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Abstract

Czujan’s sandpit is an abandoned quarry in the Vienna Basin (Mikulov, Czech
Republic) that has yielded an important middle Miocene vertebrate assemblage. Here we re-
describe the site from the perspective of sedimentology, taphonomy, and paleoenvironments,
and further review the biochronology of the fauna to clarify the age. The updated faunal list
includes two testudines (one trionychid and one medium-sized testudinid), and 12 species of
terrestrial mammals (three proboscideans, four perissodactyls, four artiodactyls, and one
carnivoran), consistent with an early Astaracian (MN6) age. The position of the
Wielician/Kosovian boundary just below the floor of Czujan’s sandpit, and our new
biostratigraphic data, further allow us to constrain the fossil assemblage to the latest MN6
(late Badenian, ~13.6 Ma) and resolves a longstanding controversy about the age of the site.
The site exposes a coarsening-upward succession deposited in a braid delta environment, and
comprises three facies association: from bottom to top, pelagic sediments (FA1); prodelta and
delta slope sediments (FA2); and distributory channel infills of the delta front and delta plain
(FA3), the latter containing all the studied terrestrial vertebrates. We propose two taphonomic
explanations for the genesis of the vertebrate assemblage: (1) a time-averaged assemblage
generated by riverine transport, or (2) a transported assemblage from a mass death site(s),
with mass death episode(s) caused by seasonal droughts in the river catchment. Our new
findings allow the more precise reconstruction of late Badenian terrestrial paleoenvironments
in the northwest area of the Vienna Basin and adjacent Carpathian Foredeep Basin. This
region comprised a mosaic of continental habitats dominated by woodlands but also including

forest patches and more open environments.
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1. Introduction

The intramontane Vienna Basin is among the best explored Paratethyan basins, where
decades of research of both marine and brackish sedimentary deposits have greatly
contributed to the understanding of paleoenvironmental changes during the middle to late
Miocene (e.g., Jiticek, 2002; Kovac et al., 2007, 2018; Harzhauser et al., 2011, 2018).
Paleoenvironmental reconstructions of the middle Miocene environment are largely based on
the marine fauna (e.g., Harzhauser et al., 2011) or palynoflora (e.g., Kvacek et al., 2006;
Kovacova et al., 2011; Kovar-Eder and Teodoridis, 2018). Middle Miocene sites with
terrestrial vertebrates are rather scarce with only two well-documented localities, comprising
Klein-hadersdorf, Austria (e.g., Thenius, 1948, 1951; Béhme et al., 2012) situated close to the
studied site in western part of the Vienna Basin; and Devinska Nova Ves, Slovakia (e.g.,
Zapfe, 1949, 1954, 1979, 1993; Estes, 1969; Sabol and Holec, 2002; Sabol and Kovag, 2006)
situated at the southeastern margin of the Vienna Basin. A detailed paleoenvironmental
analysis based on the complete spectrum of the terrestrial taphocoenosis has been conducted
only for the Devinska Nova Ves-“Bonanza” site (Sabol and Kovac, 2006).

Here we revise the evidence from another, less known, vertebrate site called Czujan’s
sandpit (sand quarry), which is situated close to the Carpathian Foredeep Basin at the
northwestern margin of the Vienna Basin (Fig. 1). This site has yielded a high concentration
of fossil macrovertebrates. However, this relatively diverse assemblage has remained largely
unpublished, even though it constitutes one of the most important middle Miocene mammal
assemblages from the Central Paratethys. The importance of this site increased in the 1950s,
when Thenius (1951) established it as a type locality of the bovid Tethytragus stehlini. Later,
the description of the proboscidean fauna (Holec, 1985; Seitl, 1985) highlighted this locality

as one of the most important occurrences of the relatively rare proboscidean Zygolophodon



73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

&9

90

91

92

93

94

95

96

97

turicensis. Despite the significance of the studied site, the fossil fauna, its taphonomy and
sedimentology has never been studied comprehensively. Accordingly, the research carried out
since the 1930s did not provide a clear agreement on the stratigraphical position of this site
(e.g., Seitl, 1985; Ctyroky et al., 1990; Stranik et al., 1999). Moreover, Late Miocene
mammals are known from other abandoned sandpits (Fig. 1B) in the southern area of Mikulov
as well. Although multiple sites near Mikulov have been grouped as a single locality, Mikulov
(= Nikolsburg), and considered contemporaneous (e.g., Abel, 1910; Rzehak, 1922; Stejskal,
1934; Thenius, 1959; Fejfar, 1990; Bohme et al., 2012), Middle and Late Miocene vertebrates
have been found in various sites of the Mikulov area (Ctyroky, 1989; Ctyroky et al., 1990;
Bfezina, 2019). Therefore, studied sites in the Mikulov area must be always clearly specified.
Here we provide the first taxonomic review of the fossil vertebrates from the former
Czujan’sandpit. In addition, the combination of sedimentological, taphonomic and
taxonomical characteristics allows us to (1) determine the age of the site; and (2) provide a
reconstruction of the late Badenian terrestrial paleoenvironment of the northwestern part of
the Vienna Basin and adjacent southeastern part of the Carpathian Foredeep Basin, in areas

where the paleobotanical fossil record is rather poor.

2. Czujan’s sandpit and overview of research on Neogene vertebrates from the Mikulov
area

The former Czujan’s sandpit (also called Furstenélle, Fiirstenwegfeld, Teichdcker or
Na Rybnikach) was a psephitic and psammitic quarry located 2 km east of Mikulov (Fig. 1A—
B; GPS: 48°47'49" N, 16°40'18" E) in the South Moravian Region, Czech Republic. The
mining activity began in the 1930s, reaching a maximum extension of 250 x 120 m and 7-10
m in depth. Exploitation of sands and gravels progressed from south to northwest and the

abandoned southern parts of the sandpit were gradually filled with garbage (Bfezina, 2019).
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During the 1980s, Czujan’s sandpit was filled to the top and leveled completely, being
currently part of a vineyard.

Czujan’s sandpit stands out as the oldest Miocene vertebrate site of the Mikulov area,
which is located close the Carpathian Foredeep Basin. Indeed, vertebrate fossil remains have
been known from sandpits in the Mikulov area since the 19th century (e.g., Hornes, 1848;
Alth, 1850). However, their contribution to a broader understanding of the European middle
Miocene paleoenvironments and faunas has been hampered by different conceptions about the
age of the various sites. Abel (1910) advocated an early Pliocene age, given the faunal
similarities with Eppelsheim (currently late Miocene, Pannonian), including the presence of
Deinotherium giganteum, Chalicotherium aff. goldfussi, Hipparion gracile, and Chalicomys
Jjaegeri. Stejskal (1934) agreed with the early Pliocene age suggested by Abel (1910), whereas
Rzehak (1922) dated it to the late Pliocene based on the absence of Pannonian mollusks
(Congeria and melanopsids). Jiittner (1938) first noted that the Mikulov area included several
Miocene vertebrate sites of different ages. In particular, Jiittner (1939a) interpreted Czujan’s
sandpit as being Sarmatian in age, given petrographical similarities with the sands from
Chrastiny Hill, near Valtice, where Sarmatian mollusks are present. Such interpretation was
followed by many subsequent authors (e.g., Musil, 1956; Thenius, 1959; Seitl, 1985).
However, Buday et al. (1964) considered Czujan’s sandpit as the highest strata of the late
Badenian (Kosovian substage) based on the foraminifers and mollusks. A Kosovian age was
later confirmed by comparison with nearby (800 m away) Nové Mlyny-2 borehole (Ctyroky,
1989; Fejfar, 1990; Ctyrok}'/ et al., 1990). Alternatively, some authors advocated that Czujan’s
sandpit is “middle” Badenian (Wielician substage) in age, but such proposals were not
substantitated (Kuklova, 1978; Stranik et al., 1999; Jiticek, 2002), and changes in the
Badenian subdivision during time (see Kovac et al., 2018) make this assertion doubtful as

well.



123 A list of fossil mammals from Czujan’s sandpit was first reported by Thenius (1951),
124 who erected the nominal species Gazella stehlini on the basis of a set of horn cores from

125  Czujan’s sandpit (type locality) and Klein-hadersdorf (Austria), some of which are currently
126  housed at the Paleontological Institute of the University of Vienna (Weinfurter collection). In
127  addition, Thenius (1951) provided a faunal list from the site, including chelonians,

128  proboscideans, rhinocerotids, cervids, and chalicotheriids. Later on, Thenius (1979) erected
129  the genus Caprotragoides to accommodate ?Pseudotragus potwaricus (middle Miocene of
130  Fort Ternan, Kenya) as type species, as well as “Gazella” stehlini from Czujan’s sandpit.

131  Subsequently, Azanza and Morales (1994) tentatively included Caprotragoides stehlini in
132 Tethytragus as ?Tethytragus stehlini. Some proboscidean molars from Czujan’s sandpit have
133 also been described (Holec, 1985; Seitl, 1985) and ascribed to Zygolophodon turicensis and
134 Gomphotherium angustidens.

135

136 3. Geological background

137 Czujan’s sandpit belongs to the Pannonian Basin System and is located on the

138  northwest margin of the Vienna Basin (Fig. 1A). In the Mikulov area, Neogene sedimentation
139  began by the deposition of marine lower Badenian clays (Lanzhot Beds) on the Mesozoic and
140  Paleogene flysch basement (Zdanice Unit). At that time, the Vienna Basin was connected with
141  the Carpathian Foredeep Basin by a narrow marine channel known as the “Mikulov Gate”
142 (Brzobohaty and Stranik, 2012). From a tectonic viewpoint, the Vienna Basin was

143 transformed into a pull-apart basin at the beginning of the “middle” Badenian (sensu

144  Harzhauser et al., 2018). The rivers flowed into the basin from the west through the Mikulov
145  area and apparently eroded the Lanzhot Beds (Stranik et al., 1999; Jiticek, 2002).

146 During the “middle” Badenian, the Sedlec Gravels were deposited discordantly on the

147  Zdanice Unit in the Mikulov area (Ctyroky et al., 1990). The overlying “middle” to “upper”
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Badenian (sensu Harzhauser et al., 2018) marine deposits belong to the Hrusky Formation,
which has yielded a rich marine fauna (e.g., Kienberg locality; Brzobohaty et al., 2007). The
uppermost part of the Hrusky Formation terminates with alternating continental sands and
gravels, which contain the terrestrial vertebrate remains uncovered in Czujan’s sandpit
(Ctyroky, 1989; Ctyroky et al., 1990).

In the Mikulov area, no Sarmatian deposits are known. The closest occurrences of
marine Sarmatian deposits are found at Chrastiny Hill near Valtice (Stranik et al., 1999).
Therefore, uppermost parts of the HruSky Formation and even in the area of Mikulov were
eroded during the Sarmatian to the early Pannonian. Then, sands and silts (Bzenec Formation,
Pannonian; Fig. 1B) were deposited overlying the Badenian clays of the Vienna Basin and the
flysch basement (Zdanice Unit). Miocene sedimentation in the Vienna Basin terminates with
the uppermost Pannonian and Pontian sediments, mainly composed of gravels and cross-
bedded fluviatile sands (Valtice Beds; Ctyrok}'l, 1989, 1999; Ctyroky et al., 1990). Generally,
Miocene sequences are covered by Quaternary deposits, such as fluvial and eolian sediments,
as well as paleosols (Ctyroky et al., 1990; Stranik et al., 1999).

The Czujan’s sandpit deposits are constituted by fine- to coarse-grained sands
displaying a trough cross-stratification (Jiittner, 1939a). They are light gray to yellow in color
and mainly composed of quartz, quartzite, feldspar, and intercalated eolian quartz and diverse
pebbles (Patockova, 1966). Cerha (1987) noted that sands contain an admixture of gravels and
clays up to 50% (Fig. 3). According to Kuklova (1970), deposits overlying the Hrusky
Formation (i.e., Bzenec Formation and Valtice Beds, respectively, interpreted as Pannonian
and Pontian) have never been recorded from the borehole samples in the surroundings of

Czujan’s sandpit (see also Ctyroky, 1989; Bfezina, 2019).

4. Materials and methods
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4.1 Studied material

The fossil vertebrate material from Czujan’s sandpit consists of 464 identified remains
collected between 1930 and 1970. They include teeth, skulls, postcranial bones, and turtle
shell remains (see complete list in the Supplementary Table 1). The studied material is
currently housed in the following institutions: PIUW, Paleontological Institut University
Vienna (Weinfurter collection), Austria; MZM, Moravian Museum, Brno, Czech Republic;
RMM, Regional Museum in Mikulov, Mikulov, Czech Republic; UGV, Department of
Geological Sciences, Faculty of Sciences, Masaryk University, Brno, Czech Republic. The
material housed in MZM includes the research collection of Rudolf Musil from the 1950s and
the remains gathered by private collectors between 1956-1959 (V. Solafik) and in 1965 (J.
Mandk). The material housed in MZM was prepared for this study by one of the autors (J.B).
However, a detailed description of the available material is beyond the scope of this paper,
which focuses instead on the most informative specimens from taxonomic, biostratigraphic,

and/or paleoecological viewpoints.

4.2 Sedimentology, taphonomy and biostratigraphy

Sedimentological and taphonomic analyses of Czujan’s sandpit are restricted because
the site is no longer accessible and also field documentation is lacking. Sedimentological
interpretations were based on Jiittner’s (1938, 1939a, 1940) lithological descriptions;
associated information preserved on labels; unpublished reports from the Czech Geological
Survey (Geofond, Prague); and old photos from the photoarchive of the Department of
Geology and Paleontology, MZM. As for the micropaleontological analysis, some samples of
clay and silt preserved in bone and tusk cavities were washed using a sieve with a mesh

diameter of 0.062 mm, and inspected using a stereomicroscope NIKON SMZ 1.
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Given that fossil remains were recovered from the surface or the profiles of former
Czujan’s sandpit without systematic excavation techniques or any documentation of their
provenance or spatial distribution, taphonomical analyses are restricted to the study of the
assemblage and bone modification data (see Eberth et al., 2007). A bias toward the collection
of the most complete fossils during fieldwork is unlikely, given the high number of rounded,
fragmentary and otherwise poorly preserved specimens available among the studied material
from MZM. The taphonomic analysis is focused on the degree of abrasion, corrosion, and
weathering of the bones. We mainly considered the completeness of the bones and their
degree of anatomical articulation with other elements to evaluate their preservation state. The
taphonomical terminology and practical approach follows Behrensmeyer (1991). We
quantified the minimum number of individuals (MNI) and the minimum number of elements
(MNE). Other aspects that were taken into account, include differences in tooth wear,
epiphyseal fusion, and morphology of fossil bones.

The European Neogene Land Mammal Units (Mein, 1975, 1990, 1999; de Bruijn et
al., 1992) do not display constustent boundaries throughout the Europe (e.g. Hilgen et al.,
2012; Koufos, 2016). Mammal zonation applied for the Central European area was modified
according to Steininger (1999), Becker (2003) and Hilgen et al. (2012). Age limits for well
dated Central European Miocene localities with their fossil record follows works listed in the

Supplementary Information.

S. Results
5.1 Sedimentology

The reconstruction of a composite profile was made using data obtained from the
individual boreholes in close proximity of the Czujan’s sandpit (Fig. 2), which allow us to

define three facies associations (FAs; Fig. 3). The lower part of the composite profile (~80 m
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thick) corresponds to FA1 (Wielician to Kosovian), constituted by clays with occasional sand
layers. FA2 (Kosovian) reaches a thickness of ~20 m and overlies FA1. Sporadic layers of
gravel appear at the base of the FA2, whereas its upper part consists of interbedded sand and
clay layers. The upper part of the profile corresponds to FA3 (Kosovian), which almost
reaches 20 m in thickness. It is characterized by the highest portion of coarse-grained deposits
(sands and gravels) over the clays. This facies association (FA1-FA3) represents a
coarsening-up sequence belonging to the Hrusky Formation. Czujan’s sandpit was opened in
the uppermost part of the FA3, which contains the coarsest deposits. Both FA2+FA3
constitute a gravel-sand body up to ~600 m wide and ~45 m thick. This body is deposited
within clay-dominated deposits. Clayey sediments overlying FA3 (Fig. 3) and recovered in
the uppermost borehole S164 (Fig. 2) were not described and interpreted in detail due to the
cursory description of Cerha (1987).

The sedimentary architecture of the HruSky Formation can only be studied in FA3
based on two historical photographs of the Czujan’s sandpit profiles taken by R. Musil in
1964. The first profile shows co-sets of sand and gravelly sand with trough cross-stratification
(St, SGt; Fig. 4A) and co-sets of sand and gravelly sand with horizontal stratification (Sh,
SGh; Fig. 4A). Strongly eroded bases are recognized in the co-sets of facies (St, SGt) and the
individual sets (red and blue lines respectively; Fig. 4A). Some sections show the cross strata
onlap to the rising bases (white arrows; Fig. 4A). The individual sets (blue lines, Fig. 4A) and
the co-sets of facies Sh, SGh (green lines; Fig. 4A) have either subhorizontally or planar
bases. In contrast, the second profile (Fig. 4B) shows a sequence of two sedimentary units.
The lower unit is formed by co-set of planar cross-stratified sand (Sp facies), where individual
sets are separated by either planar or variously inclined surfaces (blue lines; Fig 4B). A large
body of clay (yellow arrow) is discerned in facies Sp (Fig 4B). This lenticular clay body was

originaly placed horizontally in the profile, but in fact it is partially deformed due to a partial

10
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sliding of the sandpit wall (Fig 4B). In turn, the upper unit is formed by co-sets of sand and
gravel with low-angle cross stratification (co-sets of facies Sl, Gl; Fig 4B), where the bases of

the sets are faintly scoured (red lines; Fig 4B).

5.2 The faunal assemblage from Czujan’s sandpit
The following sections report on the fossil vertebrates from Czujan’s sandpit (see

updated faunal list with MNI in Table 1).

5.2.1 Reptiles

The herpetological assemblage only includes nine specimens of Testudines, of which
one belongs to a soft-shelled turtle and the remaining ones to a middle-sized testudinid.
PIUW-8X1939 (Fig. 5A) is a costal plate fragment, as shown by the presence of a rib on the
visceral part. Dorsally, the distinctive sculpturing consisting of small rounded pits, separated
from one another, allows us to refer the specimen to Trionychidae indet. (Marmi and Lujan,
2012; Vitek and Joyce, 2015). Thenius (1951) reported from Czujan’s sandpit the presence of
Trionyx sp. However, given that the sculpturing pattern does not allow distinguishing between
the two genera of soft-shelled turtles recorded from the Miocene of Central Europe (i.e.,
Rafetus and Trionyx; Georgalis and Joyce, 2017), identification at the genus rank is not
possible.

The remaining Testudines remains belong to a medium-sized testudinid, which was
reported as Testudo sp. by Thenius (1951). Four specimens have three-dimensionally
preserved carapace. The most complete shell (MZM Ot7877; Fig. 5SB—C) is slightly elongated
and preserves the xiphiplastra (Fig. 5C), which indicates the lack of a hypo-xiphiplastral hinge
(Delfino et al., 2012). The peripherals 1-3 are not crossed by the pleuromarginal sulcus,

unlike in geoemydids (Lujan et al., 2014). Peripherals 3—7 are completely involved in the

11
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shell bridge and not elevated relative to overall shell height. Peripherals 8—10 are well
developed posteroventrally (Figs. 5B, 6G), but not curved medially as in Testudo canetoniana
(see Lapparent de Broin, 2000). The complete pygal shows that the supracaudal scute is not
divided by a sagittal groove. The anterior plastral lobe is trapezoidal and the anterior edge is
truncated (it does not protrude from the carapace contour). The neural 1 is subrectangular and
not constricted posteriorly. Based on these features, the Testudo specimens from Czujan’s
sandpit are referred to Testudo (Chersine) kalksburgensis, which is only known from its type
locality (Wien-Kalksburg, Vienna Basin), dated to the Middle Miocene (MN5-MNG6; Toula,

1896; Bachmayer and Mtynarski, 1981; Lujan, 2015; Lujan et al., 2016, in press).

5.2.2 Mammals

Proboscidean remains belong to three genera from different families —
Prodeinotherium (Deinotheriidae), Zygolophodon (Mammutidae), and Gomphotherium
(Gomphotheriidae) — of which only the last one was mentioned by Thenius (1951).
Deinotheres are only represented by a single M3 (MZM Ot7526; Fig. 5D), which displays a
bilophodont occlusal pattern with a distally tapering contour, a moderately developed distal
cingulum, and a distinct convolute (postmetaloph ornamentation) close to the distal cingulum
at about crown midline. The small dimensions of this tooth (62 cm in length and 59 cm in
width) overlap with Prodeinotherium (Ginsburg and Chevrier, 2001; Gasamans et al., in
press) and enable to rule out the assignment to a species of Deinotherium. Although the two
European species of Prodeinotherium cannot be distinguished based on M3 morphology
(Ginsburg and Chevrier, 2001; Gasamans et al., in press), Prodeinotherium cuvieri is only
recorded from the early Miocene (Ginsburg and Chevrier, 2001; Béhme et al., 2012; Pickford
and Purabrishami, 2013; Gasamans et al., in press) so that a tentative assignment to

Prodeinotherium cf. bavaricum is warranted.

12
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In turn, mammutid remains are the most abundant, being represented by dental as well
as cranial and postcranial remains. This is very exceptional for Mammutidae, which is much
less common than Deinotheriidae and Gomphotheriidae in the European Miocene (see
Gohlich, 2010). We concur with previous authors (Holec, 1985; Seitl, 1985) that
Zygolophodon turicensis is the only mammutid species recorded at Czujan’s sandpit, as
supported by the morphological features displayed by the M3 (MZM Ot7519; Fig. 5E),
namely mesiodistally compressed lophs with well defined zygodont crests, long interlophs,
well-developed cingula, a disctinctly lower and narrower fourth loph, and a rhombic wear
pattern in the pretritte (Tobien, 1975, 1996; Tassy, 1977). Finally, only an M2 (MZM Ot7524;
Fig. 5F) and an upper tusk fragment (MZM Ot7505; Fig. 5G) testify to the presence of a
gomphothere. The M2 crown is trilophodont and displays a typical bunodont pattern (Tobien,
1973), with relatively thick enamel, an asymmetrical trefoil wear pattern in the pretritte, a
reduced lingual cingulum, massive cusps, and narrow interlophs that are blocked by enlarged
central conules. These characters allow us to discount the assignment of the material to the
early diverging species of the Gomphotherium (annectens) species group, and further
distinguish the Czujan’s M2 from the subtapiroid dental pattern of the more derived species
Gomphotherium subtapiroideum and Gomphotherium steinheimense (see Gohlich, 2010;
Tassy, 2014). The tusk fragment has a pyriform cross section and is twisted, with a
helicoidally oriented enamel band. The latter morphology is characteristic of G. angustidens,
whereas the upper tusks of G. subtapiroideum, G. steinheimense, and Archaeobelodon filholi
lack torsion (Gohlich, 1998, 2010; Tassy, 2014). We therefore concur with Seitl (1985) that
the Czujan’s gomphothere is attributable to G. angustidens.

Three perissodactyl families are represented at Czujan’s sandpit: Chalicotheriidae,
Rhinocerotidae, and Equidae. Thenius (1951) already reported the presence of

Chalicotherium grande (currently in Anisodon; Anquetin et al., 2007), but the original
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material has not been found. The currently available most complete material is represented by
a fourth metacarpal (MZM Ot7766; Fig. SH). It displays a roundish distal facet and a deep
lateral ligament fossa, and the shaft is lateromedially compressed but widens distally. The
dorsal side of the shaft is straight, whereas the palmar side is concave. The concave palmar
side and the presence of a single facet for metacarpal III in the Czujan specimen distinguish it
from the morphology displayed by the schizotheriines, which display a more massive and
dorsoventrally compressed metacarpal IV with two separate facets for the metacarpal III
(Zapfe, 1979). MZM 0Ot7766 fits well in size and shape with the remains of Anisodon grande
from Devinskd Nova Ves - Zapfe's fissure (Zapfe, 1979) and Sansan (Guérin, 2012), whereas
Chalicotherium goldfussi shows slightly larger dimensions (Guérin, 2012).

Two rhinocerotid genera are recognized at Czujan’s sandpit on the basis of different
limb bone proportions: Hoploaceratherium and Brachypotherium. The right complete tibia
MZM 0t7749 (Fig. 51) displays more elongated proportions than in the teleoceratin
Brachypotherium (Fig. 5J) and compared with other long-legged rhinocerotid genera, it more
closely matches the morphology of Hoploaceratherium (Heissig, 2009, 2012). The shaft is
slenderer than in Aceratherium and the distal epiphysis is broader than in Lartetotherium
(Hiinermann, 1989; Heissig, 2012). The caudal plane below the condyles is medially bounded
by a sharp ridge, and the frontal groove of tuberositas tibiae is narrow and centrally located.
These characters are typical for Aceratheriini and do not occur in Lartetotherium (Heissig,
2009, 2012).

In turn, the genus Brachypotherium is represented by dentognathic (an upper incisor
and a maxillary fragment) and postcranial (tibia) remains. The slightly worn I1 (MZM
Ot7700; Fig 5K) displays a short blunt root and differs from those of Aceratherium and
Lartetotherium, which are somewhat smaller and possess a pointed root (Heissig, 2012). In

turn, an assignment to Hoploaceratherium can be excluded due to the lack of upper incisors in
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the latter genus (Heissig, 2012). The M2-M3 from the maxillary fragment MZM Ot7752 (Fig.
5L) display a brachyodont morphology, with a strong lingual cingulum surrounding the
protocone and extending to the base of the hypocone; the M2 has a weak buccal cingulum and
a well-developed crochet. These molars differ from those of Aceratheriini and Rhinocerotini
by their greater dimensions and stronger cingulum (Heissig, 2012). The complete left tibia
MZM Ot7752 (Fig. 5J) is relatively shorter and more robust than in the “long-legged”
Aceratheriini and Rhinocerotini (Cerdefio, 1993; Heissig, 2012), supporting an assignment to
Brachypotherium. The dimensions of M3 and tibia correspond well to those of
Brachypotherium brachypus from Malartic (MN7+8, France; Cerdeno, 1993), in agreement
with the previous report by Thenius (1951) of B. cf. brachypus from Czujan’s sandpit based
on unknown material.

As for the equids, only an anchitheriine maxillary fragment with fragmentary M1 and
very worn M2 is available (MZM Ot7765; Fig. 5SM). The molars are brachyodont and broader
than long; the metaloph and protoloph hooked in distal direction, and only a vestigial lingual
cingulum is present. Three anchitheriine species have been recorded from Central Europe:
Anchitherium aurelianense, Anchitherium hippoides, and Anchitherium steinheimense
(Abusch-Seiwert, 1983; Rotgers et al., 2011). However, we refer MZM Ot7765 to
Anchitherium sp. because the advanced degree of wear makes it impossible to ascertain
occlusal details.

Artiodactyls are represented at Czujan’s sandpit by five taxa from four different
families: Bovidae, Palaecomerycidae, Cervidae and Suidae. The bovid material includes a
single frontoparietal with horn cores (MZM Ot7786; Fig. SN—O). The horn cores are long,
straight, and moderately divergent, and display a mediolateral uniform compression and weak
longitudinal grooves from base to apex; the pedicels are tall (Fig. SN-O). MZM Ot7786

represents the most complete material and fits well in size and shape with the material from
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Czujan’s sandpit and Klein-hadersdorf used by Thenius (1951) to erect “Gazella” stehlini and
subsequently assigned to ?7Tethytragus stehlini by Azanza and Morales (1994; see also Bibi
and Giileg, 2008). We note that MZM Ot7786 is more complete than the holotype (only a
gypsum cast was inspected in PIUW) of Te. stehlini, which is represented by a single left horn
core fragment.

A palaeomerycid mandibular fragment with right m2—m3 is preserved (MZM Ot7773;
Fig. 5P). The lower molars display a rugose enamel surface (particularly on the lingual side)
and a brachyselenodont morphology with strong deep valleys and pointed conids (Fig. 5P).
This combination of features supports the attribution to Palaeomerycidae indet., but does not
enable a more refined assignment to a genus due to the absence of more complete cranial
material.

Three cervid antler fragments with consistent morphology are preserved. MZM Ot7771
(Fig. 5Q) is the most complete cranial appendage, where only the anterior branch and
proximal part of the pedicle are broken off. The antler is straight, laterally compressed and
bifurcated, without burr, but with extended, strongly sculptered base with longitudinal
grooves and ridges. The studied antlers clearly differ from coronate antlers of Lagomeryx and
Paradicrocerus (previously Stehlinoceros, see Bohme et al., 2012). MZM Ot7771 is
dichotomous and more closely resembles the antlers of Heteroprox, being distinguished from
other European genera by the absence of a burr (e.g., Heckeberg, 2017; Rossner et al., 2021).
The general morphology and dimensions of MZM Ot7771 only fit well with those of
Heteroprox, which is known by three species in Europe. The appendage allows an assignment
to Heteroprox larteti by the larger dimensions and stronger sculpture than those of H. eggeri
(see Rdssner, 2010). Its smaller dimensions, more ellipsoid cross section of the pedicle and
short anterior prong, excludes an assignment to Heteroprox moralesi (see Rossner, 2010).

Suids are represented by two mandibular fragments that, based on their similar
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preservation, might belong to the same individual (Fig. SR): a right fragment with m1-m2
(RMM P11a) and a left one with a partial m3 preserving the distal crown portion (RMM
P11b). The moderately worn m1 (16.5 x 10.4 mm) and the less worn and larger m2 (19.0 x
12.7 mm) display a similar morphology, with thick enamel, a similarly narrow subrectangular
occlusal outline, conspicuous furrows between the main cusps and the central and distal
pillars, a well developed mesiobuccal cingulum, and a distinct hypoectoconulid. The distal m3
fragment displays a relatively short talonid that is only slightly tilted buccally, with the
hypoconulid surrounded by cingular cusplets. This morphology resembles the tetraconodont
genera Conohyus and Retroporcus, which have been the subject of taxonomic revision during
the last decade (Pickford and Laurent, 2014; Pickford, 2016) and are still a matter of debate
(van der Made, 2020). Pickford and Laurent (2014) designated a lectotype for Conohyus
simorrensis and provided an emended diagnosis of the species, distinguishing the genus
Conohyus from the new genus Retroporcus (see also Pickford, 2016), which includes material
previously assigned to C. simorrensis by various authors (e.g., van der Made, 1989; van der
Made and Salesa, 2004). Pickford and Laurent (2014) and Pickford (2016) interpreted
Retroporcus matritensis as a senior synonym of C. simorrensis goeriachensis, whereas van
der Made (2020) questioned the lectotype designation by Pickford and Laurent (2014) and
considered R. matritensis a junior synonym of C. simorrensis. The suid mandibular fragments
from Czujan’s sandpit would be referrable to C. simorrensis sensu van der Made (2020), but
until Pickford and Laurent’s (2014) lectotype designation is proven wrong, we prefer to
follow their concept of C. simorrensis and distinguish R. matritensis as a distinct species.
Although both species largely overlap in the size of their teeth, the proportions of the m1 and
m?2 from Czujan’s sandpit do not fit well with those of C. simorrensis sensu Pickford and
Laurent (2014), being relatively narrower and most closely resembling those of R. matritensis

(Pickford, 2013, 2016). The slightly tilted m3 talonid also more closely resembles the latter
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species, since C. simorrensis is characterized by a less symmetrical talonid (Pickford and
Laurent, 2014; Pickford, 2016). Although additional material (particularly the premolar
series) would be required to confirm our identification, based on the aforementioned features
we tentatively assign the material to cf. R. matritensis. Similarly to C. simorrensis, R.
matritensis is known from European localities ranging from MNS5 to MN9 (Pickford and
Laurent, 2014; Pickford, 2016).

The carnivoran remains from Czujan’s sandpit consist only of two partial lower canines
(UGV Pal297, Fig. 5S; MZM Ot7814) and a calcaneum (MZM Ot7815; Fig. 5T). The more
complete canine (>8.2 cm in height) preserves the entire root and most of the crown (except
for the apex; UGV Pal297; Fig. 5S). The base of the crown is labiolingually compressed and
preserves a distinct wide lingual wear facet to accommodate the 13 (Fig. 5S). In mesiodistal
view, UGV Pal297 is slightly sigmoidal, which is typical for several groups of carnivorans.
According to Viranta (1996), two valid amphicyonid genera are known from the middle
Miocene of Europe: Megamphicyon giganteus (MN3—MNS5), until recently included in
Amphicyon (Siliceo et al., 2020); and Amphicyon major (MN4-MND9). The canine root of
UGV Pal297 is less robust than in Megamphicyon giganteus (see Kuss, 1965). Based on size
and root proportions, both canines are thus referred to Amphicyon (Ginsburg, 1961; Ginsburg
and Antunes, 1968). The calcaneum MZM Ot7815 (Fig. 5S) is slightly abraded, especially the
tuber calcanei, but it preserves enough diagnostic features to further support the assignment to
Amphicyon. 1t is relatively short (8 cm long) and displays a robust tuber calcanei. The ectal
facet is convex, craniocaudally elongated, and completely separated from the sustentacular
facet. The latter is rather flat, semicircular in outline, and medially protruding. The referral to
Amphicyon is based on size as well as the robustness of the tuber calcanei and the shape of the
ectal facet (Argot, 2010). Given the restricted available material, we only tentatively assign

the material to Am. cf. major.
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5.3 Taphonomy

Despite the lack of field documentation, many fragmentary remains could be joined
into complete bones during material preparation. This fact, and the presence of fresh fractures
on the bone fragments, indicate that they were well-preserved and generally complete in the
field, but that they were not adequately collected due to the “rescue” character of the
excavations. Bones and teeth without any sign of transportation include 91% of the studied
material, and 31% of the studied material represents complete skeletal elements from various
parts of skeletons: teeth, skull fragments, mandibles, vertebrae, ribs, scapula, humerus, ulna,
radius, and autopodial bones. The preservation of the vertebrate remains from Czujan’s
sandpit may be summarized as follows: 1) there is a high number of complete bones and teeth,
being the former more frequent than the latter; 2) teeth are preserved both as dentognathic
fragments (Fig. 5G, L, M, P, R) and isolated tooth crowns with roots (e.g., Fig. 5D, E, F, K,
S); 3) we identified up to 29 cases of antimere bones (e.g., right and left humerus: Fig. 6A—B)
and teeth; 4) in 10 cases, different bones appear to belong to the same individual and have
been preserved in articulation or close spatial association, based on anatomical congruence,
preservation state and/or information from labels (Fig. 6C—E), while in four cases unfused
epiphyses matched with the corresponding diaphysis (Fig. 6F); 5) as pointed out by Jiittner
(1938), there were well-preserved proboscidean skulls in Czujan’s sand pit (either not
recovered or subsequently disintegrated); 6) four of the seven testudinid specimens preserved
well their 3D morphology and growth scute lines are discernible in some carapace plates
(Figs. 5B, 6G). The presence of antimeres and articulated specimens among the proboscidean
sample, coupled with similar preservation, indicates that most of the bones come from a
single individual—as further supported by information from the museum label of the

proboscidean atlas RMM P34, according to which it was articulated with the skull in situ.
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Generally, all bones and teeth are strongly mineralized in a similar way (Bfezina,
2019), and the mineralization of the more rounded and abraded bones is comparable with
most of the better preserved ones, suggesting the lack of reworking and resedimentation of
fossils from older deposits. Bone cavities are filled by quartzose sands, gravels, and clays.
Finally, some specimens (e.g., MZM Ot7497 and MZM Ot7694) may contain remnants of soil
or plant roots. Most of the fossil bones are fresh and angular (Figs. 5B—C, G, H-J, N-O; 6A—
D, G-H) and only rarely are deformed (Fig. 61). Prediagenetic traces of bone corrosion are
infrequent. Only weathering stage 1 (sensu Behrensmeyer, 1978) modifications were
observed, although longitudinal cracks in diaphyses and articular facets are often present (Fig.
61-J). Two gnawing traces, probably produced by some large carnivores (Fig. 6K-L) and a
rodent, were identified (Fig. 6M). However, we cannot exclude that some gnawing traces
were alternatively produced by a ruminant, as they show a similar pattern to those produced
by rodents (Hutson et al., 2013).

Most of the studied material belongs to terrestrial vertebrates and shows no signs of
redeposition. In contrast, rare marine fossils indicate redeposition (Seitl 1985). In particular,
the analyzed pelitic matrix taken from the fossil bones only sporadically contains microfaunal
marine remains, including: a single placoid shark scale; and the following foraminifera
(Arenobulimina sp., Amonodiscus cf. glabratus, Paragloborotalia acrostoma, Heteroleppa
dutemplei, and Globigerinida indet.), which must have been redeposited from the lower
Badenian Zdénice Unit (R. Brzobohaty and M. Bubik, pers. comm. to J.B.) as well as a single
isolated shark tooth crown (Fig. 6N) referred to Zsurus sp. The macroflora is represented by
non-redeposited scarce wood remains (Fig. 60), whereas palynomorphs were not present in
the analyzed sediment samples.

All recovered testudinids from Czujan’s sandpit are adult individuals, not only based

on size, but further because the sutures between plates are completely fused or poorly visible
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in some cases. Based on the third molar eruption and/or epiphyseal fusion, mammals from
Czujan’s sandpit are adult individuals, with the only exception of proboscideans. Ontogenetic
analysis, based on dental wear stages in the proboscidean samples (see Tassy, 1996, 2013),

revealed different ontogenetic stages, including three juveniles, two mature subadults and

fifteen midlife adults (Table. 2).

6. Discussion
6.1 Sedimentological interpretation

From a sedimentological viewpoint (Figs. 3—4), the original outcrops of Czujan’s
sandpit were formed by tabular bars (Sh, SGh) and channel infills (St, SGt, Sp), which fill the
distributary channels of both deltaic plain and deltaic front of a shallow water fluvial
dominated delta (Postma, 1990; Chen et al., 2015; Zhang et al., 2017). The onlaps of cross
strata arise during migration of climbing dunes in mouth bars of a delta front (Dasgupta et al.,
2016), whereas the superposition of co-set facies Sl, Gl over co-set facies Sp can be
interpreted as delta plain deposits overlapping mouth bar sediments (Francirek, 2018). The
clay body (Fig. 4B) is most probably interdistributary bay infill (Zhu et al., 2017). As is
typical for braid deltas, the delta plain is composed only by distributary channel infills
(McPherson et al., 1988). Both the coarsening-upward sequence of facies association FA1—
FA3 and the lens shape of megascale body FA2+FA3 reflect a delta progradation into a
marine basin. According to this interpretation, three facies associations are recognized: FA1,
composed by pelagic sediments; FA2, prodelta sediments (suspension clays plus occasional
sand turbidites) up to the delta slope sediments (sand turbidites plus suspension sediments of
quiet phase on delta slope); FA3, sediments of delta front (mounth bars and interdistributary
bays) and delta plain (subaerial distributary channels) infills. The latter interpretation is

supported by the occurrence of wood fragments (Fig. 60), which are common in distributory
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channels or their mouth along the delta front (Olariu and Bhattacharya, 2006), as well as by
the presence of terrestrial fauna. Based on the sedimentary architecture, Czujan’s sandpit can
be interpreted as a shallow-water river delta with braid delta plain and with mouth bars in
distributory outlets and interdistributary bays on delta front (Nemec, 1990; Postma, 1990; Zhu

etal., 2017).

6.2 Taphonomical interpretation

The bone concentration from Czujan’s sandpit is characterized by the relatively diverse
assemblage of terrestrial vertebrates, the presence of complete and associated bones (skull
bones, mandibles, vertebrae, ribs, limb bones), a low degree of weathering, and a
predominance of fresh and angular specimens. These aspects, and the absence of polished or
otherwise discrepant bone of terrestrial vertebrates characteristic for exhumation or
redepositions (Rogers and Kidwell, 2007), unequivocally indicates that the terrestrial
vertebrate assemblage is not mixed with reworked older terrestrial fossils. In contrast, the rare
marine fossils represent redepositions from the Zdanice Unit, Lanzhot Formation and lower
parts of Hrusky Formation (Seitl 1985). Reworked, allochthonous marine fossils have been
already documented by Kuklova (1970, 1978) from the Wielician-Kosovian clays in
boreholes (Figs. 2, 3).

The presence of bones and teeth from more than a single individual and with multiple
species represented allows us to classify at least the sands and gravels of FA3 (vertebrate
remains are not documented from sands and gravels of FA1-FA2) as a macrofossil multitaxic
bonebed (Behrensmeyer, 2007; Eberth et al., 2007; Rogers and Kidwell, 2007). Because
mining extraction in Czujan’s sandpit from the 1930s to the 1980s progressed from south
towards north and east, and abandoned parts of the sandpit were gradually filled by waste as

extraction progressed, new and relatively small outcrops (in comparition with the whole
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mining area) were accessible in each mining phase (Biezina, 2019). This implies that more
than a one bone bed was present in the Czujan’s sandpit profiles. The different types of rocks
represented by the matrix adhered to the fossils as well as the presence of recent soil remnants
on some specimens suggest that the fossil remains came from different stratigraphic positions.
This is further supported by the old label of PIUW 4501-4503, which clearly describes the
find at 6.5 m depth, and corresponds well with Seitl’s (1985) observation that bones and teeth
were vertically scattered along the whole profile. Therefore, from a finer scale perspective, we
can conclude that the bone accumulations of FA3 were located in more than one chanel infill,
probably as a result of gradual or periodical fluvial sedimentation. In the absence of field
documentation, it is impossible to confidently establish whether the fossil bones originated
from a time-averaged accumulation of carcasses randomly transported from the river basin
and deposited due to the loss of water energy along the mouth of distributary channels into the
sea. Alternatively, the assemblage might have originated by the progressive accumulation
from a preexisting source of mass death accumulation. However, the high concentration of
terrestrial taxa is outstanding in the context of surrounding marine deposits, and the low
number of carnivorans and the presence of a single specimen of a freshwater taxon
(trionychid) rule out either a flooding event or a miring mortality (Rogers and Kidwell, 2007).
Moreover, multitaxic fossil assemblages, formed by immature individuals as well as gnawing
traces, do not occur in mass drowning (Rogers and Kidwell, 2007; Backwell et al., 2018).
Both the presence of cracks and the gnawing traces suggest that some carcasses were laying
for some time on the surface before sediment deposition.

The main taphonomic features of the Czujan’s sandpit assemblage (i.e., wearing stage
1 sensu Behrensmeyer, 1978, a minimal number of gnawed bones, and evidence for
articulated skeletons) are often reported from drought mass death sites (Haynes, 1985, 1988,

1991, 2018, Backwell et al., 2018). The structure and MNI of taxa such as proboscideans,
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bovids or testudines from Czujan’s sandpit (Table 1) further resemble those from extant sites
from Africa, where drought mass death implies a higher mortality of proboscideans and
bovids (Haynes, 1988). Predominance of large herbivores such as proboscideans (Table 1),
which are characterized by high mortality during dry periods, might support this idea
(Haynes, 1985, 1991, 2017; Haynes and Klimowicz, 2015). Variously old proboscidean
individuals have been recovered from Czujan’s sandpit fossil record, including juveniles
(Table 2), which are characteristic in recent drought mass death sites (Haynes, 1985, 1991,
2017; Haynes and Klimowicz, 2015). Based on our findings, a progressive secondary
accumulation from preexisting drought mass death accumulations into FA3 seems most
likely. This interpretation would be in agreement with the strong decrease of humidity in
Central Europe during the late Badenian, as well as the presence of seasonality in the Vienna
Basin accompanied by periodic drought conditions (e.g., Béhme et al., 2011; Harzhauser et
al., 2011), supported by documented braid delta. This delta type occurs in areas with arid
climate and limited vegetation, fed by flows with unbalanced flow rate (McPherson et al.,
1988; Miall, 1996). However, poor field data do not allow to clearly determine if the fossil
assemblage is a time-averaged abiotic accumulation or whether it was deposited following
drought mass death accumulation. Taking in account the dispersal capabilities of large
mammals, the studied taphocoenosis probably mixes taxa from various biotopes concentrated
in one place of the river basin for both possible intepretations. In the analogy with recent
elephant populations whose home ranges reach up to ~3000 km? (Haynes, 1991), we assume
that animals might have inhabited area from the Vienna Basin coastline, including delta
platform to the eastern slopes of Bohemian Masiff, which is largely formed by the

soutwestern part of the Carpathian Foredeep Basin (see Fig. 1).

6.3 Biostratigraphy
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All mammal taxa identified in the Czujan’s sandpit have been reported from the
European early Astaracian (MNG6) localities. Although the mammal community as a whole
displays a wide biostratigraphic range from MN3 up to MN10, the first occurrence of R.
matritensis and Hoploaceratherium in Goriach, Austria (late MNS5, ~14.5 Ma; Aiglstorfer et
al., 2014), and Te. stehlini in Klein-hadersdorf, Austria (MN5-MNG6, ~14.2 Ma; sensu Bohme
et al., 2012) together with the last known occurrence of P. bavaricum from Devinska Nova
Ves-Zapfe’s fissures, Slovakia (early MNG6; Fejfar 1990) restrict the biostratigraphic age of
the Czujan’s sandpit assemblage within the late MNS5 to late MN6 Zones (Fig. 7). Given by
the fossil record of mammals from well-dated Central European localities, the above
mentioned biostratigraphic age is supported by the coeval first appearance of R. matritensis
and Te. stehlini and the last appearance of P. bavaricum, Retroporcus matritensis, H. larteti
and Am. major (Fig. 7). The Badenian age of the vertebrate assemblage is also partially
supported by the presence of a testudinid 7. kalksburgensis reported from Wien-Kalksburg,
Austria (MN5-MNG6; Bachmayer and Mtynarski, 1981).

The biostratigraphical age (late MNS, to late MNG6; late early to late Badenian; Fig. 7),
based exclusively on the vertebrate assemblage, is generally in agreement with the late
Badenian age of the Czujan’s sandpit, as previously suggested based on marine and brackish
microfauna (Kosovian: Buday et al., 1964; Ctyroky, 1989; Ctyroky et al., 1990; Fejfar, 1990
and Wielician: Kuklova, 1978; Stranik et al., 1999; Jiricek, 2002). These authors did not
verify the age on the basis of vertebrate fauna, such as Thenius (1951) and Musil (1956) and
Seitl (1985), who adopted Jiittner's (1938, 1940) exclusively petrographic correlation with the
Sarmatian sands. However, Sarmatian age is highly improbable, because Sarmatian sediments
have not been documented from the Mikulov area (Fig. 1B). The presence of the Ammonia
beccarii ecozone, laterally replaced by the Bulimina-Bolivina Zone in the Nové Mlyny-2

borehole (Bimka, 1983), proves that both FA3 and FA2, together with the uppermost section
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of FA1, correspond to the Kosovian substage (Figs. 2-3). The lower limit of the Kosovian
substage varies within the range of 13.6-13.1 Ma (Hohenegger et al., 2014) and therefore,
Czujan’s sandpit assemblage cannot be older than ~13.6 Ma. This corresponds to the upper
MNG6 boundary in Central Europe (base of C5ABn sensu Steininger, 1999, but see different
MN Zonation in Western Europe, Fig. 7).

According to the Nové Mlyny 2 borehole (Bimka, 1983), the section of Kosovian
continues minimally for at least ~40 m above the sandpit, however, the original thickness of
Kosovian section was most probably greater but subsequently reduced by Sarmatian and
Quarternary erosions. Therefore, both the close proximity to the Wielician/Kosovian
boundary (Fig. 2, 3) and mammal biochronology (Fig. 7) support latest MN6 (~13.6 Ma) age
of the Czujan’s sandpit. Prodeinotherium and possibly also Am. major from Czujan’s sandpit
are among the youngest records of these taxa from Central Europe (late MN6, Kosovian

substage; Fig. 7).

6.4 Paleoecological implications

The vertebrate assemblage from Czujan’s sandpit comes from various paleohabitats. A
closed woodland habitat is indicated by proboscideans (Prodeinotherium cf. bavaricum and
Zygolophodon turicensis), thinos (Brachypotherium brachypus and Holoaceratherium sp.),
chalicotheres (Anisodon grande), palacomerycids, suids (Retroporcus matritensis) and
carnivorans (Amphicyon cf. major; Fig. 8). The dental morphology and the still rather limited
number of 8'3C values from tooth enamel of P. bavaricum (Seegraben; Aiglstorfer et al.,
2014) and B. brachypus (Steinheim; Tiitken et al., 2006) indicate that both species might have
inhabited a closed woodland environment. Mammutids of the genus Zygolophodon browsed
in forest habitats as well (e.g., Lambert and Shoshani, 1998) but based on zygolophodont

deintition their dietary spectrum was most probably different from that of bunodont
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gomphotheres and lophodont deinotheres. This assumption is indirectly supported by feeding
preferences of conifers (7axodium) in closely related American mastodons (Mammut
americanum) from the Pleistocene of Florida (Green et al., 2005), where Taxodium swamps
are comparable to those documented from the Miocene of Central Europe (e.g., Kvacek et al.,
2004; Kazmér, 2007). The brachyodont teeth of palacomerycids, as well as their isotopic data
from middle Miocene localities of Germany and Spain, support a folivorous diet in woodlands
(Tiitken et al., 2006; Tiitken and Vennemann, 2009; Domingo et al., 2012). A woodland
habitat is also favored by the chalicotheriid A. grande, which is considered a specialized
browser (Schulz et al., 2007), as well as the amphicyonid 4m. major, which was an active
omnivorous predator (Argot, 2010) anatomically well-adapted for climbing trees and chasing
preys (Argot, 2010).

The presence of mixed-feeders such as Gomphotherium, Anchitherium, Heteroprox
and Tethytragus suggest, in addition, the existence of more open environments. The genus
Gomphotherium has been considered an inhabitant of open environments similar to recent
African savannas (Tassy, 1977; Lambert, 1996; Lambert and Shoshani, 1998). The isotopic
data for subtapiroid species of Gomphotherium from the latest early and early middle
Miocene of Germany suggests the consumption of C3 vegetation in woodland environments,
as documented by 8'3C values in G. steinheimense (—10.7%o up to —10.1%o; Tiitken et al.,
2006) and G. subtapiroideum (—11.9%o to —10.2%o; Tiitken and Vennemanm, 2009). However,
dental microwear studies of both species indicate a mixed-feeding, with G. subtapiroideum
likely favoring more open woodlands (Calandra et al., 2008, 2010). In contrast, the rather high
8'3C values for G. angustidens from the middle Miocene localities of the Madrid Basin, Spain
(=10.65%0 to —6.21%o0; Domingo et al., 2009, 2012) indicate that Gomphotherium might have
intruded into open and grassland environments. Although data from the Central European

populations of G. angustidens are missing, this species most probably favored more open
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environments than the other proboscidean species recorded from Czujan’s sandpit (i.e., P.
bavaricum and Z. turicensis), which most probably occupied a different ecological niche in
more closed woodland (Fig. 8). Anchitherium might also have inhabited open woodland
environments, as suggested by results from dental mesowear (Kaiser, 2009) and isotopic
studies (Tiitken et al., 2006; Tiitken and Vennemann, 2009) of A. aurelianense populations
from Sandelzhausen and Steinheim (Germany), as well as more open environments as
suggested by 8'3C values (—-12.7%o to —6.49%0; Domingo et al., 2012) from populations of
Spanish MN5-MNG6 localities.

Mixed-feeding Heteroprox species usually inhabited forests or woodlands in Central
Europe (specifically Seegraben, Austria and Sandelzhausen, Germany) during the Langhian,
as documented by 3'3C values (—12.0%o to 10.4%o; Tiitken and Vennemann, 2009; Aiglstorfer
et al., 2014). However, the dental microwear study of H. /arteti populations from central
Spain (DeMiguel et al., 2011), contrary to isotopic studies of Domingo et al. (2012), revealed
a high degree of grazing interpreted as an adaptation to seasonal arid periods during the
Serravallian. A similar variation in paleohabitat is recorded in Tethytragus. Isotope data of
Tethytragus sp. from Gratkorn, Austria (MN7+8; Aiglstorfer et al., 2014) indicate a woodland
environment, whereas isotope data of Tethytragus langai from Paracuellos 3, Spain (MNG6;
Domingo et al., 2012) show a mixed-feeding diet related to more open conditions. Augusti
and Anton (2002) pointed out that Tethytragus was capable of inhabiting different habitats
with a diet comprising a variety of vegetation. This was confirmed by micro- and mesowear
analysis of Tethytragus langai from the Serravallian of Spain (DeMiguel et al., 2011). Hence,
seasonal variations of dietary composition in Central European populations (e.g., those from
Gratkorn) could have occurred as well (Aiglstorfer et al., 2014). The omnivorous Retroporcus

matritensis also preferred a more open woodland environment based on isotopic studies

(Tiitken et al., 2006; Domingo et al., 2009).
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Among rhinocerotids, Brachypotherium brachypus has been traditionally considered a
semiaquatic species of open environments (Heissig, 1999; Augusti and Anton, 2002; Costeur
et al., 2012). However, its brachyodont dentition, and the isotopical data of Brachypotherium
from Steinheim (MN7, Germany) and Eichkogel (MN11, Austria), suggest browsing in closed
woodland environment (Tiitken et al., 2006; Aiglstorfer et al., 2014) unlike
Hoploaceratherium, which most likely favored more open environments based on 8'°C values
from the middle Miocene (MN5—MNG6) localities from the Madrid Basin, Spain (—11.15%o to
—9.02%o0; Domingo et al., 2012). The different paleoecological preferences of these two
rhinocerotids are as well manifested with their anatomical differences, as Hoploaceratherium
has long legs and is better adaptated for a cursorial locomotion in an open landscape, whereas
B. brachypus is a short-limbed and hippo-like species (Cerdeio, 1993; Heissig, 2012).

The indeterminate trionychid turtle is indicative of the presence of permanent
freshwater reservoirs, whereas the testudinid 7estudo kalksburgensis inhabited open
woodland, or even more open environments. Medium-sized testudinids are well adapted to
dry conditons, and can inhabit a wide variety of open environments ranging from clearings
with low vegetation to semiarid habitats (Miklas-Tempfer, 2003, 2005; Cerﬁansk}'/ et al.,
2012; Lujan et al., in press). The aquatic trionychid turtle, semiaquatic Brachypotherium
together with the rich fossil record of proboscideans at Czujan's sandpit, (whose recent
representatives are well known for water seeking; e.g., Haynes, 1991), further indicates the
presence of permanent freshwater bodies occurring in the northwest area of the Vienna Basin
coastline to the adjacent Carpathian Foredeep Basin. Middle Miocene changes in the Central
Paratethyan terrestrial environments were conditioned by increased tectonic activity which
resulted in uplifting mountains in the east and two marine transgressions, one during the early
Badenian and second one in the late Badenian (Kovac et al., 2007). The extensive areas

around the Vienna Basin were divided by the uplift of its eastern part into western lowlands
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and eastern steep highlands in the late Badenian (e.g., Kvacek et al., 2006; Kovac et al.,
2007). The late Badenian paleobotanical record from eastern Central Europe indicate that the
highland situated southeast of the Vienna Basin was covered by a mixed mesophytic forest
with extrazonal (mountain) vegetation (i.e., Devinska Nova Ves, Slovakia; Kvacek et al.,
2006; Kovacova et al., 2011; Kovar-Eder and Teodoridis, 2018). The dominance of forest
environments is also documented in this area by the late Badenian mammal assemblages from
Devinska Nova Ves locality - Zapfe’s Fissures, “Bonanza” and Sandberg (Sabol and Kovac,
2006). Although paleobotanical record from lowlands situated in the Carpathian Foredeep
Basin, (i.e., northwest of the Vienna Basin) is rather incomplete, recent analyses from the
early late Badenian to early Sarmatian low altitude (0-300 m a.s.l.) localities of the Carpathian
Foredeep Basin, together with the data obtained both south and west of the Vienna Basin,
point to the presence of subhumid sclerophyllous vegetation (Kovar-Eder and Theodoridis,
2018). The paleoecological analysis of the late Badenian Czujan’s sandpit revealed a mosaic
of habitats represented by forests, close to open woodlands, more open environments, and
stagnant or slowly flowing freshwater reservoirs in the continental northwestern area of the
Vienna Basin to the adjacent Carpathian Foredeep Basin (Fig. 8). This mosaic of local
habitats could be understood as restricted riparian and floodplain forests surrounded by
widespread woodland which opened inland, locally passed into the more open environments
(grass dominated).

Subhumid sclerophyllous forests documented from the Central Paratethys suggest a
more marked precipitation seasonality for the late Langhian to early Serravalian period
(Kovar-Eder and Theodoridis, 2018). The predominance of open habitats, both west of the
Vienna Basin and in the southwestern part of the Carpatian Foredeep Basin (see also section
5.3.; table 1 and 2) is in agreement with increase in precipitation seasonality reported since the

early Badenian. This climatic change was mainly result of tectonically inferred sea-level falls

30



748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

in West Carpathian-North Pannonian Basins (Kovac et al., 2001), as well as a possible
decrease of moist air mass production during the early Badenian (Béhme, 2003). The second
period of increased precipitation seasonality 14.7-14.5 Ma (Bohme, 2003), which most
probably persisted in the northwestern part of the Vienna Basin up to the early/late Badenian
transition, was followed by a late Badenian steep decrease of humidity in Central and Eastern
Europe. This drop in humidity culminated during the latest Badenian and Sarmatian stages
(~13-12 Ma; Bohme et al., 2008) as also documented by the dramatic succession of dry years
with irregular precipitation events recorded from isotopic record of Serravallian oyster shells

from the Vienna and Korneuburg Basins (Harzhauser et al., 2011).

7. Conclusions

Here we provide an updated faunal list of the middle Miocene vertebrate assemblage from
Czujan’s sandpit site as well as interpretation of the geological, taphonomical and
paleoenvironmental data based on the osteological and dentognathic materials. A total of 14
vertebrate taxa were indentified, including two reptiles (Testudines: Trionychidae indet. and
Testudo kalksburgensis) and 12 mammals (Proboscidea: Prodeinotherim cf. bavaricum,
Zygolophodon turicensis, Gomphotherium angustidens; Rhinocerotidae: Hoploaceratherium
sp., Brachypotherium brachypus; Chalicotheriidae: Anisodon grande, Equidae:
Anchitherium sp.; Suidae: cf. Retroporcus matritensis; Palacomerycidae indet.; Cervidae:
Heteroprox larteti; Bovidae: Tethytragus stehlini and Carnivora: Amphicyon cf. major). The
taphonomic analysis indicates that terrestrial vertebrate fossils could not be redeposited.
Fossil vertebrates from Czujan’s sandpit come from deposits of a braid delta plain to delta
front deposited during the Kosovian substage (late Badenian). Based on the combination of
biostratigraphic and geological data, we assume that Czujan’s sandpit age can be placed to

latest MN6 for Central Europe (close to Wielician/Kosovain substage boundary: ~13.6 Ma).
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We conclude that there are two plausible explanations for the genesis of the fossil
accumulation from Czujan’s sandpit, including: 1) an abiotic time-averaged concentration
generated by the transport energy of water; or 2) the gradual or periodical transport of remains
from one or more (in the case of more time-averaged as well) mass death site accumulation.
However, under both interpretations, the Czujan’s sandpit vertebrate assemblage would
reflect an averaged spectrum of species from the whole river basin flowing into northwest of
the Vienna Basin. We suggest a mosaic of continental habitats in the area from northwestern
coast of the Vienna Basin to the adjacent Carpathian Foredeep Basin. These habitats were
represented by the restricted riparian and floodplain forests, surrounded by the widespread
woodlands opening locally into more open environment, with enough freshwater sources that
could eventually evaporate on a seasonal basis during droughts, leading to mass deaths of

animals.
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Figure captions

Fig. 1. A: Simplified geological map of Central Europe (A: Austria, CZ: Czech Republic, G:
Germany, H: Hungary, PL: Poland, SK: Slovakia). B: Geological map of Mikulov area where
the location of Czujan’s sandpit is denoted by an asterisk (based on Jiittner, 1939b; Ctyroky et

al., 1995).

Fig. 2. Geological cross sections through the area of Czujan’s sandpit reconstructed from drill
cores and boreholes: HV1 and HJ1 (Kuklova, 1970, 1978); PV1 and PV3 (Seitl, 1985); S164-
180 (Cerha, 1987). The red line indicates the border between successive upper Badenian

substages Wielician and Kosovian according to the borehole NM2 (Bimka et al., 1983).

Fig. 3. Composite stratigraphic log of the Hrusky Formation in the studied area, including the
fossil content recovered from the borehole samples (Kuklova, 1970, 1978; Seitl, 1985; Cerha,
1987) and stratigraphic boundary between successive upper Badenian substages Wielician

and Kosovian in Nové Mlyny 2 borehole (Bimka et al., 1983).

Fig. 4. Photographs taken by R. Musil in 1964 showing the uppermost part of the Hrusky
Formation. Facies association 3 (FA3, Kosovian, modified with lines indicating the
sedimentary architecture). A: sequence of two sedimentary units (St, SGt and Sh, SGh). B:
sequence of two sedimentary units (Sp facies and Sl, Gl). The irregularity of the originally
horizontally placed clay body is caused by a partial slide of the wall. Original in photoarchive
of the Department of Geology and Paleontology, MZM; colored lines are explained in the

text.
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Fig. 5. Vertebrate remains from Czujan’s sandpit. A: Trionychidae indet., costal plate (PIUW-
8X1939) in dorsal view. B-C: Testudo (Chersine) kalksburgensis, carapace and plastron
(Ot7875) in dorsal (B) and visceral (C) views. D: Prodeinotherium cf. bavaricum, left M3
(Ot7526), in oclusal view, E: Zygolophodon turicensis, right M3 (Ot7541), in oclusal view.
F-G: Gomphotherium angustidens, right M2 (Ot7524) in (F) oclusal view; right 12 (Ot7505)
in (G) lateral view. H: Anisodon grande, left fourth metacarpal (Ot7766) in lateral view. I:
Hoploaceratherium sp., right tibia (Ot7749) in dorsal view. J-L: Brachypotherium brachypus,
left tibia (Ot7752) in (J) dorsal view; right incisor (Ot7700) in (K) labial view; left maxillary
fragment with M2-M3 (Ot7752) in (L) oclusal view. M: Anchitherium sp., right maxillary
fragment with M1-M2 (Ot7765) in oclusal view. N-O: Tethytragus stehlini, frontoparietal
with horn cores (Ot7786) in anterior (N) and left lateral (O) views. P: Palacomerycidae indet.,
right mandibular fragment with m2-m3 (Ot7773) in oclusal view. Q: Heteroprox larteti,
partial antler (Ot7771) in side view. R: cf. Retroporcus matritensis, right (with m3) and left
(with m1) mandibular fragments (RMM P11) in oclusal view. S-T: Amphicyon cf. major,

partial left canine (Ot7814) in (S) lingual view; left calcaneus (Ot7815) in (T) proximal view.

Fig. 6. Taphonomic features of fossil vertebrate remains from Czujan’s sandpit. A-B:
Proboscidean right (Ot7596) and left (Ot7599) humerus from a single individual in (A-B)
cranial views. C: Proboscidea indet., atlas (Ot7545) and axis (Ot7547) in anatomical
articulation, in dorsal view. D: Hoploaceratherium sp., radius (Ot7738) and ulna (Ot7829) in
anatomical articulation, in distal view. E: Artiodactyla indet. (small size), tibia (Ot7810) and
astragalus (Ot7808) in anatomical articulation, in plantar view. F: Proboscidea indet., right
femur (Ot7647) with unfused distal epiphysis (Ot7650), in medial view. G: Right posterior
carapace fragment with well preserved growth scute lines (Ot7877) in lateral view. H-I:

Rhinocerotidae indet., comparison of a well preserved radius (Ot7736) with a deformed
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partial radius (Ot7737) as a possible result of trampling, in (H-I) caudal views. J:
Brachypotherium brachypus, cracks in distal head of humerus (Ot7720), in caudal view. K—L:
Proboscidea indet., proximal head of humerus (Ot7646) with gnawing traces of a large
carnivore, in proximal (K) and caudal (L) views. M: Proboscidea indet., detail of gnawing
traces of on the tip of tusk (Ot7483) possibly produced by a small rodent. N: Isurus sp., partial

tooth (Ot7870), in labial view. O: wood fragment (Ot7871).

Fig 7. Stratigraphic distribution of the studied taxa in Central Europe. Age boundaries for the
Badenian stage follow Kovac et al. (2018). Modified MN zonation in Western and
Southwestern Europe follows Hilgen et al. (2012), Central European MN zonation modified
according to Steininger (1999), Becker (2003) and Hilgen et al. (2012). The taxa ranges and

ages of localities are based on various sources (see Supplementary Information).

Fig. 8. Paleoenvironments derived for Czujan’s sandpit taxa. Taxa silhouettes are not in scale:
1) Zygolophodon turicensis; 2) Heteroprox larteti; 3) Anisodon grande; 4) Palacomerycidae;
5) Tethytragus stehlini ; 6) Amphicyon major; 7) Prodeinotherium bavaricum; 8)
Brachypotherium brachypus; 9) Gomphotherium angustidens; 10) Hoploaceratherium; 11)

Anchitherium sp.; 12) Retroporcus matritensis; 13) Testudo kalksburgensis.

Table captions
Table 1 Comparison of minimum numbers of individuals (MNI) recorded at Czujan’s sandpit
with recent mass death sites reported during drought in Zimbabwe (Haynes, 1988, counted in

1986).
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Table 2 Age profile of the studied proboscideans (Zygolophodon turicensis and
Gomphotherium angustidens) from Czujan’s sandpit. Dental ages follow Tassy (1996, 2013,

2014), whereas ontogenetic age and age categories follow Haynes (2017).

Supplementary material
SUPPLEMENTARY TABLE 1

List of studied material with distribution of skeletal elements for each determined taxa.

SUPPLEMENTARY INFORMATION.
List of well dated Neogene localities in Central Europe with the occurrence of the taxa

recorded at Czujan’s sandpit. Countries are given in capital letters and the name of the locality

1s in bold.
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Table 1 Comparison of minimum numbers of individuals (MNI) recorded at Czujan’s
sandpit with recent mass death sites reported during drought in Zimbabwe (Haynes,

1988, counted in 1986).

Taxon Czujan’s sandpit Shabi Shabi Lememba Shkawanki  Nehimba
Proboscidea 21 45 21 8 4
Non-equid Perissodactyla 7 - - -
Equidae 1 2 2 - -
Non-bovid Ruminantia 4 - 3 1 -
Bovidae 11 11 8 1 2
Suidae 1 - 1 1
Carnivora 1 2 2 - -
Aves - 5 1 - -
Testudines 4 4 - - 1
Total MNIs 50 69 37 11 8
Taxa represented 14 13 8 4 5




Table 2 Age profile of studied proboscideans (Zygolophodon turicensis and
Gomphotherium angustidens) from Czujan’s sandpit. Dental ages follow Tassy (1996,
2013,2014), whereas ontogenetic age follow Haynes (2017).

Dental ages MNI Approximate age
Zygolophodon turicensis Gomphotherium angustidens (years)
I-1l. 0-1
. 1 1-15
IV-VI. 1.5-5.5
VII. 1 55_7
VIII-IX. 7-10
X. 1 10-13
XI-XII. 13-18
XIll. 1 18-20
XIv. 3 1 20-22
XV. 2 22-24
XVI. 4 24-27
XVII. 1 2728
XVIII-XIX. 28-32
XX. 2 1 32-35
XXI. 3537

XXIL. 1 3717



SUPPLEMENTARY INFORMATION
List of well dated Neogene localities in Central Europe with the occurrence of the taxa

recorded at Czujan’s sandpit. Countries are given in capital letters and the name of the locality
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11

12

13

14

15

16

17

18

19

20

21

1s in bold.

AUSTRIA

Grund

Age: ~15.2 Ma (Daxner-Hock et al., 2004)

Taxa:

Locality Supraspecific taxa | Species References

Grund Proboscidea Prodeinotherium bavaricum | Daxner-Hock et al. (2004)
Grund Palacomerycidae Palaeomeryx eminens Daxner-Hock et al. (2004)
Guntersdorf

Age: ~15.2 Ma (Daxner-Hock et al., 2004)

Taxa:
Locality Supraspecific taxa | Species References
Guntersdorf Proboscidea Gomphotherium angustidens | Daxner-Hock et al. (2004)

Seegraben near Leoben

Age: 14.8 Ma (Aiglstorfer et al., 2014a)

Taxa:

Locality Supraspecific taxa | Species References

Seegraben Proboscidea Prodeinotherium bavaricum | Aiglstorfer et al. (2014a)
Seegraben Cervidae Heteroprox larteti Aiglstorfer et al. (2014a)
Goriach

Age: ~14.5 Ma (Aiglstorfer et al., 2014a)




22

23

24

25

26

27

28

29

30

31

32

33

34

35

Taxa:
Locality Supraspecific taxa | Species References
v . . Hoploaceratherium .
Goriach Rhinocerotidae tetradactylum Heissig (2012)
Goriach Palacomerycidae Ampelomeryx magnus Astibia (2012)
Goriach Suidae Retroporcus matritensis Pickford and Laurent
(2014)
Klein-hadersdorf
Age: ~14.2 Ma (Bohme et al., 2012a)
Taxa:
Locality Supraspecific taxa | Species References
Klein-hadersdorf | Proboscidea Gomphotherium angustidens | Thenius (1948)
Klein-hadersdorf | Proboscidea Zygolophodon turicensis Thenius (1948)
Klein-hadersdorf | Rhinocerotidae Hoploaceratherium cf. Thenius (1948)
tetradactylum
Klein-hadersdorf | Rhinocerotidae Brachypotherium brachypus | Thenius (1948)
Klein-hadersdorf | Palacomerycidae Palaeomeryx eminens Thenius (1948)
Klein-hadersdorf | Cervidae Heteroprox larteti Thenius (1948)
Klein-hadersdorf | Bovidae Tethytragus stehlini Thenius (1951)
Gratkorn
Age: 12.2-12.0 Ma (Gross et al., 2014)
Taxa:
Locality Supraspecific taxa | Species References
Gratkorn Rhinocerotidae Brachypotherium brachypus | Gross et al. (2014)
Gratkorn Palacomerycidae Palacomerycidae indet. Aiglstorfer et al. (2014a)
SLOVAKIA

Devinska Nova Ves—Zapfe’s fissures

Age: lower part of MN6, 14.5-13.82 (Fejfar, 1990)

Taxa:

Site Supraspecific taxa | Species References

]gsls\ilr\;s ~Zapfe’s Proboscidea Prodeinotherium bavaricum | Sabol and Holec (2002)
D.N.V. Zapfe’s | Proboscidea Zygolophodon turicensis Sabol and Holec (2002)
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37

38

39

40

41

42

43

44

45

46

47

48

49

fissures

D.N.V. —Zapfe’s Rhinocerotidae Hoploaceratherium cf. Sabol and Holec (2002)
fissures tetradactylum

DN.V. ~Zapfe’s Chalicotheriidae Anisodon grande Sabol and Holec (2002)
fissures

DN.V.=Zapfe’s | cervidae Heteroprox larteti Sabol and Holec (2002)
fissures

]gsl;lr\;s ~Zapfe’s Palaeomerycidae Palaeomeryx magnus Sabol and Holec (2002)
D-N.V. =Zapfe’s | comivora Amphicyon major Sabol and Holec (2002)
fissures

Devinska Nova Ves—Bonanza

Age: late Badenian, 13.82—13.60 Ma (Sabol and Kovac 2006; Ivanov, in press)

Taxa:

Site Supraspecific taxa | Species References

gol;la\riz; Proboscidea Zygolophodon turicensis Sabol and Kovac (2006)
Devinska Nova Ves—Sandberg

Age: late Badenian, 13.60-13.1 Ma (Hyzny et al., 2012)

Taxa:

Site Supraspecific taxa | Species References

]S)alrfd?)/er;w Proboscidea Zygolophodon turicensis Sabol and Holec (2002)
D.N.V. - Equidae Anchitherium aurelianense Sabol and Holec (2002)
Sandberg

]S)alrfd?)/er;w Palacomerycidae Palaeomeryx kaupi Sabol and Holec (2002)
]S)alrfd?)/er:g Cervidae Heteroprox larteti Sabol and Holec (2002)
SWITZERLAND

Hiillistein

Age: 15.9-16.0 Ma (Aiglstorfer et al., 2014b)

Taxa:
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53
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55

56

57

58

59

60

61

62

63

64

65

66

67

Locality Supraspecific taxa | Species References
Hillistein Proboscidea Gomphotherium angustidens | Bollinger (1992)
Hiillistein Equidae Anchitherium aurelianense Bollinger (1992)
Crét-du-Locle
Age: ~13.6 Ma (van der Made, 2012)
Taxa:
Locality Supraspecific taxa | Species References
Crét du Locle Bovidae Tethytragus stehlini Thenius (1951)
Anwil
Age:13.37-13.17 Ma (Bohme et al., 2008)
Taxa:
Locality Supraspecific taxa | Species References
Anwil Equidae Anchitherium aurelianense Engesser (1972)
Anwil Palacomerycidae Palaeomeryx sp. Engesser (1972)
Anwil Suidae Retroporcus matritensis Pickford and Laurent
(2014)

HUNGARY
Rudabanya
Age: 10.3-9.9 Ma (B6hme et al., 2008)
Taxa:
Locality Supraspecific taxa | Species References

, . . Hoploaceratherium o
Rudabanya Rhinocerotidae belvederense Heissig (2005)
POLAND
Opole 1
Age: 14.5-13.7 Ma (Harzhauser and Neubauer, 2018)
Taxa:
Site ‘ Supraspecific taxa ‘ Species References
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69

70

71

72

73

74

75

76

77

78

79

80

Opole 1 Proboscidea Gomphotherium angustidens | Kowalski (1990)

Opole 1 Rhinocerotidae Hoploaceratherium Kowalski (1990)
tetradactylum

Opole 1 Rhinocerotidae Brachypotherium brachypus | Kowalski (1990)

Opole 1 Chalicotheriidae Anisodon grande Kowalski (1990)

Opole 1 Equidae Anchitherium aurelianense Kowalski (1990)

Opole 1 Palacomerycidae Palaeomeryx eminens Kowalski (1990)

Przeworno (1+2)

Age: ~12.2 Ma (Aiglstorfer et al., 2014b)

Taxa:

Site Supraspecific taxa | Species References

Przeworno (1+2) | Proboscidea Gomphotherium angustidens | Kowalski (1990)

Przeworno (1+2) | Rhinocerotidae Brachypotherium brachypus | Kowalski (1990)

Przeworno (1+2) | Equidae Anchitherium aurelianense Kowalski (1990)

GERMANY

Eggingen-Mittelhart 3

Age: 17.9-17.85 Ma (B6hme et al., 2012b)

Taxa:

Site Supraspecific taxa | Species References

Eggingen — . . . . Sach and Heizmann

Mittelhart 3 Proboscidea Prodeinotherium bavaricum (2001)

Eggingen — . . . Sach and Heizmann

Mittelhart 3 Proboscidea Gomphotherium angustidens (2001)

Eggingen — . . Sach and Heizmann

Mittelhart 3 Palacomerycidae Palaeomeryx kaupi (2001)

Eggingen — . . : Sach and Heizmann

Mittelhart 3 Carnivora Amphicyon cf. major (2001)

Langenau

Age: 17.8-17.75 Ma (Béhme et al., 2012b)

Taxa from:

Site Supraspecific taxa | Species References
Langenau 1 Proboscidea Prodeinotherium bavaricum (S;g(l)l Snd Heizmann
Langenau 1 Proboscidea Gomphotherium angustidens | Sach and Heizmann
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84

85

86

87

88

&9

90

91

92

93

94

(2001)
. . cf. Brachypotherium Sach and Heizmann
Langenau 1 Rhinocerotidae brachypus 2000)
Langenau 1 Equidae Anchitherium aurelianense (Sza (():(l)lsnd Heizmann
Langenau 2 Palacomerycidae Palaeomeryx sp. (S;g(l)lsnd Heizmann
Langenau 1 Cervidae Heteroprox larteti Bohme et al. (2012a)
Gerlenhofen

Age: ~17 Ma (Aiglstorfer et al., 2014b)

Taxa:

Locality Supraspecific taxa | Species References

Gerlenhofen Proboscidea Gomphpthermm cf. Sach and Heizmann
angustidens (2001)

Gerlenhofen Rhinocerotidae Brachypotherium brachypus (Sza ((): (l)l Snd Heizmann

Sandelzhausen

Age: 16.58-16.37 Ma (Bohme et al., 2011)

Taxa:
Locality Supraspecific taxa | Species References
Sandelzhausen Proboscidea Zygolophodon turicensis Gohlich (2010)
Sandelzhausen Equidae Anchitherium aurelianense Kaiser (2009)
Sandelzhausen Palacomerycidae Germanomeryx fahlbushi Rdssner (2010)
Hader
Age: ~16,2 Ma (Bohme et al., 2012a)
Taxa:
Locality Supraspecific taxa | Species References
Héader Chalicotheriidae Anisodon grande Guérin 2012
Héader Equidae Anchitherium aurelianense Eronen and Rossner
(2007)

. . . Eronen and R&ssner
Héader Cervidae Heteroprox larteti (2007)
Heggbach
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98

99

100

101

102

103

104

105

106

107

108

Age: ~16 Ma (Aiglstorfer et al., 2014b)

Taxa:

Locality Supraspecific taxa | Species References

Heggbach Proboscidea Gomphotherium angustidens | Bechly and Sach (2002)

Heggbach Equidae Anchitherium aurelianense Bechly and Sach (2002)

Heggbach Palacomerycidae Palaeomeryx kaupi Bechly and Sach (2002)

Heggbach Cervidae Heteroprox larteti Bohme et al. (2012a)

Heggbach Carnivora Amphicyon major Bechly and Sach (2002)

Stitzling

Age: ~14.8 Ma (Aiglstorfer et al., 2014b)

Taxa:

Locality Supraspecific taxa | Species References

Statzling Rhinocerotidae Brachypotherium brachypus 38876;1 and Rossner

Stitzling Chalicotheriidae Anisodon grande Eronen and Rossner
(2007)

Statzling Equidae Anchitherium aurelianense Eronen and Rossner
(2007)

Stétzling . . Eronen and Rossner

Palacomerycidae Palaeomeryx eminens (2007)
Stitzling Cervidae Heteroprox larteti Bohme et al. (2012a)
Friedberg

Age: ~14.2 (Bohme et al., 2012a)

Taxa:

Locality Supraspecific taxa | Species References
Friedberg Rhinocerotidae Brachypotherium brachypus 38876;1 and Rossner
Steinheim

Age: ~13.5 Ma (Tiitken et al., 2006)

Taxa:

Locality Supraspecific taxa | Species References
Steinheim Rhinocerotidae Brachypotherium brachypus | Tiitken et al. (2006)
Steinheim Equidae Anchitherium aurelianense Tiitken et al. (20006)
Steinheim Palacomerycidae Palaeomeryx eminens Tiitken et al. (2006)
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125

| Steinheim

| Cervidae

| Heteroprox larteti

| Bohme et al. (2012a)

Massenhausen

Age: ~12.6 Ma (Bohme, 2012a)

Taxa:
Locality Supraspecific taxa | Species References
. . Hoploaceratherium Eronen and Rossner

Massenhausen Rhinocerotidae tetradactylum (2007)

Massenhausen Rhinocerotidae Brachypotherium brachypus 386176;1 and Rossner

Massenhausen Chalicotheriidae Anisodon grande Eronen and Réssner
(2007)

Massenhausen Equidae Anchitherium aurelianense Eronen and Réssner
(2007)

Hammerschmiede

Age: 11.62-11.0 Ma (Bohme et al., 2008, 2019)

Taxa:

Locality Supraspecific taxa | Species References
Hammerschmied Rhinocerotidae Hoploaceratherium Kirscher et al. (2016)
e belvederense

?ammer“hmwd Chalicotheriidac | Anisodon grande Kirscher et al. (2016)
Atzelsdorf

Age: ~11.1 Ma (Aiglstorfer et al., 2014b)

Taxa:

Locality Supraspecific taxa | Species References

Atzelsdorf Equidae Anchitherium aurelianense Hillenbrand et al. (2009)
Atzelsdorf Palacomerycidae Palaeomeryx eminens Hillenbrand et al. (2009)
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Supplementary Table 1
List of studied material with distribution of skeletal elements for each determined taxa.

MINIMAL NUMBER OF ELEMENTS (MNE)

SKULL UPPER DENTITION LOWER DENT
Supraspecific taxa [Species Institution Specimens |Rounded bones |Fresh bones |Skull bones |Ant|er/Horn |Upperjaw Lowerjaw |12 |C |P3 |P4 |M1 |M2 |M3 d4 |p2 |p3 |
Proboscidea Prodeinotherium bavaricum MZM 1 0 1 1
Proboscidea Zygolophodon turicensis MZM, IPUW?, RMM? 70 2 68 2 4,1° 27,13 5 7,12 52> 1
Proboscidea Gomphotherium angustidens ~ MZM 4 0 4 1 1 2
Rhinocerotidae Hoploaceratherium sp. MZM 17 0 17
Rhinocerotidae Brachypotherium brachypus MZM, IPUW?2,RMM? 24 1 23 1 2,1%,13 1 1 2 1 1 1 1
Chalicotheriidae Anisodon grande MZM 3 0 3
Equidae Anchitherium sp. MZM 3 1 2 1
Palaeomerycidae Palaecomerycidaeindet. MZM, IPUW? 14 2 12 2
Cervidae Heteroprox larteti MZM 3 2 1 3
Bovidae Tethytragus stehlini MZM, IPUW? 20 7 13 1 11,22 2 4
Suidae Retroporcus matritensis RMM? 1 0 1 1°
Carnivora Amphicyon cf. major MzM, UGV 3 1 2 1,1*
Testudinidae Testudo kalksburgensis MZM 8 0 8
Trionychidae Trionychidaeindet. IPUW? 1 1 0
Cervidae/Bovidae Undetermined MZM, IPUW? 11 4 7
Proboscidea Undetermined MZM, IPUW? 190 20 170 2
Rhinocerotidae Undetermined MZM, IPUW? 34 1 33 1 3
Testudines Undetermined fragments MZM, IPUW? 57 14 43
TOTAL (MNE) 464 56 408 4 16 6 20 30 2 1 7 11 10 1 1 1

1 = Department of Geological Sciences, Faculty of Sciences, Masaryk University (UGV)

2 =Paleontological Institut University Vienna (IPUW)
3 =Regional Museum in Mikulov (RMM)



