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HIGHLIGHTS

e Traceability and paternity tests can adapt to low-coverage whole-genome sequencing data.
o Testing performance depended on sequencing error rate and genotype frequencies.

e Uncertainly had greater impact on false negatives than false positives.

e 0.05x coverage sufficed to guarantee greater-than-99% success during testing.
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ABSTRACT

Procedures for genetic traceability of animal products and parentage testing mainly focus on microsatellites or
SNPs panels. Nevertheless, current availability of high-throughput sequencing technologies must be considered
as an appealing alternative. This research focused on the evaluation of low-coverage whole-genome sequencing
for traceability and paternity testing purposes, within a context of evidential statistics. Analyses were performed
on a simulation basis and assumed individuals with 30 100-Mb/100-cM chromosome pairs and ~1,000,000
polymorphic SNPs per chromosome. Ten independent populations were simulated under recombination and
mutation with effective populations size 100 (generations 1-1000), 10,000 (generation 1001) and 25,000
(generation 1002), and this last generation was retained for analytical purposes. Appropriate both traceability
and paternity tests were developed and evaluated on different high-throughput sequencing scenarios accounting
for genome coverage depth (0.01x, 0.05x, 0.1 x and 0.5x), length of base-pair reads (100, 1000 and 10,000 bp),
and sequencing error rate (0%, 1% and 10%). Assuming true sequencing error rates and genotypic frequencies,
0.05x genome coverage depth guaranteed 100% sensitivity and specificity for traceability and paternity tests (n
= 1000). Same results were obtained when sequencing error rate was arbitrarily set to 0, or the maximum value
assumed during simulation (i.e., 1%). In a similar way, uncertainly about genotypic frecuencies did not impair
sensitivity under 0.05x genome coverage, although it reduced specificity for paternity tests up to 85.2%. These
results highlighted low-coverage whole-genome sequencing as a promising tool for the livestock and food in-
dustry with both technological and (maybe) economic advantages.

1. Introduction

2001), and is becoming more demanding by consumers and producers
(Qian et al., 2020). On the other hand, parentage testing enables to

Neutral genetic markers have been widely used for both traceability
(Arana et al., 2002; Vazquez et al., 2004) and parentage testing (Heaton
et al., 2014) in livestock populations. Traceability aims to maintain
credible custody of identification for animals or animal products
through various steps within the production and food chain (McKean,
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identify similar inheritance patterns between related individuals
(Jamieson, 1965), and has a deep impact on breeding programs (Banos
etal., 2001), where a moderate proportion of misidentified progeny can
be anticipated (Geldermann et al., 1986; Visscher et al., 2002; Weller
et al., 2004). Both approaches have relevant legal uses for animal
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forensic determinations (Kanthaswamy, 2015) or pedigree certification
regarding livestock breed societies.

Genetic traceability and parentage testing rely on the fact that DNA is
enormously variable among individuals despite the simple genetic
mechanisms ruled by Mendel’s laws of inheritance from parents to
offspring. Moreover, DNA is present in every cell of the organism, does
not change during animal life, and is stable to different treatments of
processed food (Dalvit et al., 2007). Current procedures for genetic
traceability and parentage testing mainly focus on microsatellites or
SNPs (Heaton et al., 2002), where standardized panels have already
been defined to harmonize procedures worldwide (https://www.isag.us
/committees.asp, accessed March 18th, 2021). Nevertheless, current
advances in high-throughput technologies move towards partial or
whole-genome sequencing procedures where closed SNP panels would
be likely to have no future for further purposes. This requires additional
endeavors to elucidate the usefulness of sequencing data, mainly when
low-coverage approaches are considered due to economic limitations.
Although Zan et al. (2019) suggested that very low-coverage (<0.5x)
sequencing data could be informative enough for inferring outbred
founder genotypes under an Fo design, little is known about their
applicability in commercial populations of livestock.

This research focused on three main objectives, (1) the development
of both traceability and paternity tests for low-coverage sequencing data
within the context of evidential inference (Bickel, 2012), (2) the vali-
dation of low-coverage sequencing for traceability and paternity testing
in commercial livestock populations under full knowledge of population
(i.e., allele or genotype frequencies) and sequencing parameters (i.e.,
error rates), and (3) the evaluation of the impact of uncertainly about
population and sequencing parameters on traceability and paternity
tests for low-coverage sequencing data.

2. Materials and methods

Animal Care and Use Committee approval was not obtained for this
study because analyses were performed on simulated data sets. Neither
real animals nor biological tissues from alive animals were involved in
this research.

2.1. Genome and population simulation process

This research simulated an unspecific mammalian livestock popu-
lation. We took as a starting point a 100-Mb/100-cM chromosome with
5000,000 biallelic SNPs (one SNP each 20 base pairs and 2 x 10°° cM),
and the whole genome consisted of 30 chromosome pairs. This gener-
ated a standard 3 Gb genome (Pérez-Encisoet al., 2015) with the same
number of chromosomes as cattle and goat, and within the range of
other livestock species such as pig (19 pairs), sheep (27 pairs) and horse
(32 pairs). The starting number of SNPs was assumed to guarantee more
than 30,000,000 polymorphic SNPs at the end of the simulation process
(see below), as reported by Daetwyler et al. (2014) in cattle.

Populations started from a founder generation with 100 individuals
that were heterozygous throughout the whole genome. They evolved
during 1000 non-overlapping generations under random mating and
effective population size 100. Linkage disequilibrium between adjacent
loci was generated based on Kosambi’s mapping function (Kosambi,
1944), and a mutation rate of 2.5 x 10~ per SNP was applied until
generation 980 (Meuwissen et al., 2001), switching the allele state from
A to B, or vice versa. From generation 981 on, the mutation rate switched
to 2.5 x 1078 (Hickey and Gorjanc, 2012). Only those populations with
1000,000 + 10% (i.e., 900,000 to 1100,000) polymorphic (MAF > 0)
SNPs per chromosome in generation 1000 were retained for further
analyses.

Populations expanded to 10,000 individuals in generation 1001
(1000 sires and 9000 dams), and 25,000 in generation 1002. A total of
10 independent populations were simulated.
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2.2. Sequencing and alignment simulation process

The number of reads per chromosome was defined as

C x (100x10%) / L, where 100x10° was the assumed chromosome
length in bp, C was the expected genome coverage, and L was the
average read length in base-pairs. The length of each read was sampled
from a normal distribution with mean L and standard deviation L/10 to
account for variability on DNA sequencing products. Moreover, each
read was placed at random, both in the genome and chromosome phase.
Following Fox et al. (2014) and Pfeiffer et al. (2018), an error rate be-
tween 10~ and 102 was randomly assigned to each polymorphic SNP.
The same error rate applied to both alleles. Only the number of reads for
each allele was stored for further analyses.

2.3. Evidential testing for single-individual traceability

This research relied on evidential inference (Edwards, 1972) as a
way to compare two competing hypotheses (i.e., models). This approach
relies on the likelihood function as the structure that contains all evi-
dence from the data relevant to the statistical model (Birnbaum, 1962),
and compares hypotheses by calculating the ratio of their likelihood
functions (Hacking, 1965). Within this context, an upper-than-1 likeli-
hood ratio favors the numerator model whereas a lower-than-1 likeli-
hood ratio suggests the superiority of the denominator model, although
a minimum likelihood ratio of 32 (or 1/32) is typically used in the
evidential literature (Blume, 2002; Royall, 1997), or even as high as
1000, often used in genome-wide linkage studies (Morton, 1998).

Traceability in the livestock industry can be defined as the ability to
identify animals or animals products through various steps within the
food chain from the farm to the retailer (McKean, 2001). Within this
context, the analysis of genetic polymorphisms must be viewed as a key
tool to verify the match between two independent samples.

Take as a starting point a n x 2 matrix (S) to summarize sequence
data from n polymorphic and biallelic sites of the genome. Once sorted
by chromosome and nucleotide within the chromosome, each column
stores the number of reads for alleles A and B, respectively. The analysis
of genetic traceability relied on two different samples (S, and S), and
two competing hypotheses, i.e., Hy: samples belong to the same indi-
vidual (p = q), and H;: both samples belong to different individuals (p #
q). They can be tested through their likelihood ratio (Edwards, 1972) as
follows,

LR(Hy, Hy | sp; Sq) :P(sp: Sq | Ho) /P(sp, Sq | Hy),
where p(Sp, Sq | Hi) was the joint probability of obtaining data S, and S

under hypothesis Hx. Under the Hy hypothesis, the likelihood must
expand to

P(Sp, Sq | Ho) = Mi—1,0 P(Sp,i | &5 € P(Sq,i | &> €0 P(gp,D)

where s;,; was the ith row of S, g, ; was the genotype (i.e., AA, AB or BB)
of the pth individual for the ith polymorphic site, and ¢ was the
sequencing error rate for the ith polymorphic site (we assume homo-
geneous error rates among alleles). Given that p and q were assumed to
be the same individual and the parametric space accounted for three
genotypes (p(AA) + p(AB) + p(BB) = 1), the likelihood became

P(Sp, Sq | Ho) =Tli—1 n[Zo—an,aBBB P(Sp,i | &p,i =, £) P(Sq,i | &gi = €D P
(gp,i = 8q,i = a)]

Now, assume a reads for allele A and b reads for allele B in s, ;. The
following conditional probabilities can be straightforwardly calculated
as binomial processes with trials, successes and success probability
sequentially noted between parentheses,

P(Sp,i | &,i = AA &) = Binomial(a + b, a, 1 - ¢;)


https://www.isag.us/committees.asp
https://www.isag.us/committees.asp

J. Casellas et al.

P(sp,i | &.,i = AB, &) = Binomial(a + b, a, 0.5)
D(sp,i | &,i = BB, &) = Binomial(a + b, a, &),

Finally, the probability of each genotype depends on its frequency in
the source population.

The same development can be applied to the alternative hypothesis
where

P(Sp, Sq | H1) = Tlim1,n P(Sp,i | 8,5 € P(&p,D) P(Sq,i | &g, £ P(8qD)5

and p and q were assumed different and unrelated individuals from the
same population. Once accounted for all three possible genotypes, the
previous expression expanded to

P(Sp, Sq | H) = i1 n {[Za—an,AB,BB P(Sp,i | &,i = & &) p(gp,i = ®)]
X [Zp=an,aBBB P(Sq;i | &,i = B, €) P(gq,i = P)IJ-

2.4. Testing for parentage

Parentage testing relies on the use of biological markers to identify
similar inheritance patterns between related individuals and traces back
to the 1960s where blood typing was used as a regular part of some cattle
breeding programs (Stormont, 1967). As seen with most domestic spe-
cies, the typical animal parentage case includes a dam, offspring, and
one or more alleged sires. The identity of the dam uses to be fairly
certain, whereas the true sire must be identified from a set of m males.
Our analytical approach will rely on this scenario, although it can be
straightforwardly generalized to test the other sex (i.e., dam).

Paternity testing relied on data samples from the offspring (S,), its
dam (Sg), and an alleged sire (S;). The testing process started with the
definition of the null hypothesis such as Hy j: both s and d were parents of
o. Within this context, the joint likelihood of S,, Sq and S; was written as

DP(So, Sa» Ss | Ho) = Mi—1,n{p(S0,i | Go,is €1) P(&o,i | 8o &,) P(Sdi | &a,o €) P
(84,)

x p(Ssi | &,i €0 P(g,)}, where s,; was the ith row of S,, g,; was the
genotype of the oth individual in the ith polymorphic site, and ¢; was the
sequencing error rate for the ith polymorphic site (we assume homo-
geneous error rates among alleles). As for traceability tests, previous
likelihood expanded to account for biallelic genetic markers,

DP(So, Sa, Ss | Hp) = Ii—1,n {Z4=AA,AB,BB P(So,i | 8o,i = O, &)

X [Zp—aa,AB,BB Zy—Aa,AB,BB P(€0i = o | 84 = B, &,i = v) P(Sq,i | &1 = B,
&) p(gdi = P)

X p(ss,i | &,i=" &) p(gs,1 = V)1,

where p(so,i | 8,i = @, €), p(sa;i | 4, = B, &) and p(ss; | &, = v, &) were
binomial probabilities, p(gg; = p) and p(gs; = y) were genotypic fre-
quencies in the parental population, and p(g,; = o | g4,; = B, &, = ¥) was
the conditional probability of the offspring’s genotype depending on
parents’ genotype (Table 1). It is important to note that previous
expression can also be applied when lacking of sequencing data from the
dam as follows,

P(So, Ss | Ho) = Mi—1,n{p(So,i | 8o, €D P(&o,i | &, P(Ss,i | &,i €D P(&s,D},
p(So, Ss | Ho) = Mi—1,n {Z4=aa,ABBB P(So,i | £o,i = @, &)

Table 1

Conditional probability of the offspring’s genotype in a biallelic locus (alleles A
and B) given the mother’s and the alleged father’s genotype. Each triad of
numbers provides the probability for AA, AB and BB genotypes, respectively.

Mother’s genotype

Father’s genotype AA AB BB

AA 1/0/0 05/05/0 0/1/0
AB 05/05/0 0.25/0.5/0.25 0/05/0.5
BB 0/1/0 0/05/05 0/0/1

Livestock Science 251 (2021) 104629

X [Zy—aa,AB,BB P(o,i = O | &i = V) P(Ss; | &, =7, ) P(gs,1,i = V)1,
where p(g,; = & | &, = v) can be obtained from Table 2.

On the other hand, the alternative hypothesis could be defined on the
following rationale, Hy: only d was parent of o, whereas s was unrelated
to o and sampled from the same population. The likelihood expands to

DP(So, Sa, Ss | H1) = i1, {p(S0,i | 8o, €0 P(&osi | 84,0
x p(Sq,i | 85 €D P(8aD} P(Ss,i | &,i, €) P&,

and

DP(So, Sa, Ss | H1) = Iiz1 0 {Za—aa,aB,B P(So,i | &,i = @, &)
X [Zp—an,AB,BB P(&;i = & | gai = B) P(Sa,i | &ai = B, ) p(gai = M1}
X Miz1,n [Zy—an,aB,88 P(Ss,i | &,i =7, &) (g, = V)]

where p(g,; = & | g4; = p) can be found in Table 2. As for previous hy-
pothesis, it was not mandatory to account for dam sequencing data if
missing,

P(Sos Ss | H1) = Hi—1,0n P(So,i | o6 € P(80,)) P(Ss;i | &1, €1 P(&s,D;
P(So, Ss | H1) = Ii—1,n Ta—aa,AB,BB P(So,i | 8o,i = &, &) P(&o,i = @)
X Zy_AnAB,BB P(Ss;i | &,i =, €) P(&,i = 7).

2.5. Uncertainly about population and sequencing parameters

Single individual traceability and parentage testing were evaluated
under different scenarios accounting for 0.01x, 0.05x, 0.1x and 0.5x
depth of genome coverage, with 100, 1000 and 10,000 base-pair reads.
Those read lengths were chosen to illustrate test performance under
currently available sequencing platforms (Besser et al., 2018).

As noted above, both traceability and parentage tests relied on two
structural parameters, within-SNP sequencing error rate (¢;) and geno-
typing frequencies. The first mainly depends on the sequencing method
and platform used (Fox et al., 2014) and uses to be estimated on an
across-genome basis. Within this context, we compared test perfor-
mances under three across-SNP homogeneous sequencing error rates:
0%, 1% (the maximum sequencing error rate used for simulation of the
sequencing process), and 10% (i.e., ten times higher than the maximum
sequencing error rate used for simulation of the sequencing process).

On the other hand, genotypic frequencies could be approximated by
using sequence data generated for traceability and paternity tests.
Nevertheless, the number of sequenced animals could be small and
contribute high uncertainly to estimated genotypic frequencies. To ac-
count for this uncertaintly, the variance of the estimated A allele fre-
quency (n) can be calculated as (Cockerham, 1969)

V() = [t (1 - ©)] / 2A where A was the number of sampled in-
dividuals. We compared A = 5, 10 and 100, and sampled the A allele
frequency (n*) for each SNP from a truncated (0-1) normal distribution
with mean = and variance V(n). Genotypic frequencies were obtained
assuming Hardy-Weinberg equilibrium (Hardy, 1908).

Table 2

Conditional probability of the offspring’s genotype in a biallelic locus (alleles A
and B) when only one parent contributes to the paternity test. Each triad of
numbers provides the probability for AA, AB and BB genotypes, respectively.

Parent’s genotype

Offspring’s genotype AA AB BB

AA p(A)! 0.5 p(A) 0

AB 1-p(A) 0.5 p(A)
BB 0 0.5 [1 - p(A)] 1-p(A)

1 p(A): allelic frequencies of A allele in parents’ generation.
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3. Results
3.1. Simulated genomic data

After 1000 non-overlapping generations, random mating and effec-
tive population size 100, we retained ten populations with 29,195,811
to 30,660,474 polymorphic SNPs. Allele frequencies widely distributed
along with the parametric space, as shown in Fig. 1, and a remarkable
percentage of SNPs had minimum allele frequency (MAF) below 0.05.
Although this varied among chromosomes, between 36.7% and 51.9%
of SNPs had MAF < 0.05. All these 10 simulated populations contributed
equally to the subsequent analyses.

After sequencing 10,000 individuals, the maximum number of reads
per polymorphic SNP was 3 (0.01x genome coverage), 4 (0.05x), 5
(0.1x) and 7 (0.5x). Nevertheless, between 76.2% (0.5x genome
coverage) and 99.5% (0.01x genome coverage) of them had a single
read, as shown in Fig. 2. The percentage of polymorphic SNPs with two
reads increased with genome coverage, from 0.5% (0.01x) to 19.1%
(0.5x), and a similar trend with smaller percentages was revealed for
larger numbers of reads. Moreover, those percentages showed small
variability across individuals, this uncertainly even reducing for smaller
read length (Fig. 2). The same pattern was revealed when checking for
shared SNPs among pairs of sequenced individuals. The longer the read
length was, the wider the dispersion of the number of shared SNPs
(Fig. 3). From the total of ~30,000,000 polymorphic SNPs, the average
number of shared polymorphic SNPs decreased from 3355.6 &+ 4.7 (100
base-pair read length) to 3093.2 + 28.5 (10,000 base-pair read length).
For SNPs with MAF > 0.05, similar trends were observed, from 1748.4
+ 3.3 (100 base-pair read length) to 1586.9 + 17.2 (10,000 base-pair
read length). Within this context, subsequent results were reported
based on the most uncertain (i.e., increased variability for the number of
reads and shared SNPs) and less informative (i.e., reduced number of
shared SNPs) scenario, this accounting for sequencing by 10,000 base-
pair reads.

3.2. Traceability and parentage testing

As anticipated, the number of shared polymorphic SNPs among two
unrelated individuals quickly increased with genome coverage
(Table 3). This generated a fast growth in terms of available information
for traceability and paternity tests, as evidenced by the likelihood ratios
provided in Fig. 4. Assuming true sequencing error rates and genotype
frequencies, 100% of traceability tests favored the true hypothesis when
genome coverage was 0.05x or deeper. The only exceptions were
detected for 0.01X genome coverage, where 0.7% of false positives and
0.04% of false negatives were reported (Fig. 4). The same pattern was
revealed for paternity tests, they showing a 100% of true positive and
true negatives under genome coverage 0.05X or deeper, and 1.1%
(1.0%) of false positives and 0.5% (0.6%) of false negatives under 0.01X

0.1
0.08
0.06
0.04

0.02

Relative frequency

0 0.2 0.4 0.6 0.8 1

Allele frequency

Fig. 1. Distribution of allele frequencies for the first chromosome of the first
simulated population.
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Fig. 2. Average distribution of polymorphic SNPs depending on the number of
reads when sequenced at 0.01X (black), 0.05X (blue), 0.1X (red) and 0.5X
(white) genome coverage with 10,000 base-pair read length. The whiskers
extend to minimum and maximum estimates. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 3. Shared SNPs among two unrelated individuals both sequenced at 0.01X
genome coverage with 100 (red dots), 1000 (blue dots) and 10,000 base-pair
read length (black dots). The X-axis accounts for SNPs with non-zero mini-
mum allele frequency (MAF), whereas Y-axis accounts for SNPs with
MAF>0.05. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 3
Mean + SE of shared polymorphic SNPs among two unrelated individuals when
sequenced at different genome coverages with 10,000 base-pair read length.

Genome coverage Polymorphic SNPs MAF'>0.05 SNPs

0.01X 3093.2 £ 28.5 1586.9 + 17.2
0.05X 77,007.2 £ 75.0 39,887.3 £ 46.4
0.1X 290,845.5 + 137 151,872.8 + 86.5
0.5X 4965,993.9 + 450.0 2589,401 + 329.2

! Minimum allele frequency.

of genome coverage when the dam was known (unknown).

In order to test for a more realistic scenario, different homogeneous
sequencing error rates were evaluated. As shown in Fig. 5, 0.05X
coverage sufficed to avoid false positives and negatives under both
traceability and paternity tests when sequencing error rate was arbi-
trarily set to 0% or the maximum rate used during sequencing simula-
tion (i.e., 1%). The only assumption that generated wrong results under
0.05X coverage was when the sequencing error rate was unrealistically
assumed 10 times higher than the upper bound during sequencing (i.e.,
10%). In this case, 1.3% (traceability test), 24.5% (paternity test with
known dam) and 22.8% (paternity test with an unknown dam) of false
negatives were reported, whereas any test generated false positives.
Higher genome coverage tested provided 100% of true positives and
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true negatives (results not shown), even under the assumption of 10% of
the sequencing error rate.

The other parameter accounting for uncertainly during traceability
and paternity testing was genotype frequencies. In this case, genotype
frequencies were assumed under Hardy-Weinberg equilibrium and
calculated from allele frequency with uncertainly as sampled from 5, 10,
and 100 individuals. As shown in Fig. 6, the smaller the uncertaintly for
allele frequency was, the larger the match with results was obtained
under true genotype frequencies. Nevertheless, 0.05x coverage sufficed
to avoid both false positives and negatives in traceability tests, whatever
the accuracy of allele frequencies. Paternity tests with known dam
(unknown dam) revealed a similar pattern without false positives since
0.05x coverage, and 0.1% (0.1%), 0.6% (0.3%) and 10.2% (14.8%) of
false negatives when the allele frequency was sampled with uncertainly
as calculated from 100, 10 and 5 individuals. Deeper genome coverage
provided 100% of true positives and true negatives at any uncertainly
for allele frequency.

4. Discussion

Current procedures for traceability and paternity testing rely on
SNPs where standardized panels have already been defined to harmo-
nize procedures worldwide (Heaton et al., 2002). Although their reli-
ability and statistical power fulfill the purpose for which they were
created (Marshall et al., 1998), they depend on some dozens of a few
hundreds of SNP genotypes, too few to be reused for other purposes like
genome-wide association analyses (Klein et al., 2005; Gilly et al., 2019)
or genomic evaluation (Meuwissen et al., 2001; Gorjanc et al., 2015,
2017). This is an important limitation because it drains the economic
capacity of food chain industries and breed societies and precludes
additional investments in genomic techniques. The current explosion in
high-throughput sequencing technologies (Bansal and Boucher, 2019)
opens the door to more sustainable science where specificity and
multiple-purpose data are not conflicting terms. Nevertheless, a first step
is required to verify that low-coverage whole-genome sequencing data
can efficiently address both traceability and paternity tests in order to
fulfill current standards at a similar economic cost.

Theoretical approaches to test both traceability and paternity have
been widely developed in scientific literature on the basis of complete
genotypes (Goffaux et al., 2005; Martin et al., 2010; Marshall et al.,
1998), whereas high-throughput sequencing technologies provide a
variable number of random samples from each polymorphic site and

log(likelihood ratio)

require genotype-calling procedures to reach closed genotypes (Nielsen
et al.,, 2011). Nevertheless, genotype-calling approaches show little
agreement when compared under low-coverage sequencing data (Liu
et al., 2013; Vens et al., 2009; Yu and Sun, 2013), where heterozygous
genotypes cannot be adequately called with a single read (Brouard et al.,
2017). Within this context, we omitted genotype-calling approaches in
our traceability and paternity tests and focused on genotype probabili-
ties within the context of appropriate likelihood functions. Although
these procedures were partially implemented in some genotype-calling
approaches (Li et al., 2008, 2009; Martin et al., 2010), they summa-
rized to the most probable genotype instead of keeping uncertainly for
further analyses. We kept uncertainly about genotypes along the whole
calculation of the likelihood ratio in order to avoid arbitrary decisions
when available information for each polymorphic site was very small in
tested individuals (Fig. 2).

Our tests relied on the likelihood principle, a statistical proposition
that states that all the evidence in the data relevant to the statistical
model is contained in the likelihood function (Birnbaum, 1962). Within
this context, a likelihood ratio must be viewed as an objective mea-
surement of the statistical evidence of one model against the other
(Hacking, 1965), and establishes the foundations for the evidential
statistics (Edwards, 1972) in contrast with frequentist and Bayesian
statistics. This inferential approach relies on two basic conditions that
are not completely fulfilled by frequentist and Bayesian inferences, ob-
jectivity (i.e., the strength of evidence does not vary from one researcher
to another) and interpretability (i.e., the strength of evidence has the
same practical interpretation for any sample size). The first condition
rules out Bayes factors that depend on subjective or default priors
(Bickel, 2012), and the second rules out the frequentist p-value that
forces the same type-I error percentage at any sample size (Bickel,
2011). By contrast, the likelihood ratio satisfies both of the necessary
conditions for a measure of the strength of statistical evidence. Within
this context, the likelihoods used in our testing approaches had the same
mathematical structure than the likelihoods we could construct within a
frequentist scenario, as well as they are proportional to the joint pos-
terior distributions with flat priors we could call in the Bayesian
framework. The essential difference relies on the test itself and the as-
sumptions carried out by the researcher. Within the context of evidential
statistics, there are not additional assumptions apart from the statistical
model itself and all the hypotheses have the same consideration during
the analytical process. Indeed, paternity tests with panels of genetic
markers were previously proposed by Marshal et al. (1998), and
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Fig. 5. Distribution of 1000 traceability tests (upper panel), paternity test with
known dam (mid panel) and paternity test with unknown dam (lower panel)
under 0.05X genome coverage, 10,000 base-pair read length, and assuming true
genotype frequencies in parental generation. Tests assumed true sequencing
error rates (black dots), null sequencing error rate (green dots), 1% sequencing
error rate (blue dots), and 10% sequencing error rate (red dots). Traceability
tests relied on the likelihood ratio between the null (Hy: same individual) and
the alternative hypothesis (H;: different individuals), and compared each in-
dividual against itself (X-axis) and against an unrelated individual (Y-axis).
Paternity tests evaluated whether the alleged sire was the true sire (Hp) or an
unrelated male of the population (H;), and where applied on the true sire (X-
axis) and on an unrelated male of the population (Y-axis). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

evidential statistics have been growing attention in genetics and geno-
mics research (Strug et al., 2010; Strug, 2018).

The performance of both traceability and paternity tests was
outstanding as evidenced in Figs. 4-6. Under the unrealistic assumption
of known sequencing error rates and genotype frequencies, 0.01x
genome coverage sufficed to guarantee >99% of true positives and true
negatives under traceability tests. In contrast, the minimum genome
coverage for paternity tests must increase up to 0.05x genome coverage
to reach the same rate of true positives and negatives. Nevertheless, our
current method works with low-coverage sequencing data and less false
paternity assignments than previous methods found in the scientific
literature (Snyder-Mackler et al., 2016; Whalen et al., 2019). The
method design for very low sequencing coverage data from fecal-derived
DNA by Snyder-Mackler et al. (2016), which also performed peternity
tests wit known or unknown dam, was not available to assign paternity
below 0.17x. On the other hand, results for paternity analyses by
Whalen et al. (2019) required greater coverage (0.4x) and larger
amount of genetic markers (50,000) to reach 100% sensibility.

In order to evaluate those procedures under more realistic scenarios,
different homogeneous error rates and accuracies for genotype fre-
quencies were evaluated. In this case, the sequencing error rate had a
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Fig. 6. Distribution of 1000 traceability tests (upper panel), paternity test with
known dam (mid panel) and paternity test with unknown dam (lower panel)
under 0.05X genome coverage, 10,000 base-pair read length, and assuming true
sequencing error rates per SNPs. Tests assumed true genotyping frequencies
(black dots), as well as genotyping frequencies under Hardy-Weinberg equi-
librium after sampling the allele frequency from 5 (red dots), 10 (blue dots) and
100 individuals (green dots). Traceability tests relied on the likelihood ratio
between the null (Hp: same individual) and the alternative hypothesis (Hj:
different individuals), and compared each individual against itself (X-axis) and
against an unrelated individual (Y-axis). Paternity tests evaluated whether the
alleged sire was the true sire (Ho) or an unrelated male of the population (H;),
and where applied on the true sire (X-axis) and on an unrelated male of the
population (Y-axis). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

mild impact on the performance of both traceability and paternity tests,
and it only impaired their results when an abnormally high sequencing
error rate was assumed (i.e., 10%). Indeed, results shown in Fig. 5 sug-
gested that the assumption of a null sequencing error rate provided the
most similar results to the ones obtained under true sequencing error
rates, simplifying both analytical models and subsequent calculations.
On the other hand, the impact of genotype frequencies was suggested as
larger, where more accurate estimates were required to avoid false
positives and negatives.

Statistical methodologies developed in this manuscript are ready to
use for both the food chain industry and breed societies. In fact, they
could also be useful for human studies. They do not need additional
generalizations, as all required algorithms are detailed in the current
manuscript. It is important to highlight that 0.05X genome coverage
sufficed for traceability and paternity tests assuming null (or 1%)
sequencing error rate and an accuracy for allele frequencies equal or
higher to the ones obtained when sampling 10 individuals. This must be
viewed as an outstanding result from technological, economic and sci-
entific points of view. Moreover, the sequenceing data generated could
have firther uses contributing more to sustainable science. The huge
amount of information available (even under very-low coverage) can be
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exploited more in depth. Especially, with the structure of livestock
species with dense family structures, large amounts of genomic data can
accumulate across generations and years. This latter will open a new
window of animal breeding purposes, as the availability of whole
sequence for animal population may change the current animal breeding
paradigm or even make a new revolution. Indeed, the exploration of
sequence data at massive volume may allow to make animal breeding
selection decisions more accurate by taking benefit of massive genomic
data (Knap, 2020). Thus, additional efforts to handle this new source of
partial genomic data may be of special relevance for the livestock in-
dustry (Knap, 2020). Evenmore, an additional investment to increase
the sequencing coverage until 2x, which is still considered
low-coverage, could allow to enhance animal breeding. Between the
possible options are the estimation of biological relatedness (Lipatov
etal., 2015) and the imputation of the whole genome with high accuracy
depending on the population size (Ros-Freixedes et al., 2020a, 2020b).
This last step would be essential to implement whole-genome sequence
data for genomic prediction and fine-mapping of causal variants.

5. Conclusions

Very low genome coverages in livestock species were enough to
guarantee >99% of true positives and true negatives for traceability
testing (from 0.01x coverage) and parentage testing (from 0.05x
coverage). Even when 0.05x coverage sufficed for both tests, as genome
coverage increased, the percentage of reads per polymorphic SNPs and
the certaintly of the estimate of its allele frequency increased, thus,
reducing the errors in the tests. Moreover, the length of the reads
affected the dispersion and number of shared SNPs among pairs of
sequenced individuals.
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