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Dedicated to Professor Joan Bertran, who opened the doors to the quantum world for me, on the occasion of his 90th birthday

This essay gives my personal perspective of the current stage of
computational methods applied to modeling organometallic
catalysis, as well as the new directions the field is taking. The
first part of the essay deals with what | consider the state-of-
the-art to build up energy profiles, regarding both chemical
and computational models. With a proper choice of the
chemical model and computational methods, quantum me-
chanical calculations are nowadays able to provide accurate
energy profiles of organometallic reactions in solution involving

1. Introduction

Over almost forty years of theoretical research on organo-
metallic reactivity, | have witnessed the transformation of
quantum mechanical (QM) calculations from something un-
common, exclusively on specialist’'s hands and suitable just for
qualitative analysis, to becoming a technique fully integrated in
the chemist’s toolbox and able to give quantitative measure-
ments. In the last years, density functional (DFT) calculations
have become the most common tool to study reaction
mechanisms. A basic search in the Web of Science combining
the words “DFT” and “European Journal of Inorganic Chemistry”
evidences that, in the last years, more than a ten percent of the
articles published in this journal include such calculations. A
few recent reviews witness the importance that quantum
chemical reaction modeling has gained in the field of homoge-
neous organometallic catalysis."™ As an “old specialist” | am
pleased to cope with the “democratization” of these techniques,
nowadays within the reach of every chemist. But this fact also
raises some philosophical questions, such as what the role of
theoreticians is today or even if we are no longer needed. In
this essay | will give my personal view about the current
situation of theoretical calculations applied to the reactivity of
molecular transition metal systems, particularly related to
homogeneous catalysis, as well as the new developments |
foresee for the near future.
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closed-shell species. However, in most cases they are still used
to “predict the past”, providing after-the-fact explanations and
missing out the full potential of contemporary simulation
techniques. Simulations are mature enough to be incorporated
at the design stage and to guide the experimental exploration.
The new directions the field is taking, incorporating automated
exploration methods and combined with extensive data
analysis and machine learning algorithms, approach the holy
grail of catalyst discovering.

The tremendous increase in computing power, together
with the development of user-friendly software and quantum
chemistry methods, specially DFT, makes it possible to
accurately compute energy profiles of complex molecular
systems. However, there is not always a clear understanding of
the sources of error and limitations inherent to these
techniques, nor about their quality control. Nowadays, calcu-
lations are usually employed in reactivity studies to measure a
physical quantity (the potential energy of an ensemble of nuclei
and electrons at fixed nuclei positions). While for experimental
measurements such as elemental analysis, NMR chemical shifts
and X-ray diffraction analysis there is a general consensus about
the minimum standards required, the same does not apply to
calculations. Even more demanding is the connection of these
measurements with the proposal of a reaction mechanism.
Calculations must be performed using state-of-the-art computa-
tional approaches. Of course, the standard to be chosen will
depend on the nature of the system to be computed and
evolves with time, very quickly in the case of computational
techniques. The state-of-the-art can be defined as the best
possible calculation at any given time. The first part of this
essay will be devoted to what | consider the current state-of-
the-art methods. Using them, reliable energy profiles can be
constructed, but these do not answer all the mechanistic
questions that chemists ask themselves: what is occurring in my
flask and why, what will happen if...and even more, how can |
improve one reaction or discover new reactions? These
questions will be the subject of the second part of this essay.
The scope and challenges,® ' as well as pitfalls"" of computa-
tional methods for mechanistic studies in homogeneous
catalysis have also been addressed in some recent articles
collecting a number of examples, pointing out the current
interest on the topic.
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2. Building Up Energy Profiles: The Choice of
the Model

Until recently, computational tools were mainly used to explain
chemical reactions after experimental results were obtained.
The usual goal was to substantiate how the main product was
formed and to understand the factors controlling the reaction.
In order to do that, a sequence of intermediates and transition
states (TS) along the pathway from reactants to products should
be located and characterized. The connection of TSs with back
and forward intermediates must be carefully checked. Ideally,
this is done by two intrinsic reaction (IRC) calculations following
both reaction path directions. In flat energy surfaces IRC often
fails. In that case, displacement of the TS structure in both
directions following the eigenvector corresponding to the
imaginary frequency, and subsequent optimization of the
resulting structures is recommended. QM calculations, com-
bined with optimization techniques, provide absolute energies
and geometries of chemically relevant structures in the
potential energy surface of the system (PES). The relative
energies of all these species, usually represented as an energy
profile, describe the energy landscape for the reaction. Analysis
of their geometries discloses the bond-forming and bond-
breaking events taking place along the reaction pathway and
allows the proposal of a mechanism for such reaction. In this
approach the exploration of the PES to locate stationary
structures (minima and TSs) is biased by the previous knowl-
edge and the chemical intuition of the person performing the
calculations.

One of the things that makes computational methods
different from experimental techniques is that they do not work
with samples, but with models. Two types of models operate in
a QM calculation: on one side, the chemical complexity found
in a reaction flask (millions of molecules of different types)
should be reduced and adapted to something that a computer
can handle. This is known as the chemical model. As
calculations provide an atomistic description of the reaction,
the most common way to do this is to include, in QM
calculations, one molecule of the organometallic reagent and
one molecule for each reactant. In many cases, this minimal
model has to be extended in order to obtain reliable computa-
tional results (Scheme 1). On the other side, among the panoply
of the available computational methods (for DFT calculations
hundreds of different functionals and basis sets) one must be
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Scheme 1. Minimal and extended chemical models to perform Quantum-
Mechanical based calculations on organometallic reactions.

chosen to carry out the calculations. This is the computational
model (formerly called the level of calculation). It should never
be overlooked that all QM methods applied to molecular
systems rely on approximations and it is safe to have in mind
some estimation about the error that the chosen approximation
can introduce in the results.

The choice of both models is the first and most critical
decision to be taken when starting a computational project,
and it will have a major impact on the quality of results.
Traditionally, particularly from the theoretical side, much more
attention has been devoted to the computational model than
to the chemical one, but a very accurate calculation in an
incomplete chemical model can yield completely wrong results
regarding reaction mechanisms.

3. The Chemical Model

This article focuses on organometallic chemistry in solution.
That is, reactions performed in a solvent in a range of
temperatures typically between 0-100 degrees Celsius. We
want to simulate such a chemical reaction in a computer (i.e, in
silico). Beforehand, it is necessary to have a clear perception of
the experimental conditions under which the reaction takes
place. As commented above, the most common chemical
model includes one molecule of the organometallic reagent,
nowadays with the actual ligands without further simplification,
and one molecule for each reagent. Even when this model is
reliable, the conformational flexibility of most of the bulky
ligands employed in catalysis causes additional complications
and can be a source of error.' An example of the importance
of a wide exploration of the conformational space when
computing energy profiles can be found in the recent computa-
tional analysis of the Buchwald-Hartwig amination of aryl
halides using Pd-Josiphos complex."® The Gibbs energy differ-
ence (DFT calculations with M06 functional) between two
conformations of the same intermediate (15.3 kcal-mol™) is
much larger than the barrier of the step in which this
intermediate is involved (12.3 kcal-mol™") (Figure 1). Recently
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IThe conformational complexity issue |

Conformation 2

Conformation 1

0. 15.3

Figure 1. DFT-optimized geometries and relative Gibbs energies (kcal-mol™,
computed with M06 functional) in 1,4-dioxane solvent of two conformations
of the Pd(Josiphos)(NH;)(Ph)Br intermediate in the Buchwald — Hartwig
amination of arylhalides with one of the arms of the chelate phosphine
open."¥ 3D-structures were generated using CYLview."

developed methods combining low-level, semiempirical, DFT
calculations with metadynamics simulations, enable fast QM
exploration of the conformational space of large systems."

Using this minimal model and without adding further
molecules in the computational description, the speciation of
reactive species in the reaction vessel arises as an important
issue. The active form of the catalysts is often different from the
species initially added, and in most cases it is not known. In
such cases, several possibilities should be carefully scrutinized.
Attention should also be paid to the speciation of simple
reagents, which can be very solvent dependent. Reagents such
as sodium tert-butoxide and copper diacetate keep aggregated
structures in non-polar solvent environments, and their descrip-
tion as monomeric species in QM calculations could be
misleading.'®*'” The same issue arises with iodosylbenzene
(PhIO) a polymeric solid of low solubility.'®

To build up a reliable energy profile, all the species that can
influence the energy of the system in each step of a catalytic
cycle should be taken into account. The correct mechanism
cannot be represented using an incomplete model. Thus, when
no convincing mechanism arises from the PES exploration with
the minimal model, my first recommendation would be to
extend the chemical model. The role in the reaction mechanism
of these additional molecules that expand the minimal model
should be scrutinized. Figure 2 displays an example of an
extended chemical model for a ketone hydrogenation catalyzed
by an iridium-hydride complex, in alcohol solvent and in the
presence of NaOMe additive."

A first extension of the initial model can be done by
including additional molecules of one reagent, usually in excess
in the experimental conditions. For instance, it is now well
established in hydrofunctionalization reactions that a second
molecule of the nucleophile can help in the proton migration
step.”” When ionic species are present there are always
counterions in the reaction medium that might influence the
reaction.”” In some cases, there are experimental evidences of
such effects, particularly regarding counteranions. Gold catalysis
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Figure 2. Extended chemical model for ketone hydrogenation catalyzed by a
iridium-hydride complex, in alcohol solvent and with added base (NaOMe)."
3D-structures were generated using CYLview.!'?

has been very prolific in showing the impact of counteranions
in both kinetics and selectivity of transformations.”? Counter-
ions were generally considered as innocent partners and not
included in the chemical model, but an increasing number of
computational papers have started taking into account counter-
anions, particularly when dealing with proton transfer steps.
Calculations have largely contributed to the understanding of
the role of anions in gold-catalyzed reactions.”” However, the
inclusion of countercations in models is still a less common
practice.l" It must be highlighted that explicit treatment of
counterions poses an added challenge for calculations: its
solvation.

Additives are commonly used in homogeneous catalysis to
improve the outcome of synthetically relevant reactions.
However, in most cases their role is not well understood, and
they are not commonly included in calculations. The synergistic
use of calculations and experiments has allowed a deeper
understanding of additive effects in a number of organometallic
reactions.””

The reaction to be simulated in a computer proceeds in a
solvent. Therefore, the solvent must be a consubstantial part of
the chemical model and it needs to be taken into account in
order to achieve a good computational description of the
reaction. There are three main approaches for introducing the
solvent in a QM calculation: i) implicit solvent model, in which
the solvent molecules are replaced by a continuum polarizable
medium characterized by its dielectric constant €; ii) hybrid
cluster-continuum model, in which a limited number of solvent
molecules are introduced in the QM description of the system,
and the rest is represented as a continuum, and iii) explicit
solvent model, which includes a huge number of solvent
molecules, usually suitable to reproduce the density of the
chemical system. The most used and simplest solvent descrip-
tion is the continuum model. In most cases, particularly when
dealing with low-polar, non-coordinating solvents, this model is
enough to compute accurate energies in solution. However, it is
striking, to my mind, that the most common way of using
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continuum models in recent literature is still performing single-
point calculations at gas-phase optimized geometries. Today,
most of the time there are no technical reasons that can justify
this approach. Only in the cases in which optimization in
solution of relevant species fails to properly converge despite
repeated attempts, mainly due to numerical artifacts related
with grids, gas-phase optimization, followed by single-point
energy calculation in solution, is justified. Assuming the same
geometries in the gas-phase and in the solvent can be specially
misleading when there are charged species in the medium.
lonic mechanisms, implying steps in which ions are formed
from neutral molecules, cannot be properly accounted for using
this model. State-of-the-art calculations of reaction mechanisms
demand the optimization and characterization of the stationary
points in solution.

A continuum model is not able to describe specific
interactions between solute and solvent. Usually, they can be
important in protic solvents, such as alcohol solvents and water.
Thus, the use of a purely continuum model is not recom-
mended for such solvents. In the same way, if there is the
possibility for solvent coordination or, even more, solvent
molecules can participate in the reaction, the inclusion of
explicit solvent molecules in the chemical model is mandatory.
Hybrid cluster-continuum models can be a good alternative to
tackle these issues. A major concern in these models is the
number and relative position of explicit solvent molecules to be
included. The influence of this number and their conformations
on reaction barriers should be carefully checked until con-
vergence is reached.” Automated methods to determine how
many explicit solvent molecules need to be added in hybrid
cluster-continuum schemes to capture most of the interaction
between the solute and the environment have been recently
proposed.?

The elucidation of reaction mechanisms when solvent
molecules play a direct role in the mechanism and are involved
in multiple ligand exchange processes has proven to be
challenging. This occurs, for instance, in two textbook organo-
metallic reactions: the Wacker process and the Grignard
reaction. Calculations using explicit solvent models, placing the
reagents in a box with a large number of solvent molecules,
water and tetrahydrofuran (THF), respectively, and performing
ab initio Molecular Dynamics (AIMD) simulations with them,
have solved long standing controversies about the mechanism
of both reactions.”’*®

4. The Computational Model

Once the chemical model has been decided, the next step is
the choice of the computational model. While the first election
has consequences for the possible mechanisms to be explored
(for instance, mechanisms with participation of dimers cannot
be explored if only one molecule of the catalyst is included in
the chemical system), the second one will have impact on the
accuracy of the numbers provided by the calculations. QM
calculations are devised to afford the internal energy (electronic
energy, E¥*) of a molecular assembly in gas phase and at 0K,
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very far from the actual experimental conditions.” Moreover,
the key chemical magnitudes that govern the direction and rate
of a reaction (equilibrium and rate constants) are not related to
differences in internal energies, but in Gibbs energies. Energy
profiles of reactions carried out in a solvent have to be built
upon G values in solution. Transforming energies from E to G
implies adding additional approximations to those inherent to
the QM calculation and raises more choices to the modeler.
Currently, exploration of the PES of real systems is habitually
performed using a medium-size basis set (BS1), usually valence
double-E + polarization. It is a common and highly recom-
mended practice to refine the energy values with a very
extended basis set (BS2) in order to remove basis-set super-
position errors (BSSE). This is an approximation based on the
assumption, usually true, that the optimized geometries with
both basis set are very similar. In this way the Gibbs energies in
solution are obtained from equation 1:

Gy = E™*(BS2) + [Gy (BS1)-E¥(BST)] + AG™*" ™ o)

The first term (E¥*) is the QM energy in solution (usually
DFT) and includes the Gibbs energy of solvation.” Its accuracy
depends on the level of theory chosen (functional + basis set).
The second term embraces the enthalpic and entropic contribu-
tions of the solute. It demands the partition functions for the
solute, obtained from a frequency calculation performed at the
optimized geometries (BS1). The last term accounts for the
change of standard state from gas phase (1 atm) to solution
(1 M) and at 298 K amounts 1.89 kcal-mol™" for each species. It
is only relevant when the number of moles changes in the
reaction (An+0).

The accuracy in computing E** is known as the electronic
structure issue. The quality to price ratio have made DFT
methods almost the only option for computational studies of
organometallic reactivity. But which functional should be used?
This is a question to ask ourselves before starting calculations,
which does not have a general answer. Strictly speaking, it
depends on the particular reaction to be studied. Moreover,
catalytic reactions are multistep and the selected functional
should be able to provide accurate results for all the steps. To
further complicate matters, kinetic experimental studies that
might serve as benchmarks are not very frequent. Despite that,
some benchmarking studies have been carried out for one
metal and one particular reaction® or several elementary steps
of metal-catalyzed transformations.®" In recent years local
coupled-cluster methods, such as DLPNO-CCSD(T) have
emerged as accurate and effective methods for benchmarking
in big-sized systems.*?

My personal impression is that the choice of the functional
is not as important as it is generally thought to be. It is worthy
to perform some calibration of the functional, but in general
energy profiles with any non-local GGA or meta-GGA functional
will differ by just a few kcal-mol™" when computing closed-shell
species. The most relevant aspect to take into account is
probably the percentage of Hartree-Fock (HF) exchange in the
functional, especially in reactions involving open-shell species.
It is not optional, however, whether to take into account

© 2021 The Authors. European Journal of Inorganic Chemistry published
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dispersion interactions or not. The use of dispersion-corrected
functionals or the incorporation of empirical dispersion
parameters®® to non-dispersion-corrected functionals is man-
datory. As already mentioned when describing continuum
models, optimizations have to be performed taking into
account dispersion. With the amount of evidence accumulated
on the importance of dispersion effects when describing real
organometallic systems,®” and the low cost that its inclusion
entails, it is hard to understand the reason why in many recent
articles dispersion interactions are introduced only as single-
point energy calculations at the geometries optimized without
dispersion.

Unfortunately, the similarity of energy profiles obtained
using different functionals of similar quality for closed-shell
systems does not hold true when there are open-shell species
(radicals) involved in a reaction mechanism. Comparison of
DFT-computed relative energies of different spin-states of one
molecule shows a great disparity, depending particularly on the
HF exchange in the functional. An accurate calculation of the
energy splitting between low-spin and high-spin states is
difficult due to its strong functional dependence® For
instance, taking two functionals widely used in reactivity
studies, such as wB97XD or B3LYP-D3, both incorporating
dispersion effects, with a very large basis set, the high-spin
[triplet, formally copper(ll)] and low-spin [singlet, formally
copper(lll)] isomers of an intermediate formed in the Cu(l)-
promoted aerobic C—H bond oxidation (Figure 3) differ by 5.4
(WB97XD) or 15.4 (B3LYP-D3) kcal-mol "9 When leaving the
field of “comfortable” closed-shell PES, careful analysis of the
functional dependence is needed.

As commented previously, electronic energies must be
transformed into Gibbs energies by adding enthalpic and
entropic contributions. This is usually done by means of
frequency calculations in which the different contributions to
the molecular entropy are estimated from the partition
functions. In order to do that, the usual approach is the ideal
gas/rigid rotor/harmonic oscillator approach (IGRRHO). It was
thought that this approach overestimated entropic effects in
solution, and several alternatives have been devised, most of
them using empirical corrections, such as dividing by 1/2 or 2/3
the translational entropy. A number of recent works have

The spin-state energetics issue

Functional | S T
B3LYP-D3 | 0. 54
wB97XD 0. 15.4

Cu(lll)-singlet (S)

Cu(ll)-triplet (T)

Figure 3. Functional dependence of the Gibbs energy difference between
the low-spin and high-spin isomers of a copper-hydroxo complex.?® Relative
Gibbs energies in THF solvent in kcal-mol™". 3D-structures were generated
using CYLview.[”
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pointed out the validity of the IGRRHO and the unnecessariness
of further correction, provided that dispersion forces are taken
into account in the calculation. The best currently available way
to handle entropic effects for species in solution is the IGRRHO
approach, combined with continuum solvent treatment of
solvation Gibbs energy, and taking into account the change of
reference standard state (AG™™ ™ term in equation 1).7

5. Success... and Limitations

In the previous sections | have provided the ground for what |
consider an accurate computing of an energy profile in the
current times.” Nowadays, taking the necessary precautions
regarding both the chemical and computational models, DFT
calculations can afford in most cases a reliable quantitative
description of the energy landscape for the formation of the
major product of a transition metal promoted reaction in
solution. In this way the determining states of a catalytic cycle
can be found, and by using the energetic span model turnover
frequencies (TOF) can be calculated from the energy profile.®”!

Commonly, the energetic information provided by the
energy profile is used to infer and propose a reaction
mechanism. It should never be overlooked that a reaction
mechanism cannot be proven, but only disproved.’** As
commented before, the mechanism search often suffers from
the “wish bias”, defined as the tendency on the investigator to
reach a desired result”” When dealing computationally with
very well-known reactions, as it happens in most cases, no big
surprises can be expected, the computed profile is just one
more on this kind of reaction and the mechanistic proposal is
sound....until proven otherwise. However, there is not a unique
pathway for the most interesting reactions. As not all the
possible routes have been explored, there could be a better
mechanism, involving lower barriers than the initially proposed.

Another shortcoming is that often only the most productive
part of the reaction is computationally explored. Rarely does
one reaction give a 100% yield. In the reaction vessel, the
catalyst can be deactivated and side reactions can happen,
both facts reducing the reaction yield. Improving the reaction
yield is a main goal in synthetic chemistry. Computational
analysis of the off-cycle part of reaction mechanisms can help
improving catalysts, preventing for instance their deactivation,
as it has been shown for cross-coupling reactions."”

Performing calculations once the experimental part of a
project has been finished, bringing after-the-fact explanations,
is still the most common use of calculations in transition metal
catalysis that can be found in the literature. This approach has
proved to be very useful to understand experiments. However,
proceeding solely in this way misses out the full potential of
contemporary simulation techniques. Simulations are mature
enough to be incorporated at the experimental design stage
and to guide the experimental exploration throughout a
project’s development. In this way, and in synergistic collabo-
ration with experiments, calculations can evolve from being a
technique to “predict the past” to becoming a powerful tool to
forecast the future. In chemistry that means to design new
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6. Designing Catalysts and Discovering New
Reactions

Beyond calculation of energy profiles, computational organo-
metallic chemistry is taking new directions to overcome short-
comings and to reach the goals pointed out in the previous
section. On one side, calculations must be closer to the
experiments, regarding both the outcome and the chemical
models. On the other side, they have to explore the full PES of
the system, overcoming the human bias. Finally, they can be
combined with extensive data analysis and machine learning
algorithms. All together, these advances approach the holy grail
of catalyst design and can lead to the longed-for discovery of
new reactions. The future is now: recent literature collects an
explosion of articles devoted to these topics. For instance, in
the last two years three review journals have published special
issues devoted to machine learning in chemistry, focusing on
the design of catalysts and materials.”? Here, | will mention just
a few examples.

Computational mechanistic studies are aimed to locate
intermediates and transition states in a catalytic cycle and to
determine their relative energies. In this way a Gibbs energy
profile is obtained, and a mechanistic proposal is inferred from
it. However, the direct outcome of experiments is the evolution
of concentrations of reagents, intermediates, and products
through time. These values depend on the rate constants of the
reaction steps, related with Gibbs energy differences, but also
on the concentrations of the reagents, not accounted for in the
PES exploration. Microkinetics modeling is a simple and useful
method for the introduction of concentration effects in the
description provided by the Gibbs energy profiles, getting
simulations closer to experimental conditions."**

The energy profile defines the steps of a complex reaction
and their energy barriers. In the framework of the Transition
State Theory, the rate constant of each reaction step can be
computed from its Gibbs energy of activation. This allows the
definition of a system of differential equations, which can be
solved numerically by using the initial concentrations of all the
compounds as starting conditions.”**? The outcome of the
microkinetic modeling is the evolution of the concentration of
each species with time (Figure 4)*" which is precisely what
most experiments measure. The computational cost of this
procedure, which can also be used as additional testing of a
proposed reaction mechanism, is very low.

Improving the solvent description is another steppingstone
in approaching computer models to “real chemistry” in solution.
This can be done employing extended explicit representations
of the solvent, built to reproduce experimental densities (Fig-
ure 5). Dealing with large model systems, however, poses a
challenge: how to explore their configurational space? System-
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Figure 4. Microkinetic modeling of the isomerization of 2-phenyl-2-meth-
yloxetane 2a to allylic alcohol catalyzed by BF;-Et,0.! II: zwitterionic
intermediate; 3 a: homoallylic alcohol product; 4 a: E/Z-allylic alcohol
products.

Figure 5. Snapshot from an explicit water AIMD simulation of the hydration
of alkenes catalyzed by gold(l) complexes.

atically investigating how the potential energy varies as a
function of few nuclear coordinates, as done in typical PES
exploration on reduced model systems, is not viable because of
the large number of particles involved. First-principles molec-
ular dynamics (also called ab initio Molecular Dynamics, AIMD),
in which atomic forces are computed from electronic structure
calculations (namely, density functional theory), is the techni-
que of choice to investigate chemical events in solution when
the solvent has a key role in the reaction and/or where solvent
reorganization is important.”*

These simulations make use of intensive computational
resources, but the inclusion of explicit solvent allows the
characterization of molecular events that would otherwise not
be accessible in reduced model systems, as it has already been

2552 © 2021 The Authors. European Journal of Inorganic Chemistry published

by Wiley-VCH GmbH


https://chemistry-europe.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1099-0682c.RSEQ-GEQO-prize-winners

Chemistry
Europe

European Chemical
Societies Publishing

Essays

Eur]JIC A ..
doi.org/10.1002/ejic.202100330

European Journal of Inorganic Chemistry

proved in Wacker” and Grignard®® reactions. For some

processes, such as transfer hydrogenation in alcohol solvent,
the use of explicit solvent simulations may provide mechanistic
insights that differ from those obtained in vacuo or in
continuum models.””

As commented above, the usual way of proceeding in
computational studies of organometallic reactivity has typically
been to explore a limited number of pathways, inferred from
previous knowledge and/or chemical intuition of the person
performing the calculations, that lead to the major product of
the reaction. That means to explore a very small fraction of the
PES of the reacting system. The emergence, in the last years, of
the automated reaction path methods, promises to revolution-
ize the way of exploring the PES. With these methods, which
have been successfully applied to organometallic reactions, "
an unbiased exploration of the full PES can be performed. They
do not only allow exploration of multiple reaction paths
accounting for product selectivity in connection with micro-
kinetic models but also pave the way for the discovery of
unexpected reactions in the full potential energy surface of the
system.

Catalyst optimization and, furthermore, design and discov-
ery, employing the usual approach of thoroughly PES explora-
tion with accurate quantum mechanical calculations, becomes
impractical when a large chemical space (thousands of catalysts
and reactions) has to be explored. In the framework of the
explosion of the use of data-driven, machine learning (ML)
algorithms in all fields of knowledge, they have also burst onto
catalyst design. Although these techniques are still at an early
stage in this field, they have already achieved impressive
successes, particularly in the area of enantioselective
catalysis,”*? proving its potential. A number of very recent
reviews prove the fact that they are called to change the way in
which catalysts are discovered.®'*

The starting point of data-driven tools is establishing a
relationship between a quantitative description of reactants,
catalysts and reaction conditions with a property (for instance,
activity: Quantitative Structure-Activity relationship, QSAR). The
key ingredients of these models are the quantities (descriptors)
that are correlated with the properties of interest. Multivariate
linear regression models correlate data to molecular descriptors.
For non-linear relationships in complex chemical data, machine
learning offers a wide variety of algorithms that can be used to
build accurate, transferable, and explainable predictive models.
However, many of these algorithms require big data sets.
Computational results from QM calculations can be used to
generate these required data needed to feed the ML models
(quantum-based ML).*® The calculation of over 200,000 organic
radical species” and over 80,000 organometallic compounds®
are impressive examples of how DFT methods can be used to
generate big data sets. These data sets can be exploited in
data-driven predictive ML models for the discovery of new
catalysts and reactions. However, the inclusion of many
complexes which are not realistic/synthetically feasible to
generate training data could lead to bias in a ML model’s
prediction.
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DFT and ML methods can be combined to enable the
prediction of reactivity within large chemical spaces containing
thousands of complexes.” Around 2500 QM transition state
structures in the chemical space of IrL;X Vaska's complex were
employed to train and test ML models that predict the H,
activation barrier. Different ML algorithms were used for differ-
ent purposes, including neural networks for accuracy, Gaussian
processes for transferability, and Gradient boosting for
explainability.®” A reactivity descriptor database based on QM
calculations of 130,000 organic molecules was used to predict
regio-selectivity for three general types of substitution
reactions.®™ Trends surrounding the thermodynamics of the
hydroformylation reaction catalyzed by group 9 metals bearing
phosphine ligands have been analyzed using a data-driven
inspired workflow (data-powered volcano plots). The total data
set used consisted of 1510 catalytic cycles derived from DFT
computations and 491 catalytic cycles derived from machine
learned profiles® Electroanalytical techniques have been
combined with parameterization tools, which include DFT
calculations, to uncover reaction mechanism in redox
catalysis.

7. Conclusions

In this essay | wanted to give a personal insight on the current
state of computational methods applied to homogenous
catalysis processes and to point out some of the new directions
they are taking. The basic assumption is that modern QM-based
methods are able to give accurate energy profiles of an
organometallic reaction in solution entailing closed-shell spe-
cies, provided that a proper choice of the chemical and
computational methods has been made. This proper choice,
which describes what | consider the state-of-the-art of these
techniques, has been analyzed in the first part of the article. In
my opinion that means, basically, that all the species that can
significantly affect the energy landscape of the reaction should
be included in the QM description of the chemical model to be
computed. In addition, the conformational space of big and
flexible ligands, as well as the speciation issues of catalyst and
reagents should be carefully analyzed. Regarding the computa-
tional model, optimization and characterization of stationary
structures should be done in solution with functionals taking
into account dispersion effects. Refinement of the energies with
very extended basis sets is highly recommended, as well as
some functional calibration for the particular reaction to be
computationally studied. Entropic contributions can be com-
puted using the IGRRHO approach, with no further corrections.
In this way, accurate relative Gibbs energies of the species
along the computed pathway for the formation of product(s)
can be obtained. Success of the computational protocol that |
have described cannot be assured when more than one spin-
state can be involved in the reaction. Such energy profiles are
still challenging and require careful functional calibration.

The translation from energy profile to “the” mechanism of
the reaction is not as direct as it is usually thought. In the best
cases, it can be considered a sound proposal...until a better
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one comes out. In most cases calculation of an energy profile is
performed when the experimental research on the system has
been concluded and is used only to explain the observed
reactivity, missing out the actual potential of QM calculations.
On the other side, an energy profile is the outcome of a biased
exploration of a very small region of the PES of the system.
Automated reaction path methods can explore the full
reactivity of the system, accounting for the formation of side
products and catalyst deactivation pathways and even discover-
ing new reactions than can take place within the reaction
mixture.

To fully benefit from the current potential of QM calcu-
lations in homogenous catalysis, these must be used to test and
to guide the experimental research throughout all the project’s
development, from its initial design to the final optimization.
However, the exploration of large chemical spaces required to
optimize and discover new catalysts with the usual techniques
of PES exploration is impractical. Increasingly, this is done using
data-driven techniques and machine learning algorithms, able
to explore very large chemical spaces, but these approaches
often require big data sets. In this field, QM calculations have
found their place to generate big data sets.

In the first lines of this essay, | asked myself if theoreticians
are still needed. Throughout the text, | have sought to show
that my answer is yes, but only for as long as we are able to do
things that other chemists cannot. Routine, ex post calculation
of energy profiles is nowadays within the reach of any chemist.
However, exploring large chemical spaces and finding new,
synthetically relevant reactions using state-of-the-art methods
and exploiting them with machine learning methods, without
losing the physical meaning of the quantities handled, can only
be done by researchers combining a deep knowledge of
computational methods with a molecular perspective. With this
in mind, computational chemists can play an ever more central
role in homogenous catalysis. There is still plenty of room for
computational organometallic catalysis.
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