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Abstract

Given a homogeneous linear discrete or continuous dynamical system, its stability

index is given by the dimension of the stable manifold of the zero solution. In particular,

for the n dimensional case, the zero solution is globally asymptotically stable if and only

if this stability index is n. Fixed n, let X be the random variable that assigns to each

linear random dynamical system its stability index, and let pk with k = 0, 1, . . . , n,

denote the probabilities that P (X = k). In this paper we obtain either the exact

values pk, or their estimations by combining the Monte Carlo method with a least

square approach that uses some affine relations among the values pk, k = 0, 1, . . . , n.

The particular case of n-order homogeneous linear random differential or difference

equations is also studied in detail.

Mathematics Subject Classification 2010: 37H10, 34F05, 39A25, 37C75.

Keywords: Stability index; random differential equations; random difference equations;

random dynamical systems.

∗The authors are supported by Ministry of Science and Innovation–State Research Agency of the Spanish

Government through grants PID2019-104658GB-I00 (MICINN/AEI, first and second authors) and DPI2016-

77407-P (MICINN/AEI/FEDER, UE, third author). The first and second authors are also supported by the

grant 2017-SGR-1617 from AGAUR, Generalitat de Catalunya. The third author acknowledges the group’s

research recognition 2017-SGR-388 from AGAUR, Generalitat de Catalunya.

1

This is a preprint of: “Stability index of linear random dynamical systems”, Anna Cima, Armengol
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1 Introduction

Nowadays it is unnecessary to emphasize the importance of ordinary differential equations

and discrete dynamical systems to model real world phenomena, from physics to biology,

from economics to sociology. These dynamical systems, a concept that includes both con-

tinuous and discrete models (and even dynamic equations in time-scales), can have unde-

termined coefficients that in the case of real applications must be adjusted to fixed values

that serve to make good predictions: this is known as the identification process. Once these

coefficients are fixed we obtain a deterministic model.

In recent years some authors have highlighted the utility of considering random rather

than deterministic coefficients to incorporate effects due to errors in the identification pro-

cess, natural variability in some of the physical parameters, or as a method to treat and to

incorporate uncertainties in the model, see [5, 6, 21] for examples coming from biological

modeling and [11] for examples coming from mechanical systems.

In the same aim that inspires some works like [1, 7, 14], in this paper we focus on giving

a statistical measure of the stability for both discrete and continuous linear dynamical

systems,

ẋ = Ax or xk+1 = Axk, (1)

where both x,xk ∈ Rn and A is an n× n real matrix.

More concretely, in the continuous (resp. discrete) case we define the stability index of

the origin, s(A), as the number of eigenvalues, taking into account their multiplicities, of

A with negative real part (resp. modulus smaller than 1). This index coincides with the

dimension of the invariant stable manifold of the origin. Notice also that if s(A) = n (resp.

s(A) = 0) the origin is a global stable attractor (resp. a global unstable repeller).

In this work we study the probabilities pk for a linear dynamic system (1) to have a

given stability index k when the parameters of the matrix A are random variables with a

given natural distribution. As we will see in Section 2, this distribution must be that all the

elements of A are independent and identically distributed (i.i.d.) normal random variables

with zero mean. We also will study the same question for linear n-th order differential

equations and for linear difference equations.

We also remark that our results can be extrapolated to know a measure of the stability

behaviour of critical or fixed points for general non-linear dynamical systems, because near

them they can be written as

ẋ = Ax + f(x), or xk+1 = Axk + f(xk),

with f being a non-linear term vanishing at zero. Moreover, while the situation where the

origin is non-hyperbolic is negligible, in the complementary situation, the stability index of
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the linear part coincides with the dimension of the local stable manifold at the point.

In the continuous case, the key tool to know the stability index of a matrix is the Routh-

Hurwitz criterion, see for instance [10, p. 1076]. This approach allows to know the number

of roots of a polynomial with negative real part in terms of algebraic inequalities among its

coefficients. Similarly, its counterpart for the discrete case is called the Jury criterion. It is

worth observing that in fact both are equivalent and it is possible to get one from the other

by using a Möbius transformation that sends the left hand part of the complex plane into

the complex ball of radius 1.

In all the cases, when we do not know how to compute analytically the true probabilities,

we introduce a two step approach to obtain estimations of them:

• Step 1: We start using the celebrated Monte Carlo method. Recall that this compu-

tational algorithm relies on repeated random sampling and gives estimations of the

true probabilities based on the law of large numbers and the law of iterated logarithm,

see [2, 3, 13, 18]. It is the case that using M samples this approach gives the true value

with an absolute error of order O
(
((log logM)/M)1/2

)
, which practically behaves as

O(M−1/2), where O stands for the usual Landau notation. In all our simulations

we will work with M = 108, so our first approaches to the desired probabilities will

have an asymptotic absolute error of order 10−4. More detailed explanations of the

sharpness of our estimations for this value of M are given in Section 3.2 by using the

Chebyshev inequality and the Central limit theorem.

We have used the default in-built pseudo-random number generator in the Statistics

package of Maple in our simulations∗. This procedure use the Mersenne Twister

method with period 219937−1 to generate uniformly-distributed pseudo-random num-

bers, and then the Ziggurat method, which is a kind of rejection sampling algorithm,

to obtain the normally-distributed pseudo-random numbers, see [16] and [17]. Observe

that our sample size M = 108 is much smaller than the period of the pseudo-random

number generator, which is greater that 106001.

• Step 2: Since the results of the plain Monte Carlo simulations do not satisfy certain

linear constrains concerning the true probabilities, we propose to correct them by using

a least squares approach. We take as final estimates of the true probabilities the least

squares solution ([20, Def. 6.1]) of the inconsistent overdetermined system obtained

when relative frequencies of the Monte Carlo simulation are forced to satisfy these

linear constrains. See Section 3.2 for more details. We would like to remark that there

are other options to improve plain Monte Carlo simulations like variance reduction

∗Concretely, we use the commands RandomVariable(Normal(0,1)) and Sample.
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and quasi-Monte Carlo methods [2, 13].

To have a flavour of the type of results that we will obtain we describe several conse-

quences of some of our results for linear homogeneous differential or difference equations of

order n with constant coefficients (see Sections 5 and 7). A first result is that in both cases

the expected stability index is n/2. Moreover, let rn denote the probability of the 0 solution

to be a global stable attractor (stability index equals n) for them. Then, for differential

equations, rn ≤ 1/2n. Furthermore, r1 = 1/2, r2 = 1/4, r3 = 1/16 and our two step ap-

proach gives that r4 ' 0.00925, r5 ' 0.00071, and that rk is smaller that 10−4 for bigger k.

In the case of difference equations we prove that r1 = 1/2 and r2 = 1
π arctan(

√
2) ' 0.304.

2 A suitable probability space

In our approach, the starting point is to determine which is the natural choice of the

probability space and the distribution law of the coefficients of the linear dynamical system.

Only after this step is fixed we can ask for the probabilities of some dynamical features or

some phase portraits.

For completeness, we start with some previous considerations and with an example,

already considered in the literature, see [1, 14, 23]. Consider the planar linear differential

system: (
ẋ

ẏ

)
=

(
A B

C D

)(
x

y

)
(2)

where A,B,C,D are random variables, so we can set the sample space to be Ω = R4.

It is plausible to require that these real random variables are independent and identically

distributed (i.i.d.) and continuous. Also, according to the principle of indifference (or

principle of insufficient reason) [8], it would seem reasonable to impose that these variables

were such that the random vector (A,B,C,D) had some kind of uniform distribution in

R4. But there is no uniform distribution for unbounded probability spaces. Nevertheless,

there is a natural choice for the distribution of the variables A,B,C and D.

Indeed, it is well-known that the phase portrait of the above system does not vary if we

multiply the right-hand side of both equations by a positive constant (which corresponds to

a proportional change in the time scale). This means that in the space of parameters, R4,

all the systems with parameters belonging to the same half-straight line passing through the

origin are topologically equivalent and in particular have the same stability index. Hence,

we can ask for a probability distribution density f of the coefficients such that the random

vector (
A

S
,
B

S
,
C

S
,
D

S

)
, with S =

√
A2 +B2 + C2 +D2, (3)
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has a uniform distribution on the sphere S3 ⊂ R4. This achieves our objective, since S3 is

a compact set.

The question is: which are the probability densities f that give rise to a uniform dis-

tribution of the vector (3) on the sphere? The answer is that, just assuming that f is

continuous and positive, f must be the density of a normal random variable with zero

mean. Moreover, this result is true for arbitrary dimension: see the next theorem. We

remark that the converse result is well–known [15, 19].

Theorem 1. Let X1, X2, . . . , Xn be i.i.d. one-dimensional random variables with a contin-

uous positive density function f . The random vector

(
X1

S
,
X2

S
, . . . ,

Xn

S

)
, with S =

( n∑

i=1

X2
i

)1/2
,

has a uniform distribution in Sn−1 ⊂ Rn if and only if each Xi is a normal random variable

with zero mean.

Curiously, in the case that we cannot assign uniform distributions, there is an extension

of the indifference principle which suggests to use those distributions that maximize the

entropy, i.e. the quantity h(f) = −
∫

Ω f(x) ln(f(x))dx for any given density f . The one-

dimensional random variables with continuous probability density function f on Ω = R that

maximize the entropy are again the Gaussian ones, [8, Thm 3.2].

Of course, if instead of properties concerning general dynamical systems one focuses on

particular models in which the parameters have specific restrictions —due to physical or

biological reasons— one must consider other type of distributions, see for instance [21].

Using Theorem 1, and going back to the initial motivating example, in order to study (2)

we have to consider the probability space (Ω,F , P ) where Ω = R4, F is the σ-algebra

generated by the open sets of R4 and P : F → [0, 1] is the probability function with

density 1
4π2 e−(a2+b2+c2+d2)/2, where for simplicity we take variance 1 in each marginal density

function.

For instance, assume that we want to compute the probability α of system (2) to have

exactly one eigenvalue with negative real part. Next, we observe that the probability of

having one null eigenvalue is zero. This is because the event which characterizes this pos-

sibility is a subset of an event which is itself described by an algebraic equality between

the random variables A,B,C,D. This subset has Lebesgue measure zero and therefore, by

virtue of the fact that the joint distribution is continuous, the probability of this event,

and therefore the event characterizing the null eigenvalue, must also be zero. Thus we have

that α coincides with the probability of having a saddle (stability index 1) at the origin, i.e.
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AD −BC < 0. Then, the open set U := {(a, b, c, d) ∈ R4 : ad− bc < 0} belongs to F and

α = P (AD −BC < 0) =
1

4π2

∫

U
e−

a2+b2+c2+d2

2 da dbdcdd,

which is 1/2 by symmetry, as we will see.

Proof of Theorem 1. Let (X1, . . . , Xn) be the random vector associated with the random

variables of the statement, with joint continuous density function g(x1, . . . , xn). We claim

that

g(x1, . . . , xn) = h(x2
1 + · · ·+ x2

n), (4)

for some continuous function h.

Taking spherical coordinates, we consider the new random vector (R,Θ) ∈ Rn whereR =

(X2
1 +· · ·+X2

n)1/2 and Θ = (Θ1, . . . ,Θn−1).We haveX1 = R cos Θ1, X2 = R sin Θ1 cos Θ2, . . .

Xn−1 = R sin Θ1 sin Θ2 · · · sin Θn−2 cos Θn−1 and Xn = R sin Θ1 sin Θ2 · · · sin Θn−2 sin Θn−1.

By the change of variables theorem, the joint density function of (R,Θ) is

gR,Θ(r, θ) = g(r cos(θ1), . . . , r sin(θ1) · · · sin(θn−1)) rn−1 sinn−2(θ1) sinn−1(θ2) · · · sin(θn−2) ·χ

where θ = (θ1, . . . , θn−1), and

χ := χ[0,∞)(r) · χ[0,2π)(θn−1) ·
n−2∏

i=1

χ[0,π)(θi),

where χA stands for the characteristic function of the set A.

The density function of (R,Θ) conditioned to R, gΘ|R, is

gΘ|R(r, θ) :=
gR,Θ(r, θ)

gR(r)
,

where gR(r) is the marginal density of R:

gR(r) :=

∫ π

0
· · ·
∫ π

0

∫ 2π

0
g(r cos(θ1), . . . , r sin(θ1) · · · sin(θn−1)) dS,

where dS = rn−1 sinn−2(θ1) sinn−1(θ2) · · · sin(θn−2)dθn−1 · · · dθ1 is the n-dimensional surface

element in spherical coordinates.

To prove the statement, we need to characterize which are the joint density functions

g(x1, . . . , xn) such that when we fix R = r, the probability on the (n − 1)-dimensional

sphere of radius r, denoted by Sn−1(r), is uniformly distributed. In such a case the partial

spherical segment Σr = {R = r, θi ∈ [αi, βi] for i = 1, . . . , n − 1} must have probability

P (Σr) = S(Σr)/S(Sn−1(r)) where S denotes the surface area. Set α = (α1, . . . , αn−1) and

β = (β1, . . . , βn−1). Notice that

S(Σr) =

∫ β1

α1

· · ·
∫ βn−1

αn−1

dS = rn−1A(α, β)
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where

A(α, β) =

∫ β1

α1

· · ·
∫ βn−1

αn−1

sinn−2(θ1) sinn−1(θ2) · · · sin(θn−2)dθn−1 · · · dθ1

and S(Sn−1(r)) = 2π
n
2

Γ(n2 )
rn−1. Hence, on the one hand,

P (Σr) = Γ
(n

2

) A(α, β)

2π
n
2

,

which does not depend on r. On the other hand,

P (Σr) =

∫ β1

α1

· · ·
∫ βn−1

αn−1

gΘ|R dθ

where dθ = dθn−1 · · · dθ2dθ1. This implies that

∫ β1

α1

· · ·
∫ βn−1

αn−1

g(r cos(θ1), . . . , r sin(θ1) · · · sin(θn−1)) rn−1 sinn−2(θ1) sinn−1(θ2) · · · sin(θn−2) ·χ
gR(r)

dθ

=
Γ
(
n
2

)

2π
n
2

∫ β1

α1

· · ·
∫ βn−1

αn−1

sinn−2(θ1) sinn−1(θ2) · · · sin(θn−2)dθ,

for all αi, βi ∈ [0, π) for i = 1, . . . , n − 2 with αi < βi and αn−2, βn−2 ∈ [0, 2π) with

αn−2 < βn−2. This last equality implies that almost everywhere

Γ
(
n
2

)

2π
n
2

=
g(r cos(θ1), . . . , r sin(θ1) · · · sin(θn−1)) rn−1

gR(r)
,

and therefore g(r cos(θ1), . . . , r sin(θ1) · · · sin(θn−1)) is a function that only depends on r.

In consequence, writing this fact in Cartesian coordinates, we get that almost everywhere

g(x1, . . . , xn) = h(x2
1 + · · ·+ x2

n), for some continuous function h and the claim (4) follows.

Now we complete the proof. Since X1, . . . , Xn are i.i.d. with positive density f , we know

that g(x1, · · · , xn) = f(x1) . . . f(xn). So equation (4) can be expressed as

f(x1) · · · f(xn) = h(x2
1 + · · ·+ x2

n) for all (x1, . . . , xn) ∈ Rn

where h is a positive function. Taking x2 = · · · = xn = 0 we have that f(x1) f(0)n−1 = h(x2
1)

and h(0) = (f(0))n > 0. Thus,

f(x1) . . . f(xn) =
h(x2

1)

(f(0))n−1
· · · h(x2

n)

(f(0))n−1
=

h(x2
1)

(f(0))n
· · · h(x2

n)

(f(0))n
(f(0))n = h(x2

1 + · · ·+ x2
n).

Hence, using that h(0) = (f(0))n > 0,

h(x2
1)

h(0)
· · · h(x2

n)

h(0)
=
h(x2

1 + · · ·+ x2
n)

h(0)
.
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Taking H(ξ) := h(ξ)/h(0), and ui = x2
i , it holds that

H(u1) · · ·H(un) = H(u1 + · · ·+ un) with H(0) = 1. (5)

Hence, ϕ(u) = log(H(u)) is a continuous function that satisfies Cauchy’s functional equation

ϕ(u1) + · · ·+ ϕ(un) = ϕ(u1 + · · ·+ un) with ϕ(0) = 0.

It is well–known that all its continuous solutions are ϕ(x) = ax, for some a ∈ R. Hence all

continuous solutions of (5) are H(x) = eax.

As a consequence, f(x) = b eax
2

for some (a, b) ∈ R2. Since f is a density function,

a < 0. Moreover, using
∫∞
−∞ be

ax2dx = b
√
−π/a = 1, and setting a = −1/(2σ2), we get that

f(x) =
1√

2πσ2
e−

x2

2σ2 ,

so each variable Xi is a normal random variable N(0, σ2).

The converse part is straightforward and well–known [15, 19].

Remark 1. The continuity condition for f in Theorem 1 is relevant since Equation (5) also

admits non-continuous solutions that can be constructed, for instance, from non-continuous

solutions of Cauchy’s functional equation known for n = 2, see [12].

3 A preliminary result and methodology

We will investigate the probabilities of having a certain stability index for several linear

dynamical systems with random coefficients. In particular we consider:

(a) Differential systems ẋ = Ax where x ∈ Rn and A is a real constant n× n matrix,

(b) Homogeneous linear differential equation of order n with constant coefficients: anx
(n)+

an−1x
(n−1) + · · ·+ a1x

′ + a0x = 0,

(c) Linear discrete systems bxk+1 = Axk where xk ∈ Rn, b ∈ R; and A is a real constant

n× n matrix,

(d) Linear homogeneous difference equation of order n with constant coefficients anxk+n+

an−1xk+n−1 + · · ·+ a1xk+1 + a0xk = 0.

Notice that in the four situations the behaviour of the dynamical systems does not change

if we multiply all the involved constants by the same positive real number. This fact situates

the four problems in the same context that the motivating example (2). Hence, following
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the results of Section 2, in all the cases, we may take the coefficients to be i.i.d. random

normal variables with zero mean and variance 1.

Hence in all cases we have a well–defined probability space (Ω,F , P ), where Ω = Rm,
with m = n2, n+ 1, n2 + 1 or n+ 1 according we are in case (a), (b), (c) or (d), respectively,

F is the σ-algebra generated by the open sets and for each A ∈ F ,

P (A) =
1

(
√

2π)m

∫

A
e−||a||

2/2da, (6)

where a = (a1, a2, . . . , am), ||a||2 =
∑m

j=1 a
2
j and da = da1 da2 . . . dam. For instance the

matrices A appearing in case (a) and (c) are the so called random matrices.

The use of Routh-Hurwitz algorithm is a very useful tool to count the number of roots

of a polynomial with negative real parts and it is implemented in many computer algebra

systems. These conditions are given in terms of algebraic inequalities among the coefficients

of the polynomials. Let us recall how to use it to count the number of roots with modulus

less than one of a polynomial and, hence, to obtain the so called Jury conditions.

Given any polynomial Q(λ) = qnλ
n + qn−1λ

n−1 + · · · + q1λ + q0 with qj ∈ C, by using

the conformal transformation λ = z+1
z−1 , we get the associated polynomial

Q?(z) = qn(z + 1)n + qn−1(z + 1)n−1(z − 1) + . . .+ q0(z − 1)n. (7)

It is straightforward to observe that λ0 ∈ C is a root of of Q(λ) such that |λ0| < 1 if and

only if z0 = (λ0 + 1)/(λ0 − 1) is a root of Q?(z) such that Re(z0) < 0.

Hence, because Routh-Hurwitz and Jury conditions are semi-algebraic, in all cases the

random variable that X that assigns to each dynamical system its stability index k, 0 ≤ k ≤
n, is measurable. Hence Ak := {a ∈ Rm : X(a) = k} ∈ F and its probability pk := P (Ak)
is well–defined. Observe also that the non-hyperbolic cases are totally negligible because in

their characterization some algebraic equalities appear. In this paper we will either calculate

or estimate in the four situations the values pk for k ≤ 10.

3.1 A preliminary result

In three of the above considered cases we will apply the following auxiliary result:

Lemma 2. Let (Ω,F , P ) be a probability space and let Y : Ω → R be a discrete random

variable with image Im(Y ) = {0, 1, . . . , n}, and probability mass function pk = P (Y = k)

such that pk = pn−k for all k = 0, . . . , n. Then E(Y ) =
∑n

k=0 kpk = n/2. Moreover

(a) If n is odd then 2
∑n−1

2
k=0 pk = 1. In particular, when n = 1, p0 = p1 = 1

2 .

(b) If n is even and n ≥ 2 then 2
∑n

2
−1

k=0 pk + pn
2

= 1.
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If, additionally, n is even† and
∑

i odd pi =
∑

i even pi = 1
2 , then

(c) If n
2 is even, then 2

∑n
2
−2

k=0, k even pk + pn
2

= 1
2 , and 2

∑n
2
−1

k=1, k odd pk = 1
2 . In particular,

when n = 4, p1 = p3 = 1
4 , p2 = 1

2 − 2p0 and p4 = p0.

(d) If n
2 is odd, then 2

∑n
2
−1

k=0, k even pk = 1
2 , and

∑n
2
−2

k=1, k odd pk + pn
2

= 1
2 . In particular,

when n = 2, p0 = p2 = 1
4 and p1 = 1

2 .

Proof. We start proving that E(Y ) = n/2. Assume for instance that n is odd. Since

pk = pn−k, its holds that kpk + (n− k)pn−k = npk, for each k ≤ (n− 1)/2. Hence,

E(Y ) = np0 + np1 + · · ·+ npn−1
2

=
n

2

(
2p0 + 2p1 + · · ·+ 2pn−1

2

)

=
n

2

(
(p0 + pn) + (p1 + pn−1) + · · ·+ (pn−1

2
+ pn+1

2
)
)

=
n

2
.

When n is even the proof is similar.

The proof of all the four items is straightforward and we omit it.

3.2 Experimental methodology

In all the cases considered in the paper, when we can not give an exact value of the probabil-

ities pk we start estimating them by using the Monte Carlo method, see [18]. The estimates

obtained (namely, the observed relative frequencies) are then improved via the least squares

method, by using the linear constraints given in Corollaries 4, 6 and 13.

In all the cases we will use Monte Carlo method with M = 108 to obtain an estimation,

say p̃, for a probability p := P (A) like the one given in equality (6) for different measur-

able sets A. Further details for each concrete situation are given in each of the following

subsections.

In brief, recall that p̃ is given by the proportion of samples that are in A. For studying,

for a given M, how close are p and p̃, let Bj , j = 1, . . . ,M be i.i.d. Bernoulli random

variables, where each one of them that takes the value 1 with probability p and the value 0

with probability 1− p.
Define PM = 1

M

∑M
j=1Bj . Then, the value obtained for the random variable PM , p̃ is

the approximation of p given by the Monte Carlo method. Let us see, by using Cheby-

shev inequality or the Central limit theorem, that with very high probability, p̃ is a good

approximation of p.

Notice first that E(PM ) = p and due to the independence of the Bj ,

Var(PM ) = Var


 1

M

M∑

j=1

Bj


 =

1

M2
M Var(B1) =

p(1− p)
M

≤ 1

4M
,

†When n is odd the imposed equalities automatically hold.
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because p(1 − p) ≤ 1/4. Recall also that for each ε > 0 and any random variable X, with

E(X2) <∞, the Chebyshev inequality reads as

P (|X − E(X)| < ε) ≥ 1− Var(X)

ε2
.

Hence, applying the Chebyshev inequality to X = PM we get that

P (|PM − p| < ε) ≥ 1− p(1− p)
Mε2

≥ 1− 1

4Mε2
.

Taking M = 108, as in our computations, denoting p̃ = P108 , and considering ε = 10−3 we

get that the above probability gives the following conservative estimate of the reliability of

the method

P
(
|p̃− p| < 10−3

)
≥ 1− 1

400
=

399

400
= 0.9975.

Let us see, by using the Central limit theorem, that the above probability seems to be

much bigger. By this theorem we know that for M big enough, and p(1 − p)M also big

enough, the distribution of the random variable

PM − E(PM )√
Var(PM )

=
PM − p√
p(1−p)
M

can be practically considered to be a random variable Z with distribution N(0, 1). In fact,

in Statistics it is usually imposed that p(1 − p)M > 18. Hence, unless p is very close to 0

or 1, the value M = 108 is big enough. Hence

P (|PM − p| < ε) =P

(√
M |PM − p|√
p(1− p)

<
ε
√
M√

p(1− p)

)
' P

(
|Z| < ε

√
M√

p(1− p)

)

=2Φ

(
ε
√
M√

p(1− p)

)
− 1 > 2Φ

(
2ε
√
M
)
− 1,

where Φ is the distribution function of a N(0, 1) random variable. Taking again M = 108

and ε = 10−3 or ε = 2× 10−4 we get

P
(
|p̃− p| < 10−3

)
& 2Φ (20)− 1 > 1− 10−88,

P
(
|p̃− p| < 2× 10−4

)
& 2Φ (4)− 1 > 0.99993.

In fact, for instance looking at the values pk of Table 2 for n = 2 in Section 4, that can

also be obtained analytically, we get that |p̃k− pk| ≤ 6× 10−5, for k = 0, 1, 2. So, the actual

bound is smaller that the bounds obtained above.

Finally, to illustrate how the error decays when the sample size increases, we show the

evolution of the errors in one case where the true probabilities are known. We consider the
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second order difference equation A2xk+2 + A1xk+1 + A0xk = 0 where Ai are i.i.d. random

variables with N(0, 1) distribution. The stability index is given by the number of zeroes

with modulus smaller than 1 of the characteristic polynomial Q(λ) = A2λ
2 + A1λ + A0.

Let X be the random variable that counts the number of roots with modulus smaller

than 1 of Q(λ), and pk = P (X = k) for k = 0, 1, 2. The true value of the probabilities

pk is obtained in Corollary 13. Performing Monte Carlo simulations with M = 10m with

m = 2, . . . , 10 we obtain the observed frequencies p̃2(m) shown in Table 1. These frequencies

are the estimated probabilities for the origin to be asymptotically stable. Notice that

in Proposition 12 and in Corollary 13 we prove that p0 = p2 = arctan(
√

2)/π and, of

course, p1 = 1− p0 − p2 = 2 arctan(1/
√

2)/π). For M = 10m we denote the absolute error

em = |p̃2(m)− p2|:

M = 102 M = 103 M = 104

p̃2(2) = 0.37 p̃2(3) = 0.319 p̃2(4) = 0.3102

e2 ≈ 0.065913276015 e3 ≈ 0.014913276015 e4 ≈ 0.006113276015

M = 105 M = 106 M = 107

p̃2(5) = 0.30416 p̃2(6) = 0.303892 p̃2(7) = 0.3041241

e5 ≈ 0.000073276015 e6 ≈ 0.000194723985 e7 ≈ 0.000037376015

M = 108 M = 109 M = 1010

p̃2(8) = 0.30406079 p̃2(9) = 0.304076699 p̃2(10) = 0.304079098

e8 ≈ 0.000025933985 e9 ≈ 0.000010024985 e10 ≈ 0.000007625985

Table 1. Observed frequency and absolute error of p2 for second order difference

equations, using that p2 = arctan(
√

2)/π ≈ 0.304086723985.

With the above results, the regression line of Y = log(em) versus X = log(M) =

m log(10) is Y = −0.505X − 1.260 with R2 = 0.893. The slope is therefore −0.505 ≈ −1/2

as was expected a priori since, in practice, the absolute error behaves as O(M−1/2) as

M →∞ (see the Step 2 in the Introduction).

A more detailed explanation of the second step, about the improvement of the Monte

Carlo estimations using the least squares method, is as follows: the probabilities pk satisfy

some affine relations, like the ones in Lemma 2 or the ones in Proposition 12 below. Then,

if we denote p = (p0, . . . , pn)t ∈ Rn+1 it is possible to write p = Mq+ b where q ∈ Rk with

k ≤ n is a vector whose components are different elements of p0, . . . , pn; M ∈ Mn×k(R);

and b ∈ Rk. Let p̃ = (p̃0, . . . , p̃n)t be the vector with the estimated probabilities obtained

by the observed relative frequencies using the Monte Carlo method. Then, we can find the

least squares solution [20, Def. 6.1] of the the system,

p̃ = Mq̂ + b, (8)
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which is

q̂ = (Mt ·M)−1 ·Mt · (p̃− b), (9)

see [9, p. 198] or [22, p. 200]. So we can find some improved estimations p̂, via

p̂ = Mq̂ + b. (10)

Some detailed examples are given in Sections 4, 5 and 7.

4 Linear random differential systems

Consider linear differential systems ẋ = Ax where x ∈ Rn, A ∈ Mn×n(R), where A is a

random matrix whose entries are i.i.d. random variables with N(0, 1) distribution. Let X

be the random variable that counts the number of eigenvalues of A with negative real part,

s(A).

Proposition 3. With the above notations, set pk = P (X = k). The following holds:

(a)
∑n

k=0 pk = 1.

(b) For all k ∈ {0, 1, . . . , n}, pk = pn−k.

(c)
∑

i odd pi =
∑

i even pi = 1
2 .

Proof. The assertion (a) is trivial. To prove (b) we observe that if a matrix A has k

eigenvalues with negative real part, then B = −A has n− k eigenvalues with negative real

part. Calling qm the probability that B has m eigenvalues with negative real part, we get

that pm = qm. This is so, because if X ∼ N(0, 1) then −X ∼ N(0, 1) and as a consequence

the entries of A and B have the same distribution. Then, qk = pn−k and the result follows.

To see (c) we claim that s(A) is even if and only if the determinant of A is positive

and, moreover, P (det(A) > 0) = 1/2. From this claim we get the result because
∑

i even pi

is the probability of s(A) being even. To prove the first part of the claim notice first that

we can assume that 0 6= det(A) = λ1λ2 · · ·λn, where λ1, λ2, . . . , λn are the n eigenval-

ues of A. We write λ1λ2 · · ·λn = (λ1λ2 · · ·λk)(λk+1λk+2 · · ·λn) where λ1, λ2, . . . , λk are all

the real negative eigenvalues. Observe also that for complex eigenvalues λλ̄ > 0. Hence

λk+1λk+2 · · ·λn > 0, sign(det(A)) = (−1)k and the condition that s(A) is even is charac-

terized by det(A) > 0. To prove that P (det(A) > 0) = 1/2 note that if B is the matrix

obtained by changing the sign of one column of A then det(A) · det(B) < 0 and hence

P (det(A) < 0) = P (det(B) > 0). Furthermore, since the entries of A and B have the same

distribution we have P (det(B) > 0) = P (det(A) > 0), thus P (det(A) < 0) = P (det(A) >

0) = 1/2.
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From the above proposition it easily follows:

Corollary 4. Consider ẋ = Ax, x ∈ Rn with A ∈ Mn×n(R) a random matrix with

i.i.d. N(0, 1) entries, let X be the random variable defined above and pk = P (X = k). Then

the probabilities pk satisfy all the consequences of Lemma 2. In particular E(X) = n/2.

Now we reproduce some experiments to estimate the probabilities pk for low dimensional

cases. We apply the Monte Carlo method, that is, for each considered dimension n, we have

generated 108 matrices A ∈ Mn×n(R) whose entries are pseudo-random numbers simulat-

ing the realizations on n2 independent random variables with N(0, 1) distribution. For each

matrix A we have computed the characteristic polynomial, and counted the number of eigen-

values with negative real part by using the Routh-Hurwitz zeros counter [10, p. 1076]. We

are aware that the stability of the calculation of the coefficients of the characteristic poly-

nomial from the entries of a matrix is critical (see [SB, p.378-379] and references therein);

however we have only used this calculation for low dimensions, namely n ≤ 4. For n ≥ 5,

and in order to decrease the computation time, we have directly computed numerically the

eigenvalues of A and counted the number of them with negative real part.

For each considered dimension of the phase space n, and in order to take advantage

of the relations stated in Corollary 4, we can refine the solutions using the least squares

solutions of the inconsistent linear system associated with these relations when using the

observed frequencies obtained by the Monte Carlo simulation.

We give details of one example. Set n = 7, for instance. By Corollary 4 we have

p3 = p4 = 1
2 − p0− p1− p2; p5 = p2; p6 = p1 and p7 = p0. So, using the notation introduced

in Section 3.2, we can write p = Mq + b, where pt = (p0, . . . , p7);

M =




1 0 0

0 1 0

0 0 1

−1 −1 −1

−1 −1 −1

0 0 1

0 1 0

1 0 0




; q =




p0

p1

p2


 ; and b =




0

0

0
1
2
1
2

0

0

0




.

The observed relative frequencies in our Monte Carlo simulation are

p̃t =

(
31643

50000000
,

261137

12500000
,

7124967

50000000
,

1344047

4000000
,

33597117

100000000
,

14248187

100000000
,

1043913

50000000
,

63379

100000000

)
.

By finding the least squares solution of the system (8) ([9, p. 198] or [22, p. 200]), given by
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(10), we obtain

p̂t =

(
25333

40000000
,

2088461

100000000
,

28498121

200000000
,

16799573

50000000
,

16799573

50000000
,

28498121

200000000
,

2088461

100000000
,

25333

40000000

)
.

The other cases follow similarly.

We summarize the results of our experiments in the Table 2, where the observed relative

frequencies and the estimates are presented only up to the fifth decimal (in the table, and in

the whole paper, frequency stands for relative frequency) because as we already explained

in the introduction, the predicted absolute error will be of order 10−4. Observe that in the

cases n = 1, 2 the true probabilities are known. We include the results of the Monte Carlo

simulations for completeness, but it makes no sense to apply the least squares method.

Dimension Observed frequency Least squares Relations (Corol. 4)

n = 1 p̃0 = 0.49996 p0 = 0.5

p̃1 = 0.50004 p1 = 0.5

n = 2 p̃0 = 0.24999 p0 = 0.25

p̃1 = 0.50006 p1 = 0.5

p̃2 = 0.24995 p2 = 0.25

n = 3 p̃0 = 0.10447 p̂0 = 0.10450 p0

p̃1 = 0.39542 p̂1 = 0.39550 p1 = 1
2 − p0

p̃2 = 0.39557 p̂2 = 0.39550 p2 = 1
2 − p0

p̃3 = 0.10454 p̂3 = 0.10450 p3 = p0

n = 4 p̃0 = 0.03722 p̂0 = 0.03721 p0

p̃1 = 0.25009 p̂1 = 0.25000 p1 = 1
4

p̃2 = 0.42556 p̂2 = 0.42558 p2 = 1
2 − 2p0

p̃3 = 0.24998 p̂3 = 0.25000 p3 = 1
4

p̃4 = 0.03715 p̂4 = 0.03721 p4 = p0

n = 5 p̃0 = 0.01126 p̂0 = 0.01126 p0

p̃1 = 0.13028 p̂1 = 0.13024 p1

p̃2 = 0.35848 p̂2 = 0.35850 p2 = 1
2 − p0 − p1

p̃3 = 0.35852 p̂3 = 0.35850 p3 = 1
2 − p0 − p1

p̃4 = 0.13020 p̂4 = 0.13024 p4 = p1

p̃5 = 0.01126 p̂5 = 0.01126 p5 = p0
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Dimension Observed frequency Least squares Relations (Corol. 4)

n = 6 p̃0 = 0.00289 p̂0 = 0.00288 p0

p̃1 = 0.05675 p̂1 = 0.05678 p1

p̃2 = 0.24710 p̂2 = 0.24712 p2 = 1
4 − p0

p̃3 = 0.38642 p̂3 = 0.38644 p3 = 1
2 − 2p1

p̃4 = 0.24714 p̂4 = 0.24712 p4 = 1
4 − p0

p̃5 = 0.56810 p̂5 = 0.05678 p5 = p1

p̃6 = 0.00289 p̂6 = 0.00288 p6 = p0

n = 7 p̃0 = 0.00063 p̂0 = 0.00063 p0

p̃1 = 0.02089 p̂1 = 0.02088 p1

p̃2 = 0.14250 p̂2 = 0.14249 p2

p̃3 = 0.33601 p̂3 = 0.33600 p3 = 1
2 − p0 − p1 − p2

p̃4 = 0.33597 p̂4 = 0.33600 p4 = 1
2 − p0 − p1 − p2

p̃5 = 0.14248 p̂5 = 0.14249 p5 = p2

p̃6 = 0.02088 p̂6 = 0.02088 p6 = p1

p̃7 = 0.00063 p̂7 = 0.00063 p7 = p0

n = 8 p̃0 = 0.00012 p̂0 = 0.00012 p0

p̃1 = 0.00651 p̂1 = 0.00650 p1

p̃2 = 0.06948 p̂2 = 0.06948 p2

p̃3 = 0.24356 p̂3 = 0.24350 p3 = 1
4 − p1

p̃4 = 0.36080 p̂4 = 0.36080 p4 = 1
2 − 2p0 − 2p2

p̃5 = 0.24346 p̂5 = 0.24350 p5 = 1
4 − p1

p̃6 = 0.06946 p̂6 = 0.06948 p6 = p2

p̃7 = 0.00650 p̂7 = 0.00650 p7 = p1

p̃8 = 0.00012 p̂8 = 0.00012 p8 = p0

n = 9 p̃0 = 0.00002 p̂0 = 0.00002 p0

p̃1 = 0.00171 p̂1 = 0.00171 p1

p̃2 = 0.02880 p̂2 = 0.02879 p2

p̃3 = 0.14952 p̂3 = 0.14955 p3

p̃4 = 0.31987 p̂4 = 0.31993 p4 = 1
2 − p0 − p1 − p2 − p3

p̃5 = 0.31999 p̂5 = 0.31993 p5 = 1
2 − p0 − p1 − p2 − p3

p̃6 = 0.14958 p̂6 = 0.14955 p6 = p3

p̃7 = 0.02878 p̂7 = 0.02879 p7 = p2

p̃8 = 0.00171 p̂8 = 0.00171 p8 = p1

p̃9 = 0.00002 p̂9 = 0.00002 p9 = p0
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Dimension Observed frequency Least squares Relations (Corol. 4)

n = 10 p̃0 = 0 p̂0 = 0 p0

p̃1 = 0.00038 p̂1 = 0.00038 p1

p̃2 = 0.01015 p̂2 = 0.01015 p2

p̃3 = 0.07850 p̂3 = 0.07850 p3

p̃4 = 0.23987 p̂4 = 0.23985 p4 = 1
4 − p0 − p2

p̃5 = 0.34224 p̂5 = 0.34224 p5 = 1
2 − 2p1 − 2p3

p̃6 = 0.23984 p̂6 = 0.23985 p6 = 1
4 − p0 − p2

p̃7 = 0.07849 p̂7 = 0.07850 p7 = p3

p̃8 = 0.01015 p̂8 = 0.01015 p8 = p2

p̃9 = 0.00038 p̂9 = 0.00038 p9 = p1

p̃10 = 0 p̂10 = 0 p10 = p0

Table 2. Linear stability indexes for linear random differential systems.

5 Linear random differential equations of order n

In this section we consider linear random homogeneous differential equations of order n

Anx
(n) +An−1x

(n−1) + · · ·+A2x
′′ +A1x

′ +A0x = 0, (11)

where x = x(t), the derivatives are taken in respect to t, and Aj are again i.i.d. random

variables with N(0, 1) distribution.

To get the stability index for these differential equations, we need we only need to know

the probability distributions of the number of roots with negative real part of its associated

random characteristic polynomial:

Q(λ) = Anλ
n +An−1λ

n−1 + · · ·+A1λ+A0.

Let X be the random variable that counts the number of roots of Q(λ) with negative real

parts and define pk = P (X = k) for k = 0, 1, . . . , n.

Proposition 5. Set pk = P (X = k), where X is the random variable defined above. Then

(a)
∑n

k=0 pk = 1.

(b) For all k ∈ {0, 1, . . . , n}, pk = pn−k.

(c)
∑

i odd pi =
∑

i even pi = 1
2 .
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Proof. The proof of (a) is trivial. To prove (b) consider equation (11) with its characteristic

polynomial Q(λ) and also the new differential equation

(−1)nAnx
(n) + (−1)n−1An−1x

(n−1) + · · ·+A2x
′′ −A1x

′ +A0x = 0 (12)

with its characteristic polynomial Q∗(λ) = Q(−λ) = (−1)nAnλ
n + (−1)n−1An−1λ

n−1 +

· · · − A1λ+ A0. Since Q(λ) = 0 if and only if Q∗(−λ) = 0 we get that pk = p∗n−k where p∗i
the probability that Q∗(λ) has i roots with negative real part. But also pk = p∗k because the

coefficients of the equations (11) and (12) have the same distributions. Hence, the result

follows.

Similarly, as in the proof of (c) of Proposition 3, we observe that the polynomial Q(λ)

has an odd number of roots with negative real part if and only if A0 · An < 0, because we

can neglect the case of having some roots with zero real part. Since the coefficients of (11)

are symmetric independent random variables, the probability that Q(λ) has an odd number

of roots with negative real part is

P ({A0 > 0} ∩ {An < 0}) + P ({A0 < 0} ∩ {An > 0}) =
1

2
× 1

2
+

1

2
× 1

2
=

1

2
.

Corollary 6. Consider the linear random homogeneous differential equation of order n

(11), with all Ai being i.i.d. N(0, 1) random variables, let X be defined above, and set

pk = P (X = k). Then the probabilities pk satisfy all the conclusions of Lemma 2. In

particular E(X) = n/2.

For each n, let rn be the probability of the origin to be a global stable attractor (asymp-

totically stable equilibrium) for (11), that is rn = pn. By Proposition 5(b) this probability

coincides with the probability of being a repeller because pn = p0. Our results in Proposi-

tion 8 seem to indicate that rn decreases with n. Before proving this proposition we need a

preliminary result.

Lemma 7. Let U, V, S and T be i.i.d. random variables with standard normal distribution.

Then p+ := P (U > 0;V > 0;S > 0;T > 0;UT − SV > 0) = 1/32.

Proof. Set A± = {U > 0;V > 0;S > 0;T > 0;±(UT − SV ) > 0}, and A0 = {U > 0;V >

0;S > 0;T > 0;UT−SV = 0}. Denote by p± = P (A±) and p0 = P (A0). Then, since p0 = 0

and A− ∪ A0 ∪ A+ = {U > 0;V > 0;S > 0;T > 0} it holds that p+ + p− = (1/2)4 = 1/16.

To end the proof it suffices to show that p+ = p−.

Notice first that

A+ = {U > 0;V > 0;S > 0;T > 0;UT − SV > 0} = {V > 0;S > 0;T > 0;UT − SV > 0},
A− = {U > 0;V > 0;S > 0;T > 0;UT − SV < 0} = {U > 0;S > 0;T > 0;SV − UT > 0}.
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This is so, because for instance in the definition of A+, the last inequality can also be written

as U > SV/T > 0 and from it we know that the condition U > 0 can be removed. Finally,

interchanging U and V and S and T we get the same relations in the definitions of A+ and

A−. Since all variables are independent N(0, 1), both sets have the same probability and

p+ = p−, as we wanted to prove.

Proposition 8. With the above notations, rn ≤ 1/2n, for all n ≥ 1. Moreover, r1 = 1/2,

r2 = 1/4, r3 = 1/16 and r4 < r3/2 = 1/32.

Proof of Proposition 8. Notice that rn is the probability that the characteristic polynomial

Q(λ), associated with the random differential equation (11), is a Hurwitz stable polynomial;

that is rn = P (Every root of Q(λ) belongs to R−), where R− = {z ∈ C such that Re(z) <

0}. It is well–known that a necessary condition for a polynomial to have every root in R−

is that all its coefficients have the same sign. This is so because it holds for polynomials of

degree 1 and 2, and this property is preserved when we multiply two polynomials satisfying

it. Hence,

{
A0, . . . , An such that all roots of P (λ) are in R−

}
⊂

{
n⋂

i=0

{Ai < 0}
}⋃{

n⋂

i=0

{Ai > 0}
}
. (13)

Since the variables Ai are independent and symmetric

P

(
n⋂

i=0

{Ai < 0}
)

= P

(
n⋂

i=0

{Ai > 0}
)

=
1

2n+1
.

As a consequence,

rn ≤ P
(

n⋂

i=0

{Ai < 0}
)

+ P

(
n⋂

i=0

{Ai > 0}
)

=
1

2n
,

and the first statement follows.

The equalities r1 = 1/2 and r2 = 1/4 are a simple consequence that for n = 1, 2 the

inclusion (13) is an equality.

Let us prove that r3 = p3 = 1/16. By using the Routh-Hurwitz criterion [10, p. 1076],

it can be seen that a3λ
3 + a2λ

2 + a1λ + a0 has every root in R− if and only if all its

coefficients have the same sign and moreover a1a2 − a0a3 > 0. Hence, p3 = p−3 + p+
3 ,

where p−3 := P (A0 < 0;A1 < 0;A2 < 0;A3 < 0;A1A2 − A0A3 > 0); and p+
3 := P (A0 >

0;A1 > 0;A2 > 0;A3 > 0;A1A2 −A0A3 > 0), with all the Ai being N(0, 1) distributed and

independent. Due to their symmetry, the random variables Ai and −Ai, for i = 0, . . . , 3
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have the same distribution and hence p+
3 = p−3 . Therefore p3 = 2p+

3 . The result follows now

by Lemma 7, which gives p+
3 = 1/32.

Let us prove that r4 < r3/2. To compare both probabilities, here it will be more conve-

nient to write the coefficients of the polynomials with subscripts with increasing ordering,

that is qn(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an. With this notation, which also respects

the traditional notation when writing the Hurwitz matrices, and when a0 > 0, the Routh-

Hurwitz conditions to have stability index n for n = 3, 4 are precisely that the principal

minors of the following matrices




a1 a3 0

a0 a2 0

0 a1 a3


 and




a1 a3 0 0

a0 a2 a4 0

0 a1 a3 0

0 a0 a2 a4



,

are positive, where the left-hand one corresponds to the case n = 3 and the other to

the case when n = 4. Hence, these conditions when a0 > 0 and for n = 3 are: a1 >

0, a1a2−a0a3 > 0 and a3 > 0. Similarly, for n = 4 the conditions are a1 > 0, a1a2−a0a3 > 0,

a3(a1a2 − a0a3)− a4a
2
1 > 0 and a4 > 0.

Consider now, for n = 3, 4, the random polynomials Qn(x) = Ã0x
n + Ã1x

n−1 + · · · +
Ãn−1x + Ãn, where Ãi ∼ N(0, 1) and are independent (notice that with this notation

each coefficient Ãi is the coefficient An−i of the characteristic polynomial). For simplicity

we denote with the same name the coefficients of Q3 and Q4 although they are different

random variables. As above, r3 = 2p+
3 , and r4 = 2p+

4 , where p+
k = P (A+

k ), with

A+
3 = {Ã0 > 0; Ã1 > 0; Ã3 > 0; Ã1Ã2 − Ã0Ã3 > 0},
A+

4 = {Ã0 > 0; Ã1 > 0; Ã3 > Ã4Ã
2
1/(Ã1Ã2 − Ã0Ã3); Ã1Ã2 − Ã0Ã3 > 0, Ã4 > 0}.

Notice that if we define

B = {Ã0 > 0; Ã1 > 0; Ã3 > 0; Ã1Ã2 − Ã0Ã3 > 0; Ã4 > 0}

it is clear that P (B) = p+
3 /2 and, moreover A+

4 ⊂ B3, with the inclusion being strict.

Since the joint density is positive and B ∩ (A+
4 )c has positive Lebesgue measure, we have

P (B ∩ (A+
4 )c) > 0. Thus P (A+

4 ) < P (B), and hence p+
4 = P (A+

4 ) < P (B) = p+
3 /2, and

r4 < r3/2, as we wanted to show.

Corollary 9. Consider a linear random homogeneous differential equation of order n = 3

and the random variable X defined above. Then p0 = p3 = 1/16 and p1 = p2 = 7/16.

Proof. By the above proposition, for n = 3, p0 = p3 = r3 = 1/16. Hence, by Proposition 5,

p1 = p2 = 7/16.
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The computations in this case are similar to the ones of the previous section and the

obtained results are summarized in Table 3. We only give some comments for the cases

n = 8 and 10, where we have encountered that the vectors p̂ have negative and very small

entries. This has occurred because the observed frequencies obtained by the Monte Carlo

approach corresponding to these probabilities are not accurate enough. For this reason, we

have made a new optimization step. As before, we use the least squares method to obtain a

vector p̂. However, if negative entries appear in this vector (which is clearly objectionable),

we force them to be zero and find a new least squares estimate, which still respects the

original linear constraints.

We explain this process for the n = 8 order case: The observed relative frequencies

vector obtained by the Monte Carlo method is

p̃t =

(
1

50000000
,

6599

50000000
,

1159359

50000000
,

4996163

20000000
,

45377377

100000000
,

4995607

20000000
,

2318357

100000000
,

13497

100000000
,

1

100000000

)
.

The relations stated in Corollary 6 are p3 = 1/4 − p1, p4 = 1/2 − 2p0 − 2p2, p5 = p3,

p6 = p2, p7 = p1, p8 = p0. By solving the system (8) with

M =




1 0 0

0 1 0

0 0 1

0 −1 0

−2 0 −2

0 −1 0

0 0 1

0 1 0

1 0 0




; q =




p0

p1

p2


 ; and b =




0

0

0
1
2
1
4
1
2

0

0

0




we obtain

q̂t =

(
− 5779

200000000
,

13569

80000000
,

4631293

200000000

)
.

Hence, by (10) we get

p̂ =

(
−5779

200000000
,

13569

80000000
,

4631293

200000000
,

19986431

80000000
,

22687243

50000000
,

19986431

80000000
,

4631293

200000000
,

13569

80000000
,
−5779

200000000

)
.
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So we impose that p0 = p8 = 0. Thus we have p3 = p5 = 1/4− p1, p4 = 1/2− 2p0 − 2p2 =

1/2− 2p2, p6 = p2 and p7 = p1. We find the least squares solution of the system



p̂1

p̂2

p̂3

p̂4

p̂5

p̂6

p̂7




=




1 0

0 1

−1 0

0 −2

−1 0

0 1

1 0




·
(
p̂∗1
p̂∗2

)
+




0

0
1
4
1
2
1
4

0

0




.

Using (9) and (10) we obtain

p̂∗ =

(
0,

13569

80000000
,

13882321

600000000
,

19986431

80000000
,

136117679

300000000
,

19986431

80000000
,

13882321

600000000
,

13569

80000000
, 0

)

' (0, 0.00017, 0.02314, 0.24983, 0.45373, 0.24983, 0.02314, 0.00017, 0) .

The n = 10 case follows analogously.

Dimension Observed frequency Least squares Relations (Corol. 6 and 9)

n = 1 p̃0 = 0.49997 p0 = 0.5

p̃1 = 0.50003 p1 = 0.5

n = 2 p̃0 = 0.24994 p0 = 0.25

p̃1 = 0.49999 p1 = 0.5

p̃2 = 0.25007 p2 = 0.25

n = 3 p̃0 = 0.06252 p0 = 1
16 = 0.0625

p̃1 = 0.43743 p1 = 7
16 = 0.4375

p̃2 = 0.43756 p2 = 7
16 = 0.4375

p̃3 = 0.06249 p3 = 1
16 = 0.0625

n = 4 p̃0 = 0.00928 p̂0 = 0.00925 p0

p̃1 = 0.24998 p̂1 = 0.25 p1 = 1
4

p̃2 = 0.48152 p̂2 = 0.48150 p2 = 1
2 − 2p0

p̃3 = 0.24994 p̂3 = 0.25 p3 = 1
4

p̃4 = 0.00929 p̂4 = 0.00925 p4 = p0

n = 5 p̃0 = 0.00071 p̂0 = 0.00071 p0

p̃1 = 0.08405 p̂1 = 0.08404 p1

p̃2 = 0.41526 p̂2 = 0.41525 p2 = 1
2 − p0 − p1

p̃3 = 0.41523 p̂3 = 0.41525 p3 = 1
2 − p0 − p1

p̃4 = 0.08404 p̂4 = 0.08404 p4 = p1

p̃5 = 0.00071 p̂5 = 0.00071 p5 = p0
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Dimension Observed frequency Least squares Relations (Corol. 6 and 9)

n = 6 p̃0 = 0.00003 p̂0 = 0.00005 p0

p̃1 = 0.01723 p̂1 = 0.01720 p1

p̃2 = 0.24994 p̂2 = 0.24995 p2 = 1
4 − p0

p̃3 = 0.46562 p̂3 = 0.46560 p3 = 1
2 − 2p1

p̃4 = 0.24993 p̂4 = 0.24995 p4 = 1
4 − p0

p̃5 = 0.01723 p̂5 = 0.01720 p5 = p1

p̃6 = 0.00003 p̂6 = 0.00005 p6 = p0

n = 7 p̃0 = 0 p̂0 = 0 p0

p̃1 = 0.00200 p̂1 = 0.00200 p1

p̃2 = 0.09571 p̂2 = 0.09572 p2

p̃3 = 0.40224 p̂3 = 0.40228 p3 = 1
2 − p0 − p1 − p2

p̃4 = 0.40233 p̂4 = 0.40228 p4 = 1
2 − p0 − p1 − p2

p̃5 = 0.09573 p̂5 = 0.09572 p5 = p2

p̃6 = 0.00199 p̂6 = 0.00200 p6 = p1

p̃7 = 0 p̂7 = 0 p7 = p0

n = 8 p̃0 = 0 p̂∗0 = 0 p0

p̃1 = 0.00013 p̂∗1 = 0.00017 p1

p̃2 = 0.02319 p̂∗2 = 0.02314 p2

p̃3 = 0.24981 p̂∗3 = 0.24983 p3 = 1
4 − p1

p̃4 = 0.45377 p̂∗4 = 0.45372 p4 = 1
2 − 2p0 − 2p2

p̃5 = 0.24978 p̂∗5 = 0.24983 p5 = 1
4 − p1

p̃6 = 0.02318 p̂∗6 = 0.02314 p6 = p2

p̃7 = 0.00013 p̂∗7 = 0.00017 p7 = p1

p̃8 = 0 p̂∗8 = 0 p8 = p0

n = 9 p̃0 = 0 p̂0 = 0 p0

p̃1 = 0.00001 p̂1 = 0.00005 p1

p̃2 = 0.00336 p̂2 = 0.00337 p2

p̃3 = 0.10337 p̂3 = 0.10335 p3

p̃4 = 0.39328 p̂4 = 0.39328 p4 = 1
2 − p0 − p1 − p2 − p3

p̃5 = 0.39328 p̂5 = 0.39328 p5 = 1
2 − p0 − p1 − p2 − p3

p̃6 = 0.10332 p̂6 = 0.10335 p6 = p3

p̃7 = 0.00338 p̂7 = 0.00337 p7 = p2

p̃8 = 0 p̂8 = 0.00005 p8 = p1

p̃9 = 0 p̂9 = 0 p9 = p0
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Dimension Observed frequency Least squares Relations (Corol. 6 and 9)

n = 10 p̃0 = 0 p̂∗0 = 0 p0

p̃1 = 0 p̂∗1 = 0.00002 p1

p̃2 = 0.00030 p̂∗2 = 0.00028 p2

p̃3 = 0.02784 p̂∗3 = 0.02787 p3

p̃4 = 0.24976 p̂∗4 = 0.24972 p4 = 1
4 − p0 − p2

p̃5 = 0.44421 p̂∗5 = 0.44422 p5 = 1
2 − 2p1 − 2p3

p̃6 = 0.24973 p̂∗6 = 0.24972 p6 = 1
4 − p0 − p2

p̃7 = 0.02787 p̂∗7 = 0.02787 p7 = p3

p̃8 = 0.00029 p̂∗8 = 0.00028 p8 = p2

p̃9 = 0 p̂∗9 = 0.00002 p9 = p1

p̃10 = 0 p̂∗10 = 0 p10 = p0

Table 3. Stability indexes for order n linear random homogeneous differential equations.

6 Linear random maps

In order to keep the approach of the preceding sections, we suggest to consider random

linear discrete dynamical systems of the form

B xk+1 = Axk where x ∈ Rn, (14)

where B and each of the n2 entries of the random matrix A are i.i.d. N(0, 1) random variables.

Observe that to ensure that the results are invariant under time-scaling, is necessary to add

the term B in the left-hand side of Equation (14). Then, given a linear discrete random

system (14), its characteristic random polynomial associated with the matrix 1
BA is

Q(λ) = Qnλ
n +Qn−1λ

n−1 + · · ·+Q1λ+Q0

where each random variable Qj is a polynomial in the variables 1/B, A1,1, . . . , An,n which

has a complicated distribution function. We denote by X the random variables that assigns

to each Q its number of roots with modulus smaller than 1, that is, the stability index of

the matrix 1
BA. Also pk denotes the probabilities that X takes the value k.

As we will see in the examples, in this case the condition pk = pn−k is no longer satisfied.

Among other reasons it happens that the entries of A−1 have complicated distributions.

Since we do not know other relations on the probabilities pk apart from the trivial one
∑n

k=0 pk = 1, and this is directly fulfilled by the observed relative frequencies, in this case

we do not perform the least squares refinement.
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The case n = 1 is the only one that we have been able to solve analytically. Notice that

in this situation the only solution of Q(λ) = 0 is λ = A/B, with A and B independent and

N(0, 1). Hence p0 = P (|A/B| > 1) and p1 = P (|A/B| < 1) = P (|B/A| > 1). Since A/B

and B/A have the same distribution it holds that p0 = p1 = 1/2.

As in the other models, for each dimension n ≤ 10, we generate 108 discrete systems

of the form (14). For each matrix 1
BA we have computed the characteristic polynomial Q

and its associated polynomial Q? (see Equation (7)) and have counted the number of roots

of this last polynomial by using the Routh-Hurwitz zero counter. For n ≥ 5 and in order

to decrease the computation time we have directly numerically computed the eigenvalues

of the matrix and counted the number of them with modulus less than one. The results

obtained are shown in Table 4.

Dimension Observed frequency

n = 1 p̃0 = 0.49994

p̃1 = 0.50006

n = 2 p̃0 = 0.46348

p̃1 = 0.27705

p̃2 = 0.25947

n = 3 p̃0 = 0.45261

p̃1 = 0.25828

p̃2 = 0.15351

p̃3 = 0.13560

n = 4 p̃0 = 0.45040

p̃1 = 0.24732

p̃2 = 0.14799

p̃3 = 0.08127

p̃4 = 0.07302

n = 5 p̃0 = 0.44957

p̃1 = 0.24536

p̃2 = 0.13956

p̃3 = 0.08116

p̃4 = 0.04443

p̃5 = 0.03992

Dimension Observed frequency

n = 6 p̃0 = 0.44944

p̃1 = 0.24419

p̃2 = 0.13838

p̃3 = 0.07536

p̃4 = 0.04606

p̃5 = 0.02449

p̃6 = 0.02209

n = 7 p̃0 = 0.44937

p̃1 = 0.24394

p̃2 = 0.13723

p̃3 = 0.07480

p̃4 = 0.04226

p̃5 = 0.02636

p̃6 = 0.01367

p̃7 = 0.01236

25



Dimension Observed frequency

n = 8 p̃0 = 0.44937

p̃1 = 0.24381

p̃2 = 0.13702

p̃3 = 0.07388

p̃4 = 0.04207

p̃5 = 0.02394

p̃6 = 0.01526

p̃7 = 0.00768

p̃8 = 0.00698

n = 9 p̃0 = 0.44941

p̃1 = 0.24374

p̃2 = 0.13680

p̃3 = 0.07371

p̃4 = 0.04139

p̃5 = 0.02400

p̃6 = 0.01374

p̃7 = 0.00889

p̃8 = 0.00434

p̃9 = 0.00397

Dimension Observed frequency

n = 10 p̃0 = 0.44934

p̃1 = 0.24371

p̃2 = 0.13687

p̃3 = 0.07358

p̃4 = 0.04129

p̃5 = 0.02348

p̃6 = 0.01388

p̃7 = 0.00792

p̃8 = 0.00520

p̃9 = 0.00247

p̃10 = 0.00226

Table 4. Stability indexes for linear random maps.

7 Linear random difference equations of order n

Finally we consider difference equations of order n of type

Anxk+n +An−1xk+n−1 + · · ·+A1xk+1 +A0xk = 0,

where all the coefficients are i.i.d. random variables with N(0, 1) distribution. In this situa-

tion, the stability index is given by the number of zeros with modulus smaller than 1 of the

random characteristic polynomial Q(λ) = Anλ
n + An−1λ

n−1 + · · · + A1λ + A0. As in the

preceding sections let X be the random variable that counts the number of roots of Q(λ)

with modulus smaller than 1 and set pk = P (X = k) for k = 0, 1, . . . , n.

Before proving some relations among the probabilities pk, we give two preliminary lem-

mas. Let erf(x) = 2√
π

∫ x
0 e−u

2
du be the error function. The following result is stated in [4].

We prove it for the sake of completeness.
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Lemma 10. For α > 0 and β ∈ R,

F (α, β) :=

∫ ∞

0
e−α

2x2 erf(βx) dx =
arctan(β/α)

α
√
π

.

Proof. Fixed α > 0, the function that defines F is absolutely integrable because | erf(x)| ≤
1. Moreover its partial derivative with respect to β is also absolutely integrable. Hence

limβ→0 F (α, β) = F (α, 0) = 0 and

∂F (α, β)

∂β
=

∫ ∞

0

∂

∂β

(
e−α

2x2 erf(βx)
)

dx =
2√
π

∫ ∞

0
x e−α

2x2e−β
2x2 dx

=
2√
π

∫ ∞

0
x e−(α2+β2)x2 dx =

1

(α2 + β2)
√
π
.

Therefore

F (α, β) = F (α, 0) +

∫ β

0

∂F (α, t)

∂t
dt =

∫ β

0

1

(α2 + t2)
√
π

dt =
arctan(β/α)

α
√
π

,

as we wanted to prove.

The next result is a consequence of the previous lemma.

Lemma 11. Let U ∼ N(0, σ2) and V ∼ N(0, ρ2) be independent normal random variables.

Then P (U2 − V 2 > 0) = 2
π arctan(σ/ρ).

Proof. The joint density function of the random vector (U, V ) is fσ(u)fρ(v), where fs(u) =

e−u
2/(2s2)/(

√
2πs). Observe that the points (u, v) ∈ R2 such that u2 − v2 > 0 is the region

where −|u| < v < |u|, hence by symmetry,

P (U2 − V 2 > 0) = 4

∫ ∞

0
fσ(u)

∫ u

0
fρ(v) dv du =

4

2πσρ

∫ ∞

0
e−u

2/(2σ2)

∫ u

0
e−v

2/(2ρ2) dv du

=
2

πσρ

∫ ∞

0
e−u

2/(2σ2) erf
( u√

2ρ

)√π

2
ρ du =

2

π
arctan

(σ
ρ

)
,

where in the last equality we have used Lemma 10.

Notice that with the notation of the above lemma, P (U2−V 2 > 0)+P (U2−V 2 < 0) = 1.

Hence

P (U2 − V 2 < 0) = 1− 2

π
arctan

(σ
ρ

)
=

2

π
arctan

(ρ
σ

)
, (15)

where we have used the fact that arctan(x)+arctan(1/x) = π/2 or, simply, the same lemma

interchanging U and V. Observe also that when σ = ρ, P (U2−V 2 > 0) = P (U2−V 2 < 0) =

1/2, a result that, in fact, is a straightforward consequence that in this situation U2 − V 2

and V 2 − U2 have the same distribution.

Proposition 12. With the above notation:
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(a)
∑n

k=0 pk = 1.

(b) For all k ∈ {0, 1, . . . , n}, pk = pn−k.

(c) When n is odd,
∑

i even pi =
∑

i odd pi = 1
2 .

(d) When n = 2k is even,

∑

i even

pi =
2

π
arctan

(√k + 1

k

)
and

∑

i odd

pi =
2

π
arctan

(√ k

k + 1

)
. (16)

Proof. The first assertion is obvious. To see the second one we compare the difference

equation anxk+n + an−1xk+n−1 + · · ·+ a1xk+1 + a0xk = 0, with ai ∈ R, i = 0, 1, . . . , n, with

characteristic polynomial Q(λ) = anλ
n+an−1λ

n−1 + · · ·+a2λ
2 +a1λ+a0 with the difference

equation anxk + an−1xk+1 + · · ·+ a0xk+n = 0 with characteristic polynomial Q∗(λ) = an +

an−1λ+ · · ·+a1λ
n−1 +a0λ

n. Notice that if Q(λ) has m non-zero roots with modulus smaller

than 1 and n−m with modulus bigger than 1, then the converse follows for Q∗(λ) because

Q(λ) = 0 if and only if Q∗( 1
λ) = 0. From this result applied to the corresponding random

polynomials we get that pk = pn−k, because both have identically distributed coefficients.

So we have proved statement (b). To prove items (c) and (d) recall first that it was proved in

item (c) of Proposition 5 that a polynomial Q(λ) = anλ
n+an−1λ

n−1 + · · ·+a2λ
2 +a1λ+a0,

without roots with zero real part, has an even number of roots with negative real part if

and only if ana0 > 0. By using the polynomial

Q?(z) = an(z + 1)n + an−1(z + 1)n−1(z − 1) + . . .+ a0(z − 1)n

= (an + an−1 + · · ·+ a1 + a0)zn + · · ·+ (an − an−1 + an−2 − · · ·+ (−1)na0),

introduced in Section 3 (Equation (7)) we get that Q(λ), without roots of modulus 1, has

an even number (2m) of roots with modulus smaller than 1 if and only if Q?(z) has exactly

2m roots with negative real part and this happens if and only if (an + an−1 + · · · + a1 +

a0) · (an − an−1 + an−2 − · · ·+ (−1)na0) > 0. Hence, considering the corresponding random

polynomials, we have that

∑

i even

pi = P
(
(An +An−1 + · · ·+A0) · (An −An−1 + · · ·+ (−1)nA0) > 0

)

= P (U2 − V 2 > 0),

where U = An +An−2 +An−4 + · · · and V = An−1 +An−3 +An−5 + · · · and the sums end

either at A0 or A1 according the parity of n. Since Aj ∼ N(0, 1) and all Aj are independent

we get that when n = 2k (resp. n = 2k − 1) then U ∼ N(0, k + 1) (resp. U ∼ N(0.k)) and
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V ∼ N(0, k) and U and V are independent. Hence, by using Lemma 11, we obtain that

when n = 2k − 1, P (U2 − V 2 > 0) = 1/2 and that when n = 2k,

∑

i even

pi = P (U2 − V 2 > 0) =
2

π
arctan

(√k + 1

k

)
.

The sum of all pi when i is odd can be obtained from the above formula, see also (15).

Corollary 13. (i) Consider the linear random homogeneous difference equation of order n,

let X be the random variable defined above and pk = P (X = k). Then the probabilities pk

satisfy all the conclusions of Lemma 2. In particular E(X) = n/2.

(ii) Moreover the new affine relations given in Equations (16) hold. In particular, for

n = 2, p0 = p2 = 1
π arctan(

√
2) and p1 = 2

π arctan( 1√
2
); and for n = 4, p1 = p3 =

1
π arctan(

√
2
3).

In this case, and for the situations where we have not been able to obtain the exact

probabilities we have done similar computations than in the previous section, first with

the Monte Carlo method, generating for each order n = 0, . . . , 10, 108 random vectors

(A0, . . . , An) ∈ Rn+1 whose components are pseudo-random numbers with N(0, 1) distribu-

tion. Then, by using the relations in Proposition 12 and Corollary 13 we have performed a

least squares refinement.

For instance for n = 4, by Corollary 13 we have p1 = p3 = arctan(
√

2/3)/π ' 0.217953;

p2 = 2 arctan(
√

3/2)/π − 2p0 and p4 = p0. Hence, we fix the values p̂1 = p1 and p̂3 = p3

and system (8) can be written in the form

Mq̂ + b =




1

−2

1


 · (p̂0) +




0

2
π arctan

(√
3
2

)

0


 =




p̃0

p̃2

p̃4


 .

Hence we can easily find the least squares solution of the above incompatible linear system:

(1,−2, 1) ·







1

−2

1


 · (p̂0) +




0

2
π arctan

(√
3
2

)

0





 = (1,−2, 1) ·




p̃0

p̃2

p̃4


 ,

and thus we get the result in Equation (9): p̂0 = 1
6 (p̃0 − 2p̃2 + p̃4) + 2

3π arctan
(√

3/2
)
,

and therefore p̂4 = p̂0 and p̂2 = 2 arctan(
√

3/2)/π−2p̂0. Since our Monte Carlo simulations

give

(p̃0, p̃2, p̃4) =

(
2056203

20000000
,

7169499

20000000
,

10285619

100000000

)
' (0.10281, 0.35847, 0.10286) ,
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the above relations show that (p̂0, p̂2, p̂4) ' (0.10282, 0.35846, 0.10282) .

All our results are collected in Table 5.

Order Observed frequency Least squares Relations (Prop. 12 and Cor. 13))

n = 1 p̃0 = 0.49991 p0 = 0.5

p̃1 = 0.50009 p1 = 0.5

n = 2 p̃0 = 0.30410 p0 = 1
π arctan(

√
2) ' 0.304087

p̃1 = 0.39184 p1 = 2
π arctan( 1√

2
) ' 0.391826

p̃2 = 0.30406 p2 = 1
π arctan(

√
2) ' 0.304087

n = 3 p̃0 = 0.17251 p̂0 = 0.17248 p0

p̃1 = 0.32752 p̂1 = 0.32752 p1 = 1
2 − p0

p̃2 = 0.32753 p̂2 = 0.32752 p2 = 1
2 − p0

p̃3 = 0.17244 p̂3 = 0.17248 p3 = p0

n = 4 p̃0 = 0.10281 p̂0 = 0.10282 p0

p̃1 = 0.21792 p̂1 = 0.21795 p1 = 1
π arctan(

√
2
3) ' 0.217953

p̃2 = 0.35847 p̂2 = 0.35846 p2 = 2
π arctan(

√
3
2)− 2p0

p̃3 = 0.21794 p̂3 = 0.21795 p3 = 1
π arctan(

√
2
3) ' 0.217953

p̃4 = 0.10286 p̂4 = 0.10282 p4 = p0

n = 5 p̃0 = 0.05909 p̂0 = 0.05909 p0

p̃1 = 0.15331 p̂1 = 0.15333 p1

p̃2 = 0.28760 p̂2 = 0.28758 p2 = 1
2 − p0 − p1

p̃3 = 0.28756 p̂3 = 0.28758 p3 = 1
2 − p0 − p1

p̃4 = 0.15335 p̂4 = 0.15333 p4 = p1

p̃5 = 0.05908 p̂5 = 0.05909 p5 = p0

n = 6 p̃0 = 0.03501 p̂0 = 0.03502 p0

p̃1 = 0.09726 p̂1 = 0.09726 p1

p̃2 = 0.23777 p̂2 = 0.23779 p2 = 1
π arctan(

√
4
3)− p0

p̃3 = 0.25985 p̂3 = 0.25986 p3 = 2
π arctan(

√
3
4)− 2p1

p̃4 = 0.23781 p̂4 = 0.23779 p4 = 1
π arctan(

√
4
3)− p0

p̃5 = 0.09724 p̂5 = 0.09726 p5 = p1

p̃6 = 0.03505 p̂6 = 0.03502 p6 = p0
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n = 7 p̃0 = 0.02025 p̂0 = 0.02025 p0

p̃1 = 0.06432 p̂1 = 0.06430 p1

p̃2 = 0.17174 p̂2 = 0.17176 p2

p̃3 = 0.24376 p̂3 = 0.24369 p3 = 1
2 − p0 − p1 − p2

p̃4 = 0.24361 p̂4 = 0.24369 p4 = 1
2 − p0 − p1 − p2

p̃5 = 0.17177 p̂5 = 0.17176 p5 = p2

p̃6 = 0.06428 p̂6 = 0.06430 p6 = p1

p̃7 = 0.02025 p̂7 = 0.02025 p7 = p0

n = 8 p̃0 = 0.01194 p̂0 = 0.01196 p0

p̃1 = 0.03994 p̂1 = 0.03994 p1

p̃2 = 0.12272 p̂2 = 0.12726 p2

p̃3 = 0.19230 p̂3 = 0.19234 p3 = 1
π arctan(

√
4
5)− p1

p̃4 = 0.25701 p̂4 = 0.25700 p4 = 2
π arctan(

√
5
4)− 2p0 − 2p2

p̃5 = 0.19238 p̂5 = 0.19234 p5 = 1
π arctan(

√
4
5)− p1

p̃6 = 0.12724 p̂6 = 0.12726 p6 = p2

p̃7 = 0.03994 p̂7 = 0.03994 p7 = p1

p̃8 = 0.01197 p̂8 = 0.01196 p8 = p0

n = 9 p̃0 = 0.00693 p̂0 = 0.00693 p0

p̃1 = 0.02556 p̂1 = 0.02556 p1

p̃2 = 0.08711 p̂2 = 0.08711 p2

p̃3 = 0.15653 p̂3 = 0.15653 p3

p̃4 = 0.22389 p̂4 = 0.22386 p4 = 1
2 − p0 − p1 − p2 − p3

p̃5 = 0.22382 p̂5 = 0.22386 p5 = 1
2 − p0 − p1 − p2 − p3

p̃6 = 0.15654 p̂6 = 0.15653 p6 = p3

p̃7 = 0.08712 p̂7 = 0.08711 p7 = p2

p̃8 = 0.02557 p̂8 = 0.02556 p8 = p1

p̃9 = 0.00693 p̂9 = 0.00693 p9 = p0
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n = 10 p̃0 = 0.00409 p̂0 = 0.00411 p0

p̃1 = 0.01567 p̂1 = 0.01566 p1

p̃2 = 0.06089 p̂2 = 0.06091 p2

p̃3 = 0.11500 p̂3 = 0.11497 p3

p̃4 = 0.19950 p̂4 = 0.19947 p4 = 1
π arctan(

√
6
5)− p0 − p2

p̃5 = 0.20978 p̂5 = 0.20976 p5 = 2
π arctan(

√
5
6)− 2p1 − 2p3

p̃6 = 0.19941 p̂6 = 0.19947 p6 = 1
π arctan(

√
6
5)− p0 − p2

p̃7 = 0.11499 p̂7 = 0.11497 p7 = p3

p̃8 = 0.06088 p̂8 = 0.06091 p8 = p2

p̃9 = 0.01570 p̂9 = 0.01566 p9 = p1

p̃10 = 0.00408 p̂10 = 0.00411 p10 = p0

Table 5. Stability indexes for order n linear random homogeneous difference equations.
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