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Coprolites in natural traps: direct evidence of bone eating carnivorans from the

Late Miocene site of Batallones-3 (Madrid, Spain)

JUAN ABELLA, DAVID M. MARTIN-PEREA, ALBERTO VALENCIANO,

DANIEL HONTECILLAS, PLINI MONTOYA AND JORGE MORALES

We describe two carnivoran coprolites found in the pseudokarst natural carnivore trap
of Batallones-3, from the Late Miocene of Spain. The larger one, comprising multiple
indistinguishable fragments of broken and corroded bones, indicates that the producer
of the dropping might have been highly capable of crushing the softer parts of large
bones. On the other hand, the smaller one shows several relatively larger and more
complete bone fragments, thus exhibiting a greater capacity to break and swallow large
portions of bone. The external morphology of the large coprolite is similar to that of
extant bears, whereas the smaller one more closely resembles that of the living
insectivorous hyaenid Proteles in morphology, on one hand, and that of the viverrid
Genetta in size, on the other. We hypothesize that the amphicyonid Magerycion anceps
was the producer of the large coprolite and the jackal-sized basal hyaenid
Protictitherium crassum excreted the smaller one. Thus, we present the first direct

evidence of a bone durophagous diet in the carnivorans of Batallones.
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Introduction

Locality and age. The Cerro de los Batallones (late Miocene [MN10]) is a pseudokarst
complex of 9 fossil sites located 30 km south of Madrid (Figure 1). It represents one of
the richest and best-preserved Neogene mammalian assemblages on the Iberian
Peninsula (Morales et al. 2004, 2008). The fossiliferous deposits are embedded in marls
deposited in hourglass-shaped cavities with upper openings (Pozo et al. 2004; Calvo et
al. 2013) in which two types of assemblages can be found: (1) carnivoran-dominated
assemblages in the lower part of the hourglass structure (e.g., Batallones-1 and BAT-3),
interpreted as carnivore traps (Domingo et al. 2011, 2013a, 2013b) and (2) herbivore-
dominated assemblages in the upper parts (e.g., Batallones-4 and Batallones-10),
interpreted as herbivore traps (Calvo et al. 2013). The coprolites studied in the present
paper were found in one of these lower, carnivoran-dominated assemblages (BAT-3).
Furthermore, these upper and lower deposits have been found to contain several discrete
fossiliferous levels (Martin-Perea et al. 2020).

The fauna of the Cerro de los Batallones localities has yielded a rich and diverse
assemblage of vertebrate fossils including freshwater fish, amphibians and sauropsids
(testudines, squamata) and predatory birds (Morales et al. 2008; Pérez-Garcia &
Murelaga 2013; Pérez-Garcia & Vlachos 2014; Morales 2017; Villa et al. 2018),
micromammals (Lopez-Antonanzas et al. 2010, 2014; Alvarez-Sierra et al. 2017;
Medina-Chavarrias et al. 2019), equids, bovids, mosquids, giraffes, rhinoceroses,
proboscidians, suids (Morales et al. 2008; Sanchez et al. 2009, 2011; Pickford 2015;
Rios et al. 2017; Romano et al. 2017; Sanisidro 2017; Morales 2017; Domingo et al.
2018; Rios & Morales 2019), and carnivorans, which include the most diverse sample.
The last group comprises a large amount of skulls, mandibles and almost complete

skeletons of two species of sabre-tooth cats, a hyaenid, two species of derived
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amphicyonids, an ailuropod ursid, a large ailurid, mephitids and mustelids (e.g., Abella
etal. 2013, 2015; Anton et al. 2004, 2020; Peigné et al. 2005, 2008; Salesa et al. 2006,
2008, 2010, 2012, 2019; Domingo et al. 2013a, 2016; Monescillo et al. 2014; Siliceo et
al. 2014, 2015, 2017, 2020; Fabre et al. 2015; Valenciano et al. 2015, 2020; Fraile
2016, 2017; Abella & Valenciano 2017; Morales et al. 2017; Valenciano 2017a,
2017b). This fauna, alongside the micromammal remains, enabled all the sites to be
assigned to the late Miocene (Vallesian, c. 9.6-9.3 Ma) (Peldez Campomanes et al.
2017). However, there are minor differences in both micro- and macromammal
taxonomic composition among the different localities that have been attributed to slight
temporal differences. Indications are that BAT-10 is older than BAT-1, and that BAT-1
is older than BAT-3 (Lopez-Antonanzas et al. 2010; Siliceo et al. 2014)), whereas the
difference in age between Batallones-2, 3 and 5 remains unknown (Valenciano et al.
2020).

Furthermore, the carnivoran guild of BAT-3 is the most diverse of the whole complex.
It includes two machairodont felids Machairodus aphanistus (Kaup, 1832) and
Promegantereon ogygia (Kaup, 1832) (Monescillo et al. 2014; Siliceo et al. 2014), as
well as the small feline Leptofelis vallesiensis (Salesa, Anton, Morales & Peigné, 2012),
the plesiomorphic hyaenid Protictitherium crassum (Filhol, 1883) (Fraile 2016, 2017),
the ailuropod ursid Indarctos arctoides (Depéret, 1895) (Abella 2011; Abella et al.
2012, 2013, 2015; Abella & Valenciano 2017a), two amphicyonids Magericyon anceps
Peigné, Salesa, Antoén, Morales, 2008 (Siliceo ef al. 2017) and the thaumastocyonine
Ammitocyon kainos Morales, Abella, Sanisidro, Valenciano (Morales et al. in press), the
giant mustelid FEomellivora piveteaui Ozansoy, 1965 (Valenciano et al. 2015;
Valenciano 2017a, 2017b), the small size hypercarnivorous mustelid Circamustela

peignei Valenciano, Pérez-Ramos, Abella & Morales, 2020 (Valenciano 2020a), the
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badger Adroverictis sp., and two mephitids Promephitis sp., nov., and Mephitidae gen.

nov and sp. nov (Valenciano 2017b).

Coprolite generalities. Coprolites are among the most important ichnofossils from the
fossil record (Hunt & Lucas 2020) and can be found in a diversity of taphonomical,
ecological, and geological contexts (Qvarnstrom et al. 2016). As trace fossils, coprolites
represent specific moments in time, providing individual windows into the evolution of
ecological interactions such as predation, herbivory, and parasitism, and can contain
palaeoecological proxies spanning from thousands to millions of years in the past
(Dentzien-Dias et al. 2013; Qvarnstrom et al. 2017; Barrios-de Pedro ef al. 2018; Riley
2018). And although they might not give the general diet reconstruction of a species,
they can provide direct information about the last food income and feeding behaviours
of ancient vertebrates (e.g., Mellett 1974; Meng & Wyss 1997; Chin ef al. 1998, 2003;
Prasad et al. 2005; Chin 2007; Backwell et al. 2009), serving as ichnological proxies for
the presence of animals in palacoecosystems (Edwards & Yatkola 1974; Farlow et al.
2010; Hunt & Lucas 2007, 2010).

Coprolites may also provide information on the diagenetic history of the fossil remains
themselves (Chin 2007). Over time, following burial, they undergo taphonomic
processes, becoming permineralized or lithified and forming a cast or mould of the
original faecal matter (Bajdek et al. 2017; Mychajliw et al. 2020). In general, coprolites
from sites protected by geologic features such as caves and rock shelters exhibit the
highest level of preservation. In contrast, coprolites from open sites can become
severely degraded by these taphonomic processes (Reinhard et al. 2019).

Coprolites of herbivorous animals are generally scarcer in the fossil record than those of

carnivores, because the phosphate content of the latter from the soft tissue and bones of
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prey animals predisposes them to mineralization (Thulborn 1991; Chin 2002; Hunt &
Lucas 2019). On the other hand, coprolites of bone-crushing hyenas are
disproportionately represented in the fossil record, not only because of their chemical
composition, but also due to: (1) their social and denning behaviour, resulting in large
accumulations; (2) their inhabiting caves, which enhances the potential for preservation;
and (3) the fact that hyena coprolites are resistant, and can undergo taphonomic
resedimentation (Hunt & Lucas 2019). Bones as a supplementary food source
necessarily constitute a net gain if the cost of processing them (both ingestion and
digestion) can be managed. The average compact bone consists of approximately 30%
organic matrix (Eastoe & Eastoe 1954; Guyton & Hall 2006), mostly collagen fibres.
The organic component (nutritional value) is even greater if the marrow in the
cancellous bone is also considered. Living spotted hyenas (Crocuta crocuta Erxleben
1777) in Africa possess morphological and physiological adaptations enabling efficient
consumption of bones; accordingly, they are known to consume the entire carcass

(freshly killed or scavenged), leaving no bones behind (Kruuk 1972).

Carnivoran bone cracker adaptations. Living hyenas are known to crush the bones of
their prey to extract the nutritious marrow within. This feeding ability is rare today, and
both African and Asian hyenas, particularly the spotted hyena, are the only true ‘bone-
crackers’ in our modern ecosystems. Bone-crackers (modern and extinct) play an
important ecological role as apex predators and providers of free organic material
needed for decomposition, essential with regard to maintaining a healthy ecosystem
(Wang et al. 2018).

In general, hyaenids present the most advanced dentition for crushing bones, whilst

retaining the basic feliform dental plan, which involves highly reduced grinding
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components (in M1, ml talonid and m2), which allows room for enlargement of the
premolars (Wang et al. 2018). The composition of hyena droppings is quite distinctive,
enabling them to be differentiated from those of most other carnivorans, a consequence
of their high bone content diet (Larkin et al. 2000). The gastrointestinal system of
hyenas has apparently evolved to process large quantities of bones. Hyaenid faeces,
particularly those of the spotted hyena, are known to contain well-digested calcium
phosphates in the form of white powders and bone residues (Estes 1991). To a lesser
extent, the scat of striped hyenas Hyaena hyaena (Linnaeus 1758) is also white or light
grey (Macdonald 1978; Hulsman et al. 2010). These white powders consist of calcium
and phosphate salts, Ca3(PO4), 1.5Ca(OH),, similar to hydroxyapatite, the main
inorganic component in bones (Kruuk 1972; Wang et al. 2018). Supposing that the
common ancestor of Crocuta Kaup 1828 and Hyaena Brisson 1762 already possessed
this bone-dissolving gastrointestinal system, then this must have occurred over 8.6 Ma
(Koepfli et al. 2006; Wang et al. 2018).

Although the vast majority of Miocene coprolites have either been described as being
excreted by bone-cracking large Hyaenidae or by the Borophaginae canids (e.g
Pesquero ef al. 2011; Wang et al. 2018 and references therein), other fossil coprolites
have been described as belonging to other vertebrates, including crocodilians,
notoungulates, sirenians, rodents, as well as undetermined carnivorans (Dentzien-Dias
et al. 2018); some of them even reveal shark bite marks (Godfrey & Smith 2010).
Batallones-3 does not present any typically large durophagous bone-cracker species;
hence, study of these coprolites constitutes a very interesting approach to bone
consumption in other dietary groups of carnivorans. The main aim of the present
research paper involves analysing the morphology and bone content of the only two

coprolites unearthed in the whole Cerro de los Batallones site complex in order to
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obtain information on the possible producer of the scat and to more clearly elucidate

their dietary ecology.

Materials and methods
Abbreviations. BAT: Batallones fossil site from Cerro de los Batallones fossil site
complex.

MNCN- Museo Nacional de Ciencias Naturales, Madrid, Spain.

Studied material. The fossil sample of coprolites of BAT-3 comprises the following two

specimens: BAT-39.178 and BAT-3"10.153.

Methodology. We followed the method proposed by Diedrich (2012) and modified by
Wang et al. (2018) to characterise the external morphology of hyaenid coprolite

aggregate pellets (Figure 2).

3-D models. Coprolites BAT-3°9.178 and BAT-310.153 were CT-scanned at the
“Servicio de Técnicas No Destructivas: Microscopia Electronica y Confocal y
Espectroscopia” of the MNCN-CSIC in Madrid, Spain. The scanned data were imported
into FIJI 1.52 (National Institutes of Health, USA) for artefact removal and contrast
enhancement. The data were finally segmented, rendered and analysed in Avizo 7.1.0
(VSG, Burlington, MA, USA) in order to generate 3D models and to perform metrical
and morphological analyses. We measured the trend and plunge of elongated bone
fragments with a clearly longer axis, using the coprolites’ long axis as the pole (0° trend,
90° plunge) and its corresponding plane (0° trend, 0° plunge) with a theoretical fixed

north bearing to measure the trend. Trend and plunge data were plotted on an equal area
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Schmidt stereographic projection with inverse area smoothing.

Following Esteban-Nadal ef al. (2010), all the fragments were measured in length and
volume (Supplementary material 1). However, only the ones exhibiting a more
complete morphology are presented in the present paper (TABLE 1). The label number

was given in the order of segmentation and has no specific meaning whatsoever.

Results

Bone fragments inside the coprolites showed preferential orientations very similar to
that of their major axis (0/360° trend, 90° plunge). This is particularly so in the large
one, with a mean trend and plunge closely resembling the coprolite’s major axis (308.0°
trend, 87.7° plunge; Figure 3), whereas in the small one, bones present a smaller, albeit
still steep (93.9° trend, 64.4° plunge) mean plunge compared to that of the coprolite’s

major axis (Figure 3).

Description and interpretation.

BAT-39.178: Consists of a large fragment of an almost cylindrical coprolite 116.3 mm
in length, 52.5 mm in width, 34.7 mm in height and a volume of 83.5738 cm’ (Figure
4). It shows no apparent torsion and consists of one massive portion of scat, with no
internal or external divisions. The total number of bone fragments presenting a volume
greater than 4.21 mm’ is 134, although most of them are exclusively small fragments of
trabecular bone. In consequence, few fragments are of sufficient size or have
sufficiently intact surfaces to be considered for description. Hence, we mainly focused
upon fragments with some preserved portion of cortical bone, and on others displaying

any outstanding morphological trait.
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The main bones found in the coprolite are (3D images as supplementary files, each one

with its label number):

9: Two associated fragments of bone (21.13 mm), one of these constituting a large piece
of cancellous bone and the other a relatively flat fragment of triangular cortical bone.

The latter presents a rounded depression that might represent a partial tooth mark.

29: A relatively large and flat portion of cancellous bone (24.19 mm). Although its

shape is not recognizable, its size and morphology are worth highlighting.

104: A thick portion of cortical and cancellous bone (14.28 mm) possibly belonging to

the surface of a bone epiphysis or vertebra.

107: A large portion of cancellous bone attached to a thick portion of curved cortical

bone (27.61 mm). Possibly also from the side of a bone epiphysis or vertebra.

108: A large and robust portion of cortical bone (19.38 mm). It has a marked crest along
the centre, this constitutes one of the only distinctive structures recovered in this

sample.

116: Fragment of curved bone surface (18.92 mm), which may represent the largest and
most distinct portion of bone surface in the whole sample. However, its overall size and

shape are insufficient for a precise anatomical determination.
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BAT-310.153: It is much smaller in size than the other coprolite, measuring 51.6 mm
in length, 22.3 mm in width and 21.8 mm in height (Figure 4). It consists of three
clumped fragments, which show a slight torsion-like morphology. It is relatively thick
and although it is thinner at both ends it does not present an elongated tip.

The main bones found in the coprolite are (3D images as supplementary files #2):

15: An elongated fragment (8 mm) of cortical bone, which shows a foramen half-way
along its length. It could be part of a larger bone.
16: A relatively large fragment of an undetermined bone (21.02 mm). It represents a

portion of the curved shaft of a long bone, with cancellous bone in its inner part.

17: A relatively long and flat bone fragment (17.83 mm) with several longitudinal crests
dividing the surface into several flat-to-concave areas. It could be part of the epiphysis

of a long bone or a fragment of the spine of a scapula.

21: An elongated and triangular bone fragment (20.97 mm). This bone is one of the
most complete remains; it appears to be almost complete, only missing the two

epiphyses. It also presents a foramen towards the central part of the shaft.

22: A large and almost semi-circular bone fragment (17.60 mm). It might be one half of
a proximal epiphysis, likely belonging to a femur. There is a small cavity interpreted
herein as the fovea capitis, which serves for the attachment area for the /igamentum
teres. It also presents a rounded puncture and a cutting chip that could be interpreted as

a tooth mark.
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26: An elongated and curved bone fragment (4.98 mm). There are two rounded
structures in the middle of the bone, one larger than the other, forming a line running
parallel to both sides of the bone. This could represent a mandibular or maxillary

fragment with tentatively two teeth.

27,29 and 30: These three elongated bone fragments (3.03 mm, 5.24 mm and 8.37 mm,
respectively) could belong to one single larger fragment which, due to its morphology,
could be interpreted as a small vertebrate mandible. It has some sulci and foramina
similar to those found in reptile bones, but this is difficult to assert due to the corrosion

and general state of preservation of the specimen.

33: A compact small cylindrical fragment of bone (2.68 mm) with a foramen on one of
its sides. It could be identified as a fragment of a large long bone, but its broken nature

hinders a more specific determination.

43: A robust bone structure (19.96 mm) that appears to be part of a larger, more
complex structure, due to its morphology and overall inner structure. Although it cannot
be completely proven due to its state of preservation, this structure might well represent

a partial skull of a small undetermined vertebrate.

Discussion

Following Diedrich (2012), BAT-3"9.178 is a long oval portion of scat similar in shape

to those of Ursus arctos (Chame 2003) (Figure 5). The large amount of broken bone

material in the coprolite appears to indicate a high consumption rate of bone matter;
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however, this is still far from that found in modern hyaenas (Estes 1991). Although
some of the remains still possess some cortical bone, most of the fragments consist
mainly of cancellous bone. This leads to the interpretation that only parts of the
epiphysis of long bones or vertebrae were gnawed and consumed by the producer of the
coprolite, similar to what is mostly consumed by modern canidae (Mech 1970; Munthe,
1989; Sillero-Zubiri 2009).

The size of this coprolite fragment means it can only have been produced by one of the
four large-sized carnivorans present in BAT-3 (TABLE 2): the sabre-tooth cat
Machairodus aphanistus, the amphicyonids Ammitocyon kainos and Magericyon
anceps or the bear Indarctos arctoides. The first two are large hypercarnivorous
carnivorans, [Machairodus aphanistus 117-285 kg following Domingo et al. (2013a)
and Ammitocyon kainos 231 kg according to Morales et al. (in press)] with an extreme
specialized dentition for cutting meat which would have prevented them from eating all
but the most easily accessible portions of flesh on a carcass, leaving large quantities of
food (including bones) for other carnivorans and scavengers (Ewer 1954, 1998; Turner
1992; Pesquero et al. 2011).

At the other end of the diet spectrum is the hypocarnivorous Indarctos arctoides, a
member of the Ursidae family related to modern giant pandas. Its estimated body mass
ranges from 137 to 266 kg (Abella 2011; Abella et al. 2013; Domingo et al. 2016). It
has been suggested that this bear might have had a more omnivorous diet than that of
giant pandas (Abella et al. 2012; Abella et al. 2011; Abella et al. 2014), but also that
their diet would have included abundant plant material (Abella ef al. 2011; Monescillo
et al. 2014; Domingo et al. 2016). Consequently, as frequently occurs with other bear
scats (Hewitt & Robbins 1996), this would have hindered the fossilization process.

However, the dentition of /. arctoides shows a certain capacity for durophagy, similar to
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that of smaller species of related bears (de Bonis ef al. 2017). This would have allowed
this species to shift from eating tough plant material to gnawing bone with some degree
of success, especially in individuals challenged with finding their favourite food
sources, e.g. the young. For this reason, this species cannot be completely ruled out as
the producer of this particular coprolite.

Finally, Magericyon anceps was a large amphicyonid (Peigné et al. 2008) present in
two of the Batallones fossil traps (BAT-1 and BAT-3; Siliceo et al. 2015, 2017, 2020),
with an estimated body mass of 175-195 Kg (Domingo et al. 2013a; Siliceo et al. 2015).
The described dentition is similar to other larger Amphicyonidae, but slightly more
trenchant, thus indicating a dentition less capable of crushing (Peigné et al. 2008).
However, the wear pattern observed in the carnassial teeth of M. anceps is quite similar
to that of other large amphicyonines, implying a similar occlusal mechanism, which
probably helped this animal to gnaw on the epiphysis (much softer than the diaphysis)
of long bones, using its P4-M2 and m1-m2 teeth in the same way as extant canidae.
Moreover, although in BAT-3 there are not abundant remains of this species, the same
mortality rate as in BAT-1 is to be expected, because the majority of the individuals are
young adults and juveniles (Peigné et al. 2008). As previously mentioned, this age
group might well have consumed a slightly different diet than their more adult
counterparts. We therefore hypothesize that this species represents the most likely
producer of this coprolite.

In this specific case we do not coincide with Lofgren et al. (2017), who consider that
the coprolite was likely produced by the more abundant of the two species, since the
reconstructed diet of M. anceps more closely resembles the crushed bone fragments

found inside the coprolite.
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BAT-3"10.153 constitutes an irregular portion of scat following Diedrich (2012). It is
similar in shape to the scats of the living aardwolf Proteles cristatus (Sparrman 1783)
(Stuart & Stuart 1994) or the common genet Genetta genetta (Linnaeus 1758), and
similar in size to the latter (Chame 2003) (Figure 5). Isolated bones account for 35.79%
of the total volume of the coprolite (approximately 26.13% were individualised), but a
large amount thereof could consist of digested bone matter or powder as described in
Estes (1991). Most of the bone fragments are amorphous and unidentifiable, and just a
few of them can be partly identified anatomically, but not taxonomically. In other
published articles, the percentage of unidentifiable (both anatomically and
taxonomically) bone fragments from fossil coprolites and extant scats from canids

ranges from 80% to 95% (Fosse et al. 2012; Wang et al. 2018)

The three individual sections of the coprolite can be characterised by containing bone
fragments presenting different sizes and morphologies, especially on comparing the
ones located at both ends. The assemblage in one of these sections could represent the
remains of a small vertebrate (perhaps a reptile), due to the abundance of small, dense
individual bones (around 15), together with a large mass of broken cancellous bone
matter. On the other hand, the other outer section mainly consists of relatively large
cortical bones or fragments of long bones arranged subparallel to the long axis of the
coprolite (see figure 4). Indeed, the relative size of these fragments is noteworthy in
relation to the size of the coprolite, even more so when compared with the larger one
(Figure 6). The size and morphology of this coprolite appear to indicate that several
carnivorans that could have produced it. The first and most probable carnivoran is
Protictitherium crassum, a small-medium sized carnivoran situated at the base of the

Hyaenidae (Fraile 2016, 2017; Morales et al. 2019). This coprolite morphology is
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similar to that of small hyenas such as Proteles cristatus (Stuart & Stuart 1994) and its
size fits well with the ones produced by medium-to-large viverrids (Chame 2003).
Furthermore, the fact that the coprolite has relatively large broken cortical bone
fragments might suggest that this individual was already performing “bone-cracking”
feeding, but did not have the enzymatic adaptation of extant hyenas to almost
completely dissolve bones, reducing them to powder during digestion (Estes 1991).

This fits well with an early member of the hyaenid family, such as P. crassum, which
has slightly enlarged premolars but does not yet present reduced postcarnasssial molars
like the more derived hyaenids, thus distributing the crushing dental apparatus between
the premolars and the molars (Fraile 2016, 2017).

Another species that could have produced this coprolite is the medium-sized feline
Pristifelis Salesa, Siliceo, Anton, Peigné, Morales 2012. However, this species is not
described in BAT-3, and as occurred with the larger coprolite, these felids are
interpreted as hypercarnivorous animals, and might not have been able to break bones to
feed upon them. Furthermore, the shape of the coprolite does not fit well with those of
this group, since felid scats are more elongated (Chame 2003). Gilmour & Skinner
(2011), however, on studying the scats of small felids, concluded that they have
disproportionately large bone fragments in their scat compared with canids, whose scats
contain relatively more abundant and smaller bone fragments. Furthermore, a broad
musteloid sample is present in BAT-3, comprising relatives of the living martens,
badgers, skunks, and honey badgers, of which the badger-sized Adroverictis sp.
Ginsburg & Morales, 1996 and the giant sized Eomellivorini Eomellivora piveteaui
(Valenciano et al. 2015; Valenciano & Govender 2020b) might have been the producers
of the coprolite. Eomellivora may have had a clearly durophagous diet, based on dental

morphology. However, its large size rules out its assignment to this coprolite. Although
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the size could fit well with a mustelid the size of Adroverictis, the reconstructed diet
(which was likely more omnivorous) together with the morphology of the scat also
brings us to rule out this species with a certain degree of certainty.

As previously mentioned, the carnivoran guild of BAT-3 is the most complex of all the
Batallones fossil sites, presenting many different body sizes and dietary groups.
Moreover, the Batallones carnivoran assemblage is unique compared to sites of similar
age on the Iberian Peninsula due to the complete absence of large or medium hyenas.
The lack of these forms, present both before and after this period in this region (Fraile et
al. 1997; Morales et al. 2015), is difficult to assess without conducting a detailed
analysis comparing the ecomorphologies of the carnivoran guilds of the Vallesian, in
order to provide a broader view of how the ecological roles of these niches evolved
throughout this time period; similar to those already performed by Morlo et al. (2020)
across the Middle/Late Miocene boundary in Germany.

Finally, a taphonomical issue is raised by the presence of these coprolites in BAT-3. As
previously mentioned, the lower carnivoran-dominated assemblages, such as BAT-3
and BAT-1 have been interpreted as natural traps (Domingo et al. 2013a, 2013b;
Domingo et al. 2016; Domingo et al. 2011). In BAT-1 for example, none of the large
bones within the trap were found to be eaten or gnawed (Domingo ef al. 2013), although
some Moschidae remains present corrosion surfaces that could be interpreted as
resulting from digestion (Sanchez et al. 2011). Future taphonomical analyses for
Batallones-3 should address whether or not the presence of coprolites suggest the site
acted as a den rather than a natural trap, since the latter is likely to present fewer

coprolites.

Conclusions
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Two coprolites were discovered in one of the nine sites of the Batallones complex.
Although these fossils are rarely preserved, the particular genesis of these carnivoran
natural traps in cavities would theoretically have helped to conserve them.

The larger coprolite could be described as a “long oval” portion of a scat. It mainly
presents broken parts possibly involving an epiphysis of a long bone or a vertebra. This
fact would indicate that the producer would have been able to gnaw on a bone,
Magericyon anceps being the most likely species or, to a lesser extent, Indarctos
arctoides.

The small coprolite could be defined as an almost terminal “irregular portion” of a scat
with the size and morphology of those produced by large viverrids and small hyaenas. It
presents two differentiated parts: one that appears to result from eating a complete and
unidentified small vertebrate, and the second produced by swallowing the remains of a
relatively large broken bone. The species that produced this coprolite could have been
possibly either Protictitherium crassum or, less likely, Adroverictis sp.

Finally, study of these coprolites provides direct evidence of bone consumption
amongst carnivorans in the trophic network of the feeding complex of the Batallones
palacocommunity. In the case of Magericyon, this bone consumption appears to confirm
that large Amphicyonidae display adaptations related to generalist feeding; nonetheless,
one of the members of the group, Magericyon anceps seems to have developed a

tendency towards hypercarnivorism.
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Figure caption

Figure 1
A, Map of the Iberian Peninsula showing the location of Madrid and Valdemoro. B,

Location of Batallones-1 and Batallones-3 sites, west of Valdemoro.

Figure 2

Nomenclature of individual pellets in a complete assemblage of faeces from a single
dropping event by the extant spotted hyena, Crocuta crocuta. Horizontal axis indicates
the orientation of the dropping. After Diedrich (2012): Figure 4 and Wang et al. (2018):

Figure 1.

Figure 3
Stereographic projections of the elongated axis of bone fragments in the coprolites.
Mean trend and plunge represented by plus sign. A, BAT-3°9.178 coprolite. B, BAT-

3°10.153 coprolite.

Figure 4

View of the disposition of the bone fragments present in A, Transparent outline of the
coprolite BAT-3-"10.153 with the fragments in colours. B, Inner view of coprolite
BAT-3-"10.153 with amorphous bone matter in grey and fragments in colours. C, Inner

view of coprolite BAT-3-"10.153 only showing fragments in colours.
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D, Transparent outline of the coprolite BAT-39.178 with the fragments in colours. E,
Inner view of coprolite BAT-3°9.178 only showing fragments in colours. Scale bar 1

cim.

Figure 5
Figure comparing extant dropping outline morphology from Chame (2003) to the

coprolites BAT-39.178 and BAT-3-"10.153

Figure 6
View of the disposition of the bone fragments present at the coprolites. A, BAT-3°9.178

and B, BAT-3-"10.153. Same size, not to scale.

Table captions

Table 1

Measurements of the Maximum length and second maximum length (in mm) and the
volume (in mm”) of the described bone fragments found inside the coprolites BAT-

3°9.178 and BAT-3"10.153 from BAT-3, Spain.

Table 2

Estimated body mass (in Kg) of the BAT-3 carnivorans discussed in this work and both
the average body mass (in Kg) and the coprolite length (in cm) of the extant carnivorans
used for comparison. References: 1.- Domingo et al. 2013a, 2016; 2.- Fraile 2016; 3.-
Garshelis 2009; 4.- Holekamp and Kolowski 2009; 5.- Lariviere S. & Calzada, J. 2001,

6.-Lariviére & Jennings 2009; 7.- Nowak 2005; 8.- Sillero -Zubiri 2009; 9.- Sunquist &
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Sunquist 2009; 10.-Valenciano 2017; 11.- Wade-Smith & Verts 1982; 12.- This study,

approximated based on similar-sized living relatives.

Supplementary data captions

Supplementary material 1

Measurements of the Maximum length and second maximum length (in mm) and the
volume (in mm”) of all the bone fragments found inside the coprolites BAT-3’9.178 and
BAT-3"10.153 from BAT-3, Spain. The numbers only reflect the order in which the

images were segmented from the original CTscan files.

Other supplementary material
Supplementary 3D files of the described bone fragments found inside the coprolites

BAT-3"9.178 and BAT-3"10.153 from BAT-3, Spain.
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Table 1

Second

Maximum maximum | Volume

Coprolite label | Number | length (mm) | length (mm) | (mm?®)
BAT-3"9.178 #9 21.13 16.53 507.07
#29 24.19 22.05 577.15

#104 15.27 9.63 193.45
#107 27.61 19.33 1088.14

#108 19.38 9.5 232.48

#116 18.92 8.49 206.44

BAT-3"10.153 #15 8 1.99 9.841
#16 21.02 12.4 645.641
#17 17.83 5.07 107.562
#21 20.97 8.91 270.119
#22 17.6 16.19 902.955

#26 4.98 0.77 2.036

#27 3.03 1.46 1.763

#29 5.25 1.56 3.871

#30 8.37 2.15 12.228

#33 2.68 1.89 3.911
#43 19.96 8.83 355.843




Table 2

Estimated body Average body Coprolite
Fossil Species mass (Kg) Ref. | Extant Species mass (Kg) Ref. | length (cm)
Machairodus
aphanistus 117-285 1 Panthera leo 120-225 9 15
Magericyon anceps 175-195 1 Ursus americanus 40-225 3 8-11
Thaumastocyon sp. 170-321 1 Canis lupus 18- 80 8 16
Indarctos arctoides 137-266 1
Promegantereon
ogygia 28-97 1 Panthera onca 31- 121 9 2.6-11.2
Eomellivora
piveteaui 35.8-45.5 10 Puma concolor 34-72 9 3.7-6.1
Leptofelis Parahyaena
vallesiensis 7-9 12 brunnea 28-47.5 4 5
Protictitherium
crassum 6-7 2 Gulo gulo 6- 18 6 13
Circamustela
peignei 3-5 12 | Mellivora capensis 7-13 7 6.8
Adroverictis sp. 8-12 12 Taxidea taxus 6.3-8.7 6 34-4.9
Promephitis sp. 1-5 12 Genetta genetta 1-3 5 5.5
Mephitidae Gen.
nov and sp. nov 1-2.5 12 | Mephitis mephitis 1.2-5.3 11 3-4.4




