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RATIONAL LIMIT CYCLES ON ABEL EQUATIONS

JAUME LLIBRE' AND CLAUDIA VALLS?

ABSTRACT. In this paper we deal with Abel equations dy/dz = A(z)y*+
B(x)y®, where A(x) and B(z) are real polynomials. We prove that
these Abel equations can have at most three rational limit cycles and
we characterize when this happens. Moreover, we provide examples of
these Abel equations with three nontrivial rational limit cycles. We also
prove that in this case the limit cycles cannot be hyperbolic.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

We study the Abel equations

1) W — A + B

where z,y are real variables and A(z) and B(z) are polynomials. The limit
cycles of these equations have been intensively investigated mainly when the
functions A(z) and B(zx) are periodic (see for instance [1, 2, 3, 4, 5, 6, 7, 9,
12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24]), and also when A(z) and B(z) are
polynomial (see for instance [8, 10, 11, 14, 20]). Here we are interested in
the rational limit cycles of equation (1) when the functions A(z) and B(x)
are polynomial.

A periodic solution of equation (1) is a solution y(z) defined in the closed
interval [0, 1] such that y(0) = y(1).

We say that a limit cycle is a periodic solution isolated in the set of
periodic solutions of a differential equation (1). Without loss of generality
we will assume that the period is 1.

The limit cycle is called a polynomial limit cycle if the periodic solution
y(z) is a polynomial in the variable z. In particular the authors of [14]
proved that any polynomial limit cycle of system (1) is of the form y = ¢
with ¢ € R, and that if a polynomial limit cycle exists with ¢ # 0, then no
other polynomial limit cycles can exist.

In this paper we want to consider the existence of rational limit cycles for
system (1), i.e. we want to consider limit cycles of the form y(z) = ¢(x)/p(x)
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where p,q € R[z] and (p(x),q(x)) = 1. As usual R[z] denotes the set
of all real polynomials in the variable . We will study only the rational
limit cycles that are not polynomial limit cycles. In this scenario we will
distinguish between trivial limit cycles (the polynomial ones) and non-trivial
limit cycles (the rational limit cycles that are not polynomials).

In [17] the authors provide examples of differential equations (1) having
one or two rational limit cycles, and that these limit cycles are hyperbolic.

Our main theorem is the following one.

Theorem 1. System (1) has at most three rational limit cycles, and when
it has three rational limit cycles 1/y;(x) for i = 1,2,3, then there exist
a polynomial S(x) and two different constants c1,co € R\ {0} such that
S(0) = S(1) and S(x) #0, S(z) +c1 # 0 and S(x) + ca # 0 for z € [0,1].
Moreover
(2) B(x) = S(x)S'(2)(S(x) + e1)(S(2) + c2),
and the three limit cycles and satisfy

yi(x) = S(z)(S(x) + 1),
3) ya(x) = S(2)(S(x) + c2),

ya(z) = (S(@) + e1)(S(2) + ca).

We provide an example of system (1) with three rational limit cycles. The
proof of Theorem 1 and the example are given in section 2.

Denote by y(z,zo) the solution of equation (1) such that y(0,z9) = xo.
Clearly a zero of the function ¢(xg) = y(1,x9) — zo implies that y(x, o) is a
periodic solution of (1), and an isolated zero of ¢(z¢) implies that y(x, zg)
is a limit cycle of system (1). When we have a simple isolated zero of ¢(zo),
ie. ¢p(zo) =0 and ¢'(xg) # 0, then we say that y(x, zo) is a hyperbolic limit
cycle.

Theorem 2. When system (1) has three limit cycles, they are not hyper-
bolic.

Theorem 2 is proved in section 3.

2. PROOF OF THEOREM 1
It was proved in Lemma 2 of [17] the following result, but for completeness
we provide it here.

Lemma 3. The rational function y = q(x)/p(x) with p(x) non-constant is a
periodic solution of system (1) if and only if g(x) = ¢ € R\ {0}, p(0) = p(1)
and p(x) has no zero in [0,1] and

(4) cB(z) + M + p(x)A(z) = 0.
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Proof. For the reverse implication, we note that if ¢(z) = ¢ € R\ {0},
p(0) = p(1), p(z) has no zero in [0, 1] and equality (4) holds then it is clear
that the rational function y = ¢/p(z) is a periodic solution of system (1).

For the direct implication, we note that if y(x) = ¢(z)/p(z) is a periodic
solution of system (1) then p(x) # 0 for x € [0, 1]. Let g(z,y) = p(x)y—q(x).
Then

dg(z,y) dy
0= =" lowy=0 =P @)y +plx) -~ — ()
=p'(2)y +p(2)(A2)y* + B(2)y’) — ¢ (2).
Note that g(x,y) is irreducible, so there exists a polynomial k(z,y) so that

(5) P(@)y + p(x)(A(z)y* + B(z)y®) — ¢ (x) = k(z,y)g(z,y).

Since the highest degree in y in the left-hand side is 3 and the highest degree
inyin g(z,y) is 1 we get that the highest degree in y in k(x,y) is 2 and so it
can be written as k(x,y) = ko(x) +k1(z)y + ka(x)y?, where ko, k1, k2 € R[z].
Comparing the coefficients of y°, y*, ¥? and 3> in (5) we get

q'(z) = ko(z)q(z),
P (z) = ko(z)p(x) —
p(x)A(z) = k1(z)p(z) — ka(z)q(2),
p(z)B(x) = ka(x)p(x).
From the first relation we get that ¢(z)|¢’(x). This implies that ¢(z) is
a constant that we denote by ¢, that is, g(x) = ¢ € R. If ¢ = 0 then

y = ¢q(x)/p(x) = 0. This is not possible and so ¢ # 0. Moreover, y =
q(z)/p(x) = ¢/p(x) is a periodic solution, then p(0) = p(1). From the

(6)

second relation we get that kq(z) = —p/(x)/c and from the fourth relation
we obtain ko(z) = B(x). Substituting them in the third relation we get (4)
and the direct inclusion is proved. O

In view of Lemma 3 it is not restrictive to take ¢ = 1 and consider all
rational limit cycles of the form y = 1/p(z) with p(x) satisfying p(0) = p(1)
with p(z) having no zero in [0, 1] and satisfying (4).

From (4) we must have that B(z) is multiple of p(z) and so B(z) =
p(z)r(z) for some polynomial r(x). Therefore, (4) becomes

(7) r(x)+p (x)+A(x) =0 andso p(z)= H—/(A(S)-I-T(S)) ds, k€R.

Assume that equation (1) has two rational limit cycles, y(z) = 1/p1(z)
and y(x) = 1/pa2(x) with pi(z),p2(x) € R[z] \ R. Denote by ¢(z) =
(p1(x), p2(x)), i.e. the maximum common divisor of the polynomials p;(x)
and pso(x), and consequently

(8) pi(z) = q(z)s1(x), p2(z) = q(x)s2(x)
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with ¢(z),s;(z) € R[z] and (s1(x),s2(x)) = 1. Note that in view of the
above observation we must have that

(9) B(z) = gq(x)s1(x)s2(x)s3(2)

for some s3(z) € Rzx].

Lemma 4. The following equalities hold

(10) s3(r) =¢'(z) and s1(x) —sa(x) =c €R.
Proof. Note that in view of (7) we have

ala)sno) = o = [ (A(s) + sa(s)sal) s,
q(z)sa(z) = K1 — /(A(s) + s1(8)s3(s)) ds,

with kg, k1 € R. Hence,

¢'(x)s1(x) + q(2)s) () = —A(x) — sa(x)ss(x),
¢'(x)s2(x) + q(2)sy(2) = —A(x) — s1(x)ss(x),

(11)

and so
¢ (z)s1(2) + q(z)s1(x) — ¢'(x)s2(2) + g(x)s5(2))
= —sa(z)s3(w) + s1(x)s3(z) = (s1(x) — s2(x))s3(7),
which gives
¢ (2)(s1(x) = s2(2)) + q(z)(s1(2) — s2(2)) = (s51(x) — s2(2))s3(2),
that is

q(x)(s1(x) = s2(x))" = (s1(2) = s2(2)) (s3(x) — ¢' ().

Hence

(s1(z) — s2(x))" _ s3(x)  ¢'(2)

(s1(z) —s2(2))  qlz)  qlx)’
Therefore

— s9(x :miex 52(s) s
i (o) o) =g ([ 5 0).

for some Ky € R. Since s1(z) — s2(z) must be a polynomial we must have
s3(z) = k3q'(x) for some k3 € R. Indeed note that we must have

(13) / S;((SS; ds = k3logh(x), k3 €R, h(z)eR[z]\{0}.

Let H(z) = (q(x), s3(z)). Then
s3(x) _ H(z)s3(x) _ 53(2) W (x)

o) ~ H@)a)  a@)  Che)
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Therefore q(z) = h(x) and §3(z) = k37 (z). So q(x) = H(z)h(x). From (12)
and (13) we have

q(x)
Since s1(x) — s2(z) must be a polynomial and k3 # 0, it follows that H(x)
can be one. Hence,

51(z) — $2(3) = Koo (g(z))ns .

rk3—1

(14) s3(x) = k3q'(x) and  s1(z) — so(x) = Kaq(x)
On the other hand, doing a change of variables of the form Y = Sy where
(% = sign(k3)k3, the Abel equation (1) becomes

4Y AW B
dx g 5?2
Since B(z) = q(x)s1(x)s2(x)k3q (z), then B(x) = +q(x)s1(x)s2(x)q'(z). In
what follows we shall work with the Abel equation (15).

(15) Y3 = A(z)Y? + B(2)Y?.

Repeating the previous computations starting with the Abel equation (15)
we will arrive to equation (14) which now writes
s3(r) =¢'(x) and s1(x) — so(w) = Ka,

because k3 = +1 and only can be one. This concludes the proof of the
lemma. O

Note that from (8), (9) and Lemma 4 we have that
(16) B(z) = q(x)q' (z)s1(x)sa2(2).

Proof of Theorem 1. Assume that equation (1) has three rational limit cy-
cles, y = 1/p1(z) and y = 1/pe(x) and y3 = 1/ps3(x) with p1,pe,ps €
R[z] \ R. Denote by ¢i(z) = (pi(x),p2(x)), g2(z) = (pi(z),p3(x)) and
q3(x) = (p2(x), p3(z)). In view of Lemma 4 we have

pi(z) = q1(z)s1(z) = qa(x)s2(2),
(17) p2(x) = qu(x)(s1(2) + 1) = g3(x)s3(),

p3(x) = q2(x)(s2(2) + c2) = g3(x)(s3(x) + c3),

)

for some polynomials si(z), s2(x), s3(z) and constants c1,c2,c3 € R\ {0}.

Hence, we get

p2(x) — p1(x) = q1(x)c1, a1 €R,
p3(x) — p1(x) = q2(x)c2, c2 € R,
p3(x) — pa(x) = g3(x)cs, c3 € R,
and so
(18) q2(x)c2 = q1(w)e1 + gz(x)cs.

We consider two situations.
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Case 1: q1(xz) and sa(x) are coprime. Note that from (17) we have that
q1(z)s1(x) = g2(x)s2(x), and then from (18) we get
q1(x)s1(z)ca
s2(x)

In particular there exists T'(z) € R[x] so that
a3(z) = q1(2)T'(z),

= @(x)cr = q1(x)er + g3(z)cs.

and consequently
s1(x)eq

s2(x)

=c; + T(x)cs,

which yields

s1(0) = 2 ey + T()ey),

Therefore from (17) we get

B()s2() = 0 @1(0) = 00 2 e+ Tw)ew),
and so
o(z) = q1<x)cl+cT2(x)c3_

Hence we have

s9(x)

C2

pi(z) = qi(x)si(2) = q1(x) (e1 +T(x)cs),

19 pale) = a@)on) + ) =) (21 + Ta)ca) 4 ),

a1+ T (z)cs

(s2(x) + ¢2).
Co

p3(7) = q2(7)(s2(7) + c2) = q1 ()
We consider two subcases.

Subcase 1.1: Assume that T'(z) and so(x) + c2 are coprime. Then the
maximum common divisor between p2(x) and ps(z) is ¢i1(z). Indeed, we
will show that

so(x

) = 2 01 4 1)) + e
and

ro(z) = (c1 + T(z)cz)(s2(z) + c2)
are coprime. Note that if x* is a zero of ¢; + T(z)cs then we have that
ro(z*) = 0 but r1(2*) = ¢1 # 0. Moreover, if Z is a solution of sy(z)+c2 =0
then ro(2) = 0 but 71(2) = —(c1 + T(&)c3) + 1 = T(Z)csz # 0. Therefore,
using p1(z) and pa(x) from (16) and (19) we can write

B(@) = @)y (2) 27 (e 1 T(w)es) (W> (c1 + T(@)es) + cl) |
Cco C2
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and from pj(z) and p3(X) we can write

mmzmwmu(

and so

s2(x)
2

a1+ T (z)cs
2

(q+ﬂ@®+m> (s2(2) + <),

s2(x) = sa(z) + 2
which is not possible because ¢y # 0.

Subcase 1.2: Assume that T'(x) and s2(x) + ca are not coprime. Write
T(z) = ai(z)o(z), s2(x)+c2=(z)as(x),
where ag, a3 € Rlz] and aq(x) € R[z] \ R. Then
c+T(x)c
o) = () ()as(0) 2L,
ai ()

p2(x) = q1(x) (cra3(z) + sa(x)as(w)es).

We first note that the maximum common divisor between ps(x) and ps(z)
is ¢1(z)ai(x). To do so, we will show that
r3(z) = az(z)(c1 + T(x)cz) and ra(x) = cras(z) + s2(x)as(z)cs

are coprime. If x* is a zero of ag(x) then r3(x*) = 0 but r4(x*) = so(x*)a(x*)cz =
—caan(z*)c3. Since ag(x) and ag(x) are coprime, we get that ag(z*) # 0,

and then rg(x*) # 0. Moreover, if ¢; + T(Z)cg = 0 then r4(Z) = ¢; # 0. So
r3(x) and r4(x) are coprime.

From pi(x), p2(x), (16) and (19) we get

ap(z)

(20) B(z) = q1(2)dh (2) 22 (e1 + T(w)es) o2 (cras (@) + sa(@)as(@)es).
Note that from pa(z), ps(z), (16) and (19) we have

(21)

B(e) = 250 o) s ) () )+ 7)) 100 (0) + saw)a (o))

Comparing (20) with (21) we obtain

as(z)(q(z)en(z)) = q1(z)(ar(z)as(z) — c2),
ie.
—c2qi(z) = —as(@)q(2)o) (z),
which is not possible unless either az(z) = 0 or o) (x) = 0, but then ¢;(z)
would be constant, a contradiction. In short, Case 1 is not possible.

Case 2: q1(z) and sa(x) are not coprime We write
@1 (x) = Ri(z)Ro(z),  s2(x) = Ru(z)R3(x)
with Ry (z), Ra(z), R3(z) € Rlz| and Ry(z) ¢ R.
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We consider two different subcases.

Subcase 2.1: Rs3(x) = R € R. So sa(x) = Ri(x)R and ¢;(z) = Ra(x)s2(x)/R.

We also consider two cases

2.1.1: Ry(z) = Ry € R. From (8) we have ¢i(x)s1(z) = g2(x)s2(z) and
s0 q2(x) = R2s1(xz)/R.Then

n(@) = oi()sa(o)
Ry
p2(z) = §82(9«“)(81(5€) + 1),

pala) = 21 (2)(s2(2) + ).

From py(z), p2(z), (16) and (19) we get

B(a) = (“2) @) (@) (s1(2) + e1)sh(a),
and from p1(z), ps(x), (16) and (19) we obtain

B(a) = (2 sa@)sn ()54 () (52(x) + 2)
and so

s5(7)(s1(x) + e1) = 1 (7)(s2(x) + 2),
which yields
(@) _ @)
so(x) + o si(x) 4+

and integrating

log(se(x) + c2) = k +log(s1(z) +¢1), KER

and so

so(x) + o = Kki(s1(x) +c1), K1 =¢e" €RT.
Hence

p(e) = s (@) (s1() + 1) — c2),
(22) (o) = T2 ma(s10) + 1) = e2)(s1(0) + ),

pa(e) = i)l (@) +er),

and from (16) we obtain

B(z) = <%>2n181(m’)s’1($)(81(1‘) ) (k1 (51(2) + 1) — e).

Doing the rescaling Y = By, we can assume that the constant (Rg/R)?k; = 1
and the constants Ry/R and k1 in the expression of p;(z) is one (see the
proof of Lemma 4). Note that B(x) is as in the statement of the theorem
as well as p;(z) for i = 1,2, 3.
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2.1.2: Ry(xz) € R[z] \ R. Since R3(xz) = R we have sy(z) = Ri(xz)R and
q1(z) = Ra(x)s2(x)/R. From (18) we get

B2 _ () safa)en + as(wes (),
and so
q3(x) = Riix) (51(«70)02 - CISZR(QJ)>
Since q1(z)s1(x) = g2(z)s2(x) we get ga(x) = Re(w)s1(x)/R. In short
pile) = 2 ) so(a)
p2(z) = Rzéx)@(ﬂ?)(sl(lf) +c1),
po() = 2 () () + ).

We consider two cases:

2.1.2.1: s1(z) and sa(x) are coprime. In this case the maximum common
divisor between ps(x) and ps(x) is Ra(z) and so from (16) we get

B) = T2, 0) (Ba(a)sa(w)) 1 (@)1 (2) + 1)
= B2 @hor )R 51 () + 1)(52(2) + €2)
and so
(Rafa)sa(2)) = Ri(o)(52(2) + €2)
that is

Ry(x)s2(x) + Ra(x)sh(x) = Ry(x)sa(x) + Ry(x)ca,
which yields
Ry(x) _ sh(x)

Ry(x) ca
Hence Ry (x) = e®%2(®) which is not possible.
2.1.2.2: s1(x) and s2(x) are not coprime. In this case we write
s1(x) = K(x)81(x),  s2(x) = K(x)82(x),

with (), §1(x), $2(x) € R[z] with k(x) € R. Then

pi(e) = 205 (0)6a(0),
pa() = D (0)5o ) ()50 (2) + 1),
ps(@) = 2 218, (2) () ol ) + ).
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Then

B(z) = Rj%(;)/i(m)(R2($)/€(£C))'§2($)(/€(IE)§1(1’) +01)81(2) (K(2)82(2) + c2)
- RQR(Qm)R($)§2(£U)(R2(Q?)I€(x)§2(x))/§1(x)(li(x)él(m) + 1)),

and so

(Ro(2)r(2)) (k(2)s2(2) + c2) = K(z)(Ra(2)r(z)32(2))",
which yields
(Ro(2)k(x)) ca = (Ro(2)r(x))r(x)32(2).
This is not possible because the left hand side has less dimension than the
right hand side. In summary, Subcase 2.1.2 is not possible.

Subcase 2.2: Ra(x) € R[z] \ R. We have ¢1(x) = Ri(x)R2(z) and sa(z) =
Ri(x)Rs(x). Then
Ro(x)s1(x)eo
Ry (x)
In particular there exists T'(x) € R[z] so that

q3(z) = Ra(z)T (),

= Ry (z)Ra(z)er + g3(z)cs.

and so
s1(x)eg

R3(x)
which yields s1(x) = R4(3:§R3(x). Therefore, from p;(z) in (8) we get
@2(w)s2(x) = qu(w)s1(x) = Ri(x)Ra(x)Rs(w) Ra(x) = q2(x) R1 () R3(x)

and so

= Ry(z)c1 + T(x)es,

q2(x) = Ra(z)Ry(x).

Hence we have

p1(x) = qi(z)s1(z) = Ri(w)Ra(z) R3(w) Ra(2),
p2(7) = q1(z)(s1(x) + 1) = Ri(z) Ra () (R3(z) Ra(z) + c1),
p3(7) = @2(7)(s2(x) + c2) = Ra(x)Ra(x)(Ra(z) R3(z) + c2

We consider two cases.

2.2.1: Ri(z) and R4(x) are coprime. We have
B(z) = Ri(z)Rz(z)(R1(z) Ra()) R3(2) Ra(x) (Rs(x) Ra(2) + 1)
= Ro(x) Ry(x) Ry (z) Ra(2)(Rs(x) Ra(w) + c1)(Ru(z) Rs(x) + c2),
and so
(Ri(z)Ra(x)) Rs(x) = Ry(2)(Ri(w)Rs() + c2),
which yields
Ry (z)Ra(z)R3(x) = coRy(x).
This is not possible because the right hand side has less dimension than the
left hand side.
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2.2.2: Ri(z) and R4(x) are not coprime. We write
Ri(z) = R(z)Ri(x), Ra(z) = R(z)Ry(x)
where R(z), Ri(x), R4(z) € Rlz] with R(z) ¢ R. Note that

]
pi(z) = qi(x)s1(x) = R*(x) Ri (2) Ra () Ry () Ra (),
pa(z) = @1 ()(s1(2) + 1) = R(z) Ra( )RQ(SU)( 3(z ) () Ra() + c1),
p3(x) = @2(x)(s2(x) + c2) = Ro(2) R(w) Ra() (R(x) By (2) Ra () + c2).
Then
B(z) = (R(z)Ri(x)Ra(x)) R(x) R (x) Ro () R(x) Ry(a) Ra () (Ra () R(x) Ra() + ¢1)
= R(z)Ry(2)(R(z) Ra(2))' Ra () Ra() (R3 () Ra(x) + e1) (R(w) R (2) Rs () + e2),
and so
(R(z)R1(2)Ra(2)) R(2)Rs(x) = (R(z) Ra(x))' (R(x) R1 (2) Rs () + c2),
that is
(R(x)Ro(x))' R () R(x) Ry(x) + (R(x) Ro(x)) Ry () R(x) Ry ()
= (R(2)Ra(2))'(R(x) R1 (2) R3 () + ca(R(x) Ra(x))',
which yields
R(2)Ry(x) (R () R(2) Ry(x) = ca(R(2)Ra(x))"

This is not possible because the right hand side has less dimension than the
left hand side. So subcase 2.2 is not possible.

In short from (22) there are at most three rational limit cycles and if they
exist then there must exist a polynomial S(x) = s1(z) and two different
constants c¢1,c2 € R\ {0} such that from Lemma 3 we have S(0) = S(1),
and S(x) # 0, S(xz)+c1 # 0 and S(z) +c2 # 0 for x € [0,1], and B(x) is as
in (2). Moreover the three limit cycles can be taken to be

pi(x) = S(z)(S(z) + 1),

p2(x) = (S(z) + c1)(S(2) + ¢2),

p3(x) = S(x)(S(x) + c2),
which are the ones given in (3) in the statement of the theorem. Note that
yi(x) = 1/pi(x) for i = 1,2,3, satisfy (4) with ¢ = 1 and that p;(0) = p;(1)
and p;(x) # 0 for z € [0,1]. Hence, in view of Lemma 3, the three solutions

Y1, Y2, y3 are three periodic solutions of (1). Moreover they are isolated and
so they are limit cycles of (1). This concludes the proof of the theorem. [

Now we provide an Abel equation (1) with three rational limit cycles.
Indeed, taking S(x) = 22 — 2 + 1, ¢; = 1 and ¢y = 2 we construct the Abel
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equation (1) with
A(z) = =3(=1 +22) — 3(=1 4+ 22)(1 — x + z?),
B(z) = (-1+22)(1 —z+2*)(2 -z 4+ 2%)(3 — 2 + 2?).
Then system (1) has the three rational solutions y;(z) = 1/p;(x) for i =
1,2,3 with
pi(z) = (22 —x+1)(2? — 2z + 2),
pa(z) = (22 —z + 2)(2* — z + 3),
p3(z) = (2* —z+1)(2* — 2z + 3).
Note that S(0) = S(1) and S(x) # 0 for x € [0,1]. Moreover, S(z) +1 =
22 —x+2+#0for v €[0,1], and S(z) +2 =22 — 2 +3 # 0 for x € [0,1].
The Abel system that we have constructed has three rational limit cycles.

3. PROOF OF THEOREM 2

To decide whether a periodic solution is a hyperbolic limit cycle we need
the following lemma, whose proof can be found in [17].

Lemma 5. If y = 1/p(z) is a pem’odz’c solution of system (1) then it is a
hyperbolic limit cycle if and only if fo x)/p?(x)) dx # 0.

Now we can prove Theorem 2. In view of Theorem 1 the three limit cycles
are y; = 1/p;(x) with p; given in (3) for i = 1,2,3. We will prove first that yg
is not a hyperbolic limit cycle. In view of (3) since p1(z) = S(z)(S(x)+¢1),
we have that

B(z) _ 5'(@)(S(x) + )
pi(z)  S(@)(S(x)+ec1)
Note that we can write

S'(z)(S(x) +e2) cS(x) e1—ca S'(x)

S()(S(z)+c1) e S(x) e Sx)+er

/OlB(m)d 2 1og S(a

pi(x) e
because S(0) = S(1). So the periodic solution y = 1/p1(z) is not a hyper-
bolic limit cycle.

For y = 1/po(x) with pa(x) = S(x)(S(x) + c2), we have
B(x) _ S'(x)(S(x) +c1)
py(x) — S(x)(S(z) +c2)

(

and the proof is the same as for 1/p;(z) interchanging the roles of ¢; and
Co.

Hence

C1 —C2

()] + log(S(z) + ¢1)]y = 0,
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Finally, for the case of y = 1/ps(x) since ps(x) = (S(x) + ¢1)(S(x) + ¢2)
it follows that

Blx) _  S()S()
P3(@) ~ (5() T e)(S@) +e2)

Note that we can write

S'(z)S(z) __a S'(z) e S'(x)
(S(Q?)—Fcl)(S(iE)—l-Cz) c1 — C2 S(ac)—l—cl c1 — C2 S($)+C2.

Hence

1
| S do =~ tog(S(a) + ey - 2 lo(S(o) + )]y =0

p3(z) €1 —C2 €1 — C2

because S(0) = S(1). So, the periodic solution y = 1/ps(x) is not a hyper-
bolic limit cycle. This concludes the proof of the theorem.
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