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1. Introduction

The rotation interval plays an important role in combinatorial dynamics. For example Misiurewicz’s Theorem [1] links the
set of periods of a continuous lifting F of degree one to the set M:={neN : % € Rot (F) for some integer k}, where Rot (F)
denotes the rotation interval of F. Moreover, it is natural to compute lower bounds of the topological entropy depending on
the rotation interval [2]. In any case, the knowledge of the rotation interval of circle maps of degree one is of theoretical
importance.

The rotation number was introduced by H. PoincarE to study the movement of celestial bodies [3], and since then has
been found to model a wide variety of physical and sociological processes. In the physical sense, it has been recently applied
to climate science [4]. In the sociological one, the application to voting theory [5,6] is specially surprising in this context.

The computation of the rotation number for invertible maps of degree one from S! onto itself is well studied, and many
very efficient algorithms exist for its computation [7-10]. However, there is a lack of an efficient algorithm for the non-
invertible and non-differentiable case.

In this article, we propose a method that allows us to compute the rotation interval for the non-invertible case. Our algo-
rithm is based on the fact that we can compute exactly the rotation number of a natural subclass of the class of continuous
non-decreasing degree one circle maps that have a constant section and a rational rotation number. From this algorithm we
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Fig. 1. An example of a map from £; which can be considered as a toy model for the elements of that class. The picture shows F [
defined as F(x) = F‘[o.n({{X}}) + x].

o)’ and F is globally

get an efficient way to compute exactly the rotation interval of this subset of the continuous non-invertible degree one circle
maps by using the so called upper and lower maps, which, when different, always have a constant section. When dealing
with maps outside the aforementioned class, the algorithm will return an arbitrarily precise rational aproximation of the
rotation number.

To check the efficiency of our algorithm we will use it to compute some classical results such as a Devil’s Staircase. When
doing so, we will compare the efficiency of our algorithm with the performance of some other algorithms that have been
traditionally used under the hypothesis of non-invertibility. On the other hand, we will also compute the rotation interval
and Arnold tongues for a variety of maps, in the same comparing spirit. These maps include the Standard Map and variants
of it but have issues either with the differentiability, or even with the continuity. Of course these variants are not well suited
for algorithms that strongly use differentiability.

The paper is organised as follows. In Section 2 the theoretical background will be set. In Section 3 the algorithm will be
presented, and in Section 4 we will provide the mentioned examples of the use of the algorithm. Finally in Section 5 we
will discuss the advantages and disadvantages of the proposed algorithm.

2. A short survey on rotation theory and the computation of rotation numbers

We will start by recalling some results from the rotation theory for circle maps. To do this we will follow [11].

The floor function (i.e. the function that returns the greatest integer less than or equal to the variable) will be denoted as
L-]. Also the decimal part of a real number x € R, defined as x — |x] € [0, 1) will be denoted by {{x}}.

In what follows S! denotes the circle, which is defined as the set of all complex numbers of modulus one. Let e : R — S!
be the natural projection from R to S!, which is defined by e(x) := exp(27mix).

Let f:S! — S! be continuous map. A continuous map F : R — R is a lifting of f if and only if e(F(x)) = f(e(x)) for every
X € R. Note that the lifting of a circle map is not unique, and that any two liftings F and F’ of the same continuous map
f:S' - st verify F = F' + k for some k € Z.

For every continuous map f : S' — S! there exists an integer d such that

F(x+1)=Fx) +d

for every lifting F of f and every x € R (that is, the number d is independent of the choice of the lifting and the point
X € R). We shall call this number d the degree of f. The degree of a map roughly corresponds to the number of times that
the whole image of the map f covers homotopically S!.

In this paper we are interested studying maps of degree 1, since the rotation theory is well defined for the liftings of
these maps.

We will denote the set of all liftings of maps of degree 1 by £;. Observe that to define a map from £; it is enough to
define F|[0.1] (see Fig. 1) because F can be globally defined as F(x) = F|[0l1]({{x}}) + |x] for every x € R.

Remark 2.1. It is easy to see that, for every F € £1, F"(x+ k) = F"(x) + k for every ne N, x € R and k € Z. Consequently,
F" € £ for every n e N.
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Fig. 2. An example of a map F € £; with its lower map F in red and its upper map F, in blue. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Definition 2.2. Let F € £1, and let x € R. We define the rotation number of x as

n —
0, (x) :=limsup M

n—oo n

Observe (Remark 2.1) that, p, (x) = p, (x + k) for every k € Z. The rotation set of F is defined as:
Rot(F) = {0, (x) :x e R} = {p, () :x [0, 1]).

Ito [12], proved that the rotation set is a closed interval of the real line. So, henceforth the set Rot(F) will be called the
rotation interval of F.

Proposition 2.3 (Proposition 3.7.11 in [11]). Let F € £ be non-decreasing. Then, for every x € R the limit
. F'(x) —x
lim L

n—oo
exists and is independent of x.

For a non-decreasing map F € £, the number o, (x) = limp_ %

be denoted by p,.
Now, by using the notation from [11], we will introduce the notion of upper and lower functions, that will be crucial to
compute the rotation interval.

will be called the rotation number of F, and will

Definition 2.4. Given F € £ we define the F-upper map F, as
F,(x) :=sup{F(y) :y <x}.

Similarly we will define the F-lower map as
F(x) :=inf{F(y) :y > x}.

An example of such functions is shown in Fig. 2.

It is easy to see that F, F, € £; are non decreasing, and F(x) < F(x) < F,(x) for every x € R.
The rationale behind introducing the upper and lower functions comes from the following result, stating that the rotation
interval of a function F € £; is given by the rotation number of its upper and lower functions.

Theorem 2.5 (Theorem 3.7.20 in [11]). Let F € £4. Then,
Rot(F) = [p;. oy, |-

Note that this theorem makes indeed sense, since the upper and lower functions are non-decreasing and by
Proposition 2.3 they have a single well defined rotation number.
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Let f:S! — s! and let z e S!. The f-orbit of z is defined to be the set
Orbs(2) :=1{z, f(2). f*(2)..... f"(2)....}.

We say that z is an n-periodic point of f if Orb(z) has cardinality n. Note that this is equivalent to f"(z) =z and k) # 2z
for every k < n. In this case the set Orb(z) will be called an n-periodic orbit (or, simply, a periodic orbit).

If we have a periodic orbit of a circle map, a natural question that might arise is how it behaves at a lifting level. This
motivates the introduction of the notion of a lifted cycle.

Given a set Ac R and m € Z we will denote A+ m := {x + m : x € A}. Analogously, we set

A+Z:={x+m:xcA, meZ}.

Definition 2.6. Let f : S! — S! be a continuous map and let F be a lifting of f. A set P c R is called a lifted cycle of F if e(P)
is a periodic orbit of f. Observe that, then P = P + Z. The period of a lifted cycle is, by definition, the period of e(P). Hence,
when e(P) is an n-periodic orbit of f,P is called an n-lifted cycle, and every point x € P will be called an n-periodic (mod 1)
point of F.

The relation between lifted orbits and rotation numbers is clarified by the next lemma.

Lemma 2.7 (Lemmas 3.7.2 and 373 in [11]). Let F € £;. Then, x is an n-periodic (mod 1) point of F if and only if there exists
k € Z such that F"(x) =x+k but F/(x) —x ¢ Z for j =1,2,..., n — 1. In this case,
. F"(x)—x k
pr(x) = lim —— = .
Moreover, let P be a lifted n-cycle of F. Every point x € P is an n-periodic (mod 1) point of F, and the above number k does not
depend on x. Hence, for every x e P we have p, (P) := p,(x) = ,’1—‘
Now we can revisit Proposition 2.3:
Proposition 2.3 (Proposition 3.7.11 in [11]). Let F € £1 be non-decreasing. Then, for every x € R the limit
o F'(x) —x
pri= Jim =
exists and is independent of x. Moreover, p, is rational if and only if F has a lifted cycle.
In the next two subsections we will survey on two known algorithms that have been already used to compute rotation

numbers of non-differentiable and non-invertible liftings from £;. The first one (Algorithm 1) stems automatically from the
definition of rotation number (Definition 2.2); the other one (Algorithm 2) is due to Simé et al. [13].

Algorithm 1 Direct Algorithm pseudocode
procedure ROTATION_NUMBER(F, error)
n < cm(L)

x<0
k<0
fori < 1,n do
x <~ F(x)
S < FLOOR(X)
k<—k+s > k=|F"(0)]
X< X—S5S > x = {{F"(0)}} = F"(0) — k
end for
return KX
end procedure

2.1. Algorithm 1: the numerical algorithm to compute the rotation interval that stems from the definition of rotation number

The first algorithm to compute p, consists in using Proposition 2.3 and the following approximation:

b, — lim 00 =X
U F(x) —x
- n x=0
_F0)
n



L. Alseda and S. Borrés-Cullell Commun Nonlinear Sci Numer Simulat 102 (2021) 105915

Algorithm 2 Simé et al. ([13]) Algorithm in pseudocode

procedure ROTATION_NUMBER(F, n)
index[] «
x <0
Pmin < 0
Pmax < 1
fori < 0,n do
x < F(x)
k; < FLOOR(X)
o < X — ki
index[i] < i
end for
sort o[index [i]] by rearranging index[]
fori < 0,n—1do

K;ndex [i+1] —Kingex (i
{Oaux < index[i + 1]—index [i]
if index[i+ 1] > index[i] then

Pmin < maX{,Omin, anX}
else
Pmax < Min{Omax, Paux}
end if
end for
return Ppin, Pmax
end procedure

However, a priori we do not know how good the convergence is. In Lemma 2.8 we will show that the error is of order 1/n.
The implementation of the computation of this approximation to the rotation number can be found in the side algorithm
pseudocode.

Since the maps from £; are defined so that

F(x) =F|,  ({1x}}) + L]

we need to evaluate the function FLOOR(-) = |-| once per iterate. So, for clarity and efficiency, it seems advisable to split
F"(0) as {{F"(0)}} + [F"(0)]. The next lemma clarifies the computation error as a function of the number of iterates. In
particular it explicitly gives the necessary number of iterates, given a fixed tolerance.

For every non-decreasing lifting F € £, and every n € N we set (see Fig. 3)

tr(n) = min [F"() —x] = min |F"(x) ~x).

The second equality holds because F has degree 1, and hence ¢ (n) is well defined.
Lemma 2.8. For every non-decreasing lifting F € £, and n € N we have

(a) either F'(z) =z + ¢p(n) + 1 for some z € R, or x + €p(n) < F'(x) <x+€p(n) + 1 for every x e R;
(b) EX < p, < QL and
(

o) |pp — Q=X)L for every x e R.

Proof. We will prove the whole lemma by considering two alternative cases. Assume first that F"(z) =z + ¢g(n) + 1 for
some z € R. Then (a) holds trivially, and Proposition 2.3 and Lemma 2.7 imply that p, = W So, Statement (b) also
holds in this case. Now observe that from the definition of ¢z (n) we have

er(n) < [F"(x) —x] < F'(x) —x (1)
for every x € R. Moreover, there exists k = k(x) € Z such that x e [z+ k,z+ k+ 1) and, since F is non-decreasing, so is F".
Thus,

F'(x) —x<F'(z+k+1)—x=F"(Q)+k+1-x=

M)+ 1+ (zZ+k+1-X) <tp(n) +2,
by Remark 2.1. Consequently,
n —
1: Lr(n) - F'(x) —x
n

1
<'OF+E;

foon n
which proves (c) in this case.



L. Alseda and S. Borrés-Cullell Commun Nonlinear Sci Numer Simulat 102 (2021) 105915

0 1

Fig. 3. Plot of x + ¢¢(n) x + ¢¢(n) + 1, and F"(x) for two arbitrary non-decreasing maps F € £; that fit in the two cases of the lemma.

Now we consider the case
F'(x) #x+¢p(n) + 1
for every x € R. In view of the definition of ¢¢(n), we cannot have
F'(x) —x > ¢p(n) +1
for every x € R. Hence, by the continuity of F*(x) —x and (1),
2p(n) < F'(x) —x < €p(n) + 1 (2)

for every x € R. This proves (a).
Now we prove (b). We consider the functions: x — ¢r(n) + x,F", and x — €z(n) + 14+ x. They are all non-decreasing
and, by Remark 2.1, they belong to £4. Hence, by Proposition 2.3, [11, Lemma 3.7.19] and (2),

EF (n) = IOX»—»éF(on S IOF" S px»—»éF(n)+1+x = ZF (n) + 1

Consequently,
£p(n) N Ce(n) + 1’
n —°F n - n

and (b) holds. Moreover, (2) is equivalent to
L (n) - F'(x) —x - tr(n) +1
n - n - n ’
which proves (c). O

2.2. Algorithm 2: the Simé et al. algorithm to compute the rotation interval

First of all, it should be noted that even though the authors propose an algorithm to compute the rotation interval for a
general map F € £, we will only use it for non decreasing maps.

A priori this algorithm is radically different from Algorithm 1 and it gives an estimate of o, by providing and upper and
a lower bound of the rotation number (rotation interval in the original paper) of F. Moreover, it is implicitly assumed that
or €10, 1] (in particular that F(0) € [0, 1) — this can be achieved by replacing the lifting F by the lifting G :=F — [F(0)], if
necessary). The algorithm goes as follows:

(Alg. 2-1) Decide the number of iterates n in function of a given tolerance. .
(Alg. 2-2) Fori=0,1,2,...,n compute k; = |[F'(xg)] and «; = F'(xg) — k; (i.e. «; is the fractionary part of F!(xg)).

6



L. Alseda and S. Borrés-Cullell Commun Nonlinear Sci Numer Simulat 102 (2021) 105915

(Alg. 2-3) Sort the values of k; and «; so that o) < o, < ... <, (this can be achieved efficiently with the help of an index
vector).
(Alg. 2-4) Initialise Py, =0 and Pmax = 1.
ki k.
(Alg. 2-5) For j=0,1,2,....,n—1set p; = % and
J+ )
. @f ijy1 > ij set Pmip = mgx{pmm, pj}; otherwise,
o if ij;1 <ij set pmax = Min{omax. O;}.
(Alg. 2-6) Return pmax and pp;, as upper and lower bounds of the rotation number of F, respectively.

The real issue in this algorithm consists in dealing with the error. If the rotation number p, satisfies a Diophantine condition
|,0F - §| <cq™", with ¢ > 0 and v > 2, then the error verifies

1
(cnv)r
Note that this error depends strongly on the chosen number n of iterates, and that n must be chosen before knowing what
the rotation number could possibly be. Hence Algorithm 2 it is not well suited to compute unknown rotation numbers of £4

maps. However, it is excellent in continuation methods where the current rotation number gives a good estimate of the next
one.

&<

Remark 2.9. Note that the original aim of the algorithm to determine the existence of closed invariant curves on dynamical
systems on the plane rather than the computation of rotation numbers of a given map of the circle. The rationale of the
algorithm is that if, after computing pni; and pmax, We find that o, > Pmax then the computed orbit cannot lay on a
closed invariant curve. This explains most of the limitations we have encountered, such as the lack of an a priori estimate
of the error, or the fact that the algorithm is suited only for rotation numbers p € [0, 1].

3. An algorithm to compute rotation numbers of non-decreasing maps with a constant section

The diameter of an interval K which, by definition is equal to the absolute value of the difference between their endpoints,
will be denoted as diam(K).

A constant section of a lifting F of a circle map is a closed non-degenerate (i.e. different from a point or, equivalently,
with non-empty interior, or such that diam(K) > 0) subinterval K of R such that F | « Is constant. In the special case when
F € £1, we have that F(x +1) = F(x) + 1 # F(x) for every x € R. Hence, diam(K) < 1.

The algorithm we propose is based on Lemma 2.8 but, specially, on the following simple proposition which allows us to
compute exactly the rotation number of a non-decreasing lifting from £, that has a constant section, provided that F"(K) N
(K +Z) # ¢. In this sense, Proposition 3.1 has a completely different strategical aim than Algorithm 1 and Lemma 2.8, which
try to (costly) estimate the rotation number.

Proposition 3.1. Let F € £ be non-decreasing and have a constant section K. Assume that there exists n € N such that F"(K) n
(K+7Z) # @, and that n is minimal with this property. Then, there exists & € R such that F"(K) ={£} c K+ m with m = | & —

minK] € Z.§ is an n-periodic (mod 1) point of F, and p, = .

Proof. Since K is a constant section of F,F(K) contains a unique point, and hence there exists & € R such that F*(K) = {£}.
Then, the fact that F"(K) n (K + Z) # ¢ implies that § € K+ m with m = |§ — minK] € Z. .
Set £ :=& —meK. Then, {F"(&)} =F"(K) = {£ + m}. Moreover, the minimality of n implies that F/(§) —& ¢ z for

j=1.2,....,n—1. So, Lemma 2.7 tells us that & (and hence &) is an n-periodic (mod 1) point of F. Thus, p, = by
Proposition 2.3. O

As already said, Proposition 3.1 is a tool to compute exactly the rotation numbers of non-decreasing liftings F € £; which
have a constant section and have a lifted cycle intersecting the constant section (and hence having rational rotation number).
In the next subsection we shall investigate how restrictive are these conditions, when dealing with computation of rotation
numbers.

3.1. On the genericity of Proposition 3.1

First observe that the fact that Proposition 3.1 only allows the computation of rotation numbers of non-decreasing liftings
F € £1 which have a constant section is not restrictive at all. Indeed, if we want to compute rotation intervals of non-
invertible continuous circle maps of degree one, Theorem 2.5 tells us that this is exactly what we want.

Clearly, one of the real restrictions that cannot be overcome in the above method to compute exact rotation numbers
is that it only works for maps having a rational rotation number. Hence, for maps with non-rational rotation number we
can only hope to get a rational approximation like the one given by Algorithm 1, which can be archieved with arbitrary
precision. However, as stated by Theorem 4.3, it is not easy to find maps with irrational rotation number, even harder to do
so with floating point aproximation.
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1.2 A
1.1 A

z+0.2 ifzel0,0.1],

24025 ifze(0.1,03),
Flyy(@):={ 72— 17 ifz€[03,04],

T4l ifze[04,08),

1.2 if 2 € [0.8,1]. 8‘3‘ 1

02|
0

T — T
00.1 0304 0.8 1

Fig. 4. Example of a non-decreasing lifting in £; with a constant section and rational rotation number which does not verify the assumptions of
Proposition 3.1.

On the other hand, we also have the formal restriction that Proposition 3.1 requires that the map F has a lifted cycle
intersecting the constant section (indeed this is a consequence of the condition F"(K) N (K + Z) # ¢). A natural question
is whether this restriction is just formal or it is a real one. In the next example we will see that the restriction is not
superfluous since there exist maps which do not satisfy it.

Consequently, Proposition 3.1 is useless in computing the rotation numbers of non-decreasing liftings in £; which have
a constant section and either irrational rotation number or rational rotation number but do not have any lifted cycle inter-
secting the constant section. The only reasonable solution to these problems is to use an iterative algorithm to estimate the
rotation number with a prescribed error, such as Algorithm 1, Algorithm 2 or others.

Example 3.2. There exist non-decreasing liftings in £, which have a constant section and rational rotation number but do not
have any lifted cycle intersecting the constant section: Let F € £; be as in Figure 4 such that F(x) = F|[0 ]]({{x}}) + x] for
every x € R. 1

The map F is a non-decreasing lifting from £;, having a constant section K =[0.8, 1] and rotation number % given by
the 3-lifted cycle P ={0.1,0.3,0.4} + Z (c.f. Lemma 2.7 and Proposition 2.3).

Now let us see that F does not have any lifted cycle intersecting the constant section. First, observe that

F3(K) = F(F(F(K))) = F(F({1.2})) = F({1.35}) = {1.75} ¢ K + Z.

Hence, there is no lifted cycle of period 3 intersecting K. On the other hand, again by Lemma 2.7, we have that if x is an
n-periodic (mod 1) point of F then there exists k € Z such that F"(x) = x + k and
1 . F™(x) —x
- =p = lim ——— =
3 Pr m

m—oo

Pr (X) = g

Moreover, since F is non-decreasing, we know by [11, Corollary 3.7.6] that n and k must be relatively prime. Thus, any lifted
cycle of F has period 3, and from above this implies that there is no lifted cycle intersecting K.

3.2. Algorithm 3: A constant section based algorithm arising from Proposition 3.1

From the last paragraph of the previous subsection it becomes evident that Proposition 3.1 does not give a complete
algorithm to compute rotation numbers of non-decreasing liftings in £; which have a constant section. Such an algorithm
must rather be a mix-up of Proposition 3.1, and Algorithm 1 to be used when we are not able to determine whether we
are in the assumptions of that proposition. As we did for Algorithm 1, we will split F"(0) as {{F"(0)}} + |F"(0)]. The goal
is twofold, on the one hand splitting helps minimizing the truncation errors. On the other hand, thanks to the splitting
we can apply Proposition 3.1 more efficiently, since it requires the computation of m as an integer part. Note that here
we are denoting the constant section by K and assuming that O € K, which will be justified later. Then, observe that the
computations to be performed are exactly the same in both cases (meaning when we can use Proposition 3.1, and when al-
ternatively we must end up by using Algorithm 1); except for the conditionals that check whether there exists n < max_iter
such that F*'(K) n (K + Z) # ¢ is verified (that is, whether the assumptions of Proposition 3.1 are verified) before exhausting
the max_iter iterates determined a priori.

In what follows I% will denote the computed value of F"(0) with rounding errors for n =1, 2, ..., max_iter.
The algorithm goes as follows (see Algorithm 3 for a full implementation in pseudocode, and see the explanatory com-
ments below):

(Alg. 3-1) Re-parametrize the lifting F so that it has a maximal (with respect to the inclusion relation) constant section of
the form [—tol, B + tol], where tol is the pre-defined rounding error bound.

8
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Algorithm 3 Constant Section Based Algorithm For a non-decreasing map F € £ parametrised so that [—tol, 8 + tol] is a
constant section of F

define tol « > Procedure parameter that bounds the
rounding errors in thecomputation of
F™(0)
procedure ROTATION_NUMBER(F, B, error)
max_iter < CEIL(erlﬁ) > Maximum number of iterates al-
lowed(to estimate the rotation
x<0 number with the prescribed error
m<«0 when reached)
for n < 1, max_iter do
x <~ F(x)
S < FLOOR(X)
m«<m+s >m= |F"(0)]
X<X—5S >x={{F"(0)}} = F"(0) —m
if x < g then
return > Exact rotation number:Proposition 3.1 holds as-
suming that therounding error of F"(0)is smaller
end if than tol
end for
return X > We do not know whether we are in the
assumptions ofProposition 3.1.So, we itera-
end procedure tively estimate the rotation number as in-
Algorithm 1.The error bound is given by
Lemma 2.8

(Alg. 3-2) Set the inputs of the algorithm:
e S asin step 1,
e F, the map from which we want the rotation number,
e error, the maximum error we want our approximation to have.

(Alg. 3-3) Decide the maximum number of iterates max_iter:CEIL(L) to perform in the worst case (i.e. when

Proposition 3.1 does not work).
(Alg. 3-4) Initialize x =0 and m = 0.
(Alg. 3-5) Compute iteratively x = {{F"(0)}} and m = {F“(O)J (so that F*(0) = x + m) for n < max_iter.

(Alg. 3-6) Check whether x < 8. On the affirmative we are in the assumptions of Proposition 3.1, and thus, p, = 7. Then,
the algorithm returns this value as the “exact” rotation number.

(Alg. 3-7) If we reach the maximum number of iterates (i.e. n=max_iter) without being in the assumptions of
Proposition 3.1 (i.e. with x > B for every x) then, by Lemma 2.8, we have

1

X s
max_iter

m+x

max_iter

_|, _F0)

d max_iter

F"(0)

max_iter

F

 —

1

max_iter

and the algorithm returns X as an estimate of p, with as the estimated error bound.

max_iter
Remark 3.3. The fact that we can only check whether the assumptions of Proposition 3.1 are verified before exhausting

themax_iter = CEIL(ﬁ)iterates determined a priori does not allow to take into account that F may have a lifted cycle
intersecting the constant section but of very large period, i.e. with period larger than max_iter. In practice this problem
is totally equivalent to the non-existence (or rather invisibility) of a lifted cycle intersecting the constant section, and it can
be considered as a new (algorithmic) restriction to Proposition 3.1. It is solved in (Alg. 3-6) in the same manner as the two
other problems related with the applicability of Proposition 3.1 that have already been discussed: by estimating the rotation

number as in Algorithm 1.

In the last part of this subsection we are going to discuss the rationale of (Alg. 3-2) (and, as a consequence of (Alg. 3-5)).
The necessity of this tuning of the algorithm comes again from a challenge concerning the application of Proposition 3.1,
which turns to be one of the most relevant restrictions in the use of that proposition. We will begin by discussing how we
can efficiently check the condition £ = F"(0) € K + Z (or equivalently F"(K) N (K + Z) # @) by taking into account that the
computation of F(x) is done with rounding errors, and thus we do not know the exact values of F*(0) forn=1,2,..., max_iter.
The next example shows the problems arising in this situation.



L. Alseda and S. Borrés-Cullell Commun Nonlinear Sci Numer Simulat 102 (2021) 105915

2.749 4

1.749
0 0.75 1

Fig. 5. The graph of F53. It lies below the graph of x —> x + 2 but very close to it at five F-preimages of x = %4

Example 3.4. I?';EO/) € K+Z but F"(K) N (K + Z) = ¢, and this leads to a completely wrong estimate of p,.
Let F € £4 be the map such that F(x) = F|[o ]]({{x}}) + |x] for every x € R, and let
dx+p ifxe[O,%],
F| on® = : 3
(0.1] T+u ifxe[3.1]

with p = £ — 10716,

1.262 - K ﬁ

T
0.75 1
For this map F we have K = [—%, O] and (see Fig. 5) the graph of F> lies above the graph of x —> x+ 1 and below the

graph of x — x + 2, but very close to it at five F-preimages of x = %. On the other hand,

F?(0) = 1.74999999999999887 - - - ¢ K + Z
but the distance between F>(0) and K+Z is Z — F>(0) ~ 1.138 - 10-1. Should the computations be done with rounding

errors of this last magnitude, we may have F>(0) 2 %, and accept erroneously that F>(0) € K + Z. This would lead to the
conclusion that p, = % but, as it can be checked numerically, p, ~ 0.3983 which is far from %

At a first glance this seems to be paradoxical but, indeed, it can be viewed in the following way: The graph of F> does
not intersect the diagonal (modulo 1) x + 2, but there is a map G close (at rounding errors distance) to F such that the
graph of G intersects that diagonal, and this gives a lifted periodic orbit of period 5 and rotation number % for G. On the
other hand, nothing is granted about the modulus of continuity of o, as a function of F (notice that that everything here is
continuous including the dependence of the rotation number of F on the parameter 1), and this example explicitly shows
that it may be indeed very big. In short, close functions can have very different rotation numbers.

The most reasonable solution to the problem pointed out in the previous example consists in restricting the size of K
depending of an a priori estimate of the rounding errors in computing F*(0) for n =1, 2, ..., max_iter. Thus, we denote by

10
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tol an upper bound of these rounding errors, so that
F™(0) — I% < tol holds forn=1, 2, ..., max_iter,

and, given a maximal (with respect to the/J/nclusion relation) constant section K such that 0 € K we write K := [ot — tol, 8 +
tol]. Then observe that the condition F"(0) € [, 8]+ m for some n e N and m € Z implies £ =F"(0) e K+m, and p, = T
by Proposition 3.1.

In practice, this “rounding errors free” version of the algorithm imposes a new restriction to the applicability of
Proposition 3.1 (in the sense that it reduces even more the class of functions for which we can get the “exact rotation
number”). However, as before, the rotation numbers of the maps in the assumptions of Proposition 3.1 for which we cannot
compute the “exact rotation number” can be estimated as in Algorithm 1.

The computational efficiency of the algorithm strongly depends on how we check the condition F/"?O/) € K + 7. Taking into
account the above considerations and improvements of the algorithm, this amounts checking whether o +¢ < F"(0) < 8+ ¢
for some ¢ € Z, and we have to do so by using x = {{F"(0)}} and m = LF"(O)J instead of F(0) = x +m, which is the

algorithmic available information. Checking whether « + ¢ < F'(0) < 8 + ¢ for some ¢ € Z is problematic since it requires at
least two comparisons, and moreover in general ¢ # m (and thus we need some more computational effort to find the right
value of ¢). A very easy solution to this problem is to change the parametrization of F so that o = 0. In this situation we
have

—~

m=m+o <F'(0),m+pB <m+1
because diam(K) <1, and m = LI%J Consequently, @ + ¢ < l% < B + ¢ for some ¢ € Z is equivalent to
¢=m and x<§8.

Thus, by “tuning” F so that « = 0 we get that £ = m and we manage to determine whether F?(0) € [«, 8] + m just with one
comparison (x < B).

To see how we can change the parametrization of F (that is step Alg. 3-1) so that o =0 consider the map G(x) :=
F(x+a) —«a. Clearly, F and G are conjugate by the rotation of angle «: x — x + . Then, obviously, G is a non-decreasing
map in £q, has a constant section [—tol, 8 —« +tol], and p, = p,. So, every lifting can be replaced by one of its re-
parametrizations with the same rotation number and constant section [—tol, 8 + tol], where § <1 — 2tol.

4. Testing the Algorithm

In this section we will test the performance of Algorithm 3 by comparing it against Algorithms 1 and 2 when dealing
with different usual computations concerning rotation intervals. First we will compare the efficiency of the three algorithms
in computing and plotting Devil’s Staircases. Afterwards we will plot rotation intervals and Arnold tongues for two bi-
parametric families that mimic the standard map family. In the latter two cases, we will try to compare our algorithm with
Algorithms 1 and 2 whenever possible.

4.1. Computing Devil’s staircases

In this subsection we will perform the comparison of algorithms by computing and plotting the Devil's staircase for the
parametric family {F, } C £ defined as

nel0,1]
Definition 4.1.
Fu(x) = FM|[0,1]({{X}}) + %],
where (see Fig. 1)
dx+u ifx<
. =
Fitl g, = {,u+1 if x >

Before doing this we shall remind the notion of a Devil’s Staircase, and why typically exist for such families. To this end
we will first recall and survey on the notion of persistence of a rotation interval.

3)

ENJETEN[W)

Definition 4.2. Given a subclass A of £, we say that F € A has an A-persistent rotation interval if there exists a neighbour-
hood U of F in A such that

Rot (G) = Rot (F)
for every G e U.
We can now state the Persistence Theorem (c.f. [14]):

Theorem 4.3 (Persistence Theorem). Let A be a subclass of £1. Then the following statements hold:

1
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Fig. 6. The Devil's Staircase associated to the family (3) computed with Algorithm 3 (upper picture). The lower pictures show the plots of the differences
between the value of Pr, computed with Algorithm 3 and the value of Pr, computed with Algorithm 1 (left picture), and with the value of Pr, computed
with Algorithm 2(right picture).

(a) The set of all maps with A-persistent rotation interval is open and dense in A (in the topology of A).
(b) If F has an A-persistent rotation interval, then Py, and Py, are rational.

Remark 4.4. If we apply Theorem 4.3 to our family {FM}ME[O 1 which verifies that the rotation number of F, exists for

every u € [0, 1], we have that the set of parameters i € [0, 1] for which we have irrational rotation number has measure
0. Furthermore, for any « € Q such that there exists u with Pp, =K, there exists an interval [&, 8] > u such that for all

ne [a7ﬁ]7pfn =K.

The so-called Devil’s staircase is the result of plotting the rotation number as a function of the parameter . By
Theorem 4.3 we have that this plot will have constant sections for any rational rotation number, hence the ”Staircase”
in the name.

To test the algorithms, a w-parametric grid computation of P, with p ranging from 0 to 1 with a step of 105 has been
done. For Algorithms 1 and 3 the error has been set to 105, For Algorithm 3 the tolerance has been set to 10~10, For
Algorithm 2 we have arbitrarily set the number of iterates to 1000.

In Fig. 6 we show a plot of the Devil's Staircase computed with Algorithm 3, and the plots of the differences between
P, computed with Algorithms 3 and 1, and the differences between Pr, computed with Algorithms 3 and 2 Table 1.

12



L. Alseda and S. Borrés-Cullell Commun Nonlinear Sci Numer Simulat 102 (2021) 105915

Table 1

Performance of the three algorithms studied for a variety of problems. The cells
marked with N/A in blue remark that Algorithm 2 does not work in general for
p ¢ [0, 1]. The ones marked with N/A in red denote that the computation lasted
more than a 100 processor hours and thus was terminated before it ended.

Function Time taken by algorithm (s)

Problem Family - —
Classic Simé et al.  Proposed

Devil's Staircase ~ F, (Def. 4.1) 242525  210.648 0.1413
Rotation Standard 354.868 N/A 3.2874
Interval PWLSM (Def. 4.7)  110.892  N/A 0.4737

DSM (Def. 4.8) 63.588 N/A 0.2463
Arnol'd Standard N/A N/A 14948.41
Tongues PWLSM N/A N/A 9729.17

DSM N/A N/A 4562.75

shows the times' taken by each of the three algorithms in computing the whole Devil's staircase using the three algo-
rithms studied.

We remark that in the computation of the Devil’s Staircase, Algorithm 3 has been reduced to Algorithm 1 only for & =0
and for 4 = 1, as one would expect, since these cases follow the pattern of Example 3.4.

As a part of the testing of the algorithms we have also considered the inverse problem: Given a value p € R\Q and a tol-
erance ¢ > 0 find the value ju = p(x) such that pg, € [p — &, p + €]. This problem has turned to be extremely ill-conditioned:
by choosing p to be any irrational number. We have tried to use algebraic numbers such as the golden mean or 1/+/2 and
transcendental numbers such as 7 /4 or e/3. In any studied case, the continuity module of the function u PE, around
u(p) was estimated to be at least 102, making any attempt to solve the problem unfeasable. Note that this is coherent
with Theorem 4.3, since the values of p that give non-rational values are nowhere dense.

4.2. Rotation intervals for standard-like maps

In this subsection we test our algorithm by efficiently computing the rotation intervals and some Arnol'd tongues for
three bi-parametric families of maps: the standard map family and two piecewise-linear extensions of it; one continuous
but not differentiable, and another one which is not even continuous.

We emphasize that the usual algorithms such as the ones from [8-10,15] cannot be used for these last two families while
the one we propose here it works very well indeed.

First we will recall the notion of Arnol'd tongue.

Definition 4.5 (Arnol'd Tongue [16]). Let {Fa,b} (ab)ep be a two-parameter family of maps in £; for which the rotation in-

terval Rot(Fa,b) is well defined for every possible point (a,b) € P in the parameter set. Given a point ¢ € R we define the

o—Arnold Tongue of{F, ,} s

(a,b)eP d
To=1{(a,b) eP : g eRot(Fp)} CP.

Next we introduce each of the three families that we study and, for each of them we show the results and we explain
the performance of the algorithm.

Definition 4.6 (Standard Map). Sq, ; € £ is defined as (see Fig. 7):
Sqa(X) ==X+ Q - % sin(2mx). 4)

To compute the rotation intervals of S , we will use Theorem 2.5, together with Algorithm 3. To this end, first we will
compute (SQ_a)l and (nga)u (that is, the lower and upper maps of Sg, 4), and then we will use Algorithm 3 to compute the
rotation numbers Pisg and Pisg of these maps.

.a’] .a’u

Note that Sq, is non-invertible for a > 1. Hence, in this case, (Sg’a)l and (SQ’C,)u do not coincide and have constant
sections. However, the characterization of these constants sections is not straightforward, since their endpoints have to
be computed numerically. This is the reason why the computations of the rotation intervals and Arnol’d tongues for the
standard map have been the slowest ones.

In Fig. 8 we show some graphs of the rotation interval and Arnol'd tongues for the Standard Map. The graphs of the
rotation intervals are plotted for three different values of Q2 as a function of the parameter a.

1 The simulations have been done with an Intel® Core™ i7-3770 CPU @3.4GHz.
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(A) Rotation interval
graph for 2 = 0.

(B) Rotation interval
graph for 2 = 0.5.

Q

(D) 0—Arnol’d tongue.

Q

(E) T, Arnol’d tongue
for o = 0.5.

(c) Rotation interval
graph with € equals to
the Golden Mean.

Q

(F) T, for p equal to
the Golden Mean.

Fig. 8. Graphs of the rotation interval and Arnol'd tongues for the Standard Map Sg 4. The graphs of the rotation intervals are plotted as a function of the

parameter a.
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-0.5 0 1 1.5

Fig. 9. The piecewise-linear standard map Tq, with a = 57" and Q = 0. The lower map of Tq, is drawn in blue, and the upper map in red.

Definition 4.7 (Piecewise-linear standard map). We start by defining a convenience map 7 : [0,1] — [-1, 1] as follows:

4x whenx € [0, {].
t(x)=1{2-4x whenxe|[}, 3] and (5)
4(x—1) whenxe[3.1].

Then, the piecewise-linear standard map Tq 4 € £1 is defined by (see Fig. 9):

Taa() =x+2 - -t ({{)), (6)

-1
which corresponds to the standard map but using the T wave function instead of the sin(27x) function. °

INCE
—

The upper and lower maps for this family are very easy to compute. Moreover, Tq 4 is non-increasing for a > 7 and
hence, in this case, the upper and lower maps do not coincide and have constant sections.

To compute the rotation intervals and Arnol’d Tongues of Tg, we proceed as for the Standard Map by using
Theorem 2.5 and Algorithm 3.

In Fig. 10 we show some graphs of the rotation interval and Arnol'd tongues for the piecewise-linear standard map. The
graphs of the rotation intervals are plotted for three different values of €2 as a function of the parameter a.

Definition 4.8 (The Discontinuous Standard Map). Dg, 4 € £; is defined as (see Fig. 11):

Doa(X) 1= X+ Q + %{{x}}. 7
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(A) Rotation interval
graph for 2 = 0.

(B) Rotation interval
graph for 2 = 0.5.

Q

(D) 0—Arnol’d tongue.

Q

(E) T, Arnol’d tongue
for o = 0.5.

(¢c) Rotation interval
graph with € equals to
the Golden Mean.

o

(F) T, for p equal to
the Golden Mean.

25

Fig. 10. Graphs of the rotation interval and Arnol'd tongues for the piecewise-linear standard map Tq 4. The graphs of the rotation intervals are plotted as

a function of the parameter a.

Fig. 11. The discontinuous standard map with a = 27 and Q = 0 with its lower map in blue and its upper map in red.

The map Dg, 4, being discontinuous, belongs to the so called class of old heavy maps [17] (the old part of the name stands

for degree one lifting — that is, Do 4 € £1). A map F € £y is called heavy if for any x € R,

lim F F lim F
Jim ¥ = (X)syljl}g )

(in other words, the map “falls down” at all discontinuities).
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o1 ‘ P15 ﬁﬁ‘; ‘ P15 I/*J
. . p B » il | //ﬁ%'
(A) Rotation interval (B) Rotation interval (¢c) Rotation interval
graph for 2 = 0. graph for 2 = 0.5. graph with € equals to

the Golden Mean.

D) 0—Arnol’d tongue. E) 7, Arnol’d tongue F) T, for p equal to
(D) g o g 0
for o = 0.5. the Golden Mean.

Fig. 12. Graphs of the rotation interval and Arnol'd tongues for the discontinuous standard map Dg 4. The graphs of the rotation intervals are plotted as a
function of the parameter a.

Observe that for the class of old heavy maps the upper and lower maps in the sense of Definition 2.4 are well defined
and continuous. Moreover, the whole family of water functions (c.f. [11]) is well defined and continuous. So, the rotation
interval of the old heavy maps is well defined [17, Theorem A| and, moreover, Theorem 2.5 together with Algorithm 3 work
for this class. Hence, to compute the rotation intervals and Arnol'd Tongues of Dy, we proceed again as for the Standard
Map.

As for the piecewise-linear standard maps the upper and lower maps are very easy to compute, and have constant
sections for a # 0.

In Fig. 12 we show some graphs of the rotation interval and Arnol'd tongues for the discontinuous standard map. The
graphs of the rotation intervals are plotted for three different values of 2 as a function of the parameter a. The times taken
for all the computation related with the rotation intervals and the Arnol’d Tongues for each of the families studied using
Algorithms 1, 2 and 3 can be found in Table 1.

5. Conclusions

The proposed algorithm clearly outperforms all the other tested algorithms, both in precision and speed even though
the “exact” (and quick) part of the algorithm does not work for all the non-decreasing liftings in £; which have a con-
stant section (and hence the rotation number of these “bad” cases has to be computed with the much more ineffi-
cient classical algorithm). For all natural examples for which it has been tested, the computational speed and precision
were unparalleled. Moreover, the set of functions becomes very general when one considers the fact that the upper and
lower functions inherently have constant sections for any F that is not strictly increasing. Hence, the algorithm becomes
a crucial tool to compute rotation intervals for general functions in £; and, therefore, to find the set of periods of such
maps [11].

Moreover, a deeper study has been done on the dependence of the rotation number on the parameters. Our preliminary
results have found that for irrational rotation numbers, the dependence of the parameters around them is extremely sen-
sitive, with continuity module being at least 102>. This agrees with Theorem 4.3, which says that non-persistent functions
have measure zero.
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