

This is the **submitted version** of the article:

Arcas Pilz, Verónica; Rufí Salís, Martí; Parada, Felipe; [et al.]. «Recovered phosphorus for a more resilient urban agriculture: assessment of the fertilizer potential of struvite in hydroponics». Science of the total environment, Vol. 799 (Dec. 2021), art. 140424. DOI 10.1016/j.scitotenv.2021.149424

This version is available at https://ddd.uab.cat/record/248799

under the terms of the CC BY-NC-ND license

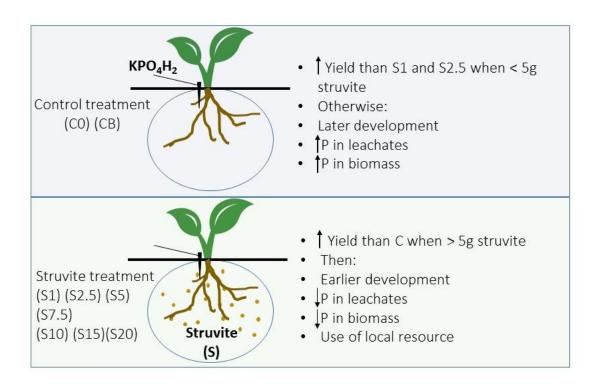
1 Recovered phosphorus for a more resilient urban agriculture:

2 assessment of the fertilizer potential of struvite in hydroponics

3

- 4 Verónica Arcas-Pilz^{a,1}, Martí Rufí-Salís^{a,b,1}, Felipe Parada^a, Anna Petit-Boix^c,
- 5 Gara Villalba^{a,b}, Xavier Gabarrell^{a,b,*}

6


- 7 aSostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology
- 8 (MDM-2015-0552), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193
- 9 Bellaterra, Barcelona, Spain
- 10 bDepartment of Chemical, Biological and Environmental Engineering, Universitat Autònoma de
- 11 Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain
- 12 Chair of Societal Transition and Circular Economy, University of Freiburg. Tennenbacher Str.
- **13 4**, 79106 Freiburg i. Br. (Germany)
- 14 These authors contributed equally to this research
- 15 Corresponding author: xavier.gabarrell@uab.cat

Abstract

- 17 Urban agriculture (UA) is a means for cities to become more resilient in terms of food
- 18 sovereignty while shortening the distance between production and consumption.
- 19 However, UA still intensively depends on the use of fertilizers, which relies on
- 20 depleting non-renewable resources such as (P) and causes both local and global
- 21 impact for its production and application. With the aim to reduce such impacts and
- 22 encourage a more efficient use of nutrients, this study assesses the feasibility of using
- 23 struvite precipitated from an urban wastewater treatment plant as the unique source

of P fertilizer. To do so, we apply various quantities of struvite (ranging from 1 to 20 g/plant) to the substrate of a hydroponic *Phaseolus vulgaris* crop and determine the yield, water flows and P balances. The results show that treatments with more than 5g of struvite per plant produced a higher yield (maximum of 181.41 g/plant) than the control (134.6 g/plant) with mineral fertilizer (KPO₄H₂). On the other hand, P concentration in all plant organs was always lower when using struvite than when using chemical fertilizer. Finally, the fact that different amounts of struvite remained undissolved in all treatments denotes the importance to balance between a correct P supply to the plant and a decrease of P lost through the leachates, based on the amount of struvite and the irrigated water. The findings of this study show that it is feasible for UA to efficiently use locally recovered nutrients such as P to produce local food.

Graphical Abstract:

1. Introduction

38

40

41

42

43

45

46

47

49

51

52

53

54

55

56

58

Meeting the food demand of the ever-growing urban population is a global 39 challenge. Since food provision to cities is highly dependent on long and complex supply chains, the distance between production and consumption points has extensively increased. This prevents nutrient recycling, while emitting huge amounts of greenhouse gases due to long-distance transport (Rees and Wackernagel, 1996; 44 Thomaier et al., 2015). In this sense, moving towards more robust and resilient food systems should be a priority in the following years (European Commission, 2020). To do so, alternatives that narrow the distance between production and consumption points have already been reported, being urban agriculture one of the most prominent (Deelstra, 1987). However, this the yield (Astee and Kishnani, 2010; Rufí-48 Salís et al., 2020b). On the other hand, the use of local fertilizers is still very limited, and often reduced to the use of compost (Thomaier et al., 2015). 50 The case of phosphorus (P) fertilizers is of great relevance, since P is primarily obtained from non-renewable phosphate rocks. Moreover, previous studies quantify that 80% of the available stock of phosphate rocks is being used in the production of fertilizers (Shu et al., 2006). Since half of the world's current economic phosphate resources will have been used up by the end of the 21st century (Steen, 1998) the European Union recognizes P as a critical resource (European Comission, 2014). Among its recommendations, a planned amendment of the fertilizer regulation 57 encourages P recovery from local sources by enforcing a shift towards a more circular use of nutrients (European Comission, 2016). 59

In this sense, urban wastewater treatment plants (WWTPs) are well-known sources of secondary P. WWTPs have already been addressed as a potential alternative to importing mineral fertilizers (e.g. de-Bashan and Bashan, 2004; Kern et al., 2008; Shu et al., 2006). Struvite, also known as magnesium ammonium phosphate (MAP with the formula NH₄MgPO₄·6H₂O) is a crystalline precipitate that has been gaining popularity as a way to recover P from wastewater. To induce its precipitation a molar ratio of 1:1:1 for magnesium (Mg²⁺), ammonium (NH₄⁺) and phosphate (PO₄³⁻) is needed, under specific pH conditions (8.5-9.5) (Bouropoulos and Koutsoukos, 2000; J. R. Buchanan et al., 1994; Le Corre et al., 2009). Originally the precipitation of struvite was associated to a major concern in WWTP being the cause of equipment damaging causing labor and infrastructure costs (Borgerding, 1972; Doyle et al., 2003; Stratful et al., 2004). Struvite forced precipitation has gained attraction since the 90's, not only to avoid infrastructure damage but also as a P recovery technique (Doyle et al., 2003). This process has been studied and improved in the past years making it a more efficient precipitation process (Le Corre et al., 2009; Li et al., 2019; Sena and Hicks, 2018). In terms of application, the properties of struvite as an effective source of nutrients (P-PO₄³⁻, N-NH₄⁺ and Mg-Mg²⁺) for plants (Li and Zhao, 2003) and its low solubility in water (0.018g·100ml⁻¹ at 25°C) (Bridger et al., 1961) make it a slow-releasing valuable fertilizer that can reduce economic costs in agriculture (Rahman et al., 2014). However, only limited literature has explored the application of struvite in agricultural facilities. For example, Antonini et al. (2012), Uysal et al. (2014), Gell et al. (2011) and

Liu et al. (2011) assessed the maize performance of struvites with different

characteristics and origins in different soils. In a review made by Li et al. (2019) we

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

can see that almost all struvite trials found that vegetables grown with struvite had the same -or even improved- performance compared to controls with conventional fertilizers.

Creating a closed-loop, waste-to-resource system such as that of struvite recovery within the city limits and not applying it at this scale seems contradictory within the concept of urban metabolism. In this sense, the synergy between struvite precipitation in urban WWTPs and urban agriculture seems worth exploring considering the potential of the latter to blurry the lines between waste and resource within urban areas (Ferreira et al., 2018; Rufí-Salís et al., 2020a; Smit and Nasr, 1992). This article aims to assess the potential of struvite precipitated in a WWTP as a fertilizer within the framework of urban metabolism. Based on experimental and analytical results performed on a *Phaseolus vulgaris* crop grown in a hydroponic rooftop greenhouse, we determine the implications of fertilization with struvite in terms of yield, water flows and P balances and provide recommendations to further improve the performance of this waste-to-resource fertilizer.

2. Methodology

This section describes the materials and methods used in our analysis. We first present the system under study (section 2.1) along with the fertilization and experimental set-up (section 2.2). The experimental and analytical assessment of the P balances is defined in section 2.3, whereas sections 2.4 and 2.5 present the validation test set-up and its most relevant results, respectively. Finally, section 2.6 presents the

configuration of the determination test, which will finally provide the results for this study.

2.1 Characterization of the system

The present study was conducted in a rooftop greenhouse on the ICTA-ICP building, located in the campus of the Universitat Autònoma de Barcelona, 15km away from Barcelona. The building is equipped with a 900m² rainwater harvesting system that stores water in a 100m³ tank. Most of this rainwater is used in the rooftop greenhouse (122.8m²) to irrigate crops with a hydroponic system, i.e. mixing water with nutrients before providing the solution through a dripping system (2 L/h) to the perlite substrate bags (40L capacity). The perlite substrate has a pH of 7, an electrical conductivity of 0.09 dS·m⁻¹, a granulometry of [0-6] mm and 4 plants can be planted in each bag.

2.2 Fertilization and experimental set-up

Struvite granules were obtained from Aarhusvand A/S company from Aarhus, Denmark. This company distributes fertiliser grade struvite under the name PhosphorCareTM, recovered using the PhosphogreenTM technology. This technology is based on a fluidized bed reactor that creates the specific conditions to precipitate struvite through the addition of magnesium chloride, sodium hydroxide and air. The final struvite granules have a size range of 0.5-1.5 mm.

Common bean plant (*Phaseolus vulgaris* var. Pongo) was chosen as the crop for this study, planting nursery plants (approximately 10-14 days old). To apply the struvite

to the plants, we considered different possibilities. Mixing it with the nutrient solution was discarded because the system could not benefit from the slow-release characteristics of struvite. Thus, we choose to directly apply the granules to the plant roots. Considering this option, we designed a system that consisted on mixing perlite with struvite inside a low-density polyethylene perforated bag with holes of no more than 1 mm diameter (Figure SM1 in the Supplementary Materials). At the same time, this system allows the interaction between struvite granules and roots and avoids the depletion of undissolved struvite into the leachates.

Two different experiments were carried out: the validation test and the determination test, both of them using double growing lines with 8 substrate bags each (Figures SM2 and SM15 in the Supplementary Materials). For control treatments, the nutrient solution applied to the crops in milligrams per litre was $KPO_4H_2 - 136$, $KNO_3 - 101$, $K_2SO_4 - 217.5$, $Ca(NO_3)_2 - 164$, $CaCl_2 \cdot H_2O - 111$, $Mg(NO_3)_2 - 148.3$, Hortilon – 10, and Sequestrene – 10. In treatments with struvite, the mineral P source, KPO_4H_2 in this case, was excluded from the initial nutrient solution. All other mineral fertilizers were maintained.

2.3 Phosphorus balances

To account for the P balances, Equation 1 was calculated on a plant basis for every control and struvite treatment. Figure SM1 in the Supplementary Material shows a diagram of the perforated bag with the elements displayed in Equation 1.

148
$$P_{NS} + P_{SI} = P_{LV} + P_{ST} + P_{BN} + P_{SF} + P_{LIX} + P_{AC}$$
 (Equation 1)

In Equation 1, P represents mass of phosphorus. P_{NS} is the amount of mineral P supplied through the irrigation system during all the crop cycle. P_{SI} is the amount of P in the form of struvite applied at the beginning of the test. P_{LIX} is the amount of P in the leachates during all the crop cycle. P_{LV} , P_{ST} , and P_{BN} , represent P uptake by leaves, stem and beans, respectively. P_{SF} is the amount of remaining undissolved P in the form of struvite at the end of the test, plus the P adsorbed in the perlite granules. Finally, P_{AC} is the amount of dissolved P accumulated in the water retained in the substrate at the end of the crop. Three different biomass and substrate sampling dates were used in every test: 26, 54 and 78 days after planting (DAP) for the validation test and 23, 51 and 72 DAP for the determination test.

The initial nutrient concentration of the substrate was verified to be negligible at the beginning of the experiment through atomic spectroscopy and elemental analysis. Samples of the fertilizer solution were collected directly from the drippers placed in the perlite bags. Leachate samples were taken from plastic drainage buckets placed on one side of each line. To determine the P_{NS} and P_{LIX}, the respective samples were collected three times per week and externally analyzed using ICP-OES atomic spectroscopy (Optima 4300DV by Perkin-Elmer). P_{SI} was quantified summing the amount of perlite in a specific bag with the amount of struvite that was applied, considering weights obtained by drying two struvite samples and two perlite samples at 105°C in a furnace until reaching constant weight (reached after 3 days). P_{SF} was quantified differently in each test. In the validation test, all 4 samples for a specific treatment were homogenized after extracting the roots, using distilled water to separate the struvite granules from the roots. After this process, two random samples were dried at 105°C in a furnace until reaching constant weight and externally

analyzed using ICP-OES atomic spectroscopy. On the other hand, in the determination test, roots were shredded, homogenized and integrated within every individual substrate sample. Then, a fraction of these samples was dried and analyzed using the same method as in the validation test.

 P_{LV} , and P_{ST} were determined based on the nutrient content of every plant separately. Leaves and stem were separated, sorted into paper envelopes and dried in a furnace at 65°C until reaching constant weight (reached after 7 days) before analyzing externally the concentration of P through ICP-OES atomic spectroscopy. The same methodology was applied to determine the P_{BN} , with randomly chosen 500-gram bean samples being processed for every treatment. The P analytical results obtained for the beans were multiplied by the production obtained in every treatment to comply with the balances in a plant basis.

2.4 Validation test set-up and justification

From September 13th until December 3rd, 2018, 10 double growing lines were used (totalling 320 plants), distributing the treatments as showed in Figure SM2 of the Supplementary Material. The aim of this experiment was to validate and keep track of different parameters of the system. First, to check that the small, perforated bag did not have negative consequences to crop development. To do so, we split the control lines into two different treatments, VCB and VC0, using standard nutrient solution with and without the bags, respectively. Secondly, to check the correct development of bean plants with struvite in a hydroponic system, we applied different struvite amounts per plant: 5, 10, 15, 20 and 25g corresponding to the treatments tagged as V5, V10, V15, V20 and V25, respectively. Additionally, a treatment with no

struvite was tagged as V0. These amounts of struvite were based on previous experiments done with the same crop species and variety in hydroponic cultivation that accounted for P uptake (Rufí-Salís et al., 2020c). One week after the first harvest, KPO₄H₂ was added in the nutrient solution of struvite treatments until the end of the harvest to ensure a good nutrition to the plants during the production period, which is highly demanding in P (e.g. Bender et al. 2015; Kouki et al. 2016; da Silva et al. 2019).

2.5 Validation test results

2.5.1 Production and phenological stages

The production results for the control treatments VCB and VCO showed that the perforated bag did not have any effect on the correct crop development and yield (Figure 1 and Figure SM5), as the yields from the different lines do not differ between them (VCO_2 187.54±69.35; VCB_1 186.15±84.01 g/plant). Even though treatment VCO_1 generated more yield (224.84±91.84 g/plant), it could be attributed to the fact that it was an exterior cropping line facing the border and thus received more radiation. Similarly, VCB_2 also produced more yield (195.45±88.63 g/plant) than its replicate (VCB_1) although no significant differences where determined by the end of the experiment.

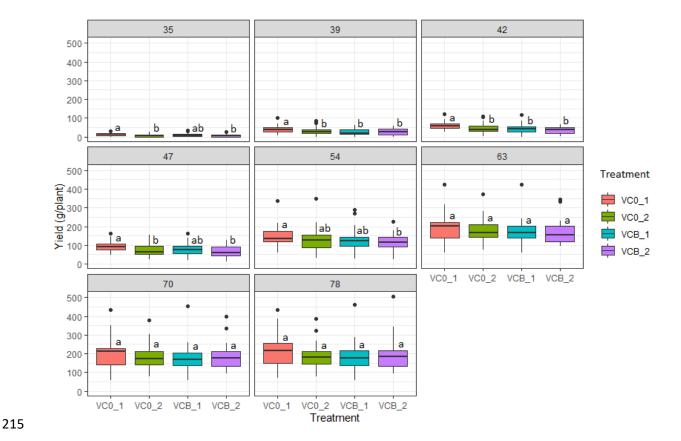


Figure 1: Production (g/plant) of the control treatments in the validation test, with (VCB) and without (VCO) perforated bags for each harvest. Same letters (a,b) indicate no significant difference (p>0.05) between treatment for each harvest time. Sample size for harvests 1, 2, 3, 4 and 5 (35-54 DAP) correspons to n=28 plants, for harvests 6, 7 and 8 (63-78 DAP) n=24 plants per treatment.

On the other hand, treatments with struvite (Figure SM3 and SM4 of the Supplementary Material) exerted a similar yield than the control treatments at the end of the crop. The treatment with the highest quantity of struvite (V25) had the highest production median (203.85 g/plant), while the treatment with the lowest quantity of struvite (V5) had the highest mean (216.15±93.54 g/plant). On the other hand, the treatment without struvite produced a really low yield (7.19±4.49 g/plant). The similarities in terms of yield between all struvite treatments at the end of the cycle may be related to the additional mineral fertilization during the production phase. Moreover, we can see that struvite treatments produced more than the control in the first 3 harvests (35, 39 and 42 DAP) (Figure SM6 in the Supplementary Material).

This effect is similarly observed for the phenological stages (Figures SM7 to SM11 in the Supplementary Material). For the parameters that were quantified in different dates (number of leaves (Fig. SM7), side shoots (Fig. SM8). Open flowers (Fig. SM9) and floral buttons (Fig. SM10)), we can see that the treatments with struvite not only had a correct early stage development, but also develop plant organs earlier than in control treatments.

2.5.2 Water

We applied more water in struvite treatments (125 L/plant) than to the control (94.76 L/plant) to ensure a proper dissolution of this fertilizer (Fig. SM12 – Supplementary Material). However, we can see in Figure SM13 in the Supplementary Material that if no control is taken over the water that is being irrigated, leachates emitted by the struvite treatments with higher concentrations (28.9 mg/L – V25) of this fertilizer tend to be similar to those of the control treatments. Obviously, this behaviour can only be observed before the irrigation with mineral P added during the harvesting process. Parallelly, we can see that the perforated bag mechanism did not affect the P concentration in the leachates between the control treatment C0 and CB.

2.5.3 Phosphorus content

Figure SM14 of the Supplementary Material shows the P content in the different plant organs as well as the content in the substrate, described as "undissolved". P content in the stem show low variability along all treatments, with V25 having the highest

 $(0.083\pm0.020g P)$ and V0 the lowest $(0.008\pm0.002g P)$ at the end of the crop cycle. A great P accumulation was observed in the low production of the V0 treatment with a content of 0.107±0.005g P (54 DAP) in beans, which was even higher than the highest observed in the control for VC0 (0.094±0.013g P -54 DAP), although the greater content was found for treatment V25 with 0.172±0.023g P (54 DAP). The V0 treatment doesn't show P results in leaves for 54 and 78 DAP because no leaves remained in the plant at the sampling time. For this same reason, there is a lack of data in beans for 78 DAP. Finally, concentration in beans for struvite treatments was similar to the one observed in the control. For all plant organs, a pattern in the accumulation of P in the plant tissue can be observed. In the first sampling all treatments show a rather low accumulation with greater content for plants with greater struvite quantities, in some cases also for the control treatments. For the second sampling, a bigger content difference can be seen with an acute increase of the V25 P content, especially for the stems and leaves. Finally, at 78 DAT, these differences between treatments even out and only treatment V0 remains significantly reduced. This last part however, does not correspond to the undissolved P in the perlite, where the P content in the substrate directly responds to the amount of struvite given, being always higher for the V25. The control treatments receive the P through irrigation making the existing content in the substrate comparably small.

2.6 Determination test set-up

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

From September 16th until November 27th, 2019, 8 double growing lines were used (totalling 256 plants), distributing the treatments as showed in Figure SM15 of the Supplementary Material. The determination test was designed based on the results of the validation test. The treatment distribution was randomized throughout the

Greenhouse avoiding the influence of climatic conditions. Thus, the struvite treatments were recalculated, applying per plant: 1, 2.5, 5, 7.5, 10, 15 and 20g corresponding to the treatments tagged as S1, S2.5, S5, S7.5, S10, S15 and S20, respectively. Struvite amounts below 5g were applied based on the yield and P content performance in the validation test for V5. Since we found that the perforated bag did not affect plant development, we only used one control treatment, tagged as CB, which used the same perforated bag as the struvite treatments. Moreover, considering the yield and phenological findings in the validation test, we decided not to apply mineral P fertilizer to the struvite treatments at any point, being struvite the only source of P to the plants.

2.7 Statistical analysis

The analysed data was tested for normality using the Shapiro-Wilk test p>0.05. Further on, the Levene's test p>0.05 was used to determine homogeneity of variance. Once these parameters were validated the Duncan's multiple range test was used to assess the statistical significance of treatments. On the other hand, non-parametric data were analysed for significance using the Kruskal-Wallis test. The significance between the treatments was marked with different letters in each plot. All statistical analyses were made with the R studio software.

3. Results

This section presents the results of the determination test. Section 3.2 shows the production of the control and struvite treatments. Section 3.2 presents the results in terms of amount and concentration of the water flows. Section 3.3 displays the

findings related to the P amount in the substrate and the undissolved struvite. Finally, Section 3.4 zooms in and shows the P concentration in the different plant organs.

3.1 Yield

Figure 2 (and SM16 in the Supplementary Material for the final total yield) shows the results of the accumulated yield per number of harvests, being the sixth harvest (71 DAP) the final one before uprooting the plants. Only treatments S1 (78.9 g/plant) and S2.5 (128.1 g/plant) had lower yields than the control treatment (134.6 g/plant), being the first significantly lower. On the other hand, all other treatments with 5g of struvite or above produced more than the control treatment, demonstrating the potential of struvite to produce similar or even higher yields than with mineral fertilizer, as reported by Li et al. (2019).

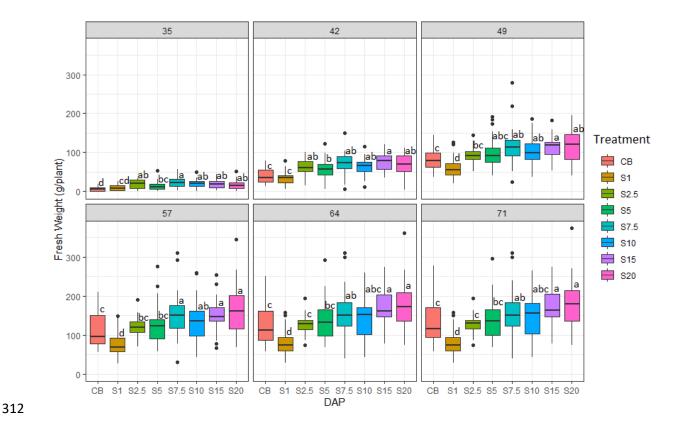


Figure 2: Comparison of accumulated production of fresh bean per plant (g/plant) per treatment for each harvest time. Same letters (a, b, c, d) indicate no significant difference (p>0.05) between treatment for each harvest time. Sample size for all harvests is n=24 plants per treatment.

As we can see in Figure 2, it was not until the second harvest (42 DAP) that great differences were observed between the S1 yield and the other struvite treatments, while a decrease in S2.5 yield was observed between the 4th and 5th harvest, 57 and 64 DAP, respectively. Regarding the control treatment, the first harvest produced lower yield (6.31±5.71 g/plant) than even the S1 struvite treatment (9.98±8.51 g/plant).

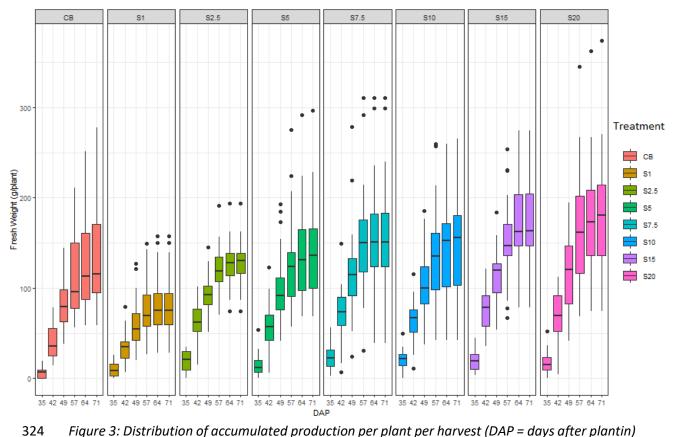


Figure 3: Distribution of accumulated production per plant per harvest (DAP = days after plantin) of different treatments. Sample size for all harvests is n=24 plants per treatment.

This fact reinforces the idea that the application of struvite could be beneficial for early stage plant development, as the validation test showed better behaviour in struvite than in control in phenological variables. This fact could be related to the NH₄⁺ supply by struvite, which could benefit the plant root balance when combined with nitrate supply (Marschner, 1995). The fact that previous literature suggests that NH₄⁺ supply to common bean could be harmful for plant development (Chaillou et al., 1986; Guo et al., 2007) could be related to the amount of NH₄⁺ supplied. Because struvite does not only enable a slow release of P but also of NH₄⁺, reaching NH₄⁺ accumulation to harmful levels seems improbable.

In terms of distribution, yields show an asymptote behaviour among treatments, where S20 produces the highest yield (g/plant) (181.41 ± 66.16) and S1, the lowest

 (78.94 ± 34.23) . Figure SM16 in the Supplementary Material shows how treatment S10 was detected as the exception for this tendency in terms of mean production (150.50 ± 56.10) , probably related to bias parameters like shapes in the greenhouse or a non-homogenic distribution of struvite in the perlite bag. However, boxplots represented in Figure 3 shows how the median of the final amount of yield harvested for S10 (155.70) follows the tendency, while not presenting outliers in the distribution.

3.2 Water

Figure SM17 of the Supplementary Materials shows that the irrigated water in the control and the struvite treatments was the same (42.5 litres per plant), while Figure 4 shows the accumulated P during the entire cycle in the different water streams. The quantity of P present in the control streams is much bigger than the one in the struvite streams, with the former irrigating and leaching 2.07 and 1.41 g of P per plant for the entire crop cycle, respectively. The fact that the P leachates are one order of magnitude smaller when using struvite (maximum of 0.03 g of P per plant in S20) could be related to the slow-release characteristic of struvite reported in the literature. A clear benefit of this finding is a decrease in both P depletion and freshwater eutrophication related to the leachates flow. Moreover, if the leachates of struvite treatments do not contain a large amount of P, it means that most of the struvite has been whether taken up by the plant or remains undissolved in the substrate.

When comparing Figure SM13 and Figure SM18 of the Supplementary Material, we can see that P release by struvite is highly dependent on the input water flow, represented in Figures SM12 and SM17 for the validation and determination test,

respectively. Because the irrigated water was three times less in the determination test (125.2 against 42.5 litres per plant, respectively), the P observed in the leachates is less than in the validation test, considering the period where P was not supplied through mineral fertilizer in the validation test.

Differences are observed within the struvite treatments in Figure 4, highly dependent on the quantity of struvite that was applied at the beginning of the crop. Treatments S1 and S2.5 stopped emitting P in the leachates just 14 DAP, which could have triggered P deficiencies. On the other hand, treatments S15 and S20 were the only struvite treatments that did not stop emitting P to the leachates flow.

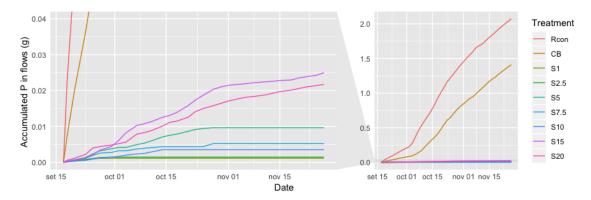


Figure 4: Distribution of accumulated phosphorus in the irrigation and leachates of different treatments. Rcon: P in the control irrigation stream.

3.3 Substrate and undissolved struvite

Figure 5 shows the distribution of P among all possible input and outputs considered in the system. At the end of the crop cycle, the control treatment supplied more P (2.07 g of P per plant) than the treatment with the highest amount of struvite (S20 - 1.90 g of P per plant). Most of the P supplied in the control treatments is discharged (68%), while in the struvite treatments it still remains in the substrate.

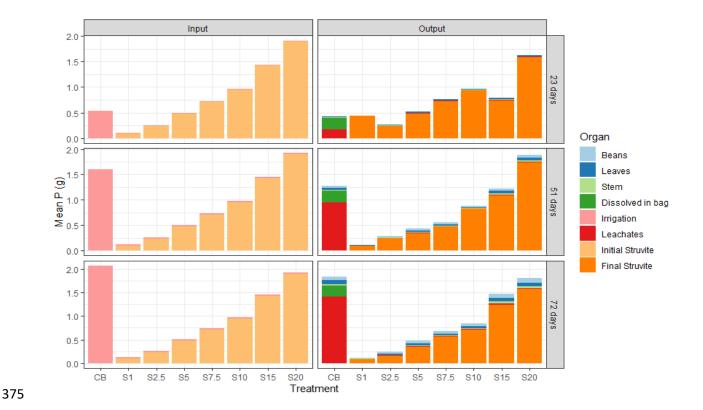


Figure 5: P distribution among all water, biomass and substrate flows and compartments. This amount of struvite at the end of the crop could be recovered, or the same substrate with struvite could be used for a successive crop.

3.4 Biomass

In terms of biomass, we can see that the concentration in percentage (Figure SM19 – Supplementary Material) in all organs increases with the quantity of struvite applied to the treatment, having S15 and S20 similar concentrations in the leaves $(0.70\pm0.13$ and 0.67 ± 0.18 , respectively) and stem $(0.50\pm0.09$ and 0.44 ± 0.12 , respectively). However, the control treatment with mineral fertilizer presented higher concentrations of P than all struvite treatments, also in beans (0.73 ± 0.04) . This is especially relevant in the case of beans, where the P deficiency in this organ directly affects the nutritional value of the product that is going to reach the market.

4. Discussion

Studying isolated parameters in agriculture only shows part of the big picture. In this sense, this section will discuss the results and tendencies that were found regarding the inputs and outputs for the control and struvite treatments and provide recommendations to practitioners based on our findings.

Treatments S1 and S2.5 had lower yields than the control treatments, establishing a clear relationship between the yield and possible P deficiencies in these treatments. However, struvite remains undissolved in all treatments, even though the production and the distribution of P among plant organs was different between treatments (Figure 2). The fact that we have undissolved struvite even in treatments S1 and S2.5 shows that the limitation is not only related to the quantity of struvite available, but also its dissolution (Figure 5 and Figure SM18 Supplementary Material).

Because the irrigated water was three times lower in the determination test, the P observed in the leachates is lower than in the validation test, considering the period where P was not supplied through mineral fertilizer. Moreover, there is a significant amount of P accumulated in the substrate bag at the end of the treatment in the control test. This stored P will be depleted if a successive crop is planted, since the small nursery plants will not benefit from all of it due to the lower needs of a smaller plant. With the addition of irrigation the accumulated nutrients in the perlite bag would eventually be moved to the leachates. By applying struvite (and verified by the small amount of P in the leachates in struvite treatments) this P is not stored and thus, not lost.

Based on the findings of this study, a well-designed struvite crop cycle needs to take into account two essential parameters. First, the quantity of struvite, considering that

the quantity that remains undissolved at the end of the crop can be used again for a successive cycle. Second, the irrigation management, considering that if we modify this variable to increase the dissolution of struvite granules, we would also be increasing the P in the leachates. Moreover, since previous studies highlighted the effect of the surface area of the granules on the solubility of slow-release fertilizers (Chien and Menon, 1995; Gell et al., 2011; Li et al., 2019), the size used in our study (0.5-1.5mm) seems adequate for the balance between P supply and P lost through the leachates. Literature with higher sizes reported solubility problems that affected early plant development (Talboys et al., 2016), while studies using lower sizes or powder do not report these problems (Achat et al., 2014; Antonini et al., 2012; Bonvin et al., 2015; Gell et al., 2011). Additionally, the use of nursery plants is preferable since the struvite low dissolution has been reported to be a disadvantage when providing P to feed the transition from seeds to nursery plants (Talboys et al., 2016).

Struvite supply per plant should always be above 5g for *Phaseolus vulgaris*, considering that more quantity of struvite would release more P into the leachates, but ensure that P is available for plants. On the other hand, we should also account for the nutritional value of the beans, considering the ultimate function is to produce yield. In this sense, P in the biomass was a variable where the control treatment had a better performance than struvite treatments. Only S15 and S20 reach a similar P amount to the control in all plant organs. For this reason, a quantity between 15 and 20g of struvite, a responsible irrigation management and growing successive crops with the same substrate constitutes the best option to grow a well-designed struvite bean crop cycle.

4. Conclusions

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

On the way towards resilient cities, the recovery of scarce resources that can be utilised within the urban boundaries will play an important role, especially in the food vector. This study assessed the performance of the potential application of struvite recovered from WWTPs in hydroponic bean crops to diminish the need for external resources in urban agriculture. Three main conclusions could be drawn from this analysis. First, applying struvite in hydroponics crops equals and even increases the yield compared to mineral fertilizer while diminishing P losses in the leachates, contributing to both less nutrient depletion and eutrophication potential. In this sense, a quantity above 5g/plant of struvite was observed to be enough for correct bean plant development and yield production. Second, the input water flow was relevant in supplying enough P to the plants through dissolution using struvite. On the other hand, a correct water irrigation management is relevant to diminish P losses through overdissolution. Therefore, a balance between these two potential problems should be one of the key parameters when growing crops with struvite. Third, a great quantity of struvite remains undissolved at the end of the crop in all treatments. In this sense, planting a successive cycle or recovering the struvite of the substrate could be alternatives to not losing valuable fertilizer. Based on the findings presented in this paper, we believe that future research should focus on three different aspects. First, the role of NH₄⁺ supplied by struvite on plant

development during the first production phase. Second, the performance of crops if

successive cycles are grown using the same undissolved struvite in hydroponic systems. Third and finally, the modelling of P release by struvite based on quantity applied and input water flow.

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

459

460

461

Acknowledgements

The authors are grateful to Universitat Autònoma de Barcelona for awarding a research scholarship to M. Rufí-Salís (PIF-UAB 2017), to the Spanish Ministry of Economy, Industry and Competitiveness (Spain) for the grant awarded to V. Arcas-Pilz (FPI-MINECO 2018), and to the National Commission for Scientific and Technological Research (Chile) for the grant awarded to F. Parada (PFCHA-CONICYT 2018 – Folio 72180248). This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (AEU/FEDER) [CTM2016-75772-C3-1-R] and the "María de Maeztu" program for Units of Excellence in R&D [MDM-2015-0552]. A. Petit-Boix thanks the German Federal Ministry of Education and Research for the financial support of the research group "Circulus - Opportunities and challenges of transition to a sustainable circular bio-economy", grant number 031B0018. The research leading to these results has received funding from the European Research Council under the European Horizon2020 research and innovation program under grant agreement No 862663 (FoodE) as well as, ERC grant agreement

n° 818002 URBAG, awarded to Gara Villalba.

Author contributions

All authors were responsible for the conception and design of the study. V. Arcas-Pilz, M. Rufí-Salís, A. Petit-Boix, G. Villalba and X. Gabarrell conceived the original idea for the study. M. Rufí-Salís, V. Arcas-Pilz and F. Parada set up, supervised and acquired the data for the experimental tests. M. Rufí-Salís and V. Arcas-Pilz processed and analysed the data. M. Rufí-Salís and V. Arcas-Pilz took the lead in writing the manuscript. All authors critically revised the draft for important intellectual content. All authors gave their final approval to the manuscript.

References

Achat, D.L., Sperandio, M., Daumer, M.-L., Santellani, A.-C., Prud'Homme, L., Akhtar, M., Morel, C., 2014. Plant-availability of phosphorus recycled from pig manures and dairy effluents as assessed by isotopic labeling techniques. Geoderma 232–234, 24–33. https://doi.org/10.1016/j.geoderma.2014.04.028
Antonini, S., Arias, M.A., Eichert, T., Clemens, J., 2012. Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Chemosphere 89, 1202–1210. https://doi.org/10.1016/j.chemosphere.2012.07.026

Astee, L.Y., Kishnani, N.T., 2010. Building Integrated Agriculture: Utilising Rooftops for Sustainable Food Crop Cultivation in Singapore. J. Green Build. 5, 105–113. https://doi.org/10.3992/jgb.5.2.105

- Bender, R.R., Haegele, J.W., Below, F.E., 2015. Nutrient uptake, partitioning, and
- remobilization in modern soybean varieties. Agron. J. 107, 563–573.
- 504 https://doi.org/10.2134/agronj14.0435
- Bonvin, C., Etter, B., Udert, K.M., Frossard, E., Nanzer, S., Tamburini, F., Oberson, A.,
- 506 2015. Plant uptake of phosphorus and nitrogen recycled from synthetic source-
- separated urine. Ambio 44, 217–227. https://doi.org/10.1007/s13280-014-0616-
- 508 6
- Borgerding, J., 1972. Phosphate deposits in digestion systems. J. Water Pollut.
- 510 Control Fed. 44, 813–819.
- Bouropoulos, N.C., Koutsoukos, P.G., 2000. Spontaneous precipitation of struvite
- from aqueous solutions. J. Cryst. Growth 213, 381–388.
- 513 https://doi.org/10.1016/S0022-0248(00)00351-1
- Bridger, G.L., Salutsky, M.L., Starostka, R.W., 1961. Metal Ammonium Phosphates as
- Fertilizers. 140th Meet. Am. Chem. Soc. 1–19.
- 516 Chaillou, S., Morot-Guadry, J., Lesaint, C., Salsac, L., Jolivet, E., 1986. Nitrate or
- ammonium nutrition in french bean. Plant Soil 91, 363–365.
- 518 Chien, S.H., Menon, R.G., 1995. Factors affecting the agronomic effectiveness of
- phosphate rock for direct application. Fertil. Res. 41, 227–234.
- 520 https://doi.org/10.1007/BF00748312
- da Silva, D.A., Tsai, S.M., Chiorato, A.F., da Silva Andrade, S.C., de Fatima Esteves,
- J.A., Recchia, G.H., Carbonell, S.A.M., 2019. Analysis of the common bean
- 523 (Phaseolus vulgaris L.) transcriptome regarding efficiency of phosphorus use.

- PLoS One 14, 1–27. https://doi.org/10.1371/journal.pone.0210428
- De-Bashan, L.E., Bashan, Y., 2004. Recent advances in removing phosphorus from
- wastewater and its future use as fertilizer (1997-2003). Water Res.
- 527 https://doi.org/10.1016/j.watres.2004.07.014
- Deelstra, T., 1987. Urban Agriculture and the Metabolism of Cities. Food Nutr. Bull.
- 9, 1–3. https://doi.org/10.1177/156482658700900210
- Doyle, J.D., Oldring, K., Churchley, J., Price, C., Parsons, S.A., 2003. Chemical Control
- of Struvite Precipitation. J. Environ. Eng. 129, 419–426.
- https://doi.org/10.1061/(ASCE)0733-9372(2003)129:5(419)
- 533 European Comission, 2016. Paket zur Kreislaufwirtschaft. Verordnung des
- Europäischen Parlaments und des Rates mit Vorschriften für die Bereitstellung
- von Düngeprodukten mit CE-Kennzeichnung auf dem Markt und zur Änderung
- der Verordnungen 0084.
- 537 European Comission, 2014. Critical raw materials | Internal Market, Industry,
- Entrepreneurship and SMEs [WWW Document].
- European Commission, 2020. A Farm to Fork Strategy for a fair, healthy and
- environmentally-friendly food system 1–13.
- Ferreira, A.J.D., Guilherme, R.I.M.M., Ferreira, C.S.S., Oliveira, M. de F.M.L. de, 2018.
- Urban agriculture, a tool towards more resilient urban communities? Curr.
- Opin. Environ. Sci. Heal. 5, 93–97. https://doi.org/10.1016/J.COESH.2018.06.004
- Gell, K., Ruijter, F.J. d., Kuntke, P., Graaff, M. de, Smit, A.L., 2011. Safety and
- Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer.

- J. Agric. Sci. 3, p67. https://doi.org/10.5539/jas.v3n3p67
- Guo, S., Kaldenhoff, R., Uehlein, N., Sattelmacher, B., Brueck, H., 2007. Relationship
- between water and nitrogen uptake in nitrate- and ammonium-supplied
- Phaseolus vulgaris L. plants. J. Plant Nutr. Soil Sci. 170, 73–80.
- 550 https://doi.org/10.1002/jpln.200625073
- J. R. Buchanan, J.R., C. R. Mote, C.R., R. B. Robinson, R.B., 1994. Thermodynamics of
- 552 Struvite Formation. Trans. ASAE 37, 617–621.
- 553 https://doi.org/10.13031/2013.28121
- Kern, J., Heinzmann, B., Markus, B., Kaufmann, A.C., Soethe, N., Engels, C., 2008.
- Recycling and Assessment of Struvite Phosphorus from Sewage Sludge. Agric.
- 556 Eng. Int. CIGR J. 10, 13.
- Kouki, S., Abdi, N., Hemissi, I., Bouraoui, M., Sifi, B., 2016. Phosphorus fertilization
- effect on common bean (Phaseolus vulgaris L.) -rhizobia symbiosis 25, 1130–
- 559 1137.

- Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Parsons, S.A., 2009. Phosphorus recovery
- from wastewater by struvite crystallization: A review, Critical Reviews in
- Environmental Science and Technology. Taylor & Francis Group.
- https://doi.org/10.1080/10643380701640573
- Li, B., Boiarkina, I., Yu, W., Huang, H.M., Munir, T., Wang, G.Q., Young, B.R., 2019.
- Phosphorous recovery through struvite crystallization: Challenges for future
- design. Sci. Total Environ. 648, 1244–1256.
- 567 https://doi.org/10.1016/j.scitotenv.2018.07.166

- Li, X.., Zhao, Q.L., 2003. Recovery of ammonium-nitrogen from landfill leachate as a
- multi-nutrient fertilizer. Ecol. Eng. 20, 171–181. https://doi.org/10.1016/S0925-
- 570 8574(03)00012-0
- Liu, Y., Rahman, M.M., Kwag, J.-H., Kim, J.-H., Ra, C., 2011. Eco-friendly Production of
- Maize Using Struvite Recovered from Swine Wastewater as a Sustainable
- Fertilizer Source. Asian-Australasian J. Anim. Sci. 24, 1699–1705.
- 574 https://doi.org/10.5713/ajas.2011.11107
- 575 Marschner, H., 1995. Mineral nutrition of higher plants. San Diego Academic P, 889.
- 576 https://doi.org/http://dx.doi.org/10.1006/anbo.1996.0155
- Rahman, M.M., Salleh, M.A.M., Rashid, U., Ahsan, A., Hossain, M.M., Ra, C.S., 2014.
- Production of slow release crystal fertilizer from wastewaters through struvite
- 579 crystallization A review. Arab. J. Chem. 7, 139–155.
- 580 https://doi.org/10.1016/j.arabjc.2013.10.007
- Rees, W., Wackernagel, M., 1996. Urban ecological footprints: Why cities cannot be
- sustainable and why they are a key to sustainability. Environ. Impact Assess.
- 583 Rev. 16, 223–248. https://doi.org/10.1016/S0195-9255(96)00022-4
- Rufí-Salís, M., Brunnhofer, N., Petit-Boix, A., Gabarrell, X., Guisasola, A., Villalba, G.,
- 585 2020a. Can wastewater feed cities? Determining the feasibility and
- environmental burdens of struvite recovery and reuse for urban regions. Sci.
- Total Environ. 737, 139783. https://doi.org/10.1016/j.scitotenv.2020.139783
- Rufí-Salís, M., Petit-Boix, A., Villalba, G., Ercilla-Montserrat, M., Sanjuan-Delmás, D.,
- Parada, F., Arcas, V., Muñoz-Liesa, J., Gabarrell, X., 2020b. Identifying eco-

- efficient year-round crop combinations for rooftop greenhouse agriculture. Int.
- J. Life Cycle Assess. https://doi.org/10.1007/s11367-019-01724-5
- Rufí-Salís, M., Petit-Boix, A., Villalba, G., Sanjuan-Delmás, D., Parada, F., Ercilla-
- Montserrat, M., Arcas-Pilz, V., Muñoz-Liesa, J., Rieradevall, J., Gabarrell, X.,
- 594 2020c. Recirculating water and nutrients in urban agriculture: An opportunity
- towards environmental sustainability and water use efficiency? J. Clean. Prod.
- 596 261, 121213. https://doi.org/10.1016/J.JCLEPRO.2020.121213
- 597 Sena, M., Hicks, A., 2018. Life cycle assessment review of struvite precipitation in
- 598 wastewater treatment. Resour. Conserv. Recycl.
- 599 https://doi.org/10.1016/j.resconrec.2018.08.009
- 600 Shu, L., Schneider, P., Jegatheesan, V., Johnson, J., 2006. An economic evaluation of
- phosphorus recovery as struvite from digester supernatant. Bioresour. Technol.
- 97, 2211–2216. https://doi.org/10.1016/J.BIORTECH.2005.11.005
- 603 Smit, J., Nasr, J., 1992. Urban agriculture for sustainable cities: using wastes and idle
- land and water bodies as resources. Environ. Urban. 4, 141–152.
- 605 https://doi.org/10.1177/095624789200400214
- Steen, I., 1998. Phosphorus availability in the 21st Century: Management of a non-
- renewable resource. Phosphorus and Potassium 25–31.
- 608 Stratful, I., Scrimshaw, M.D., Lester, J.N., 2004. Removal of Struvite to Prevent
- Problems Associated with its Accumulation in Wastewater Treatment Works.
- Water Environ. Res. 76, 437–443. https://doi.org/10.2175/106143004X151491
- Talboys, P.J., Heppell, J., Roose, T., Healey, J.R., Jones, D.L., Withers, P.J.A., 2016.

612	Struvite: a slow-release fertiliser for sustainable phosphorus management?
613	Plant Soil 401, 109-123. https://doi.org/10.1007/s11104-015-2747-3
614	Thomaier, S., Specht, K., Henckel, D., Dierich, A., Siebert, R., Freisinger, U.B., Sawicka,
615	M., 2015. Farming in and on urban buildings: Present practice and specific
616	novelties of Zero-Acreage Farming (ZFarming). Renew. Agric. Food Syst. 30, 43-
617	54. https://doi.org/10.1017/S1742170514000143
618	Uysal, A., Demir, S., Sayilgan, E., Eraslan, F., Kucukyumuk, Z., 2014. Optimization of
619	struvite fertilizer formation from baker's yeast wastewater: Growth and nutrition
620	of maize and tomato plants. Environ. Sci. Pollut. Res. 21, 3264-3274.
621	https://doi.org/10.1007/s11356-013-2285-6
622	
623	