hi(v,6) =0,
Hs(a, B) — Ha(f,9) =0,
Hy(v,8) — Ha(h, k) =0,

(8) Hj(f,g) — H3(h,k) =0,
B —a*(a+1) =0,

gQ_fQ(f+1):O7

k* —h*(h+1) =0,
has a unique real solution (a, 3,7, 9, f, g, h, k) = (3,—6,3,6,—1/2,—1/(2v/2), —4/5,
4/(5V/5)).

For the second configuration. In the region R; we consider the linear differential
center

o s @ TSy T0V50-8V6+40083 oy 1
7749 190 (vV2a-2v3) 7 B

which has the first integral
Y2 z  (70v/2 — 280v/3 — 40083) y )
Hy(x, :4("[—*) +8| -+ + 64y°.
1) 7 (5 190 (v2 - 2v/3) Y

In the region Ry we consider the linear differential center
(10)

.f:

3z 373y —23556784+/2 — 26814823+1/3 + 14402472/6 + 83393133
7 1764 80960544 ’

. 3y  —4861464v/2 + 3092483+/3 + 1548288/6 — 1763763
y= + -+ 9
7 56448 (88v/2 — 91v/3 + 15)

with its first integral

2 2
y y A
H. x, = 4|x + = + =+ )
2(2,9) ( 7 ) 9 " 7056 (88v/2 — 913 + 15) (16V3 — 3)
where

A= 889022162 — 37497657+/3 — 82428288+/6 + 153730473)x — 8(7597532/3

+2661121/6(259 — 321/3) — 23982207)y.

In the region R3 we consider the linear differential system

x 57Ty —10025v/3 — 29787
8 64 9216 ’
which has the first integral

(11) =

9216 3

2 1002 2
= 1(o-2) (1)

The real solutions of the system of equations (8) with the values of H;(z,y) with
i =1,2,3 given for this second configuration is («, 3,7, 6, f, g, h, k) = (1, /2,2,
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—2v/3,-1/4,—/3/8,—-3/4,—3/8), then the discontinuous piecewise linear differ-
ential system (9), (10) and (11) has one crossing limit cycle (C}) of Figure 4. This
completes the proof of statement (a) for the class Cs. O

Proof of statement (b) of Theorem 2. First we prove the statement for the class Cs.
We consider the first linear differential center in the region R;

(12) T =—x—by—18035 y=ux+y—0.664282,
this system has the first integral
Hy(z,y) = 4(x +y)? + 8(1.8035y — 0.664282z) + 16y°.
The second linear differential center in the region Rj is
z 10y

. . Yy
1 :—777—1 = —_ —
(13) @ 5 1 s y=TEg

this differential system has the first integral

2 3
Hg(x,y):4(x+g) +8<y—$> + 9y

3
2

b

2 2
The third linear differential center in the region Rj is
(14) T =—2x—8y+0.837903, y =2z —2y— 0.169396,

this differential system has the first integral
Hj(z,y) = 4(x — 2y)? + 8(—0.169396x — 0.837903y) + 16y°.

The discontinuous piecewise linear differential system formed by the linear differ-
ential centers (12), (13) and (14) have exactly two crossing limit cycles, because
the system of equations (4) has two real solutions (aa, 51,71,01, f1,91,h1,k1) =
(3.00039..,0.0485802.., 3.43695.., —1.91305..,0.860569.., 0.506666.., 0.00442503..,
0.114878..) and (a2, B2, V2, 02, f2, g2, ha, k) = (3.00805..,0.220494.., 3.50419..,
—2.1034..,0.735716..,0.663523..,0.0779996.., 0.458408..). This completes the proof
of statement (b) for the class Cs.

Now we prove the existence of two different configurations of two crossing limit
cycles for the class C5. For the first configuration we consider the linear differential
center

. 6x 369y . 6y
1 =—-————=>+40.1524 = — —0. 2
(15) x 3 100 + 0.152456, vy x+5 0.365572,
in the region Ry, with its first integral

60\ 2
Hyi(z,y) =4 (a: + ;J) + 8(—0.3655722 — 0.152456y) + 9.

In the region R3 we consider the linear center
(16) it o2 Y

with its first integral

Ho(w,y) =4 (z+Y) 442

In the region Ry we consider the following linear differential center

(17) &= —y— 0251587, § =+ 1.93017,



11

this differential system has the first integral
Hs(x,y) = 42% + 8(1.93017x + 0.251587y) + 4y>.

The discontinuous piecewise linear differential system formed by the linear differ-
ential centers (12), (13) and (14) have exactly two crossing limit cycles, because
the system of equations (8) has two real solutions (aq,81,71,01, f1,91, h1, k1) =
(0.286549.., 0.325022..., 0.400999.., —0.474638.., —0.416749.., 0.318275.., —0.313035..,
—0.259454..) and (a9, 2,72, 02, f2, g2, ha, ko) = (0.484398..,0.590171..,0.681486..,
— 0.883698.., —0.719407..,0.381077.., —0.569542.., —0.373673..).

For the second configuration. In the region Ry we consider the linear differential
center

25
(18) b= 20— Y 163854, § =+ 2y+0.134162,
4

which has the first integral
Hi(z,y) = 4(x + 2y)? + 8(0.134162x — 6.3854y) + 9y
In the region R3 we consider the linear differential center
3 25y 1
1 R —— ) = i
(19) =g -7 Y=Thg,
with its first integral

2 4

In the region Ry we consider the linear differential system

3 25y
Hz(r,y)—4x2+8<";+ >+ v

5
(20) &= —g - 7?} £0.902052, § =2+ g +0.234228,

which has the first integral

2
Hy(z,y) = 4 (cc n g) +8(0.2342282 — 0.902952y) + 9y>.

The discontinuous piecewise linear differential system formed by the linear differ-
ential centers (18), (19) and (20) have exactly two crossing limit cycles, because
the system of equations (8) has two real solutions (aq, 81,71,01, f1,91, h1,k1) =
(0.844854..,1.14753..,0.137908..,0.14711.., —0.884123..,0.300962.., —0.112734..,
0106189) and (0527 52, Y2, 62, fg, gz, hg, kg) = (0783948, 104708, 0219822,
0.242783..,—0.824415..,0.345453.., —0.186379..,0.168115..). This completes the proof
of statement (b) for the class Cs. O

Proof of statement (c¢) of Theorem 2. First we prove the statement for the class Cs.
We consider the first linear differential center in the region R;

(21) T = —3.95435x — 19.6368y — 6.39482, y = x + 3.95435y + 4.13635,
this system has the first integral
Hy(x,y) = 4(x + 3.95435y)% + 8(4.136352 + 6.39482y) + 163>
The second linear differential center in the region Rs
T by

(22) g=—2_ Y 9 y=zy?_

3
2 2 2 2
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this differential system has the first integral
2 3
Hg(x,y):4(x+%) +8<y—;>+9y2.

Now we consider the third linear differential center in the region R3
(23) &= —0.241343x — 1.00852y — 0.358353, ¢ = = + 0.241343y — 0.869754,
this differential system has the first integral

Hs(z,y) = 4(x + 0.241343y)? + 8(0.358353y — 0.869754x) + 4y>.

The discontinuous piecewise linear differential system formed by the linear differ-
ential centers (21), (22) and (23) have exactly three crossing limit cycles, because

the system of equations (4) has three real solutions (au, 51,71, 01, f1,91, h1, k1) =
(3.00039..,0.0485802.., 3.43695.., —1.91305..,0.860569.., 0.506666.., 0.00442503..,
0.114878..), (qta, B2, Y2, 02, f2, go, ha, kia) = (3.00318..,0.138419.., 3.47181.., —2.01219..,
0803882, 0588414, 00319264, 0302877) and (Oég, B37 Y3, 537 f3, gs, hg, kg) =
(3.00805..,0.220494.., 3.50419.., —2.1034..,0.735716..,0.663523.., 0.0779996.., 0.458408..).

Now we prove the existence of two different configurations of three crossing limit
cycles for the class Cs. For the first configuration we consider the linear differential
center

(24) &= —0.345578x — 1.11942y — 0.128163, ¢ = = + 0.345578y — 0.440337,
in the region R;, with its first integral

Hi(z,y) = 4(x + 0.345578y)? + 8(0.128163y — 0.440337x) + 4y>.
In the region R3 we consider the linear center
(25) PO %
with its first integral

Hy(z,y)=4 (x + %)2 + 42

In the region Ry we consider the following linear differential center
(26) & = ——0.0923038z — 1.00852y — 0.0805185, ¢ = x+ 0.0923038y + 0.46371,
this differential system has the first integral

Hs(z,y) = 4(x + 0.0923038y)? + 8(0.46371x + 0.0805185y) + 4y>.

The discontinuous piecewise linear differential system formed by the linear differ-
ential centers (24), (25) and (26) has exactly three crossing limit cycles, because
the system of equations (8) has three real solutions (aa, 51,71, 01, f1,91, h1, k1) =
(0.286549.., 0.325022.., 0.681486.., —0.883698.., —0.416749.., 0.318275.., —0.569542..,
— 0373673), (OZQ, 52, Y2, 52, fg, g2, hg, k‘g) = (0.366248.., 0.428095..7 0.749792..,
—0.991822.., —0.538507..,0.365825.., —0.639545.., —0.383969..) and (3, 83,73, 03, f3,
g3, ha, k3) = (0.429988..,0.514188..,0.81153.., —1.09226.., —0.636378..,0.383743..,
—0.706638.., —0.382736..).

For the second configuration. In the region R; we consider the linear differential
center

(27) @ =—0.121241x — 2.2647y + 1.93257, ¢ =z + 0.121241y + 0.00611219,
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which has the first integral
Hi(z,y) = 4(x + 2y)? + 8(0.134162x — 6.3854y) + 9y
In the region R3 we consider the linear differential center

25 . 1
Y y:x—’—*a

3
2 p=o_ 20
(28) T3 16 5

with its first integral

Hy(z,y) = 422 + 8 (:; - 32y> + 2‘192
In the region Ry we consider the linear differential system
(29) @ =-0.217737x — 1.04741y + 0.515416, ¢ =z + 0.217737y + 0.350398,
which has the first integral
Hs(x,y) = 4(x + 0.217737y)? + 8(0.350398z — 0.515416y) + 4y°.

The discontinuous piecewise linear differential system formed by the linear differ-
ential centers (27), (28) and (29) have exactly three crossing limit cycles, because
the system of equations (8) has three real solutions (aq, 51,71, 901, f1,91, h1, k1) =
(0.844854..,1.14753..,0.137908..,0.14711.., —0.884123..,0.300962.., —0.112734..,
0.106189..), (Qt2, Bo, 7, 82, fas go, ha, ko) = (0.816222.., 1.1..,0.177162..,0.192216..,
— 0.856934..,0.324128.., —0.147429.., 0.136128..) and (a3, 83,73, 03, f3, g3, hs, k) =
(0.783948..,1.04708..,0.219822..,0.242783.., —0.824415..,0.345453.., —0.186379..,
0.168115..). This completes the proof of statement (c) for the class Cs. O

Proof of statement (d) of Theorem 2. First we prove the statement for class Cs.
We consider the first linear differential center in the region R;

(30) T = —3.95435x — 19.6368y — 6.39482, ¢y = x + 3.95435y + 4.13635,
this system has the first integral
Hy(x,y) = 4(x + 3.95435y)% + 8(4.136352 — 6.39482y) + 16y°.

The second linear differential center in the region Ro

. z 5y . y 3
1 = _Z2_1 — g _ 2
(31) t=—5 -5 L g=z+5 -3,
this differential system has the first integral
2 3
Hy(z,y) =4 (x+ %) +8 <y— ;) + 992

Now we consider the third linear differential center in the region R3
(32) & =—0.241343z — 1.00852y — 0.358353, ¢ = = + 0.241343y — 0.869754,
this differential system has the first integral

Hs(x,y) = 4(x + 0.241343y)? + 8(0.358353y — 0.869754x) 4 4y°.
The discontinuous piecewise linear differential system formed by the linear differ-
ential centers (30), (31) and (32) have exactly four crossing limit cycles, because
the system of equations (4) has four real solutions (a1, 51,71,01, f1,91,h1,k1) =
(3.00039..,0.0485802.., 3.43695.., —1.91305.., 0.860569.., 0.506666.., 0.00442503..,

0114878), (0627 527 Y2, (527 f2, gz, hz, ]{32) = (300318, 0138419, 347181, —201219,
0.803882..,0.588414..,0.0319264..., 0.302877..), (cvs, B3, Y303, f3, g3, b, ks) = (3.00805...,
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0.220494..,3.50419.., —2.1034..,0.735716..,0.663523..,0.0779996.., 0.458408..) and (cv4,
Bas 74,04, fa, 94, h3d, kq) = (3.01815..,0.332542.., 3.5491.., —2.22883..,0.593338..,
0.762036..,0.192725..,0.66088..).

Now we prove the existence of two different configurations of four crossing limit
cycles for the class Cs. For the first configuration we consider the linear differential
center

(33) 4 =0.897851x — 2.12174y — 0.62272, § =z — 0.897851y — 0.620434,
in the region Ry, with its first integral
Hs(x,y) = 4(x — 0.897851y)? + 8(0.62272y — 0.6204342) + 5.2624y>.

In the region R3 we consider the linear center

. x 17y . Y
34 = —— — — J—
(34) TS0 w0 YT T 0
with its first integral
y\2 |y
Hy(z,y) = 4 ( — 7) ¥
2 y) =4(r—95) +7

In the region Ry we consider the following linear differential center
(35) &= —0.225709x — 1.26066y — 0.265909, ¢ = = + 0.225709y + 0.334228,
this differential system has the first integral

Hs(z,y) = 4(x + 0.225709y)? + 8(0.334228z + 0.265909y) + 4.83887y>.

The discontinuous piecewise linear differential system formed by the linear differ-
ential centers (33), (34) and (35) have exactly four crossing limit cycles, because
the system of equations (8) has four real solutions (a1, 1,71, 91, f1,91,h1, k1) =
(0.275692..,0.311385..,0.490206.., —0.598415.., —0.22775..,0.200142.., —0.593285..,
- 0378363), (OZQ, 52, ’)/252, fg, gz, hg, kg) = (0.391233.., 0.461461.., 0.535875..,
—0.664112.., —0.324107.., 0.266457.., —0.647454.., —0.38443..) , (3, B3, 73, 03, f3, 34
hs, k3) = (0.480359..,0.584453..,0.577721.., —0.72566.., —0.399001.., 0.309322..,
—0.696708.., —0.383691..) and (a4, B4, ¥404, f1, g4, h3d, ks) = (0.555792..,0.693247..,
0.616543.., —0.783893.., —0.46287..,0.339233.., —0.742.., —0.376889..). O

3. PROOF OF THEOREM 3

Proof of statement (a) of Theorem 3. First we prove the statement for the class Cj.
We consider the first linear differential center in the region Rs

v 13y (VI3 +1) (—187/3 + 192V/13 — 64)

T=—=
7 3136 5376 ’
(36)
N
Y=rT 7T 75264

with B = (V13 + 1) (—10651v/13 + 8961/14 — 17921/39 — 2618\/42 + 896+/182 + 18505) .
This system has the first integral
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) ()

FIGURE 10. The unique crossing limit cycle of the discontinuous
piecewise linear differential system (C;) for (36)—(37), and (C3) for
(43)—(44) contained in two zones.

) ’ )

FiGURE 11. The unique crossing limit cycle of the discontinuous
piecewise linear differential system (C3) for (39)—(40), and (C3) for
(41)—(42) contained in two zones.

1 ) B
m(iﬂ%(\/ﬁ — 122 +y(113(v/13 — 1)y + 14(187/3

—192/13 + 64)) + 2(896(v/13 — 1)y — 106511/13 + 896+/14
—1792v/39 — 2618+/42 + 896/182 + 18505)).

The second linear differential center in the region R; is

Hl(‘ray) =

(37)
751
e my —288\/ﬁ+%+96
6 576 576(v/13 —1)
, LY 600913 + 576v/14 + 1152v/39 — 1502v/42 + 576+/182 — 10515
=X —_ — s
Y 6 3456(v/13 — 1)
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(Ca)

F1GURE 12. The unique crossing limit cycle of the discontinuous
piecewise linear differential system (45)—(46) contained in two
zones.

(3) (c3)
FIGURE 13. The unique crossing limit cycle of the discontinuous

piecewise linear differential system (C2) for (47)—(48), and (C?) for
(49)—(50) contained in two zones.

this differential system has the first integral

1 2
m(ms@/ﬁ — 1)2? — 2(=576(v/13 — 1)y + 6009v/13

+5761/14 + 1152v/39 — 1502v/42 + 5761/182 — 10515) + y(75(1/13
—1)y + 2(751/3 — 864+/13 + 288))).

HQ(may) =



(C1)

(Cs)

(C4)

FIGURE 14. The two crossing limit cycles of the discontinuous
piecewise linear differential system (Cy) for (51)—(52), (C3) for (58)—
(59), and (C4) for (60)—(61) contained in two zones.

17

For the piecewise linear differential system (36)—(37) the unique real solution of

the system of equations

when ¢ =1, is (a1, f1, a2, B2, 71, 01,72, 02) =

Hl(al,ﬂl)—Hl 71751)
2) =

7

(
Hi(az, B2) — Hi(v2,6
Hy (o, B1) — Ha(az, f2) = 0,
Hy((y1,01) — H2(72752) =0,

Cz(alyﬁl) _O Cl(a2752) _0
¢i(71,01) =0, c¢i(y2,02) =0,
(1,4/3,2,

\/ﬁa 27 \/ﬂ,?}, _\/@)

Now we prove the statement for the class Cy. We consider the first linear differ-

ential center in the region
.z by

39 = - = -

(39) T8

Ry

6

this differential system has the first integral

_3+i8(12ﬁ+6\@—151),
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) )

FIGURE 15. The two crossing limit cycles of the discontinuous
piecewise linear differential system (C3) for (54)—(55), and (C3) for
(56)—(57) contained in two zones.

(%)) ()

FIGURE 16. The two crossing limit cycles of the discontinuous
piecewise linear differential system (C2) for (62)—(63), and (CZ) for
(64)—(65) contained in two zones.

2

Hﬂayyzg1&¥+2u—mr+mv§+6%m—1m)+y@y+3®)

The second linear differential center in the region Rs is

oz 13y | —82v/3 — 20510 — 961/30 — 5664
T 6 144 4896 ’
(40)
_ y+—%mﬁﬂwﬁww%¢m+mmn—w%4
y=x—=

6 2448 ’

this system has the first integral
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HQ(-T,Z/) =

1 2
m(w(zﬁ — 5v/10)2? — 42(24+/3y — 60/10y

+1117v/3 — 574 — 2649+/10 + 961/30 — 720) + y(261/3y — 65v/10y
+384y/3 — 16321/10)).
The unique real solution of the system of equations (38) for i = 2, for the piecewise
linear differential system (39)-(40) is (a1, B1, 2, B2, 71,01, V2, 02) = (4,23, 5,
- 2V/10, 6,310, 6, —31/10).

For the second configuration of the class C5, we consider the linear system

x  4ly | 14403 — 640v/10 — 160v/33 4 2503

— + R
5 400 3200 (—3v/3 4+ 2v10 + V/33)

(41)
2503v/1 V30 — 32
160y/70 4 2303V10 +960v/30 - 3200 _ 00
e Y —3v/3 + 210+ v/33
Y 5 6400 ’

this differential system has the first integral
1
3200(—3v/3 + 2v/10 + v/33)2? + z(13170v/3
800(—3+/3 + 2v/10 + \/@)( ( ) (
—6277+/10 + 480v/30 — 4390v/33 + 160+/330 — 1280(—3v/3 + 2¢/10+
V33)y) + 2y(164(—3v/3 4 2/10 + v/33)y — 1440+/3 + 640v/10 + 160+/33
—2503)).

The second linear differential center in the region Rs is

r 13y 360v/3 — 160+/10 — 40v/33 + 579

= — + ,
5 100 800 (—3v/3 +2v/10 + V/33)

.,y —3873v/344898V10 + 1440v/11 + 480V/30 + 2449v/33
Y 5 3200 (—3v/3 +2V/10 + v/33) ’

this system has the first integral
1 2 _ —

00331 2VI0 1 V5 1600(—3v/3 + 2v/10 + v/33)2? — 2(640(—3v/3

+2v/10 + v/33)y — 3873/3 + 4898+/10 + 1440+/11 + 480/30 + 24491/33)

+4y (52 (—=3v/3 + 2v/10 + V/33) y — 360v/3 + 160v/10 + 40v/33 — 579) .

The unique real solution of the system of equations (38) for i = 2, for the piecewise

linear differential system (41)—(42) is (a1, B1, o, B2, 71, 01, 72, 02) = (1/4,/33/8,1/2,

We prove the statement for the class C3. We consider the first linear differential
center in the region R;

x 25y —128v/2 + 288+v/3 + 483

6 576  —384v2+ 5763 + 1344

Hl(xay) =

(42)

HQ(xay) =

(43)

. y  —96618v2 + 9\/ 3(58745128+/2 + 89093337) — 500192
y=rtgt 102334

this differential system has the first integral

)
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1 2
Hy(z,y) = VYN e e (576(2v/2 — 3v/3 — T)a? 4+ 2(192(2v2 — 3v/3

—~T)y — 3770v/2 + 6861+/3 + 11521/6 + 14875) + y(25(2v/2 — 3V/3
—T)y — 768v/2 4 1728+/3 + 2898).

The second linear differential center in the region Ry is

x 145y 1349322 — 69489/3 — 77682v/6 + 250949

—

9 5184 577152 ’
(44)
, Yy —23197v/2 + 45834+/3 — 1728/6 + 79814
y=zv+ -+ )
9 5184(2v/2 — 3v3 - 7)

this system has the first integral
1
5184(—v2 — 9v/3 + 36 — 10)z?
648(—2v2 — 18\/5—1—6\/6—20)( ( )
+2(1152(—v/2 — 9v/3 + 3v/6 — 10)y + 7645v/2 + 193608+/3 + 332692
—67863v/6) + y(145(—v/2 — 9v/3 + 36 — 10)y + 2304v/2 4 10755+/3
—69121/6 + 41343)).

This piecewise linear differential centers has a unique real solution of the system
of equations (38) for i = 3, which is (a1, 81, a9, B2, 71,01, 72, 02) = (1,1,2, —2v/2,3,3V/3,
4,-8).

Now we prove the statement for the class Cy. We consider the linear differential
center in the region R;

Hy(z,y) =

_ r 18y 2 . y V2 2071 8
45 = das gertde Ty —
(4) TET9 TR0 o YS9 TS T 0 T3

this differential system has the first integral

y(181y — 3600)

2
Hi(z,y) = 42” + —_z <60y +180V/2 + 480V/3 — 2071) + B

135

The second linear differential center in the region R is

_ T y+66\f—62\/§—18\/6+525
rT=—=— = ,

8 32 1128

(46)

y  —600V/6 + 8\/ 6 (232v/6 + 2555) — 12627
y=x+ 5+

8 4512 ’
this system has the first integral

1 2
8(—15\/5—4\/54—6\/64-24)32( 15v2 — 4v/3 + 616 + 24) 2%+
22(4(—15v2 — 4v/3 + 61/6 + 24)y + 1521v/2 + 556/3 — 6661/6
—2456) + y((—15v2 — 4v/3 + 616 + 24)y — 8(—51v/2 — 16V/3
+24+/6 + 76)).

Hy(z,y) =

In this case the unique real solution of the system of equations (38) for i = 4, is
(alv ﬁ17 a2, 627 Y1, 517 Y2, 52) - (27 23 27 _27 33 3\/53 47 _4\/§)
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We prove the statement for the first configuration of the class C's. We consider
the linear differential center in the region Rg

r 13y  53v2+1134

(47) 6 144 4896 '
_ LY —114v/2 4 913 — 24/6 + 843
=X — s
Y 6 72(v/2 - 6)
this system has the first integral
1
Hy(z,y) = ——(144(V/2 — 6)2% — 42(—12(v/2 — 6)y + 114v/2 — 91/3
o) = g (M2 = 6)2® — da(-12(v2 - 6)y

+24v/6 — 843) + y(13(V2 — 6)y — 48v/2 + 394)).
The second linear differential center in the region R; is
— = 4+ — (—89v2 - 636),

) y 1
=2 — 2 4+ —(432v/3 + 1781/3(v/3 + 2) — 795
y=uz 6+306( V3 + (V3 +2) ),

this differential system has the first integral

(48)

1 2
Ho(z,y) = m(%‘(\f —6)z% — 42(3(vV/2 — 6)y + 1412 + 1423
+6v/6 — 312) + 2y(5(v/2 — 6)y + 6/2 — 214)).

For this piecewise linear differential centers the unique real solution of system (38)
when ¢ = 5 is (al, 51, a9, 62, Y1, 51, Y2, 52) = (1, \/5, 2, —2\/§, 2, 2\/§7 3, —6). Hence,
the discontinuous piecewise linear differential system (47)—(48) has a unique crossing
limit cycle, see (C3) of Figure 13.

Finally we prove the statement for the second configuration of the class Cs .In
the region R3 we consider the linear differential center

. x by 2 . Y 1
49 2 Y L~ (96V2 + 88v/3 + 365
(49) t=g oyt V=gt gl V2 + 883+ 365),

this system has the first integral
1 1
Hi(e,y) = 4a® + o (—320y +96v/2 + 88V/3 + 365) + =y(25y - 16).

In the region Ry we consider the linear center

—22000v/2 — 3000+/3 + 34816+/5 + 24585

. r oy
r=—-———= ,
4 8 640(275v/2 + 75v/3 — 272V/5
50
(50) 4125(149v/11 — 44/6 + 200)
2400v/2 — 2200+/3 — + 62593
sy 275v2 + 753 — 272V/5
Y 4 108800 ’
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this system has the first integral

1
800(275v/2 + 75v/3 — 2721/5)
+2(1600(275v/2 + 75v/3 — 2721/5)y + 940225+/2 + 312300v/3

—1001488+/5 — 25000v/6 — 384001/10 + 35200+/15) + 10y(40(275+/2
+75v/3 — 272v/5)y + 22000v/2 + 30001/3 — 34816+/5 — 24585)).

(3200(275v/2 + 75v/3 — 272v/5) 2

HZ(zvy) =

For this piecewise linear differential centers the unique real solution of system
(38) when i = 5 is (v, B1, 2, Bay V1, 01,72, 02) = (—1/4,4/3/8,—4/5,4/(5/5), —1/2,
—1/(2v/2),—4/5,—4/(5v/5). Then the discontinuous piecewise linear differential
system (49)—(50) has exactly one crossing limit cycle, see (C2) of Figure 13. This
completes the proof of statement (a) of Theorem 3. O

Proof of statement (b) of Theorem 3. First we prove the statement for class Cy. In
the region R; we consider the linear differential center
(51)

T = —0.0327708x — 0.167012y + 0.202324, ¢y = x + 0.0327708y — 2.82026,

its first integral is
H,(z,y) = 4(x + 0.0327708y)? 4 8(—2.82026x — 0.202324y) + 0.663752y>.

The second linear differential center in the region Rj is

(52) g=Z W L g Y2

_ ,yJQ y 16z e
Hg(x,y)fél(m 10 +8<5 5 +y

For the piecewise linear differential system (51)—(52) the real solutions of the system
of equations

its first integral is

(Oél, Z) Hl ’Yz» )
(fzagl) - Hl(hzv k )
(alaﬁl) Hl fz:gz)
H2(717(51) Hl(hlvk ) =Y,
Cs(ai7ﬂi) _03(72751) 0, =12
cs(fir9i) = cs(hi ki) = 0.
when s = 1, is (041, ﬁl, Y1, 51, fl, a1, hl, kjl) = (0571172, 104103, 293153, 605967
0449711, —08619177 266907, —536724) and (CKQ, 62, Y2, 52, fg, g2, h2, ]{72) =
(1.19066..,2.07275..,2.40283..,4.69567..,0.928007.., —1.60885..,2.25189.., —4.32923..).
Hence these linear differential centers have exactly two crossing limit cycles, see (C1)
of Figure 14.

b

)

0
0,
0
(53) 5

Now we prove the statement for the class Cs. In the region R; we consider the
linear differential center

(54) i = —0.252669y, ¢ =ax —0.498272,
its first integral is

Hy(z,y) = 42* — 3.98617x + 1.010675>.
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The second linear differential center in the region Rj is

. v 1

55 =z —p— =

(55) t=—gp Y=g,
its first integral is

2

Hy(z,y) = 42* — 4a + 42%
For these centers the real solutions of system (53) when s = 2 are (0.898773..,0.43723..,
0.169784..,0.631617.., 0.898773.., —0.43723.., 0.169784.., —0.631617..) and (0.75868S..,
0.640578..,0.368993..,0.782685..,0.758688.., —0.640578..,0.368993.., —0.782685..). Hence
the discontinuous piecewise linear differential system (54)—(55) has two crossing
limit cycles, see (C3) of Figure 15.

For the second configuration of the class C5 we consider the linear center
(56) @ = 0.057143z — 0.0550264y — 0.0521176, y = x — 0.057143y — 0.805757,
in the region Ry, its first integral is

Hy(x,y) = 4(x — 0.057143y)? 4 8(0.0521176y — 0.805757z) + 0.207044y>.

The second linear differential center in the region Rj is

. 17y 1 . Y 11
(57) v YEET 0T 100
its first integral is

Y \2 y 1z 81y?
Hae,y) =4 (2 = 5) +8<10_10> T 00
The real solutions of system (53) for these centers are (0.253068..,0.283285.., 1.26272..
1.89942..,0.204637.., —0.224601..,1.16927.., —1.72215..) and (0.145203..,0.155388..,
1.36881..,2.10673..,0.119104.., —0.125997.., 1.24855.., —1.87223..). Hence the dis-
continuous piecewise linear differential system (56)—(57) has two crossing limit cy-
cles, see (C3) of Figure 15.

For the class C3 and in the region R; we consider the center
(58) 4 = 0.0333015z — 0.132045y — 0.0410184, y = x — 0.0333015y — 1.97694,
its first integral is

Hy(z,y) = 4(x — 0.0333015y)% + 8(0.0410184y — 1.97694x) + 0.523744y>.
The second linear differential center in the region R is
(59) =01z —-0.26y — 0.2, y=x—0.1y— 2.3,
its first integral is
Hy(z,y) = 4(x — 0.1y)* + 8(0.2y — 2.37) + ¢°.

The real solutions of system (53) when s = 3 are (0.340737..,0.198898..,2.70162..,
4.44056..,0.308678.., —0.171498..,2.52616.., —4.01504..) and (0.862714..,0.801309..,
2.24826.., 3.37109.., 0.727481.., —0.620487.., 2.17185.., —3.2007..). Hence the discon-
tinuous piecewise linear differential system (58)—(59) has two crossing limit cycles,
see (C3) of Figure 14.

We prove the statement for the class Cy4. In the region R; we consider the center

(60) & = —0.142331x — 0.0908868y + 1.59716, ¢ = = + 0.142331y — 9.92891,
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its first integral is
Hy(z,y) = 4(x + 0.142331y)? + 8(—9.92891z — 1.59716y) + 0.282515y.

We consider the second linear differential center in the region R,

(61) T=——-=—-— Y= — —— —
its first integral is
Y

2 Ty 44z 9y?
Hy(z, :4( —7) g 22 Y
2(w,y) =4 {7 = 15 (10 5 >+ 25
The two real solutions of system (53) when s = 4 are (2.34486..,2.71929..,9.31289..,
26.851..,1.97922.., —1.95854..,8.44735.., —23.0527..) and (4.45798..,8.2899..,7.62439..,
19.6236..,3.20672.., —4.7636.., 7.33329.., —18.455..). Hence the discontinuous piece-

wise linear differential system (60)—(61) has two crossing limit cycles, see (C4) of
Figure 14.

For the first configuration of the class Cs. We consider the linear differential
center

(62) T = —0.453205y, vy =z 4 0.497252,
in the region R3 with its first integral
Hi(z,y) = 42% 4 3.978022 + 1.81282y°.
We consider the second linear differential center in the region Ro
Y 1

y':l'—F*,

its first integral is
2

2
Hy(z,y) = 42* + 4a + %

The two real solutions of system (53) when s =5 are (—0.0927079..,0.088306..,
—0.837019..,0.337912.., —0.0927079.., —0.088306.., —0.837019.., —0.337912..) and
(—0.217826..,0.192647.., —0.663868..,0.38489.., —0.217826.., —0.192647.., —0.663868..,
—0.38489..). Hence, the discontinuous piecewise linear differential system (62)—(63)
has two crossing limit cycles, see (Cs) of Figure 16.

Finally we prove the statement for the second configuration of the class C5. In
the region R3 we consider the linear differential center

(64) @ =0.057143z — 0.0550264y — 0.0521176, y = x — 0.057143y — 0.805757,
its first integral is

Hy(z,y) = 4(x — 0.057143y)? + 8(0.0521176y — 0.805757x) + 0.207044y>.
We consider the second linear differential center in the region R,
(65) G=— Yo o Y

its first integral is
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The two real solutions of system (53) when s = 5 are (0.253068..,0.283285..,1.26272..
1.89942..,0.204637.., —0.224601..,1.16927.., —1.72215..) and (0.145203..,0.155388..,

1.36881..,2.10673..,0.119104.., —0.125997.., 1.24855.., —1.87223..). Hence the dis-
continuous piecewise linear differential system (64)—(65) has two crossing limit cy-
cles, see (C2) of Figure 16. O
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