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Let G be a bouquet of circles; i.e. the quotient space of the interval [0, k] obtained by identifying
all points of integer coordinates to a single point, called the branching point of Gy. Thus, G is
the circle, G5 is the eight space and G3 is the trefoil. Let f : Gy — Gj a continuous map such
that for £ > 1 the branching point is fixed.

If Per(f) denotes the set of periods of f, the minimal set of periods of f, denoted by MPer(f),
is defined as ﬂggf Per(g) where g : G — Gy, is homological to f.

The sets MPer(f) are well-known for circle maps. Here, we classify all the sets MPer(f) for
self-maps of the eight space.
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1. Introduction and statement of the results

In dynamical systems it is often the case that topological information can be used to study qualitative or
quantitative properties of the system. This work deals with the problem of determining the set of periods
of the periodic orbits of a map given the homology class of the map.

A finite graph (simply a graph) G is a topological space formed by a finite set of points V' (points of V'
are called vertices) and a finite set of open arcs (called edges) in such a way that each open arc is attached
by its endpoints to vertices. An open arc is a subset of G homeomorphic to the open interval (0,1). Note
that a finite graph is compact, since it is the union of a finite number of compact subsets (the closed edges
and the vertices). Notice that a closed edge is homeomorphic either to the closed interval [0,1], or to the
circle. It may be either connected or disconnected, and it may have isolated vertices.

The wvalence of a vertex is the number of edges with the vertex as an endpoint (where the closed
edges homeomorphic to a circle are counted twice). The vertices with valence 1 of a connected graph are
endpoints of the graph and the vertices with valence larger than 2 are branching points.

Suppose that f : G — G is a continuous map, in what follows a graph map. A fized point of f is a
point x in G such that f(z) = z. We will call x a periodic point of period n if x is a fixed point of f™ but
it is not fixed by any f* for 1 < k < n. We denote by Per(f) the set of natural numbers corresponding to
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periods of the periodic points of f.

Let G be a connected graph and let f be a graph map. Then f induces endomorphisms fi, : H,(G) —
H,(G) (for n=0,1) on the integral homology groups of G, where Hy(G) ~ Z (because G is connected) and
Hi(G) =~ Z® .%. ®Z where k is the number of independent circuits or loops of G as elements of H1(G). A
circuit of G is a subset of G homeomorphic to the circle. The endomorphisms f.g and f,1 are represented
by integer matrices. Furthermore, since G is connected f,g is the identity.

The endomorphism f,; will play a main role in our analysis of the minimal sets of periods for graph
maps on G. In what follows f.1 will be denoted by f. For example, if H,(G) ~ Z ® Z and

ab
f*:<cd)’

this means that the graph G has two independent oriented circuits. Moreover, if the first circuit covers
itself exactly a1 times following the same orientation (not necessarily in a consecutive way) and exactly as
times following the converse orientation (not necessarily in a consecutive way), then a = a; — ay. Similarly,
if the first circuit covers the second one exactly b; times following the same orientation (not necessarily in
a consecutive way) and exactly by times following the converse orientation (not necessarily in a consecutive
way), then b = by — ba. An analogous explanation can be given with the second independent circuit and
with b and d instead of ¢ and a, respectively.

Let Gy, be a bouquet of k circles, that is, the quotient space of [0, k] obtained by identifying all points
of integer coordinates to a single point. Notice that G is the circle and that G4 is usually called the eight
space. For the G}, graph we have Hyo(Gy) ~ Z, H\(Gy) =~ Z @ k. ® Z, f.o ~id and f. = f. = A, where
A is a k x k integral matrix. For more details on graph maps see Llibre [1991] or Llibre & S4& [1995].

Our main goal is to study the set Per(f) for graph maps. More explicitly, we want to provide a
description of the minimal set of periods (see below) attained within the homology class of a given graph
map. When the map g : G — G is homological to f (i.e. g induces the same endomorphisms than f on the
homology groups of G), we shall write g ~ f. We define the minimal set of periods of f to be the set

MPer(f) = ﬂ Per(g).
g>f
From its definition MPer(f) is the maximal subset of periods contained in Per(g) for all g ~ f.

Our main objective is to characterize the minimal sets of periods MPer(f) for graph maps f : G; — G;
with the branching point a fixed point for ¢ = 2,3. So, always 1 € MPer(f). Even for circle maps f: G; —
G the characterization of all minimal sets of periods MPer( f) is interesting and nontrivial, see Theorem A.
This result was stated by Efremova [Efremova, 1978] and Block, Guckenheimer, Misiurewicz and Young
[Block et al., 1980] without giving a complete proof. As far as we know the first complete proof was given
in Alseda et al. [2000].

We denote by N the set of all natural numbers, and by kN the set {kl : | € N}.

Theorem A. Let f : G1 — G1 be a circle map such that the endomorphism induced by f on the first
homology group is f. = (d) (i.e. d is the degree of f). Then the following statements hold.

(a) If d & {—2,—-1,0,1}, then MPer(f) = N.
(b) If d = =2, then MPer(f) = N\ {2}.

(c) If d € {—1,0}, then MPer(f) = {1}.

(d) If d = 1, then MPer(f) = 0.

In the next theorem we characterize the minimal sets of periods for eight maps, i.e. for continuous
maps f : Go = Go.
Theorem B. Let f: Gy — Go be an eight map such that
ab
fo= (c d> '

Suppose that the branching point is a fived point. Then the following statements hold.
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(a) If {a,d} ¢ {—2,—1,0,1}, then MPer(
(b) If =2 € {a,d} and{a d} c {-2,-1,0,

N.
then
N\ {2} if bc =0,
MPer( f { i be # 0.

) =
1},

(c) Assume that {a,d} C {—1,0,1}.
(c1) If |a| + |d| = 2, then

{1} if bc =0,
MPer(f) =< N\ {2} if bc =1,
N if be = —1 or |bc| > 1.
(c2) If |a| + |d| =1 and
(c21) a=1,d =0, then
{1} if bc=0
MPer(f) = ¢ N\ {2} if (b,¢) € R,
N otherwise;

where R={(1,1),(-1,-1),(1,2),(-1,-2)}.
(c22) a =0, d =1, then it follows (c21) interchanging b and c.
(c23) a=—1,d =0, then
{1} if be =0,
NA\{2} if (b,c) € R,
N\ {3} if be = —1,
N otherwise.
(c24) a =0, d= —1, then it follows (c23) interchanging b and c.
(¢3) If |a| + |d| =0, then

MPer(f) =

{1} if bc =0 orbc =1,

(1,2} ifbe=—1,
MPer(f) =< {1} U (2N\ {2}) if bc = 2,

{1} U 2N\ {4}) if be = =2,

{1} U2N if |be| > 2.

We remark that Theorem B implies Theorem A if f has a fixed point, by choosing, for instance,
a=b=c=0.

The study of the minimal set of periods of a homotopy class of maps instead of its homology class
is the main objective of the fixed point theory, see for instance the books of Brown [Brown, 1971], Jiang
[Jiang, 1983] and Kiang [Kiang, 1989]. Other extensions from circle maps to n—dimensional torus has been
done in [Alseda et al., 1995] and [Jiang & Llibre, 1998], and from circle maps to transversal n—sphere maps
in [Casasayas et al., 1995]. Some different results on the periods of graph maps have been given in [Abdulla
et al., 2017; Alseda et al., 2005; Arai, 2016; Alseda & Ruette, 2008; Bernhardt, 2006, 2011; Llibre, 1991;
Llibre & Misiurewicz, 2006].

This work is organized as follows. How to obtain a given period for a graph map by using the notion
of f—covering is described in Section 2. The proof of Theorem B is given in Section 3.

2. Periods and f—covering

Let f : G — G be a graph map and z € G a periodic point of period n. The set {z, f(z),..., f* 1(z)} is
called the periodic orbit of x.

A set I C G will be called an interval if there is a homeomorphism & : J — I where J is [0, 1], (0, 1],
[0,1) or (0,1). The set h((0,1)) will be called the interior of I. If J = [0,1] the interval I will be called
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closed; if J = (0,1) it will be called open. Notice that it may happen that the above terminology does not
coincide with the one used when we think about I as a subset of G (the same applies to the edges of G).
For example, if G = I = [0, 1] and h = identity, then for I regarded as a subset of the topological space G,
I is both open and closed and the interior of I is I.

Let C1 and Cy be two circuits of Gi. A closed interval I = [a,b] is basic if I C C;, f(I) = Cj where
{i,j} c {1,2,...,k}, f(a) = f(b) = p, where p is the branching point of G, and there is no other closed
interval K - such that f(K) = C;. If f(C;) = C; and f(K) # C; for all closed interval K, K C Cj, then
we also say that C; is a basic interval. Let I and J be two basic intervals, K C I, L C J two subintervals.
If L # C}, we say that K f-covers L, and we write K — L, if there exists a closed subinterval M of K such
that f(M) = L. If L = J = C}, we say that K = I f-covers L because either f(K)=L,or K =1=C;
and f(K) = L, by the definition of basic intervals.

Lemma 1. Suppose that I, Is, ..., I, are intervals such that Iy — Is — ... — I, — I with Iy different
from a circuit. Then there is a fized point z of f™ such that z € I1, f(2) € Is, ..., f""Y(2) € I,,.

Proof. Since I, — I, and I; is not a circuit, there is a closed interval J,, C I, such that f(J,) = I.
Similarly, there are closed intervals or circuits Ji, ..., J,—1 such that foreach k =1,...,n—1, Jp C I and
f(Jx) = Jg+1. It follows that f(J;) = I and since J; C I; and I is not a circuit, by Bolzano’s Theorem
f™ has a fixed point 2z € Jy. Clearly, z € I, f(2) € Iy, ..., f* () el,. N

A sequence of the form Iy — Irb — ... — I, — I is called a loop of length n. Let Iy — I — ... —
I, — I and J, = Jo — ... = J,, = J1 be two loops such that Iy = J;. We define the concatenation of
these two loops as the loop Iy = Is — ... = I, = I = Jo — ... — J,, — I;. We say that a loop is
a m-repetition, m > 2, of a given loop if it is the concatenation of that loop with itself m times. We say
that a loop is mon—repetitive if it is not a m—repetition of any of its subloops with m > 2.

In what follows a Gx—map f is a continuous map f : Gy — Gy, such that f(p) = p.

Proposition 1. Let f be a Gp—map. Suppose that f has two intervals 11 and I such that Int(Iy) N
Int(I3) =0 and I N I has no fized points. If f has the subgraph CI; = I,©, then Per(f) = N.

Proof. Clearly, since p € I; N I, at least one of the intervals, Iy and Is, is not a circuit. Without loss of
generality we assume that I; is not a circuit. We consider the non-repetitive loop Iy — Io = I1 — ... = I3
of length n > 2. Since Int(I1) N Int(I2) = 0 and I; N I3 has no fixed points, by Lemma 1 there is a periodic
point z of f with period n > 2. That is, Per(f) =N. N

In what follows when we say “we have two intervals A and B” we are really saying that we have two
different intervals A and B. We remark that if we have two basic intervals I; and I such that p € I1 N I,
then they satisfy the assumptions of Proposition 1.

Proposition 2. Let f be a Gi—map. Suppose that [ has three intervals Iy, Iy and I3 such that Int(I;) N
Int(I;) =0 for all i # j and I; N I; has no fized points for some i # j. If f has the subgraph CI; — I —
I3 — I then Per(f) D N\ {2}. Moreover, if Iy N I3 =0 and I3 — I3, then 2 € Per(f).

Proof. 'We consider the non-repetitive loop Iy — Is — I3 — I} — ... — I; of length n > 3. Since Int(Z;)
N Int(I;) = 0 for all i # j and I; N I; has no fixed points for some ¢ # j, by Lemma 1 there is a periodic
point z of f with period n > 3. Therefore, Per(f) D N\ {2}.

We suppose now that Iy N I3 = () and I3 — Is. We consider the non-repetitive loop Iy — I3 — I of
length 2. By Lemma 1 there is a periodic point z of f with period 2. W

We remark that if we have three basic intervals 1, I and I3 such that p ¢ I; for some i € {1,2,3},
then we are in the assumptions of Proposition 2.
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3. The eight

In this section we shall prove Theorem B. The two circuits of Gy are denoted by C; and Cy. If f, is given
as in Theorem B, we consider that the circuit C covers itself |a| times and it covers Cy |c| times. Similarly
for the circuit Cs.

Proof.  [Proof of Statement (a) of Theorem B] Suppose that {a,d} ¢ {—2,—1,0,1}.

Case 1: Assume that {a,d} ¢ {—2,—1,0,1,2}. Without loss of generality, we may assume that |a| > 3.
From the graph of f (see for instance Figure 1), it is clear that there are two basic intervals I and I, in
C1, such that p & I; NIy and f has the subgraph of Proposition 1, so Per(f) = N. That is, MPer(f) = N.

Fig. 1. Examples of maps with {a,d} ¢ {—2,-1,0,1,2}.

Case 2: Suppose that 2 € {a,d} and {a,d} C {-2,—1,0,1,2}. Without loss of generality, we may assume
that a = 2.

Since a = 2 this means that f has at least two basic intervals I; and I» in C] such that f has the
subgraph of Proposition 1. If p € I; N I, then, by Proposition 1 Per(f) = N. But not always I; and I
satisfy that p ¢ I N 5. In this case let p and ag be the endpoints of I, by and p the endpoints of I (see
for instance Figure 2).

bl N
bol A
ag | [N\
al/ I S
P ar a2 apbyg by D

Fig. 2. I, = [p, a1], Iy, = [bo,b1] and I, = [a1,az].

We establish an ordering in the intervals I; and Is in such a way that p is the smallest element of I1 and
the greatest of I. Set I1 = [p,ap] and I = [by, p]. Notice that we may have ag = by. Consider the subset
(f|11)"" (ao) of Cy. Let a; be the infimum of the points in (f|I;)~" (ag). Consider the subset (f|I2)™" (ag)
of C7 and choose b; to be the infimum of the points in (f|12)_1 (ap). Set I, = [p,a1], I1, = [a1,ap] and
Iy, = [bo, b1]. Now we take the interval I1, = [a1,as] where aa denotes the infimum of the points in the
subset (f|112)_1 (b1) of Cy. Then f has the subgraph CI;, — I, & I, — I1,. Since Iy, N I, = 0, by
Proposition 2, n € Per(f), for all n > 1. Therefore, MPer(f) = N. This proves Statement (a). H

Proof. [Proof of Statement (b) of Theorem B] Suppose that —2 € {a,d} and {a,d} C {-2,-1,0,1}.
Without loss of generality, we may assume that a = —2.
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First we suppose that bc # 0. We always have four basic intervals Iy, I, Is and Iy, Iy, Is, I3 C C}
and Iy C Oy, such that either p & I N I3 or I N I4 = () and f has the subgraph

I

(see for instance Figure 3).

(a) a=—2,d=0,bc=1 (b) a=—2,d=1,bc=1 (c)a=—-2,d=—1,bc=—1

L LI I L L I I I I I» Iy
Fig. 3. Examples of maps with a = —2 and bc # 0.
If p & I, N I3, by Proposition 1, Per(f) = N. If I NI, = (), by Proposition 2, Per(f) = N. Therefore, if

be # 0, MPer(f) = N.
We suppose now that bc = 0. As it can be deduced from the examples of Figure 4, 2 ¢ MPer(f).

o
S

f

/ |

Fig. 4. Examples of maps with a = -2, d € {—2,-1,0,1}, bc = 0 and 2 ¢ Per(f).

Since a = —2, this means that f has at least two basic intervals I1 and I in Cy such that f has the
subgraph of Proposition 1. If p € I; N I3 then by Proposition 1 Per(f) = N. But not always p € I1 N I5.
In this case let p and ag be the endpoints of Iy, by and p the endpoints of I5 (see for instance Figure 5).
We consider an ordering in the intervals I; and I in such a way that p is the smallest element of I; and
the greatest of Iy. Write Iy = [p,ag] and Iy = [by, p]. Notice that we may have ag = by. Consider the
subsets (f|I1)"" (ag) and (f|I2)~" (ap) of C1. Let a1 be the infimum of the points in (f|I;)~" (ao) and by
the infimum of the points in (f|I2) " (ag). Set Iy, = [p,a1], I1, = [a1, ao] and I, = [by,p]. Then f has the
subgraph CI, — I1, — I, — I1,. Since we are in the assumptions of Proposition 2, n € Per(f), for all
n # 2. Therefore, MPer(f) = N\ {2}. This proves Statement (b). N

Proof. [Proof of Statement (c1) of Theorem B] Suppose that {a,d} C {-1,0,1} and |a|+ |[d| = 2. We
consider first the case bc = 0. Without loss of generality, we may assume that ¢ = 0. From the examples
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p ax ag bobl p

Fig. 5. I, = [p, a1]7 I, = [ahao} and Iz, = [b1,p}.

of Figure 6 it is clear that n & MPer(f) for any n € N larger than 1, so MPer(f) = {1} since the branching
is fixed.

Fig. 6. Examples of maps with {a,d} C {—1,0,1}, |a| + |d| = 2 and bc = 0.

We assume now that |bc| > 1. From the graph of f (see for instance Figure 7) it is easy to see that
we always have three basic intervals Iy, Is and I3, with Iy, Is C C and I3 C Co, such that p ¢ I; for
some i € {1,2,3} and f has the subgraph of Proposition 2, so Per(f) D N\ {2}. Now we will prove that
2 € MPer(f).

(a) a=1,d=1,bc=—3 (b) a=—1,d=1, be=—3 (¢c) a=1,d=1, bc=6

-y

L I I3 I, I I3 I, I I3

(d) a=-1, d=-1, be=—2 (e) a=—1, d=—1,bc=—2 () a=1, d=1, be=—

Il IZ 13 I] 12 13 Il 12 I'ﬂ

Fig. 7. Examples of maps with {a,d} C {-1,0,1}, |a| + |d| = 2 and |be| > 1.

If {b,c} ¢ {—2,-1,1,2}, that is, if either |b] > 3 or |c¢| > 3, we can choose I3 in one circuit and I3
in the other circuit in such a way that I N I3 = 0 (see (a), (b) and (c¢) of Figure 7) and Is — I. By
Proposition 2, 2 € Per(f). If {b,c} C {—2,—1,1,2} in general there do not exist two basic intervals I; and
I, I; # I;, such that p € I; N I; and I; = I; (see (e) and (f) of Figure 7). If they exist then by Lemma 1
considering the non-repetitive loop I; — I; — I; there is a periodic point z of f with period 2. If they do
not exist, we shall find two intervals with empty intersection such that one f—covers the other.
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We suppose first that |bc|] = 2. We may assume, without loss of generality, that |b] = 1 and |c| = 2.
We know that f has five basic intervals, Iy, Is, I3, I4 and I5, the first three in C; and the other two in Co,
such that f(Is) = f(I3) = f(I5) = Cy and f(I1) = f(I4) = C1. Let p and agy be the endpoints of I, ag and
ay the endpoints of Iy, a; and p the endpoints of I3 (see for instance Figure 8).

P a0 [,a1 ;P I, bibo [, P

p
I ! I I ! "
ay -t AW RAR SRR arf-r- W -
! ! [
I ! [ I ! oy
ag f-A-1- il e EE S aof-A-*ry-r--—-- Y-} -

P Lao [ a1 ;P I;bobip, P P00 [a1; P I bobip P

Fig. 8. Examples of maps with {a,d} C {—1,0,1}, |a| + |d| = 2 and |bc| = 2.

We consider an ordering in the intervals I1, I and I3 in such a way that p is the smallest element of
I, and the greatest of Is. Set Is = [p,ap], I1 = [ap,a1] and I3 = [by, p|]. We have two possibilities for the
interval I,: either Iy = [p, bo] or Iy = [by, p|. If Iy = [p, bp] and b = 1 let b; be the supremum of the points in
(f1L) " (a1) and I, = [by, by]. We have Iy, = I3 and I4,NI3 = 0, so, by Lemma 1, 2 € Per(f). If Iy = [p, bo]
and b= —1 set b = sup{(f|l4)_1 (ap)} and Iy, = [b1,bp]. Then Iy, = I and Iy, N Is = () so, by Lemma 1,
2 € Per(f). If I = |by,p] and b = 1 write by = inf{(f|I4) " (ag)} and Iy, = |by,b1]. Then I, = I, and
I;, NIy = 0, so, by Lemma 1, 2 € Per(f). If I = [by,p] and b = —1 take by = inf{(f|Is) " (a1)} and
Iy, = [bo,b1]. Then Iy, = I3 and Iy, N I3 = (), so, by Lemma 1, 2 € Per(f).

apl-r-4-

ag |

Fig. 9. Examples of maps with {a,d} C {—1,0,1}, |a| + |d| = 2 and |bc| = 4.

Suppose now that |bc| = 4. We know that f has six basic intervals, I1, Io, I3, I4, I5 and I, the first three
in Cy and the other three in Cy, such that f(l2) = f(I3) = f(I5) = Cy and f(I1) = f(I4) = f(Is) = Ch
(see for instance Figure 9). Using the same ordering as above set Iy = [p,ap], I1 = [ao,a1], I3 = [bo, ],
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Iy = [p,bo), Is = [bo, b1] and I = [by, p]. If b = 2 set by = inf{(f|Is) " (ao)} and Is, = [by, by]. Then Is, = I,
and I, N Iy = 0 so, by Lemma 1, 2 € Per(f). If b = —2 write by = inf{(f|ls) " (a1)} and Is, = [by, bo].
Then Ig, = I3 and Ig, N I3 = () so, by Lemma 1, 2 € Per(f). Therefore, if |bc| > 1, MPer(f) = N.

We suppose that |bc| = 1. We assume that b = ¢ = 1. As it can be seen from the examples (a), (c)
and (e) of Figure 10, 2 ¢ MPer(f). Now we will prove that Per(f) = N\ {2}.

(a) (b)

f i NN
* I/ %

T

T T

Fig. 10. Examples of maps with {a,d} C {-1,0,1}, |a| + |d| =2, bc = 1 and 2 ¢ Per(f).

We know that f has four basic intervals, Iy, Is, I3 and Iy, the first two in C and the other two in Co,
such that f(I;) = f(I3) = C1 and f(l2) = f(I4) = Ca. We have four possibilities for these intervals. Let
ap € Iy NIy and by € I3 N Iy (see for instance Figure 11). First, we take the interval I3 to be [p, bg]. Set
I3, = [by, bo] where by = sup{(f|I3)~" (ag)}. If I = [p, a] then f has the subgraph Cly — Is, — Iy — Iy
and by Proposition 2, Per(f) = N\ {2}. If I; = [ag, p] then f has the subgraph CI; — Iy — I3, — I; and
by Proposition 2, Per(f) = N\ {2}.

(a) (b)

bf A

bo - Ao [ e
bl JYY ) ) Iy

P L P

ag 7 | ,,3 —————— ag ,:,”,””,””3,”‘ -

(c) (d)

LM - | b |

b FVY NV N AT
0 ! v by A
P 3 L P

:
‘
] ¥ ao |- A pH
ao [~ g o fy

‘

P I, aw g P bobp P P I, a g Prbb , P

Fig. 11. Examples of maps with {a,d} C {—1,0,1}, |a| +|d|=2and b=c=1.
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Now we take the interval I to be [b, p]. Set by = inf{(f|I3)"" (ao)} and I3, = [by,by]. If I1 = [p, aq)
then f has the subgraph CI; — Iy — I3, — I; and by Proposition 2, Per(f) = N\ {2}. If I} = [ao, p] then f
has the subgraph CIy — I3, — Iz — I and by Proposition 2, Per(f) = N\ {2}. Therefore, if |a| = |d| =1
and b = ¢ =1 then MPer(f) =N\ {2}.

We assume now that b = ¢ = —1. As it can be seen from the examples (b), (d) and (f) of Figure 10,
2 ¢ MPer(f). Now we will prove that Per(f) = N\ {2}.

(a) (b)

2
F----- | N A ‘ bo I 3—

bo
1

p ‘ 31 p
ao 73 fffffff - 73 ffffff ao f 73”””"”7”3”
P a I, P Iybibo p, P P pa I, P bobig P
(c) (d)
by MA A -] -
;;(]) (1 ::::::::::::::‘ b() YYyYy "7 T
P 1 . P

! I
I i ) i
ag - A7NF1 A/
ag ----- f - A4 | o

P 1, ap PIybbo g, P P 1, @y P bobip P

Fig. 12. Examples of maps with {a,d} C {-1,0,1}, |a| 4+ |d| =2 and b =c = —1.

We know that f has four basic intervals, Iy, Io, I3 and I4, the first two in C7 and the other two in Co,
such that f(I;) = f(I3) = C1 and f(I3) = f(I4) = Cy. We have four possibilities for these intervals. Let
ag € I1 N1z and by € I3N 1y (see for instance Figure 12). First we take I3 to be the interval [p, by]. Consider
by = sup{(f|I3) " (ap)} and Is, = [by, bo]. If I} = [p, ap] then f has the subgraph CI; — I, — I3, — I; and
by Proposition 2, Per(f) = N\ {2}. If I} = [ag, p] then f has the subgraph CIy — I3, — I — I; and by
Proposition 2, Per(f) = N\ {2}.

If Is = [by, p] consider by = inf{(f|I3)"" (ao)} and I3, = [by, b1]. If I} = [p, ao] then f has the subgraph
Cly — Is; — Iy — Iy and by Proposition 2, Per(f) = N\ {2}. If I} = [ap,p] then f has the subgraph
Cl; — Iy — I3, — I and by Proposition 2, Per(f) = N\ {2}. Therefore, if b = ¢ = —1 then MPer(f) =
N\ {2}. Hence, if |a| + |d| = 2 and bc = 1, MPer(f) = N\ {2}.

We consider now case b = —1 and ¢ = 1. We know that f has four basic intervals, Iy, Is, I3 and Iy,
the first two in C} and the other two in Cy, such that f(I;) = f(I3) = C1 and f(I2) = f(ls) = Co. We
have four possibilities for these intervals. Let ag € I) NIy and by € I3 N Iy (see for instance Figure 13). We
suppose first that I = [ag, p|. If I3 = [p, bg] choose a; = inf{(f|I2)"* (by)} and set Ir, = [ag,ai]. Then f
has the subgraph CI; — I, = I3 — I; with I3 N I3, = () and by Proposition 2, Per(f) = N. If I3 = [bg, p]
denote by = inf{(f|I3)"" (ag)} and I, = [bo,b1]. Then f has the subgraph CI; — I3, = Iy — I, with
I, N I3, = 0 and by Proposition 2, Per(f) = N.

We consider now I = [p, ao]. If I3 = [p, bg| set by = sup{(f|I3)~" (ao)} and I3, = [by, bo]. Then f has
the subgraph CIy — I3, = Iy — I, with I, N I35, = () and by Proposition 2, Per(f) = N. If I5 = [bg, p] write
a1 = sup{(f|I2) " (b)} and I, = [a1,ao]. Then f has the subgraph CI; — I, = I3 — I} with I3N I, =
and by Proposition 2, Per(f) = N. Therefore, if b = —1 and ¢ = 1, then MPer(f) = N.

We consider now case b =1 and ¢ = —1. We know that f has four basic intervals, I, I, Is and Iy,
the first two in C; and the other two in Cy, such that f(I;) = f(I3) = C1 and f(I3) = f(I4) = C2. We have
again four possibilities for these intervals. Let ag € I; NI and by € I3 N Iy (see for instance Figure 14). We
take the interval Iy to be [ag, p]. If I5 = [p, bo] define by = sup{(f|I3) " (ag)} and I3, = [b1, bg]. It follows that
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Fig. 13. Examples of maps with {a,d} C {-1,0,1}, |a] +|d]| =2,b=—1 and ¢ = 1.
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Fig. 14. Examples of maps with {a,d} C {—1,0,1}, |a| +|d| =2,b=1and ¢ = —1.

f has the subgraph CIy — I3, = Iy — I4 with IoN I3, = () and by Proposition 2, Per(f) = N. If Is = [bg, p]
consider a; = inf{(f|l2) " (by)} and Iy, = [ag,a1]. Then f has the subgraph CI} — Iy, = I3 — I; with
IsN Iy, = 0 and we get by Proposition 2, Per(f) = N.

Suppose that I = [p,aq]. If Iy = [p,bo] set a1 = sup{(f|I2) " (bo)} and Is, = [a1,a]. Then f has
the subgraph CI; — Iy, & I3 — I; with I3 N Iy, = () and by Proposition 2, Per(f) = N. If I3 = [bo, p|
consider b; = inf{(f\];;,f1 (ap)} and I3, = [bo,b1]. Then f has the subgraph CIy — I3, = I, — I; with
I, N I3, = () and by Proposition 2, Per(f) = N. Therefore, if b = 1 and ¢ = —1, then MPer(f) = N. Hence,
if |a| + |d| = 2 and be = —1 then MPer(f) = N. This completes the proof of Statement (c1). H

Proof. [Proof of Statement (c21) of Theorem B] We assume now that a=1 and d = 0. If bc = 0 then
MPer(f) = {1} as it can be deduced from the examples of Figure 15. We suppose that b and ¢ are such that
|bc| > 1 and (b,c) € {(2,1),(2,-1),(—2,1),(—2,—1)}. From the graph of f (see for instance Figure 16)
it follows that there are three basic intervals I, Is and I3, I1, I C Cy, I3 C Co, such that either p & I1 N [
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or p ¢ I) N I3 and f has the subgraph of Proposition 2, so Per(f) D N\ {2}.

ik

Fig. 15. Examples of maps with a =1, d =0 and bc = 0.

(a) (b) (©) (d) (e)

LAZ I LA )
/ /K i

I
I
I
I
I I I3 I I, I3 I, I I3 I, I, I3 I, I I3

Fig. 16. Examples of maps with a =1, d =0, (b,c) & {(2,1),(2,-1),(-2,1),(—2,—1)} and |bc| > 1.

If {b,c} ¢ {—2,—1,1,2} then we can choose I, and I3 such that Iy N I3 = () and by Proposition 2,
2 € Per(f). If {b,c} C {—2,—1,1,2} in general there do not exist two basic intervals I; and I;, I; # I,
such that p ¢ I; N I; and I; = I;. If they exist then by Lemma 1 considering the non-repetitive loop
I; — I; — I; there is a periodic point z of f with period 2. If they do not exist (see for instance (c) and
(d) of Figure 16) and (b,c) € {(1,2),(—1,—-2)}, 2 & Per(f) as we can see from the examples of Figure 17.
Now we will prove that if (b,c) € {(1,—2),(—1,2)} or |b| = |¢| = 2 then 2 € Per(f).

v M
/ | \

Fig. 17. Examples of maps with a =1, d =0, (b,¢) € {(1,2), (—1,—2)} and 2 & Per(f).

f2

We suppose first that (b,c) € {(1,—2),(—1,2)}. We know that f has four basic intervals, I, I, I3 and
Iy, the first three in C; and Iy = Cy, such that f(I1) = f(I4) = Cy and f(l2) = f(I3) = Ca. Let p and
agp be the endpoints of I, ap and a; the endpoints of I, a; and p the endpoints of I3 (see for instance
Figure 18).

We consider an ordering in the intervals I1, I and I3 in such a way that p is the smallest element of
I5 and the greatest of I3. Under these assumptions set Is = [p,ap], I1 = [ag,a1] and I3 = [a1,p|. Define

(a) (b)
‘ bo M-

bo [{{---hk-1 ‘
P 1 P

! 1 I aglt--1---H--H-A-A------1-1
as 1 i ! I
a1 F==5=4Yr========K== V7 a1f--t1-
aof AN NN wf A

P 1,00 [, a021, P b P P 1, a0 [, 01502 P I, bo P

Fig. 18. Examples of maps with a =1, d = 0 and (b,c) € {(1,-2),(—1,2)}.



Minimal set of periods for continuous self-maps of a bouquet of circles 13

bo = sup{(f|1s) " (ao)}, L, = [p,bo] and Iy, = [bo,p]. Set ag = inf{(f|I3) " (bo)} and I3, = |ay,as]. If
(b,c) = (1,—2) we have Iy, = I3, and Iy, N I3, = 0. If (b,c¢) = (—1,2) we get Iy, = I3, and Iy, N I3, = 0.
So, by Lemma 1, 2 € Per(f).

Suppose now that |b| = |¢| = 2. We know that f has five basic intervals, Iy, Is, I3, Iy and I5, the
first three in C and the other two in Cy, such that f(I2) = f(I3) = C2 and f(I1) = f(la) = f(I5) = C1.
Taking an ordering similar to the previous case define the intervals Io = [p,ao|, I1 = [ao,a1], I3 = [a1,D],
Iy = [p,bo] and I5 = [by, p] (see for instance Figure 19). Set ay = sup{(f|l2) " (bo)} and Iz, = [ag, ap]. If
¢ =2 we have Iy, @ I5 and Is, N I5 = (. If ¢ = —2 we have I, = I, and Iz, N Iy = (). So, by Lemma 1,
2 € Per(f). Therefore, if |bc| > 1 and (b,c) & {(2,1),(2,—1),(—2,1),(—2,—1)} we have MPer(f) = N\ {2}
if (b,c) € {(1,2),(—1,—2)} and MPer(f) = N otherwise.

(a) (b)

bo

arf -y ‘

[LU,,,J S I
asF=aPt === =i A==

P rgeacr a1 ;P 1, bo I, P P [asa0f, a1 ;P I, bo I, P
(c) (d)

bo | ‘ bo f-t1----1Hfv |-~
| |
p p
|

L | Ll
apf-ro- T \ N 58 BN

P ! | O
ao| oM\ 1 aof o MM
az [ /]

!

,,,,,,,,,,,

Fig. 19. Examples of maps with a =1, d =0 and |b| = |¢| = 2.

(b)
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p
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agl-----+4%
(5 agp

P I, aaor, P Iy bop P P 1 a aP I; bog P

P 1 @ anpP ;b P P paa [ P I3 b, P

Fig. 20. Examples of maps with a =1, d =0 and (b,¢) € {(2,1),(—2,1)}.
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We assume that |bc| > 1 and (b,c) € {(2,1),(2,-1),(—2,1),(—2,—1)}. We know that f has four
basic intervals, I1, I, I3 and Iy, the first two in C; and the others in Co, such that f(I1) = f(I3) = f(l4) =
Cy and f(I3) = Cs. Let p and ag be the endpoints of I; and Iz, and by and p the endpoints of I3 and Iy
(see for instance Figures 20 and 21). For each pair (b, c) we have two possibilities for the intervals I; and
L. It (b,c) € {(2,1),(=2,1)} and I, = [aq, p] write a1 = inf{(f|I) " (by)} and I, = [ag,a1]. Then f has
the subgraph CI; — I, = Is — I} with I3 N I3, = () and by Proposition 2, Per(f) = N. If Iy = [p, ag]
consider a1 = sup{(f|I2) " (by)} and I, = [a1,ag]. Then f has the subgraph CI; — Iy, = Iy — I; with
Iy N Iz, = 0 and by Proposition 2, Per(f) = N.

(a) (b)

bo F\f N bo——f———i— e

P a1 a P I3 bo I, P P 1 aar P I bo I, P

arF-p-fhy ) ¥ ) it i | g o
ao S ] agl--1-H#
i |

| | al NN 1

P I @ [P I3 bo I, P P arao 1 P oI bo I, P

Fig. 21. Examples of maps with a =1, d = 0 and (b,¢) € {(-2,-1),(2,-1)}.

If (b,c) € {(—=2,—1),(2,—1)} and Iy = [ag,p] set a1 = inf{(f|I2)"" (bo)} and I, = [ag,a1]. Then
[ has the subgraph CI; — I, =2 Iy — I with Iy N I, = ( and by Proposition 2, Per(f) = N.
If I, = [p,ag] consider a; = sup{(f|l2)"" (by)} and I, = [a1,ao]. Then f has the subgraph CI; —
I, = I3 — I with I3 N Iy, = 0 and by Proposition 2, Per(f) = N. Therefore, if |bc| >1 and
(b7 C) € {(27 1)a (2a _1)7 (_27 1)7 (_27 _1)}7 MPer(f) =N.

We consider the case |bc| = 1. First assume that bc = 1. As we can see from the examples of Figure 22,
2 ¢ MPer(f). Now we will prove that Per(f) = N\ {2}.

f 12 / f ‘ £2 \ ‘

Fig. 22. Examples of maps with a =1, d =0, bc =1 and 2 & Per(f).

We know that f has three basic intervals, I, Is and I3, the first two in C; and I3 = (5, such that
f(Ih) = f(I3) = C1 and f(I2) = Co. We have two possibilities for the intervals I1 and Iy: either p is the
smallest element of I; and the greatest of I or p is the smallest element of I and the greatest of I; (see
for instance Figure 23). In the assumption that b = ¢ = 1, if I} = [p,ao], write by = inf{(f|I3)~" (ao)},
I3, = [p,bo], a1 = inf{(f|I2)"" (by)} and Iy, = [ag,a1]. Then f has the subgraph CI; — I, — I3, — I
and by Proposition 2, Per(f) D N\ {2}. If I} = [ag,p], define by = s.up{(fllg)_1 (ap)}, Is, = [bo,p],
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Fig. 23. Examples of maps with a =1, d =0 and bc = 1.

a1 = sup{(f|I2) "' (bo)} and I, = [a1,a0]. Then f has the subgraph CI; — I, — I3, — I; and by
Proposition 2, Per(f) D N\ {2}.

If b = ¢ = —1 we consider first the case I} = [p, aql. Set by = sup{(f|Is) " (ag)}, I3, = [bo,p], a1 =
inf{(f|I)~" (bo)} and Iy, = [ag, a1). Then f has the subgraph CI; — I, — I3, — I; and by Proposition 2,
Per(f) D N\ {2}. If I = [ao, p], write by = inf{(f\Ig)fl (a0)}, I3, = [p,bol, a1 = sup{(f|12)71 (bo)} and
I, = [a1,a0]. Then f has the subgraph CI} — I, — I3, — I; and by Proposition 2, Per(f) D N\ {2}.
Therefore, if a =1, d = 0 and bc = 1, MPer(f) = N\ {2}.

(a) (b)
bo W W\ -
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Ph ‘ : P
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: ar
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p p
b
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ap |l an | 74 S N WY A Y W
a3 L e e VA VAT

P aaoaif, P bop, P P nawaap,P b p

Fig. 24. Examples of maps with a =1, d =0 and bc = —1.

Assume now that bc = —1. We know that f has three basic intervals, I, Is and I3, the first two in
Cy and I3 = C9, such that f(I1) = f(I3) = Cy and f(I2) = Cs. We have two possibilities for the intervals
I; and Is: either p is the smallest element of I1 and the greatest of I> or p is the smallest element of I and
the greatest of I; (see for instance Figure 24). Define by = inf{(f|I3) " (ao)}, I3, = [p, bo, I3, = [bo, p] and
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a1 = inf{(f|12)"" (b)}.
If I = [ag, p] let Io, = [p,a1] and Iy, = |a1, ag). Consider ag = inf{(f|I) " (a1)}. We write I, = [ao, as]
and I, = [ag,p]. If b=1 and ¢ = —1 (see (a) of Figure 24) f has the subgraph

CI, I,

2

I I

2 1

We consider the non-repetitive loops I, — Io;, — I3, — Iy, and It, — Iy, — Iy, — I3, = I, = ... = I,
of lengths 3 and n > 4, respectively. From the first loop and by Lemma 1 there is a periodic point z of f
with period 3; from the second loop and by Lemma 1 there is a periodic point z of f with period n > 4.
Moreover, I3, & Iy, and I3, N I, = ), so, by Lemma 1, 2 € Per(f). Hence, Per(f) = N. If b = —1 and
¢ =1 (see (b) of Figure 24) f has the subgraph

CIL,

I,

I I,

1

Now from the non-repetitive loops Iy, — Io, — I3, — I, and 1, = I, = Is, — I3, = 11, — ... = I,
of lengths 3 and n > 4, respectively, and I3, = I5, and I3, N Iy, = 0, it follows that Per(f) = N.

If I} = [p,ag] let Io, = [ag,a1], Io, = [a1,p]. Define ag = sup{(f|1)~" (a1)}, I, = lag,as] and
I, = [az,p]. If b=1 and ¢ = —1 (see (c) of Figure 24) f has the subgraph

Crn I,

1

I3 I,

1

Again from the non-repetitive loops Iy, = Io, — I3, — I, and I}, — I, = Is, = I3, = 11, — ... = I,
of lengths 3 and n > 4, respectively, I3, = Iy, and I3, NIz, =0, Per(f) =N. If b= —1 and ¢ =1 (see (d)
of Figure 24) f has the subgraph

CI;

I,

_[32'—_[22

We consider the non-repetitive loops Iy, — Io, — I3, — I, and Iy, — Iy, — Iz, = I3, = I, — ... = Iy,
of lengths 3 and n > 4, respectively, I3, = I, and I3, N I, = (). We obtain that Per(f) = N. Therefore, if
a=1,d=0 and bc = —1, MPer(f) = N. This completes the proof of Statement (c21). W

Proof. [Proof of Statement (c22) of Theorem B] If a = 0 and d = 1, by using the same kind of arguments
that in the case a = 1 and d = 0, and interchanging b and ¢, we obtain Statement (c22). W

Proof. [Proof of Statement (c23) of Theorem B] We suppose that a= —1 and d = 0. If bc = 0 then
MPer(f) = {1} as it can be seen from the examples of Figure 25. The cases in which MPer(f) is either
N\ {2} or N can be proved following exactly the same kind of arguments that in the proof of Statement
(c21).
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Fig. 25. Examples of maps with a = —1, d = 0 and bc = 0.

Assume now that bc = —1. From the examples of Figure 26 we can see that 3 ¢ MPer(f).

f2

Fig. 26. Examples of maps with a = —1, d =0, bc = —1 and 3 ¢ Per(f).

We know that f has three basic intervals, I, Is and I3, the first two in C; and I3 = (5, such that
f(Ih) = f(I3) = Cy1 and f(I2) = Co. We have two possibilities for the intervals I; and Iy: either p is the
smallest element of I1 and the greatest of Iy or p is the smallest element of I, and the greatest of I; (see for
instance Figure 27). Denote by = inf{(f|I3) ™" (a0)}, I3, = [p, bo] I3, = [bo, p] and a; = inf{(f|I2)~" (bo)}.
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10y S S R SN asf

P oarxfaoaif, P bop, P P asf a0 a1, P

Fig. 27. Examples of maps with a =1, d =0 and bc = —1.

If I) = [ag,p] let Iy, = [p,a1] and I, = [a1, ag]. Consider agy = inf{(f|I1)~" (a1)}. Write I}, = [ao, as]
and I, = [ag,p]. If b =1 and ¢ = —1 (see (a) of Figure 27) f has the subgraph CI;, — I, — Iy, —
I3, — I;,. We consider the non-repetitive loop I, — Iy, — Is, = I3, — I, — ... — I;, of length
n > 4. By Lemma 1 there is a periodic point z of f with period n > 4. Moreover, I3, = I3, and
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I3, NIy, = 0, so, by Lemma 1, 2 € Per(f). Hence, Per(f) = N\ {3}. If b = —1 and ¢ = 1 (see (b)
of Figure 27) f has the subgraph CI;, — I, — I, — I3, — I,. We consider the non-repetitive loop
L, = L, = Iy, = I3, = I, = ... = I, oflength n > 4. By Lemma 1 there is a periodic point z of f with
period n > 4. Moreover, I3, = I, and I3, NIy, = 0, so, by Lemma 1, 2 € Per(f). Hence, Per(f) = N\ {3}.

If I} = [p,ag) let Is, = [ag,a1] and I, = [a1,p]. Consider ay = sup{(f|I1) " (a1)}. Write I;, = [p, as]
and I, = [ag,a0]. If b =1 and ¢ =—1 (see (c) of Figure 27) f has the subgraph CIy, — I}, — I, — I3, —
I,. From the non-repetitive loop Iy, — Iy, = Iy, = I3, = I1, = ... = I}, of lengthn >4, I3, 2 I, and
I3, NIy, = 0, we obtain that Per(f) = N\{3}. If b= —1 and ¢ = 1 (see (d) of Figure 27) f has the subgraph
0112 — Ill — 122 — 132 — I12. Using the nonfrepetitive IOOp 112 — I11 — 122 — 132 — 112 — ... 112 of
length n > 4, Iy, = I, and I3, N Iy, = (), we get that Per(f) = N\ {3}. Therefore, if a = —1, d = 0 and
bc = —1, MPer(f) = N\ {3}. This completes the proof of Statement (c23). MW

Proof.  [Proof of Statement (c24) of Theorem B] If a = 0 and d = —1, by using the same kind of arguments
that in the case a = —1 and d = 0, and interchanging b and ¢, we obtain Statement (c24). W

Proof.  [Proof of Statement (c3) of Theorem B] We suppose that a=d = 0. If bc = 0 or bc = 1 we can
deduce from the examples of Figure 28 that MPer(f) = {1}.

f f \ f

Fig. 28. Examples of maps with a = d = 0 and either bc = 0 or bc = 1.

If bc = —1 then MPer(f) = {1,2} (see for instance Figure 29).

Fig. 29. Examples of maps with a = d =0 and bc = —1.

We assume now that |bc| = 2. Since a = d = 0 we may assume without loss of generality that |o] = 1
and |c| = 2. We consider first case bc = —2. Clearly, {1,2} C Per(f), no other odd number belongs to
MPer(f) and 4 ¢ MPer(f) as it can be deduced from Figure 30. Now we will prove that n € Per(f) for
any n even larger than 4.

We know that f has three basic intervals, I1, I» and I3, the first two in C'y and I3 = (s, such
that f(I;) = f(I2) = Cy and f(I3) = C; (see for instance Figure 31). Consider by = inf{(f|I3)~" (ao)},
ar = if{(f|I})"" (bo)}, b1 = inf{(f|I3) " (a1)}. Set I, = [p,a1], L1, = [a1,a0], I3, the interval with
endpoints b; and p, I3, the interval with endpoints b; and by, and I3, the interval with endpoints by and
p. Then f has the subgraph

I32 I2 133

I I3, I,

2
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f4

Fig. 30. Examples of maps with a =d =0, bc = —2 and 4 ¢ Per(f).
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Fig. 31. Examples of maps with a =d = 0 and bc = —2.

We consider the non-repetitive loops I3, — I1, — I3, and Io — I3, — I, = I3, = 1, — I3, — I —
... — I3, — I of lengths 2 and n even, n > 6, respectively. We have I3, N I, = (), so, from the first loop
and by Lemma 1 there is a periodic point z of f with period 2; from the second loop and by Lemma 1 there
is a periodic point z of f with period n even n > 6. Therefore, if bc = —2 then MPer(f) = {1} U (2N\ {4}).

We suppose that bc = 2. No odd number other than 1 belongs to MPer(f), as it can be seen from
the examples of Figure 32. Also from Figure 32 we can deduce that 2 ¢ MPer(f). Now we will prove that
n € Per(f) for any n even larger than 2.

We know that f has three basic intervals, I;, Is and I3, the first two in C; and Is = (s, such
that f(I}) = f(ls) = Cy and f(I3) = C (see for instance Figure 33). Denote by = inf{(f|I3)~" (ao)},
a; = inf{(f|11)"" (bo)} and by = inf{(f|I3)"" (a1)}. Write I, = [p,a1], I1, = |a1, ag], I3, the interval with
endpoints b; and by, and I3, the interval with endpoints by and p. Then f has the subgraph I3, — I;, —
I3, = Iy — I3,. We take the non-repetitive loop Io = I3, = I, = I3, = I — ... = I3, — I of length n
even, n > 4. By Lemma 1 there is a periodic point z of f with period n even n > 4. Therefore, if bc = 2
then MPer(f) = {1} U (2N \ {2}).

We consider now case |bc| > 2. We must separate case |b| = |¢| = 2 from the others. If |b| > 2 or
|c| > 2 then there are three basic intervals I, Is and I such that Iy N I3 = () and I = I3 = I, (see for
instance Figure 34). By Lemma 1 the non-repetitive loop Iy — I3 — I gives a periodic point z of f with
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Fig. 32. Examples of maps with a =d =0, bc = 2 and 2 ¢ Per(f).
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Fig. 33. Examples of maps with a = d = 0 and bc = 2.
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Fig. 34. Examples of maps with a = d = 0 and either |b] > 2 or |¢| > 2.

period 2, and the non-repetitive loop Iy — I3 — I — Is — ... = I — I3 — I; of length n even larger
than 2 gives a periodic point z of f with period n even. No odd number other than 1 belongs to MPer(f).
Therefore, if |b] > 2 or |¢| > 2, then MPer(f) = {1} U2N.

We suppose that |b| = |c¢| = 2. Clearly, no odd number other than 1 belongs to MPer(f). Now we will
prove that n € Per(f) for any n even.

We know that f has four basic intervals, Iy, Is, Is and I4, the first two in C; and the others in
Cy, such that f(I1) = f(l2) = Cp and f(I3) = f(l4) = C1 (see for instance Figure 35). Consider b =
inf{(f|I3) " (ap)} and a1 = inf{(f|I1)"" (b1)}. Denote Iy, = [p,ai1], I1, = |a1,ac], Io = [ag,p], I3, = [p, b1,
I3, = [b1,bo] and Iy = [bo,p|. If (b,c) € {(2,2),(—2,2)} then f has the subgraph Iy = I, = I;,. We take
the non-repetitive loops Iy — I, = Iy and Iy — Iy — I, = Iy — ... = I}, — I4 — Iy, of lengths
2 and n even larger than 2, respectively. By Lemma 1 the first loop gives a periodic point z of f with
period 2, and the second loop gives a periodic point z of f with period n even larger than 2. Hence, if
(b,c) € {(2,2),(-2,2)}, Per(f) = {1} U2N.

If (b,c) = (—2,—2) then f has the subgraph Iy &= I, = I3,. We consider the non-repetitive loops
Is, = I, = I3, and Iy — I, = I3, = I, = ... = I3, = I, — Iy, of lengths 2 and n even larger than 2,
respectively. By Lemma 1 the first loop gives a periodic point z of f with period 2, and the second loop
gives a periodic point z of f with period n even larger than 2. Hence, if (b, c) = (=2, —2), Per(f) = {1}U2N.

If (b,c) = (2,—2) then f has the subgraph I, = Iy & I3,. We consider the non-repetitive loops
Iy = I3, - Iy and Iy — Iy — I3, — Iy — ... — I3, — Iy — I4, of lengths 2 and n even larger than 2,
respectively. By Lemma 1 the first loop gives a periodic point z of f with period 2, and the second loop
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Fig. 35. Examples of maps with a =d =0 and |b| = |¢| = 2.

gives a periodic point z of f with period n even larger than 2. Hence, if (b, c) = (-2, —2), Per(f) = {1}U2N.
Therefore, if |b] = |¢| = 2 then MPer(f) = {1} U 2N. This completes the proof of Statement (c3). W
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