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It has been recently shown that monolayers of transition metal dichalcogenides (TMDs) in the
2H structural phase exhibit relatively large orbital Hall conductivity plateaus within their energy
band gaps, where their spin Hall conductivities vanish [1, 2]. However, since the valley Hall e�ect
(VHE) in these systems also generates a transverse �ow of orbital angular momentum it becomes
experimentally challenging to distinguish between the two e�ects in these materials. The VHE
requires inversion symmetry breaking to occur, which takes place in the TMD monolayers, but not
in the bilayers. We show that a bilayer of 2H-MoS 2 is an orbital Hall insulator that exhibits a
sizeable OHE in the absence of both spin and valley Hall e�ects. This phase can be characterised by
an orbital Chern number that assumes the value CL = 2 for the 2H-MoS 2 bilayer and CL = 1 for the
monolayer, con�rming the topological nature of these orbital-Hall insulator systems. Our results are
based on density functional theory (DFT) and low-energy e�ective model calculations and strongly
suggest that bilayers of TMDs are highly suitable platforms for direct observation of the orbital Hall
insulating phase in two-dimensional materials. Implications of our �ndings for attempts to observe
the VHE in TMD bilayers are also discussed.

Introduction: The orbital Hall e�ect (OHE) is the or-
bital analog of the spin Hall e�ect and consists in the
appearance of a transverse current of orbital angular
momentum that is induced by a longitudinally applied
electric �eld [3]. Recently, a renewed interest in orbital
magnetism and other orbital e�ects [4�7] gave origin to
various theoretical studies on the OHE and related phe-
nomena [1, 2, 8�15]. The possibility of using the OHE
to generate orbital torque in magnetic materials [16, 17]
motivated new experimental works on orbital dynamics
in magnetic multilayers [18, 19], raising expectations that
orbital angular degrees of freedom may be eventually em-
ployed to process information in logic and memory de-
vices.

The interrelation between the OHE and the pres-
ence of orbital textures in reciprocal space [10] has
been established and characterised both theoretically
and experimentally in several low-dimensional materi-
als [1, 7, 12, 13, 20, 21], widening the class of systems
that may be utilised for orbitronic applications. More
speci�cally, the occurrence of relatively large OHE has
been predicted in the 2H structural phase of TMD mono-
layers [1, 2], where it is associated with the presence of
a Dresselhaus-like orbital texture around the valleys [1].
However, it is experimentally challenging to observe just
the OHE in 2H-TMD monolayers due to the concurrent
presence of the VHE that also contribute to the transport
of orbital angular momentum in these systems [22].

It is noteworthy though that the VHE manifests only
in the absence of inversion symmetry, which naturally
happens for the monolayers, but for bilayers, comprising
two monolayers rotated by π with respect to each other,
the inversion symmetry is restored. This substantially
a�ects valley related phenomena [23�25]. For instance,
the valley Hall conductivity has opposite signs in each
layer, cancelling the VHE for the bilayer [26�28], as we
shall subsequently discuss. Nevertheless, it is also possi-
ble to break inversion symmetry in the bilayers by apply-
ing an electric �eld perpendicular to the layers, by means
of which one can control the valley polarisation [29] and
the VHE intensity [25] with a gate voltage.
Here we perform calculations of the orbital Hall con-

ductivities for ultra-thin �lms (single layer and bilayer) of
2H-MoS2 which is representative of this class of systems.
We combine Density Functional Theory (DFT) and an
e�ective low-energy model to disentangle the valley and
orbital physics of TMD bilayers and explore some of their
topologic orbital features.
Implications of our �ndings regarding interpretations

of recent experiments on the electric control of the VHE
in MoS2 bilayers [24, 25] are also brie�y discussed. Our
results strongly indicate that bilayers of TMDs consti-
tute a fertile play-ground for exploring orbital angular
momentum current generation in 2D-like systems.
DFT results: Our DFT calculations [30, 31] were

performed with the plane-wave-based code Quantum
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Espresso [32]. The exchange and correlation poten-
tial is treated within the generalised gradient approx-
imation (GGA) [33]. The ionic cores were described
with fully relativistic projected augmented wave (PAW)
potentials [34]. We used a cuto� energy of 63 Ry for
the wavefunctions and a value 10 times larger for the
charge density. In order to reproduce the interlayer
distance of the MoS2 bilayer we have used the DFT-
D3 [35] method, which describe reasonably well the van
der Walls forces in these systems. We have chosen a
10×10×1 reciprocal space sampling, and to avoid spuri-
ous interaction due to periodic boundary conditions we
insert a vacuum spacing of 15Å. We constructed an ef-
fective tight-binding Hamiltonian from our DFT calcula-
tions using the pseudo atomic orbital projection (PAO)
method [36, 37]. The PAO method consists of projecting
the DFT Kohn-Sham orbitals into the compact subspace
spanned by the pseudo atomic orbitals which are natu-
rally built-in into the PAW potentials. The PAW poten-
tials used for the Mo and S were constructed with a sspd
and sp basis, respectively.
Once the PAO Hamiltonian is constructed we can cal-

culate the spin Hall (SH) and orbital Hall (OH) responses
to an applied electric �eld [1, 3, 8, 13, 38�40]. Up to linear
order on the external �eld they are given by:

σηOH(SH) =
e

(2π)2

∑
n

∫
BZ

d2kfn~k Ω
Xη

n,~k
, (1)

where σηOH(SH) is the orbital Hall (spin Hall) DC con-
ductivity with polarisation along the η-direction, and

Ω
Xη

n,~k
= 2~

∑
m6=n

Im

[〈
ψn,~k

∣∣jXη
y,~k

∣∣ψm,~k〉〈ψm,~k∣∣vx(~k)
∣∣ψn,~k〉

(En,~k − Em,~k + i0+)2

]
(2)

represents the angular-momentum-weighted Berry cur-
vature [10, 40]. Here, En,~k denotes the eigenvalue of

the Hamiltonian H(~k) in reciprocal space, and |ψn,~k
〉
is

the corresponding eigenvector; n is the band index, ~k is
the wave vector. The velocity operators are de�ned as
vx(y)(~k) = ∂H(~k)/∂~kx(y), where x and y specify the
Cartesian axes, and we assume that the electric �eld
is applied along the x̂ direction. The current density
operator component along ŷ with polarisation η is de-
�ned as jXη

y,~k
=
(
Xηvy(~k) + vy(~k)Xη

)
/2, where for the

SH conductivity Xη = ŝη and for the OH conductivity
(OHC) Xη = ˆ̀

η; ŝη and `η represent the η-components
of the spin and of the atomic angular momentum opera-
tors, respectively. This is implemented in the Paoflow
code [41] that has been successfully used to study topo-
logical materials [42, 43], and time dependent spin dy-
namics [44] among other topics. For our conductivity cal-
culations we have increased the sampling to 200×200×1
k-points in the 2D B.Z.

Figures 1 (a) and (b) illustrate results of our calcula-
tions for a monolayer and for a bilayer of 2H-MoS2, re-
spectively. In the left panels of Figure 1 we compare the
band structures obtained from DFT (purple solid lines)
and from Paoflow (yellow dashed lines). The agree-
ment between the two approaches is excellent. For the
monolayer we obtain a direct energy-band gap of 1.60 eV,
whereas for the bilayer we found an indirect gap of 1.28
eV, in agreement with previous calculations [45]. The re-
sults for the SHC (red solid lines) and for the OHC (blue
lines) are shown in right-hand side panels of Figure 1. In
accordance with our previous results for the monolayer
[1] we note in right panel of Figure 1 (a) that the SHC
vanishes in the main energy gap, but the OHC is �nite
and exhibits relatively high plateau of ≈ 2.6 (e/2π) in
height within this energy range. For the bilayer, how-
ever, the right-hand side panel of panel Fig. 1(b) show
that the height of OHC plateau is essentially twice the
monolayer value, while the SHC remain null in the main
energy gap because it is topologically trivial. Although
other regions in the B. Z. contribute to the OHC [2],
the main contribution originates from the orbitally pro-
jected Berry curvature in the vicinity of K and K', as il-
lustrated in the supplementary material [46]. To explore
the physics behind these results, it is instructive to make
use of a low-energy approximation around the K-points
(valleys) of the BZ, to build a simple model that is able
to reasonably describe the main transport characteristics
of these systems.
Low energy calculations: Similarly to the monolayers,

the low-energy physics of TMD bilayers is dominated by
the dz2 , dx2−y2 and dxy atomic orbitals of the transition
metal atoms [26, 47, 48]. We follow references 27 26 to
build a simpli�ed tight-binding (TB) model Hamiltonian
in reciprocal space, which is expanded up to �rst order
in the electronic momentum around the valleys located
at ~K = (4π/3a)x̂ and ~K ′ = − ~K. This procedure leads
to the following Hamiltonian:

H̃(~qτ ) =


∆ γ+ 0 0
γ− −τszλ 0 t⊥
0 0 ∆ γ−
0 t⊥ γ+ τszλ

 , (3)

where γ± = at(τqx ± iqy), τ = ±1 is the valley quantum
number associated with valleys K and K ′, respectively.
Here, ~k = ~q+τ ~K where ~q represents the wavevector rela-
tive to valleys and sz denotes the usual Pauli matrix. For
a 2H-MoS2 bilayer, an archetypal TMD, ∆ = 1.766eV
is the monolayer band-gap, a = 3.160Å is the lattice
constant, t = 1.137eV is the intra-layer nearest-neighbor
hopping, λ = 0.073eV is the spin-orbit coupling, and
t⊥ = 0.043eV is the interlayer hopping [26].
The TB basis for this minimal model com-

prises {
∣∣d1z2〉, (∣∣d1x2−y2

〉
− iτ

∣∣d1xy〉)/√2,
∣∣d2z2〉, (∣∣d2x2−y2

〉
+

iτ
∣∣d2xy〉)/√2}, where the superscripts 1 and 2 specify the
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Figure 1: Energy band structures (left panel) together with
the spin-Hall and orbital-Hall conductivities (right panel) cal-
culated for a MoS 2 monolayer (a) and for a MoS 2 bilayer (b).
The purple solid and yellow dashed lines depict the DFT and
Paoflow band structure calculations, respectively. The hor-
izontal blue dashed line shows the Fermi level.

two layers of the bilayer, respectively. It is noteworthy
that the orbital angular momentum (OAM) operator in
this representation is given by Lz = diag(0,−2~τ, 0, 2~τ),
which clearly does not commute with the Hamiltonian
de�ned in Eq.(3).

Eq. (2) can be used with the four-band low-energy
Hamiltonian given by Eq. (3) to de�ne the Berry and the
orbital-weighted Berry curvatures that encode informa-
tion of the VHE and OHE, respectively. For simplicity,
we shall initially neglect the e�ect of spin-orbit coupling
(λ), thereby restricting Eq. (3) to a spinless Hamilto-
nian, and including a degenerescence factor gs = 2. Eq.
(2) for the orbital weighted Berry curvature may also be
employed to calculate the usual Berry curvature Ωn,k,
provided that Xη is replaced by ~1. The spinless Hamil-
tonian generates two valence bands (E1(q) and E2(q))
that can be regarded as arising from each of the TMD
layers because of the relatively small interlayer hopping.
Figures 2 (a) and (b) present the Berry curvatures for
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Figure 2: Berry curvature Ωn,k at points K (a) and K′ (b),
orbital weighted Berry curvature ΩLn,k at points K (c) and K′

(d) for the two valence bands E1(q) and E2(q), associated to
the two layers. (e) Total Berry curvature Ω1,k + Ω2,k and (f)
orbital weighted Berry curvature ΩL1,k + ΩL2,k for the bilayer
TMD.

both E1 and E2 calculated around the K and K ′ points,
respectively. The Berry curvature for E2 has a positive
peak at K and a negative peak at K ′, which gives rise
to a VHE. The opposite occurs for the Berry curvature
of E1, which has a negative peak around K and a posi-
tive peak at K ′, giving origin to a VHE with an inverted
sign. By adding the contributions of both layers, the net
Berry curvature is zero in both valleys, and the VHE
vanishes. This is a consequence of time-reversal symme-
try and the presence of spatial inversion symmetry in the
bilayer [27, 47, 49]. A similar situation occurs for TMDs
with the T and T ′ structural phases, such as WTe2 [50].
Figures 2 (c) and (d) show the orbital weighted Berry cur-
vatures for both bands around the K and K ′ points, re-
spectively. In contrast with the previous case, the peaks
of the orbital-weighted Berry curvatures for both bands
have the same sign around both valleys. Hence, the to-
tal orbital-weighted Berry curvature has a �nite value,
which leads to an OH insulating phase [1] with no VHE,
as Figures 2 (e) and (f) illustrate. We note that in order
to assess just the OHE it is crucial from the experimen-
tal point of view to have OHE without VHE, because the
VHE also leads a transverse angular momentum current
[22, 51, 52] that is hard to be distinguished from the one
generated by the OHE, as it happens for TMD monolay-
ers [1]. Thus, our results show that bilayers of 2H-TMDs
are very promising candidates for observing the orbital
Hall insulating phase with no interferences from VHE or
SHE.

Let us now address the topological characterisation of
the OH insulating phase in TMD-bilayers. Our Berry
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Figure 3: (a) Positive (orange) and negative (blue) eigen-
values ε of the matrix L

v(~k) calculated as functions of the
wavevector amplitude q relative to valleys. (b) Integrands of
Eq. (4) I±(q) =

∑
n,τ F

±
n,τ (q) calculated as functions of q.

Band structures of zigzag nanoribbons with 14.8Å in breadth
calculated with the Paoflow Hamiltonian for a monolayer
(c) and for the spin-up sector of a bilayer (d) of 2H-MoS 2.
The color code indicates the orbital angular momentum ex-
pectation value 〈Lz〉. For better visualization, in the bilayer
case only the spin-up bands are showed. The spin-down band-
structure are showed in the supplementary material [46].

curvature analysis suggests that it is possible to asso-
ciate an orbital Chern number to describe the distinctive
nature of these states in analogy with the well known
spin Chern number [53, 54]. Here the situation is slightly
more subtle because the operator Lz does not commute
with the Hamiltonian of Eq. (3) for �nite ~q. This is sim-
ilar to the problem of a quantum spin Hall insulator in
the presence of a Rashba SOC. To address this issue, we
follow the procedure developed in Refs. 55�57 to de�ne
the orbital Chern number CL for the insulating phase of
Hamiltonian given by Eq. (3). In this formalism, CL =
(C+L −C−L )/2 where C±L are the Chern numbers calculated
with the eigenstates of an OAM operator projected on
the valence-band states

(
L
v(~k) = P (~k)LzP (~k)

)
, where

P (~k) is the projector operator. If the bands have or-
bital polarisation, the spectrum of Lv(~k) consists of two
groups of eigenvalues (ε) associated with ml = ±2 that
are symmetrically separated by a gap. The projectors
on the eigenstates associated with the positive and nega-
tive eigenvalues can then be used to calculate the Chern
numbers C±L .
Thus, to calculate CL, it is necessary to decompose the

valence-band states into two sectors with respect to op-
erator Lz. For that purpose, we �rst obtain the matrix
L
v(~k), with matrix elements given by

〈
ψn,~k

∣∣Lz∣∣ψm,~k〉,
where n,m label the valence-band eigenstates of the low-
energy Hamiltonian; more details are given in the ac-
companying Supplementary Material [46]. It is worth
mentioning that hereafter we reinstate the spin degree of
freedom and the spin-orbit interaction in the Hamiltonian

(3). Figure 3 (a) show the eigenvalues of Lv(~k) calculated
as functions of q. We clearly see that the spectrum splits
in two separated sectors, allowing us to use the eigen-
states of Lv(~k) in each valley

∣∣Φ±n,τ (~q)
〉
to calculate the

Chern numbers:

C±L =
1

2π

∫
d2q

∑
n,τ

F±n,τ (q), (4)

where F±n,τ (q) = −2Im[
〈
∂qxΦ±n,τ (~q)

∣∣∂qyΦ±n,τ (~q)
〉
]. Fig. 3

(b) shows the integrands of Eq. (4). Since they have
azimuthal symmetry, the calculations of C±L involve nu-
merical integrations of one-dimensional radial functions
only. Our results for the insulating phases of the 2H-
MoS2 bilayer and single layer are CL = 2 and CL = 1,
respectively, supporting the idea that the relatively weak
interlayer hopping in the bilayer makes it behave approx-
imately as a mere superposition of its two constituent
monolayers, which are rotated by π with respect to each
other.
The existence of a nontrivial orbital Chern number

should lead to the appearance of edge states when the
bulk material is cut to form a ribbon. It is well known
that zigzag TMD ribbons present crossing edge-states
with interesting orbital properties, even though Z2 = 0.
[58]. Figures 3 (c) and (d) show the energy band spec-
tra of 2H-MoS2 zigzag nanoribbons, calculated with the
use of Paoflow Hamiltonian for a monolayer and a bi-
layer including the orbital angular momentum expecta-
tion value 〈Lz〉(k) for each eigenstate. [59]. The energy
band spectrum for a monolayer ribbon depicted in Figure
3 (c) clearly shows two pairs of orbitally polarized intra-
valley edge states [60] - one for each spin sector- which
is compatible with the orbital Chern number CL = 1.
Results for the bilayer ribbon are displayed in Figure 3
(d), where we see two pairs of intra-valley edge states per
spin-sector - which is also compatible with CL = 2. For
the bilayer, the presence of inversion symmetry is trans-
lated in the existence of positive and negative Lz edge
states in both valleys. For clarity, Figure 3 (d) presents
the results for spin-up while the SM presents the two
components.
Experimental signatures: Let us now brie�y discuss

the experimental signatures of the OHE in TMD bilay-
ers. Typically, to characterise the OHE in these mate-
rials, one needs the same experimental setups conceived
to analyse VHE in TMD bilayers, where inversion sym-
metry breaking is induced by a gate voltage [25, 61]. For
the bilayer in this case, both the OHE and the VHE lead
to magnetic moment accumulation at the sample's edges.
To provide some insights into what should be expected
in such experiments, we include a gate potential in in Eq.
(3) given by HU = diag(U,U,−U,−U).
For a �nite U , the inversion symmetry is broken in

the bilayer and the VHE takes place. The OH and
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VH conductivities can be calculated using Eqs.(1-3).
To calculate the VH conductivity (VHC), we substi-
tute the integrand of Eq.(1) by Ωn,~q/~, and rewrite
σV H = (στ=+1 − στ=−1). Fig. 4(a) shows our results
for the OHC (σzOH) and VHC (σV H) calculated as func-
tions of the Fermi energy (EF ) for positive and negative
values of U . There are clear diferences between the two
quantities. While the OHC is an even function of EF ,
the VHC is odd. Also, the OHE is an even function of
U , whereas the VHE is odd - the valley magnetic mo-
ment inverts when U changes sign [24]. Panels (b) and
(c) of Fig. 4 show the energy spectrum for U = 0 and
U = 0.2 eV, respectively. It is clear that U produces a
rigid energy-band shift for the two layers, without chang-
ing their orbital polarisations. The OHE should remain
unchanged for small variations of EF , but decreases when
EF crosses any band, as individual bands in each valley
contribute to the total Chern number. We have also per-
formed DFT calculations for the OHE in the presence of
an electric �eld applied perpendicularly to the layers [62].
The results support our low-energy analysis and are pre-
sented in the SM [46].

Figure 4: (a) Orbital (blue line) and valley Hall (orange line)
conductivities as a function of the Fermi energy EF for U=0.2
eV (solid line) and U=-0.2 eV (dashed line). Schematic rep-
resentation of the low energy spectrum for U=0 eV (b) and
U=0.2 eV (c). The orbital polarisation of the top valence
bands is indicated by ml = ±2 and the solid orange and
dashed blue lines indicate the two spin orientations.

Kerr rotation microscopy experiments[25] showed that
a bilayer of MoS2 exhibits a sizeable Kerr rotation even in
the absence of an applied gate voltage. It was argued that
this unexpected behaviour could originate from substrate
induced inversion symmetry breaking. Recent non-local
resistance measurements in hBN encapsulated bilayer of
MoS2 also exhibited non-local signal at zero gate volt-
age [61]. The interpretation was the same, although one
should not expect hBN to cause such a large inversion
symmetry breaking e�ect. On the other hand, the OHE
could be the source of this experimental evidence and

explain the unexpected signals at zero bias in the bilay-
ers. Careful experimental analysis of Kerr rotation and
non-local resistance measurements as functions of gate
voltage may help to distinguish between the orbital and
valley Hall e�ects in these materials. The results illus-
trated in Fig. 4, in light of the experiments reported in
Refs. [25, 61], suggest that ultrathin �lms of TMDs are
promising platforms to explore the OHE in 2D materials.
Final remarks and conclusion: Our DFT calculations

showed that centrosymmetric two-dimensional materials,
such as a bilayer of 2H-MoS2, can host an orbital Hall in-
sulating phase in the absence of both spin and valley Hall
e�ects. Using MoS2 as a prototype of the TMD family,
we have also unveiled the topological nature of OHE in
these systems and calculated the orbital Chern numbers
for 2H-TMDs. Our work clari�es the interplay between
orbital and valley Hall conductivity in bilayer TMDs. We
found that, in the absence of a gate voltage between the
layers, the magnetic moment accumulation observed in
experiments should be dominated by the OHE as VHE is
zero in centrosymmetric materials. For �nite bias, OHE
and VHE are still decoupled and can behave as compet-
ing e�ects.
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Supplementary material for �Disentangling orbital and valley Hall e�ects in bilayers of transition

metal dichalcogenides�

MOS2 ZIGZAG NANORIBBONS BAND STRUCTURE - PAOFLOW

Figure 5: Band structure of a zigzag nanoribbon of 2H-MoS 2 bilayer with width of 14.8Åin breadth calculated with the use of
the Paoflow Hamiltonian. Panels (a) and (b) depict the results for the ↓ and ↑ spin components, respectively. The color code
indicates the orbital angular momentum expectation value 〈Lz〉 for the ↓ spin bands.

MOS2 ZIGZAG NANORIBBONS BAND STRUCTURE - 3 BANDS APPROXIMATION
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Figure 6: Zigzag nanoribbon band-structures calculated for a monolayer (a) and for a bilayer (b) of 2H-MoS 2 using a simpli�ed
3-bands approximation. Solid orange and dashed blue lines indicate the two spin orientations.

Zigzag TMD ribbons exhibit crossing edge-states that can also be modelled by an e�ective three-bands model, which
captures their essential transport features [48]. Figures 6 (a) and (b) illustrate the energy band spectra of 2H-MoS 2

zigzag nanoribbons, calculated for a monolayer and for a bilayer, respectively [63, 64], using the three-bands model of
Ref. 48 and nearest neighbour interlayer hopping integrals only. It is noteworthy that this simpli�ed model does not
capture the behaviour of high and low energy bands, because it does not take into account the orbitals dxz and dyz of
the transition metal, and treats the e�ects of the chalcogens (S) perturbatively only. For this reason, the edge-states
generated by this model are separated from the bulk valence bands by a non-realistic energy gap. In more realistic
descriptions of a TMD nanoribbon [58, 65], this gap is �lled by states with orbital character that are not considered
in this simpli�ed model. Nevertheless, the simpli�ed model describes very well the nature of edge-states near their
crossing.
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AB INITIO CALCULATIONS IN THE PRESENCE OF AN APPLIED ELECTRIC FIELD
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Figure 7: (a) Lateral view of the MoS 2 bilayer structure. The red arrow reprsents the electric �eld E = Ez ẑ. (b) MoS2

monolayer energy band structure (left panel) together with the orbital-Hall conductivity (OHC) (right panel) calculated for
Ez = 0.0 V/Å (red) and Ez = 0.4 V/Å (blue). The horizontal blue dashed line shows the Fermi level.
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and Paoflow band structure calculations, respectively. The horizontal blue-dashed line denotes the Fermi energy.

We examine the e�ects on the electronic structures of the TMD ultrathin �lms caused by a homogeneous electric
�eld E = Ez ẑ [62], applied perpendicularly to the �lm layers, using the modern theory of polarization [66, 67]. A
non local energy functional is de�ned as the regular energy functional subtracted by the product EzPz, where Pz is
is the polarization component along the ẑ-direction. Once the charge density and wave functions are converged we
obtain the paoflow Hamiltonian and calculate the electronic properties of interest. In Fig. 7 we show the band
structure together with the OHC of a monolayer of MoS2 calculated for Ez = 0 and Ez=0.4 V/Å. We note that the
MoS2 monolayer band gap and OHC are virtually not a�ected by the applied electrical �eld, which is in agreement
with previous results [68].
Fig. 8 shows the energy band structures together with the spin-Hall and orbital-Hall conductivities of a bilayer of

MoS2 calculated for Ez = 0.0 V/Åand Ez = 0.4 V/Å. We note that the perpendicularly applied electric �eld breaks the
inversion symmetry between the two layers causing a substantial band gap reduction as Ez = 0.4 increases, whereas
the OHC remains practically unchanged. We expect this behavior not to change as long as the band gap remais �nite.
For applied electric �eld intensities 0.0 < Ez < 0.4 V/Å, the bilayer band energy gap varies almost linearly with Ez,
as Fig. 9(a) illustrates, in agreement with previous DFT calculations [68]. Figure. 9(b) shows the calculated OHC in
the same range of electrical �eld. There is small reduction, ≈ 5%, in the OHC for Ez < 0.4 V/Å.
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Figure 9: Evolution of the (a) band gap and (b) orbital-Hall conductivity of the MoS 2 bilayer with an applied perpendicular
electrical �eld Ez.

ANGULAR MOMENTUM WEIGHTED BERRY CURVATURE - PAOFLOW

To show the validity of the low-energy model to calculate the OHC in bilayer TMDs, we can inspect the contribution
of the di�erent high symmetry points to the integrand Q(~k) of σzOH :

σzOH ∝
∫
BZ

Q(~k)d2k, Q(~k) =
∑
n

Θ(En − EF ) ΩLz
n,~k
. (5)

In Fig. 10 we show Q(~k) along the high symmetry lines of the Brillouin zone. It has a sharp strong peak in K,
showing that although the in�uence of other symmetry points is relevant for the OHE in this system, the dominant
contribution to the OHE plateau arrises from the Berry curvature of the valence band at the K points. Q(~k) also
presents a secondary broad peak in M . For monolayer TMDs the contribution from M is reduced [2].

Figure 10: Q(~k) along the high symmetry lines of the hexagonal Brillouin zone of the bilayer MoS 2.

ORBITAL CHERN NUMBER

In the main text, we present an orbital Chern number as the topological invariant which indexes the orbital
Hall insulating phase of the TMD bilayers (CL = 2). To compute this orbital Chern number, we followed the method
introduced by D. N. Sheng, et. al. for �nite systems [69], and later formalized by E. Prodan [55] in the thermodynamic
limit. This method has been applied successfully in di�erent situations [56, 57] and it is ideal for systems where the
operator associated with the Chern number does not commute with the Hamiltonian, as in the case of the orbital
angular momentum ([H̃(~qτ ), Lz] 6= 0) .

1. First, we calculate the energy spectrum and eigenvectors of the Hamiltonian that describes the electronic struc-
ture of the system, such as the one given by Eq. (3) of the main text. Since we are interested in the topological
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properties of insulators, the band structure must be fully gapped. We may then separate the eigenstates of
the Hamiltonian that belong to the conduction- and valence-band subspaces. With our e�ective model for the
bilayer, the valence-band subspace is spanned by two eigenstates

∣∣ψs,τn,~q〉 that clearly depend upon s and τ . Here,
n = 1, 2 label the two valence energy bands, ~q represents the wavevector relative to valleys, τ = ±1 denote the
valley quantum number associated with the K and K ′ symmetry points, and s =↑, ↓ designate the two spin
sectors.

2. The second step consists in projecting the orbital angular momentum operator in the valence band subspace. To
this end, we construct the matrix

(
L
v(~k) = P (~k)LzP (~k)

)
, where P (~k) is the projection operator on the valence

band states. The matrix elements of Lv(~k) are given by
〈
ψs,τn,~q

∣∣Lz∣∣ψs,τm,~q〉 (n,m = 1, 2), which only takes into
account the valence band states. We then compute its eigenvalues and eigenvectors. The eigenvalue spectrum
of Lv(~q) is presented in Fig. 3 (a) of the main text and it may be separated into positive ε+s,τ (~q) and negative
ε−s,τ (~q) eigenvalues. The application Prodan's method requires that the eigenvalue spectrum must be gapped.

3. The third step is the construction of the eigenvectors of Lv(~k) with the use of the coe�cients
[
α±s,τ (~q), β±s,τ (~q)

]
obtained with the diagonalization of Lv(~k):∣∣Φ±s,τ〉 = α±s,τ (~q)

∣∣ψs,τ1,~q

〉
+ β±s,τ (~q)

∣∣ψs,τ2,~q

〉
. (6)

4. The last step is the computation of the orbital Chern number using Eq. (4) of the main text

C±L =
1

2π

∫
d2q

∑
s,τ

F±s,τ (q), (7)

where F±s,τ (q) = −2Im[
〈
∂qxΦ±s,τ (~q)

∣∣∂qyΦ±s,τ (~q)
〉
]. To evaluate the integrals in Eq. (7), we have used a cuto� in

the momentum space Λ = 15Å
−1
, which provides a numerical deviation smaller than 1% from the quantized

value CL = (1/2)(C+L − C−L ) = 2. Note that this cut-o� value is larger than the limit of validity of e�ective
Hamiltonian given by Eq. (3) of the main text. However, this is not an issue in the context of the low energy
continuous theory since the function

∑
s,τ F

±
s,τ (q) is strongly peaked in the valleys and decays relatively fast for

increasing values of q.

Limitations of the analysis

The method discussed above relies on a fully gapped spectrum of the orbital angular momentum operator, when
projected into the valence band subspace. This condition is ful�lled for the low-energy Hamiltonian. However,
di�erently from the case of the spin operator in the quantum spin Hall insulator, the spectrum does not remain
opened in the whole Brillouin zone. Fortunately, one can still de�ne a topological number, in a similar way of
what is done for valley Chern numbers [60]. Because the Lz projected Berry curvature is concentrated around the
valley points, the integral of eq. 7 is well de�ned and we can obtain the orbital Chern number. Rigorously, it is an
approximation since it does not consider the whole Brillouin zone. In this sense, our analysis has the same limitations
of the quantum valley Hall e�ect. For instance, the existence of edge-states is limited to to edges that preserve the
two valleys, as in the case of zigzag nanoribbons. On the other hand, to calculate the OHE, di�erently from the VHE,
it is possible to use the orbitally projected Berry curvature in the whole BZ, which indicates that it might be possible
to �nd a di�erent strategy to calculate the orbital Chern number using the whole BZ.
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