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Complementary Resistive Switching (CRS) using memristive devices has been intensively investigated in the last
decade. The objective of CRS is to generate low and high resistance windows in the I-V characteristic of the
selector device with the aim of reducing the sneak-path conduction problem in crossbar arrays. Though a wide
variety of compact models for CRS have been proposed, the one presented here stands out for its simplicity,
robustness, and accuracy. The flexibility of the memdiode model is demonstrated through a series of fitting

exercises using experimental data found in the literature. The model script for the LTSpice XVII simulator is also

provided.

1. Introduction

Complementary Resistive Switching (CRS) takes place when two
memristive devices are anti-serially connected forming a single func-
tional structure. This simple device arrangement has been proposed as a
way of reducing the sneak-path conduction problem in crossbar arrays
used for information storage and neuromorphic computing [1]. As
illustrated in Figs. 1 and 2, the combined action of the two resistive
switches, with their respective low (LRS) and high (HRS) resistance
states, leads to the alternate appearance of ON and OFF conducting
windows in the I-V characteristic. Remarkably, these windows can
exhibit a wide variety of behaviors both in shape (abrupt/progressive)
and magnitude (small/large) that are not only a consequence of the
selected materials (metals and dielectric) but also the result of the
particular features of the generated filamentary structures (oxygen va-
cancy- or metal ion-based pathways, lateral size, internal series resis-
tance, etc.). In this work, a simple, robust, and accurate compact model
capable of reproducing different CRS behaviors reported in the literature
is presented and tested. The CRS conduction characteristics are modeled
connecting two opposite-biased quasi-static memdiodes [2-4] and the
system is simulated in LTSpice XVII from Linear Technologies. A quasi-
static approach is followed here because neither programming steps
nor frequency effects are within the scope of this paper. Although this
may sound obvious, a key issue for the accurate modeling of the CRS I-V
characteristic is the detailed modeling of the individual memristors that
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constitute the CRS structure. In this regard, the model of each memristor
needs to include the crucial features required for the realistic simulation
of the curves, such as the snapback (SB) and snapforward (SF) effects
(see Fig. 2). These effects correspond to the vanishing and formation of a
gap along the atomic filamentary structure, respectively, and are
essential for correctly addressing the device behavior.

After the completion of the filament formation process (SET) in a
memristive structure, the voltage at the constriction suddenly drops (SB
effect) following the circuit load line dictated by the series resistance R;
(green solid line in Fig. 2). This resistance can be internal, external, or
both. Beyond this point, the filament laterally expands or, alternatively,
accumulates defects at a constant voltage called the transition voltage Vt
(vertical line in Fig. 2). When in LRS, the curve reaches the RESET point
at negative bias and drops (SF effect) following again the load line of the
device. The red solid line in Fig. 2 corresponds to the same curve but
taking into account the additional potential drop across the series
resistance. Depending on the magnitude of the SB and SF effects
occurring in each memristive device, the CRS I-V curve can exhibit
abrupt or gradual transitions as those illustrated in Fig. 1. In order to
demonstrate the flexibility of our model to cope with these situations
(Section II), a number of experimental curves found in the literature
were analyzed and simulated (Section III). Interestingly, the proposed
model can also be used to deconstruct the CRS experimental curve into
its separate constituents when the corresponding information is not
available.
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Fig. 1. Simulated I-V characteristics with gradual (green line) and abrupt (red

line) transitions between the ON and OFF states. The curves were simulated
with the model reported in this work.
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Fig. 2. Simulated I-V characteristics for a single memristor with (green line)
and without (red line) SB and SF corrections (V-IR;). Notice that the V,=-V; in
the corrected curve. Isg denotes the triggering current for the SET process.
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Fig. 3. Schematic circuit for (a) the CRS structure consisting in two memristors
anti-serially connected; (b) the internal implementation of the QMM for a single
device (see Fig. 10 in the appendix). The model contains a two-port circuit for
the I-V characteristic and a memory circuit for tracking the hysteresis effect.
The memory circuit controls the diode parameters.

2. the memdiode model for CRS devices

The Quasi-static Memdiode Model (QMM) is considered here for
simulating each device in the CRS structure [2-4]. As illustrated in Fig. 3
(a), two anti-serially connected devices of this kind define the CRS
structure. The I-V characteristic for each memdiode reads:

1(V) = Ih(A)sinh{a(A)[V — (Rs(4) + R)I] }

where I5(4) = Iomin + (Iomax — Iomin)4 is the current amplitude factor.
Iomin and Ipmg, are calibration parameters. V is the voltage across the
terminals, R a variable series resistance, and « a fitting parameter. Both
a and Ry, if required, can be described by relationships similar to that
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Fig. 4. Experimental and model results for two Ti/HfO,/Hf-based structures
anti-serially connected [5].
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Fig. 5. Experimental and model results for a SiO2/GeSe-based CRS structure
[1]. Notice that the I-V characteristic is not symmetric.

used for Iy. (1) resembles the I-V relationship for two opposite-biased
diodes with shared series resistance (see Fig. 3(b)). Eq.(1) replaces the
Lambert function and the Hermite-Padé approximation considered in
[4]. The second equation relates the memory state A to the voltage drop
across the constriction V¢ =V — (Rs(1) + R;)I through the recursive
hysteresis operator [2]:

AVe) = min{F’(Vc),max A(\7€),F+(Vc)] }

where I'" and T'~ are the so-called ridge functions, which physically

represent the ion/vacancy movement. i(VC) is the memory value a

timestep before (hysteretic behavior). The model contains other pa-
rameters for the fine-tuning of the simulated curves. In particular, the
gam parameter, not considered before [4], is used to fit the reset region
of the devices. Eqns. (1) and (2) are implemented in LTSpice using an
equivalent circuital approach with behavioral components and sources
(see the script in the Appendix). A very important feature of the model is
that the SET event can be triggered not only by a set voltage Vg but also
by a threshold current Isp (see Fig 2). This leads to a variety of behaviors
suitable for capturing the details of the experimental curves. In this re-
gard, it is worth mentioning the possibility of generating gradual or
abrupt ON transitions in the CRS curves as well as departures from the
abrupt OFF transitions. The key issue behind the observation of abrupt
ON transitions is a noticeable SB effect in the individual devices.

3. experimental curves and simulations

In order to assess the versatility of the QMM for CRS devices, we
present simulations for a number of experimental I-V characteristics
reported by other authors. The model parameters are indicated in the
table next to each curve. Figure 4 shows experimental and simulation
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Fig. 6. Experimental and model results for a symmetric Tantalum oxide-based
CRS structure [6].
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Fig. 7. Experimental and model results for two-sided graphene oxide doped
silicon oxide-based memristors forming a CRS structure [7].
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Fig. 8. Experimental and model results for a-C(amorphous-Carbon)/ CNT-
based memristors forming a CRS structure [8].

results for combined TiN/HfO,/Hf devices [5]. In this plot, the SET and
RESET transitions are abrupt and have associated SB and SF effects,
respectively. Notice the small departures of the experimental curve at
the end of the OFF transitions and how the model is able to capture the
detail. Figure 5 illustrates completely abrupt CRS transitions for two Pt/
Si05/GeSe/Cu devices [1]. Figure 6 shows a similar behavior for two
bilayer Pd/Ta0s5.x/TaOy/Pd combined devices but in log-linear axis
[6]. Figure 7 shows experimental and simulation results for graphene/
Zr-based structures [7]. As reported by these authors, the two-sided
graphene oxide (GO) structures exhibit an intrinsic current restriction
ability and uniform switching (the model can also be applied in this
case). Notice the details of the OFF transitions achieved by means of the
effective voltage reduction parameter in the reset equation of the model
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Fig. 9. Experimental and model results for TiN/TiOxNy/TiO,.,/Pt memristors
forming a CRS structure [9].

(gam). Figure 8 shows results for the I-V curve of carbon nanotubes
(CNT)-based devices [8]. The parameter values used in this simulation
are very different from those used before because the switching voltages
are higher than those observed in the other materials. Finally, Fig. 9,
which corresponds to a combination of TiN/TiOxNy/TiO2.x/Pt devices
[9], exhibits both gradual and large ON and OFF transitions in the CRS
conduction characteristic. They are well captured by the proposed
model. It is worth mentioning that, though in all the cases we attempted
to use in the simulations parameter values close to their corresponding
experimental ones, it was sometimes difficult to identify the right values.
The current behavior is affected by a combination of parameters and the
only information available is the final CRS curve. In our simulations, and
for simplicity, we have considered initial states A=0 and A=1 for each
memdiode. Experimentally, both memdiodes are initially in the HRS
state and reach the complementary behavior in the following cycles. The
simulated curves are shown for the stationary loop.

4. Conclusions
Complementary resistive switching is a key element to control the

crosstalk effects in memristor-based crossbar arrays. In this paper, we
have reported and discussed a compact model (the quasi-static

.subckt QMM + - H

.params

+ H0=0

+ etas=50 vs=1 etar=50 vr=-1

+ imax=1E-3 amax=2 rsmax=10
+ imin=1E-5 amin=2 rsmin=10
+ vt=0.5 isb=1e-4 gam=0.2

+ ri=10 CH0=1E-3 RPP=1E10
*Memory equation

BH 0 H I=min(R(V(C,-)),max(S(V(C,-)),V(H))) Rpar=1
CH H 0 {CHO0} ic=HO ; Initial condition

; 0 for HRS, 1 for LRS

; Transitions

; LRS parameters

; HRS parameters

; isb=1, gam=0 no SB/SF
; Resistance/capacitance

*-V

RE + C {ri} ; Snapback resistance
RS C B R=RS(V(H)) ; Constriction resistance
BD B - I=10(V(H))*sinh(A(V(H))*V(B,-))

RB + - {RPP} ; Parallel resistance
*Aucxiliary functions

.func 10(x)=imin+(imax-imin)*x

.func A(x)=amin+(amax-amin)*x

.func RS(x)=rsmin+(rsmax-rsmin)*x

.func VSB(x)=if(x>isb,vt,vs)

func ISF(x)=if(gam==0,1,pow(x,gam))
func S(x)=1/(1+exp(-etas*(x-VSB(I(BD)))))
func R(x)=1/(1+exp(-etar*ISF(V(H))*(x-vr)))
.ends QM

Fig. 10. LTSpice script for the QMM used in RS. The label QMM designs the
memdiode. To simulate CRS, two devices of this kind are connected in series.
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Fig. 11. Model CRS curve obtained with the script shown in Fig. 10. The inset

of the figure shows the schematic used for the simulation.

memdiode model) suitable for the simulation of a wide variety of
experimental data. The model for each individual device consists in two
equations, one for the electron transport and a second equation for the
memory state of the device. When both structures are combined, the CRS
behavior emerges. To the best of our knowledge, no other published
model can cope with the variety of curves reported here.
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Appendix

The code shown in Fig. 10 for LTSpice XVII corresponds to a single
memristive structure. When connected in series two of these devices as
illustrated in the inset of Fig. 11, the CRS behavior shows up. The script
contains four sections: i) model parameter definitions, ii) memory
equation using the recursive operator, iii) I-V characteristic with series
resistance effects, and iv) definition of the auxiliary functions. The
model can be simplified further but was written this way for the sake of
clarity. The output H corresponds to the memory state of the device and
can be eliminated as a pin.
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