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H I G H L I G H T S  

• Traceability and paternity tests can adapt to low-coverage whole-genome sequencing data. 
• Testing performance depended on sequencing error rate and genotype frequencies. 
• Uncertainly had greater impact on false negatives than false positives. 
• 0.05× coverage sufficed to guarantee greater-than-99% success during testing.  
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A B S T R A C T   

Procedures for genetic traceability of animal products and parentage testing mainly focus on microsatellites or 
SNPs panels. Nevertheless, current availability of high-throughput sequencing technologies must be considered 
as an appealing alternative. This research focused on the evaluation of low-coverage whole-genome sequencing 
for traceability and paternity testing purposes, within a context of evidential statistics. Analyses were performed 
on a simulation basis and assumed individuals with 30 100-Mb/100-cM chromosome pairs and ~1,000,000 
polymorphic SNPs per chromosome. Ten independent populations were simulated under recombination and 
mutation with effective populations size 100 (generations 1–1000), 10,000 (generation 1001) and 25,000 
(generation 1002), and this last generation was retained for analytical purposes. Appropriate both traceability 
and paternity tests were developed and evaluated on different high-throughput sequencing scenarios accounting 
for genome coverage depth (0.01×, 0.05×, 0.1× and 0.5×), length of base-pair reads (100, 1000 and 10,000 bp), 
and sequencing error rate (0%, 1% and 10%). Assuming true sequencing error rates and genotypic frequencies, 
0.05× genome coverage depth guaranteed 100% sensitivity and specificity for traceability and paternity tests (n 
= 1000). Same results were obtained when sequencing error rate was arbitrarily set to 0, or the maximum value 
assumed during simulation (i.e., 1%). In a similar way, uncertainly about genotypic frecuencies did not impair 
sensitivity under 0.05× genome coverage, although it reduced specificity for paternity tests up to 85.2%. These 
results highlighted low-coverage whole-genome sequencing as a promising tool for the livestock and food in
dustry with both technological and (maybe) economic advantages.   

1. Introduction 

Neutral genetic markers have been widely used for both traceability 
(Arana et al., 2002; Vázquez et al., 2004) and parentage testing (Heaton 
et al., 2014) in livestock populations. Traceability aims to maintain 
credible custody of identification for animals or animal products 
through various steps within the production and food chain (McKean, 

2001), and is becoming more demanding by consumers and producers 
(Qian et al., 2020). On the other hand, parentage testing enables to 
identify similar inheritance patterns between related individuals 
(Jamieson, 1965), and has a deep impact on breeding programs (Banos 
et al., 2001), where a moderate proportion of misidentified progeny can 
be anticipated (Geldermann et al., 1986; Visscher et al., 2002; Weller 
et al., 2004). Both approaches have relevant legal uses for animal 
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forensic determinations (Kanthaswamy, 2015) or pedigree certification 
regarding livestock breed societies. 

Genetic traceability and parentage testing rely on the fact that DNA is 
enormously variable among individuals despite the simple genetic 
mechanisms ruled by Mendel’s laws of inheritance from parents to 
offspring. Moreover, DNA is present in every cell of the organism, does 
not change during animal life, and is stable to different treatments of 
processed food (Dalvit et al., 2007). Current procedures for genetic 
traceability and parentage testing mainly focus on microsatellites or 
SNPs (Heaton et al., 2002), where standardized panels have already 
been defined to harmonize procedures worldwide (https://www.isag.us 
/committees.asp, accessed March 18th, 2021). Nevertheless, current 
advances in high-throughput technologies move towards partial or 
whole-genome sequencing procedures where closed SNP panels would 
be likely to have no future for further purposes. This requires additional 
endeavors to elucidate the usefulness of sequencing data, mainly when 
low-coverage approaches are considered due to economic limitations. 
Although Zan et al. (2019) suggested that very low-coverage (<0.5×) 
sequencing data could be informative enough for inferring outbred 
founder genotypes under an F2 design, little is known about their 
applicability in commercial populations of livestock. 

This research focused on three main objectives, (1) the development 
of both traceability and paternity tests for low-coverage sequencing data 
within the context of evidential inference (Bickel, 2012), (2) the vali
dation of low-coverage sequencing for traceability and paternity testing 
in commercial livestock populations under full knowledge of population 
(i.e., allele or genotype frequencies) and sequencing parameters (i.e., 
error rates), and (3) the evaluation of the impact of uncertainly about 
population and sequencing parameters on traceability and paternity 
tests for low-coverage sequencing data. 

2. Materials and methods 

Animal Care and Use Committee approval was not obtained for this 
study because analyses were performed on simulated data sets. Neither 
real animals nor biological tissues from alive animals were involved in 
this research. 

2.1. Genome and population simulation process 

This research simulated an unspecific mammalian livestock popu
lation. We took as a starting point a 100-Mb/100-cM chromosome with 
5000,000 biallelic SNPs (one SNP each 20 base pairs and 2 × 10− 5 cM), 
and the whole genome consisted of 30 chromosome pairs. This gener
ated a standard 3 Gb genome (Pérez-Encisoet al., 2015) with the same 
number of chromosomes as cattle and goat, and within the range of 
other livestock species such as pig (19 pairs), sheep (27 pairs) and horse 
(32 pairs). The starting number of SNPs was assumed to guarantee more 
than 30,000,000 polymorphic SNPs at the end of the simulation process 
(see below), as reported by Daetwyler et al. (2014) in cattle. 

Populations started from a founder generation with 100 individuals 
that were heterozygous throughout the whole genome. They evolved 
during 1000 non-overlapping generations under random mating and 
effective population size 100. Linkage disequilibrium between adjacent 
loci was generated based on Kosambi’s mapping function (Kosambi, 
1944), and a mutation rate of 2.5 × 10− 3 per SNP was applied until 
generation 980 (Meuwissen et al., 2001), switching the allele state from 
A to B, or vice versa. From generation 981 on, the mutation rate switched 
to 2.5 × 10− 8 (Hickey and Gorjanc, 2012). Only those populations with 
1000,000 ± 10% (i.e., 900,000 to 1100,000) polymorphic (MAF > 0) 
SNPs per chromosome in generation 1000 were retained for further 
analyses. 

Populations expanded to 10,000 individuals in generation 1001 
(1000 sires and 9000 dams), and 25,000 in generation 1002. A total of 
10 independent populations were simulated. 

2.2. Sequencing and alignment simulation process 

The number of reads per chromosome was defined as 
C × (100×106) / L, where 100×106 was the assumed chromosome 

length in bp, C was the expected genome coverage, and L was the 
average read length in base-pairs. The length of each read was sampled 
from a normal distribution with mean L and standard deviation L/10 to 
account for variability on DNA sequencing products. Moreover, each 
read was placed at random, both in the genome and chromosome phase. 
Following Fox et al. (2014) and Pfeiffer et al. (2018), an error rate be
tween 10− 5 and 10− 2 was randomly assigned to each polymorphic SNP. 
The same error rate applied to both alleles. Only the number of reads for 
each allele was stored for further analyses. 

2.3. Evidential testing for single-individual traceability 

This research relied on evidential inference (Edwards, 1972) as a 
way to compare two competing hypotheses (i.e., models). This approach 
relies on the likelihood function as the structure that contains all evi
dence from the data relevant to the statistical model (Birnbaum, 1962), 
and compares hypotheses by calculating the ratio of their likelihood 
functions (Hacking, 1965). Within this context, an upper-than-1 likeli
hood ratio favors the numerator model whereas a lower-than-1 likeli
hood ratio suggests the superiority of the denominator model, although 
a minimum likelihood ratio of 32 (or 1/32) is typically used in the 
evidential literature (Blume, 2002; Royall, 1997), or even as high as 
1000, often used in genome-wide linkage studies (Morton, 1998). 

Traceability in the livestock industry can be defined as the ability to 
identify animals or animals products through various steps within the 
food chain from the farm to the retailer (McKean, 2001). Within this 
context, the analysis of genetic polymorphisms must be viewed as a key 
tool to verify the match between two independent samples. 

Take as a starting point a n × 2 matrix (S) to summarize sequence 
data from n polymorphic and biallelic sites of the genome. Once sorted 
by chromosome and nucleotide within the chromosome, each column 
stores the number of reads for alleles A and B, respectively. The analysis 
of genetic traceability relied on two different samples (Sp and Sq), and 
two competing hypotheses, i.e., H0: samples belong to the same indi
vidual (p = q), and H1: both samples belong to different individuals (p ∕=
q). They can be tested through their likelihood ratio (Edwards, 1972) as 
follows, 

LR(H0, H1 | Sp, Sq) = p(Sp, Sq | H0) / p(Sp, Sq | H1), 

where p(Sp, Sq | Hk) was the joint probability of obtaining data Sp and Sq 
under hypothesis Hk. Under the H0 hypothesis, the likelihood must 
expand to 

p(Sp, Sq | H0) = Πi=1,n p(sp,i | gp,i, εi) p(sq,i | gp,i, εi) p(gp,i) 

where sp,i was the ith row of Sp, gp,i was the genotype (i.e., AA, AB or BB) 
of the pth individual for the ith polymorphic site, and εi was the 
sequencing error rate for the ith polymorphic site (we assume homo
geneous error rates among alleles). Given that p and q were assumed to 
be the same individual and the parametric space accounted for three 
genotypes (p(AA) + p(AB) + p(BB) = 1), the likelihood became 

p(Sp, Sq | H0) = Πi=1,n[Σα=AA,AB,BB p(sp,i | gp,i = α, εi) p(sq,i | gq,i = α, εi) p 
(gp,i = gq,i = α)] 

Now, assume a reads for allele A and b reads for allele B in sp,i. The 
following conditional probabilities can be straightforwardly calculated 
as binomial processes with trials, successes and success probability 
sequentially noted between parentheses, 

p(sp,i | gp,i = AA, εi) = Binomial(a + b, a, 1 – εi) 
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p(sp,i | gp,i = AB, εi) = Binomial(a + b, a, 0.5) 
p(sp,i | gp,i = BB, εi) = Binomial(a + b, a, εi), 

Finally, the probability of each genotype depends on its frequency in 
the source population. 

The same development can be applied to the alternative hypothesis 
where 

p(Sp, Sq | H1) = Πi=1,n p(sp,i | gp,i, εi) p(gp,i) p(sq,i | gq,i, εi) p(gq,i), 

and p and q were assumed different and unrelated individuals from the 
same population. Once accounted for all three possible genotypes, the 
previous expression expanded to 

p(Sp, Sq | H1) = Πi=1,n {[Σα=AA,AB,BB p(sp,i | gp,i = α, εi) p(gp,i = α)] 
× [Σβ=AA,AB,BB p(sq,i | gq,i = β, εi) p(gq,i = β)]}. 

2.4. Testing for parentage 

Parentage testing relies on the use of biological markers to identify 
similar inheritance patterns between related individuals and traces back 
to the 1960s where blood typing was used as a regular part of some cattle 
breeding programs (Stormont, 1967). As seen with most domestic spe
cies, the typical animal parentage case includes a dam, offspring, and 
one or more alleged sires. The identity of the dam uses to be fairly 
certain, whereas the true sire must be identified from a set of m males. 
Our analytical approach will rely on this scenario, although it can be 
straightforwardly generalized to test the other sex (i.e., dam). 

Paternity testing relied on data samples from the offspring (So), its 
dam (Sd), and an alleged sire (Ss). The testing process started with the 
definition of the null hypothesis such as H0,j: both s and d were parents of 
o. Within this context, the joint likelihood of So, Sd and Ss was written as 

p(So, Sd, Ss | H0) = Πi=1,n{p(so,i | go,i, εi) p(go,i | gd,i, gs,i) p(sd,i | gd,i, εi) p 
(gd,i) 

× p(ss,i | gs,i, εi) p(gs,i)}, where so,i was the ith row of So, go,i was the 
genotype of the oth individual in the ith polymorphic site, and εi was the 
sequencing error rate for the ith polymorphic site (we assume homo
geneous error rates among alleles). As for traceability tests, previous 
likelihood expanded to account for biallelic genetic markers, 

p(So, Sd, Ss | H0) = Πi=1,n {Σα=AA,AB,BB p(so,i | go,i = α, εi) 
× [Σβ=AA,AB,BB Σγ=AA,AB,BB p(go,i = α | gd,i = β, gs,i = γ) p(sd,i | gd,i = β, 
εi) p(gd,i = β) 
× p(ss,i | gs,i = γ, εi) p(gs,1 = γ)]}, 

where p(so,i | go,i = α, εi), p(sd,i | gd,i = β, εi) and p(ss,i | gs,i = γ, εi) were 
binomial probabilities, p(gd,i = β) and p(gs,i = γ) were genotypic fre
quencies in the parental population, and p(go,i = α | gd,i = β, gs,i = γ) was 
the conditional probability of the offspring’s genotype depending on 
parents’ genotype (Table 1). It is important to note that previous 
expression can also be applied when lacking of sequencing data from the 
dam as follows, 

p(So, Ss | H0) = Πi=1,n{p(so,i | go,i, εi) p(go,i | gs,i) p(ss,i | gs,i, εi) p(gs,i)}, 
p(So, Ss | H0) = Πi=1,n {Σα=AA,AB,BB p(so,i | go,i = α, εi) 

× [Σγ=AA,AB,BB p(go,i = α | gs,i = γ) p(ss,i | gs,i = γ, εi) p(gs,1,i = γ)]}, 
where p(go,i = α | gs,i = γ) can be obtained from Table 2. 

On the other hand, the alternative hypothesis could be defined on the 
following rationale, H1: only d was parent of o, whereas s was unrelated 
to o and sampled from the same population. The likelihood expands to 

p(So, Sd, Ss | H1) = Πi=1,n {p(so,i | go,i, εi) p(go,i | gd,i) 
× p(sd,i | gd,i, εi) p(gd,i)} p(ss,i | gs,i, εi) p(gs,i), 

and 

p(So, Sd, Ss | H1) = Πi=1,n {Σα=AA,AB,BB p(so,i | go,i = α, εi) 
× [Σβ=AA,AB,BB p(go,i = α | gd,i = β) p(sd,i | gd,i = β, εi) p(gd,i = β)]} 
× Πi=1,n [Σγ=AA,AB,BB p(ss,i | gs,i = γ, εi) p(gs,i = γ)]. 

where p(go,i = α | gd,i = β) can be found in Table 2. As for previous hy
pothesis, it was not mandatory to account for dam sequencing data if 
missing, 

p(So, Ss | H1) = Πi=1,n p(so,i | go,i, εi) p(go,i) p(ss,i | gs,i, εi) p(gs,i), 
p(So, Ss | H1) = Πi=1,n Σα=AA,AB,BB p(so,i | go,i = α, εi) p(go,i = α) 
× Σγ=AA,AB,BB p(ss,i | gs,i = γ, εi) p(gs,i = γ). 

2.5. Uncertainly about population and sequencing parameters 

Single individual traceability and parentage testing were evaluated 
under different scenarios accounting for 0.01×, 0.05×, 0.1× and 0.5×
depth of genome coverage, with 100, 1000 and 10,000 base-pair reads. 
Those read lengths were chosen to illustrate test performance under 
currently available sequencing platforms (Besser et al., 2018). 

As noted above, both traceability and parentage tests relied on two 
structural parameters, within-SNP sequencing error rate (εi) and geno
typing frequencies. The first mainly depends on the sequencing method 
and platform used (Fox et al., 2014) and uses to be estimated on an 
across-genome basis. Within this context, we compared test perfor
mances under three across-SNP homogeneous sequencing error rates: 
0%, 1% (the maximum sequencing error rate used for simulation of the 
sequencing process), and 10% (i.e., ten times higher than the maximum 
sequencing error rate used for simulation of the sequencing process). 

On the other hand, genotypic frequencies could be approximated by 
using sequence data generated for traceability and paternity tests. 
Nevertheless, the number of sequenced animals could be small and 
contribute high uncertainly to estimated genotypic frequencies. To ac
count for this uncertaintly, the variance of the estimated A allele fre
quency (π) can be calculated as (Cockerham, 1969) 

V(π) = [π (1 - π)] / 2λ where λ was the number of sampled in
dividuals. We compared λ = 5, 10 and 100, and sampled the A allele 
frequency (π*) for each SNP from a truncated (0–1) normal distribution 
with mean π and variance V(π). Genotypic frequencies were obtained 
assuming Hardy-Weinberg equilibrium (Hardy, 1908). 

Table 1 
Conditional probability of the offspring’s genotype in a biallelic locus (alleles A 
and B) given the mother’s and the alleged father’s genotype. Each triad of 
numbers provides the probability for AA, AB and BB genotypes, respectively.   

Mother’s genotype 

Father’s genotype AA AB BB 
AA 1 / 0 / 0 0.5 / 0.5 / 0 0 / 1 / 0 
AB 0.5 / 0.5 / 0 0.25 / 0.5 / 0.25 0 / 0.5 / 0.5 
BB 0 / 1 / 0 0 / 0.5 / 0.5 0 / 0 / 1  

Table 2 
Conditional probability of the offspring’s genotype in a biallelic locus (alleles A 
and B) when only one parent contributes to the paternity test. Each triad of 
numbers provides the probability for AA, AB and BB genotypes, respectively.   

Parent’s genotype 

Offspring’s genotype AA AB BB 
AA p(A)1 0.5 p(A) 0 
AB 1-p(A) 0.5 p(A) 
BB 0 0.5 [1 - p(A)] 1 - p(A)  

1 p(A): allelic frequencies of A allele in parents’ generation. 
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3. Results 

3.1. Simulated genomic data 

After 1000 non-overlapping generations, random mating and effec
tive population size 100, we retained ten populations with 29,195,811 
to 30,660,474 polymorphic SNPs. Allele frequencies widely distributed 
along with the parametric space, as shown in Fig. 1, and a remarkable 
percentage of SNPs had minimum allele frequency (MAF) below 0.05. 
Although this varied among chromosomes, between 36.7% and 51.9% 
of SNPs had MAF < 0.05. All these 10 simulated populations contributed 
equally to the subsequent analyses. 

After sequencing 10,000 individuals, the maximum number of reads 
per polymorphic SNP was 3 (0.01× genome coverage), 4 (0.05×), 5 
(0.1×) and 7 (0.5×). Nevertheless, between 76.2% (0.5× genome 
coverage) and 99.5% (0.01× genome coverage) of them had a single 
read, as shown in Fig. 2. The percentage of polymorphic SNPs with two 
reads increased with genome coverage, from 0.5% (0.01×) to 19.1% 
(0.5×), and a similar trend with smaller percentages was revealed for 
larger numbers of reads. Moreover, those percentages showed small 
variability across individuals, this uncertainly even reducing for smaller 
read length (Fig. 2). The same pattern was revealed when checking for 
shared SNPs among pairs of sequenced individuals. The longer the read 
length was, the wider the dispersion of the number of shared SNPs 
(Fig. 3). From the total of ~30,000,000 polymorphic SNPs, the average 
number of shared polymorphic SNPs decreased from 3355.6 ± 4.7 (100 
base-pair read length) to 3093.2 ± 28.5 (10,000 base-pair read length). 
For SNPs with MAF ≥ 0.05, similar trends were observed, from 1748.4 
± 3.3 (100 base-pair read length) to 1586.9 ± 17.2 (10,000 base-pair 
read length). Within this context, subsequent results were reported 
based on the most uncertain (i.e., increased variability for the number of 
reads and shared SNPs) and less informative (i.e., reduced number of 
shared SNPs) scenario, this accounting for sequencing by 10,000 base- 
pair reads. 

3.2. Traceability and parentage testing 

As anticipated, the number of shared polymorphic SNPs among two 
unrelated individuals quickly increased with genome coverage 
(Table 3). This generated a fast growth in terms of available information 
for traceability and paternity tests, as evidenced by the likelihood ratios 
provided in Fig. 4. Assuming true sequencing error rates and genotype 
frequencies, 100% of traceability tests favored the true hypothesis when 
genome coverage was 0.05× or deeper. The only exceptions were 
detected for 0.01X genome coverage, where 0.7% of false positives and 
0.04% of false negatives were reported (Fig. 4). The same pattern was 
revealed for paternity tests, they showing a 100% of true positive and 
true negatives under genome coverage 0.05X or deeper, and 1.1% 
(1.0%) of false positives and 0.5% (0.6%) of false negatives under 0.01X 

of genome coverage when the dam was known (unknown). 
In order to test for a more realistic scenario, different homogeneous 

sequencing error rates were evaluated. As shown in Fig. 5, 0.05X 
coverage sufficed to avoid false positives and negatives under both 
traceability and paternity tests when sequencing error rate was arbi
trarily set to 0% or the maximum rate used during sequencing simula
tion (i.e., 1%). The only assumption that generated wrong results under 
0.05X coverage was when the sequencing error rate was unrealistically 
assumed 10 times higher than the upper bound during sequencing (i.e., 
10%). In this case, 1.3% (traceability test), 24.5% (paternity test with 
known dam) and 22.8% (paternity test with an unknown dam) of false 
negatives were reported, whereas any test generated false positives. 
Higher genome coverage tested provided 100% of true positives and Fig. 1. Distribution of allele frequencies for the first chromosome of the first 

simulated population. 

Fig. 2. Average distribution of polymorphic SNPs depending on the number of 
reads when sequenced at 0.01X (black), 0.05X (blue), 0.1X (red) and 0.5X 
(white) genome coverage with 10,000 base-pair read length. The whiskers 
extend to minimum and maximum estimates. (For interpretation of the refer
ences to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 3. Shared SNPs among two unrelated individuals both sequenced at 0.01X 
genome coverage with 100 (red dots), 1000 (blue dots) and 10,000 base-pair 
read length (black dots). The X-axis accounts for SNPs with non-zero mini
mum allele frequency (MAF), whereas Y-axis accounts for SNPs with 
MAF>0.05. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Table 3 
Mean ± SE of shared polymorphic SNPs among two unrelated individuals when 
sequenced at different genome coverages with 10,000 base-pair read length.  

Genome coverage Polymorphic SNPs MAF1>0.05 SNPs 

0.01X 3093.2 ± 28.5 1586.9 ± 17.2 
0.05X 77,007.2 ± 75.0 39,887.3 ± 46.4 
0.1X 290,845.5 ± 137 151,872.8 ± 86.5 
0.5X 4965,993.9 ± 450.0 2589,401 ± 329.2  

1 Minimum allele frequency. 
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true negatives (results not shown), even under the assumption of 10% of 
the sequencing error rate. 

The other parameter accounting for uncertainly during traceability 
and paternity testing was genotype frequencies. In this case, genotype 
frequencies were assumed under Hardy-Weinberg equilibrium and 
calculated from allele frequency with uncertainly as sampled from 5, 10, 
and 100 individuals. As shown in Fig. 6, the smaller the uncertaintly for 
allele frequency was, the larger the match with results was obtained 
under true genotype frequencies. Nevertheless, 0.05× coverage sufficed 
to avoid both false positives and negatives in traceability tests, whatever 
the accuracy of allele frequencies. Paternity tests with known dam 
(unknown dam) revealed a similar pattern without false positives since 
0.05× coverage, and 0.1% (0.1%), 0.6% (0.3%) and 10.2% (14.8%) of 
false negatives when the allele frequency was sampled with uncertainly 
as calculated from 100, 10 and 5 individuals. Deeper genome coverage 
provided 100% of true positives and true negatives at any uncertainly 
for allele frequency. 

4. Discussion 

Current procedures for traceability and paternity testing rely on 
SNPs where standardized panels have already been defined to harmo
nize procedures worldwide (Heaton et al., 2002). Although their reli
ability and statistical power fulfill the purpose for which they were 
created (Marshall et al., 1998), they depend on some dozens of a few 
hundreds of SNP genotypes, too few to be reused for other purposes like 
genome-wide association analyses (Klein et al., 2005; Gilly et al., 2019) 
or genomic evaluation (Meuwissen et al., 2001; Gorjanc et al., 2015, 
2017). This is an important limitation because it drains the economic 
capacity of food chain industries and breed societies and precludes 
additional investments in genomic techniques. The current explosion in 
high-throughput sequencing technologies (Bansal and Boucher, 2019) 
opens the door to more sustainable science where specificity and 
multiple-purpose data are not conflicting terms. Nevertheless, a first step 
is required to verify that low-coverage whole-genome sequencing data 
can efficiently address both traceability and paternity tests in order to 
fulfill current standards at a similar economic cost. 

Theoretical approaches to test both traceability and paternity have 
been widely developed in scientific literature on the basis of complete 
genotypes (Goffaux et al., 2005; Martin et al., 2010; Marshall et al., 
1998), whereas high-throughput sequencing technologies provide a 
variable number of random samples from each polymorphic site and 

require genotype-calling procedures to reach closed genotypes (Nielsen 
et al., 2011). Nevertheless, genotype-calling approaches show little 
agreement when compared under low-coverage sequencing data (Liu 
et al., 2013; Vens et al., 2009; Yu and Sun, 2013), where heterozygous 
genotypes cannot be adequately called with a single read (Brouard et al., 
2017). Within this context, we omitted genotype-calling approaches in 
our traceability and paternity tests and focused on genotype probabili
ties within the context of appropriate likelihood functions. Although 
these procedures were partially implemented in some genotype-calling 
approaches (Li et al., 2008, 2009; Martin et al., 2010), they summa
rized to the most probable genotype instead of keeping uncertainly for 
further analyses. We kept uncertainly about genotypes along the whole 
calculation of the likelihood ratio in order to avoid arbitrary decisions 
when available information for each polymorphic site was very small in 
tested individuals (Fig. 2). 

Our tests relied on the likelihood principle, a statistical proposition 
that states that all the evidence in the data relevant to the statistical 
model is contained in the likelihood function (Birnbaum, 1962). Within 
this context, a likelihood ratio must be viewed as an objective mea
surement of the statistical evidence of one model against the other 
(Hacking, 1965), and establishes the foundations for the evidential 
statistics (Edwards, 1972) in contrast with frequentist and Bayesian 
statistics. This inferential approach relies on two basic conditions that 
are not completely fulfilled by frequentist and Bayesian inferences, ob
jectivity (i.e., the strength of evidence does not vary from one researcher 
to another) and interpretability (i.e., the strength of evidence has the 
same practical interpretation for any sample size). The first condition 
rules out Bayes factors that depend on subjective or default priors 
(Bickel, 2012), and the second rules out the frequentist p-value that 
forces the same type-I error percentage at any sample size (Bickel, 
2011). By contrast, the likelihood ratio satisfies both of the necessary 
conditions for a measure of the strength of statistical evidence. Within 
this context, the likelihoods used in our testing approaches had the same 
mathematical structure than the likelihoods we could construct within a 
frequentist scenario, as well as they are proportional to the joint pos
terior distributions with flat priors we could call in the Bayesian 
framework. The essential difference relies on the test itself and the as
sumptions carried out by the researcher. Within the context of evidential 
statistics, there are not additional assumptions apart from the statistical 
model itself and all the hypotheses have the same consideration during 
the analytical process. Indeed, paternity tests with panels of genetic 
markers were previously proposed by Marshal et al. (1998), and 

Fig. 4. Distribution of 1000 traceability tests (black dots) and 
paternity tests with known (blue dots) and unknown dam (red 
dots) under four different genome coverage, and assuming true 
SNP-specific sequencing error rate and true genotype fre
quencies in parental generation. Traceability tests relied on the 
likelihood ratio between the null (H0: same individual) and the 
alternative hypothesis (H1: different individuals), and 
compared each individual against itself (X-axis) and against an 
unrelated individual (Y-axis). Paternity tests evaluated 
whether the alleged sire was the true sire (H0) or an unrelated 
male of the population (H1), and where applied on the true sire 
(X-axis) and on an unrelated male of the population (Y-axis). 
(For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)   
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evidential statistics have been growing attention in genetics and geno
mics research (Strug et al., 2010; Strug, 2018). 

The performance of both traceability and paternity tests was 
outstanding as evidenced in Figs. 4–6. Under the unrealistic assumption 
of known sequencing error rates and genotype frequencies, 0.01×
genome coverage sufficed to guarantee ≥99% of true positives and true 
negatives under traceability tests. In contrast, the minimum genome 
coverage for paternity tests must increase up to 0.05× genome coverage 
to reach the same rate of true positives and negatives. Nevertheless, our 
current method works with low-coverage sequencing data and less false 
paternity assignments than previous methods found in the scientific 
literature (Snyder-Mackler et al., 2016; Whalen et al., 2019). The 
method design for very low sequencing coverage data from fecal-derived 
DNA by Snyder-Mackler et al. (2016), which also performed peternity 
tests wit known or unknown dam, was not available to assign paternity 
below 0.17×. On the other hand, results for paternity analyses by 
Whalen et al. (2019) required greater coverage (0.4×) and larger 
amount of genetic markers (50,000) to reach 100% sensibility. 

In order to evaluate those procedures under more realistic scenarios, 
different homogeneous error rates and accuracies for genotype fre
quencies were evaluated. In this case, the sequencing error rate had a 

mild impact on the performance of both traceability and paternity tests, 
and it only impaired their results when an abnormally high sequencing 
error rate was assumed (i.e., 10%). Indeed, results shown in Fig. 5 sug
gested that the assumption of a null sequencing error rate provided the 
most similar results to the ones obtained under true sequencing error 
rates, simplifying both analytical models and subsequent calculations. 
On the other hand, the impact of genotype frequencies was suggested as 
larger, where more accurate estimates were required to avoid false 
positives and negatives. 

Statistical methodologies developed in this manuscript are ready to 
use for both the food chain industry and breed societies. In fact, they 
could also be useful for human studies. They do not need additional 
generalizations, as all required algorithms are detailed in the current 
manuscript. It is important to highlight that 0.05X genome coverage 
sufficed for traceability and paternity tests assuming null (or 1%) 
sequencing error rate and an accuracy for allele frequencies equal or 
higher to the ones obtained when sampling 10 individuals. This must be 
viewed as an outstanding result from technological, economic and sci
entific points of view. Moreover, the sequenceing data generated could 
have firther uses contributing more to sustainable science. The huge 
amount of information available (even under very-low coverage) can be 

Fig. 5. Distribution of 1000 traceability tests (upper panel), paternity test with 
known dam (mid panel) and paternity test with unknown dam (lower panel) 
under 0.05X genome coverage, 10,000 base-pair read length, and assuming true 
genotype frequencies in parental generation. Tests assumed true sequencing 
error rates (black dots), null sequencing error rate (green dots), 1% sequencing 
error rate (blue dots), and 10% sequencing error rate (red dots). Traceability 
tests relied on the likelihood ratio between the null (H0: same individual) and 
the alternative hypothesis (H1: different individuals), and compared each in
dividual against itself (X-axis) and against an unrelated individual (Y-axis). 
Paternity tests evaluated whether the alleged sire was the true sire (H0) or an 
unrelated male of the population (H1), and where applied on the true sire (X- 
axis) and on an unrelated male of the population (Y-axis). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 6. Distribution of 1000 traceability tests (upper panel), paternity test with 
known dam (mid panel) and paternity test with unknown dam (lower panel) 
under 0.05X genome coverage, 10,000 base-pair read length, and assuming true 
sequencing error rates per SNPs. Tests assumed true genotyping frequencies 
(black dots), as well as genotyping frequencies under Hardy-Weinberg equi
librium after sampling the allele frequency from 5 (red dots), 10 (blue dots) and 
100 individuals (green dots). Traceability tests relied on the likelihood ratio 
between the null (H0: same individual) and the alternative hypothesis (H1: 
different individuals), and compared each individual against itself (X-axis) and 
against an unrelated individual (Y-axis). Paternity tests evaluated whether the 
alleged sire was the true sire (H0) or an unrelated male of the population (H1), 
and where applied on the true sire (X-axis) and on an unrelated male of the 
population (Y-axis). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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exploited more in depth. Especially, with the structure of livestock 
species with dense family structures, large amounts of genomic data can 
accumulate across generations and years. This latter will open a new 
window of animal breeding purposes, as the availability of whole 
sequence for animal population may change the current animal breeding 
paradigm or even make a new revolution. Indeed, the exploration of 
sequence data at massive volume may allow to make animal breeding 
selection decisions more accurate by taking benefit of massive genomic 
data (Knap, 2020). Thus, additional efforts to handle this new source of 
partial genomic data may be of special relevance for the livestock in
dustry (Knap, 2020). Evenmore, an additional investment to increase 
the sequencing coverage until 2×, which is still considered 
low-coverage, could allow to enhance animal breeding. Between the 
possible options are the estimation of biological relatedness (Lipatov 
et al., 2015) and the imputation of the whole genome with high accuracy 
depending on the population size (Ros-Freixedes et al., 2020a, 2020b). 
This last step would be essential to implement whole-genome sequence 
data for genomic prediction and fine-mapping of causal variants. 

5. Conclusions 

Very low genome coverages in livestock species were enough to 
guarantee ≥99% of true positives and true negatives for traceability 
testing (from 0.01× coverage) and parentage testing (from 0.05×
coverage). Even when 0.05× coverage sufficed for both tests, as genome 
coverage increased, the percentage of reads per polymorphic SNPs and 
the certaintly of the estimate of its allele frequency increased, thus, 
reducing the errors in the tests. Moreover, the length of the reads 
affected the dispersion and number of shared SNPs among pairs of 
sequenced individuals. 
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