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Coprolites in natural traps: direct evidence of bone eating carnivorans from the 1	
  

Late Miocene site of Batallones-3 (Madrid, Spain) 2	
  

 3	
  

JUAN ABELLA, DAVID M. MARTÍN-PEREA, ALBERTO VALENCIANO, 4	
  

DANIEL HONTECILLAS, PLINI MONTOYA AND JORGE MORALES 5	
  

 6	
  

We describe two carnivoran coprolites found in the pseudokarst natural carnivore trap 7	
  

of Batallones-3, from the Late Miocene of Spain. The larger one, comprising multiple 8	
  

indistinguishable fragments of broken and corroded bones, indicates that the producer 9	
  

of the dropping might have been highly capable of crushing the softer parts of large 10	
  

bones. On the other hand, the smaller one shows several relatively larger and more 11	
  

complete bone fragments, thus exhibiting a greater capacity to break and swallow large 12	
  

portions of bone. The external morphology of the large coprolite is similar to that of 13	
  

extant bears, whereas the smaller one more closely resembles that of the living 14	
  

insectivorous hyaenid Proteles in morphology, on one hand, and that of the viverrid 15	
  

Genetta in size, on the other. We hypothesize that the amphicyonid Magerycion anceps 16	
  

was the producer of the large coprolite and the jackal-sized basal hyaenid 17	
  

Protictitherium crassum excreted the smaller one. Thus, we present the first direct 18	
  

evidence of a bone durophagous diet in the carnivorans of Batallones. 19	
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Introduction 51	
  

Locality and age. The Cerro de los Batallones (late Miocene [MN10]) is a pseudokarst 52	
  

complex of 9 fossil sites located 30 km south of Madrid (Figure 1). It represents one of 53	
  

the richest and best-preserved Neogene mammalian assemblages on the Iberian 54	
  

Peninsula (Morales et al. 2004, 2008). The fossiliferous deposits are embedded in marls 55	
  

deposited in hourglass-shaped cavities with upper openings (Pozo et al. 2004; Calvo et 56	
  

al. 2013) in which two types of assemblages can be found: (1) carnivoran-dominated 57	
  

assemblages in the lower part of the hourglass structure (e.g., Batallones-1 and BAT-3), 58	
  

interpreted as carnivore traps (Domingo et al. 2011, 2013a, 2013b) and (2) herbivore-59	
  

dominated assemblages in the upper parts (e.g., Batallones-4 and Batallones-10), 60	
  

interpreted as herbivore traps (Calvo et al. 2013). The coprolites studied in the present 61	
  

paper were found in one of these lower, carnivoran-dominated assemblages (BAT-3). 62	
  

Furthermore, these upper and lower deposits have been found to contain several discrete 63	
  

fossiliferous levels (Martín-Perea et al. 2020). 64	
  

The fauna of the Cerro de los Batallones localities has yielded a rich and diverse 65	
  

assemblage of vertebrate fossils including freshwater fish, amphibians and sauropsids 66	
  

(testudines, squamata) and predatory birds (Morales et al. 2008; Pérez-García & 67	
  

Murelaga 2013; Pérez-García & Vlachos 2014; Morales 2017; Villa et al. 2018), 68	
  

micromammals (López-Antoñanzas et al. 2010, 2014; Álvarez-Sierra et al. 2017; 69	
  

Medina-Chavarrías et al. 2019), equids, bovids, mosquids, giraffes, rhinoceroses, 70	
  

proboscidians, suids (Morales et al. 2008; Sánchez et al. 2009, 2011; Pickford 2015; 71	
  

Ríos et al. 2017; Romano et al. 2017; Sanisidro 2017; Morales 2017; Domingo et al. 72	
  

2018; Ríos & Morales 2019), and carnivorans, which include the most diverse sample. 73	
  

The last group comprises a large amount of skulls, mandibles and almost complete 74	
  

skeletons of two species of sabre-tooth cats, a hyaenid, two species of derived 75	
  



amphicyonids, an ailuropod ursid, a large ailurid, mephitids and mustelids (e.g., Abella 76	
  

et al. 2013, 2015; Antón et al. 2004, 2020; Peigné et al. 2005, 2008; Salesa et al. 2006, 77	
  

2008, 2010, 2012, 2019; Domingo et al. 2013a, 2016; Monescillo et al. 2014; Siliceo et 78	
  

al. 2014, 2015, 2017, 2020; Fabre et al. 2015; Valenciano et al. 2015, 2020; Fraile 79	
  

2016, 2017; Abella & Valenciano 2017; Morales et al. 2017; Valenciano 2017a, 80	
  

2017b). This fauna, alongside the micromammal remains, enabled all the sites to be 81	
  

assigned to the late Miocene (Vallesian, c. 9.6-9.3 Ma) (Peláez Campomanes et al. 82	
  

2017). However, there are minor differences in both micro- and macromammal 83	
  

taxonomic composition among the different localities that have been attributed to slight 84	
  

temporal differences. Indications are that BAT-10 is older than BAT-1, and that BAT-1 85	
  

is older than BAT-3 (López-Antoñanzas et al. 2010; Siliceo et al. 2014)), whereas the 86	
  

difference in age between Batallones-2, 3 and 5 remains unknown (Valenciano et al. 87	
  

2020).  88	
  

Furthermore, the carnivoran guild of BAT-3 is the most diverse of the whole complex. 89	
  

It includes two machairodont felids Machairodus aphanistus (Kaup, 1832) and 90	
  

Promegantereon ogygia (Kaup, 1832) (Monescillo et al. 2014; Siliceo et al. 2014), as 91	
  

well as the small feline Leptofelis vallesiensis (Salesa, Antón, Morales & Peigné, 2012), 92	
  

the plesiomorphic hyaenid Protictitherium crassum (Filhol, 1883) (Fraile 2016, 2017), 93	
  

the ailuropod ursid Indarctos arctoides (Depéret, 1895) (Abella 2011; Abella et al. 94	
  

2012, 2013, 2015; Abella & Valenciano 2017a), two amphicyonids Magericyon anceps 95	
  

Peigné, Salesa, Antón, Morales, 2008 (Siliceo et al. 2017) and the thaumastocyonine 96	
  

Ammitocyon kainos Morales, Abella, Sanisidro, Valenciano (Morales et al. in press), the 97	
  

giant mustelid Eomellivora piveteaui Ozansoy, 1965 (Valenciano et al. 2015; 98	
  

Valenciano 2017a, 2017b), the small size hypercarnivorous mustelid Circamustela 99	
  

peignei Valenciano, Pérez-Ramos, Abella & Morales, 2020 (Valenciano 2020a), the 100	
  



badger Adroverictis sp., and two mephitids Promephitis sp., nov., and  Mephitidae gen. 101	
  

nov and sp. nov (Valenciano 2017b). 102	
  

 103	
  

Coprolite generalities. Coprolites are among the most important ichnofossils from the 104	
  

fossil record (Hunt & Lucas 2020) and can be found in a diversity of taphonomical, 105	
  

ecological, and geological contexts (Qvarnström et al. 2016). As trace fossils, coprolites 106	
  

represent specific moments in time, providing individual windows into the evolution of 107	
  

ecological interactions such as predation, herbivory, and parasitism, and can contain 108	
  

palaeoecological proxies spanning from thousands to millions of years in the past 109	
  

(Dentzien-Dias et al. 2013; Qvarnström et al. 2017; Barrios-de Pedro et al. 2018; Riley 110	
  

2018). And although they might not give the general diet reconstruction of a species, 111	
  

they can provide direct information about the last food income and feeding behaviours 112	
  

of ancient vertebrates (e.g., Mellett 1974; Meng & Wyss 1997; Chin et al. 1998, 2003; 113	
  

Prasad et al. 2005; Chin 2007; Backwell et al. 2009), serving as ichnological proxies for 114	
  

the presence of animals in palaeoecosystems (Edwards & Yatkola 1974; Farlow et al. 115	
  

2010; Hunt & Lucas 2007, 2010). 116	
  

Coprolites may also provide information on the diagenetic history of the fossil remains 117	
  

themselves (Chin 2007). Over time, following burial, they undergo taphonomic 118	
  

processes, becoming permineralized or lithified and forming a cast or mould of the 119	
  

original faecal matter (Bajdek et al. 2017; Mychajliw et al. 2020). In general, coprolites 120	
  

from sites protected by geologic features such as caves and rock shelters exhibit the 121	
  

highest level of preservation. In contrast, coprolites from open sites can become 122	
  

severely degraded by these taphonomic processes (Reinhard et al. 2019).  123	
  

Coprolites of herbivorous animals are generally scarcer in the fossil record than those of 124	
  

carnivores, because the phosphate content of the latter from the soft tissue and bones of 125	
  



prey animals predisposes them to mineralization (Thulborn 1991; Chin 2002; Hunt & 126	
  

Lucas 2019). On the other hand, coprolites of bone-crushing hyenas are 127	
  

disproportionately represented in the fossil record, not only because of their chemical 128	
  

composition, but also due to: (1) their social and denning behaviour, resulting in large 129	
  

accumulations; (2) their inhabiting caves, which enhances the potential for preservation; 130	
  

and (3) the fact that hyena coprolites are resistant, and can undergo taphonomic 131	
  

resedimentation (Hunt & Lucas 2019). Bones as a supplementary food source 132	
  

necessarily constitute a net gain if the cost of processing them (both ingestion and 133	
  

digestion) can be managed. The average compact bone consists of approximately 30% 134	
  

organic matrix (Eastoe & Eastoe 1954; Guyton & Hall 2006), mostly collagen fibres. 135	
  

The organic component (nutritional value) is even greater if the marrow in the 136	
  

cancellous bone is also considered. Living spotted hyenas (Crocuta crocuta Erxleben 137	
  

1777) in Africa possess morphological and physiological adaptations enabling efficient 138	
  

consumption of bones; accordingly, they are known to consume the entire carcass 139	
  

(freshly killed or scavenged), leaving no bones behind (Kruuk 1972). 140	
  

 141	
  

 Carnivoran bone cracker adaptations. Living hyenas are known to crush the bones of 142	
  

their prey to extract the nutritious marrow within. This feeding ability is rare today, and 143	
  

both African and Asian hyenas, particularly the spotted hyena, are the only true ‘bone-144	
  

crackers’ in our modern ecosystems. Bone-crackers (modern and extinct) play an 145	
  

important ecological role as apex predators and providers of free organic material 146	
  

needed for decomposition, essential with regard to maintaining a healthy ecosystem 147	
  

(Wang et al. 2018). 148	
  

In general, hyaenids present the most advanced dentition for crushing bones, whilst 149	
  

retaining the basic feliform dental plan, which involves highly reduced grinding 150	
  



components (in M1, m1 talonid and m2), which allows room for enlargement of the 151	
  

premolars (Wang et al. 2018). The composition of hyena droppings is quite distinctive, 152	
  

enabling them to be differentiated from those of most other carnivorans, a consequence 153	
  

of their high bone content diet (Larkin et al. 2000). The gastrointestinal system of 154	
  

hyenas has apparently evolved to process large quantities of bones. Hyaenid faeces, 155	
  

particularly those of the spotted hyena, are known to contain well-digested calcium 156	
  

phosphates in the form of white powders and bone residues (Estes 1991). To a lesser 157	
  

extent, the scat of striped hyenas Hyaena hyaena (Linnaeus  1758) is also white or light 158	
  

grey (Macdonald 1978; Hulsman et al. 2010). These white powders consist of calcium 159	
  

and phosphate salts, Ca3(PO4)2 1.5Ca(OH)2, similar to hydroxyapatite, the main 160	
  

inorganic component in bones (Kruuk 1972; Wang et al. 2018). Supposing that the 161	
  

common ancestor of Crocuta Kaup 1828 and Hyaena Brisson 1762 already possessed 162	
  

this bone-dissolving gastrointestinal system, then this must have occurred over 8.6 Ma 163	
  

(Koepfli et al. 2006; Wang et al. 2018). 164	
  

Although the vast majority of Miocene coprolites have either been described as being 165	
  

excreted by bone-cracking large Hyaenidae or by the Borophaginae canids (e.g 166	
  

Pesquero et al. 2011; Wang et al. 2018 and references therein), other fossil coprolites 167	
  

have been described as belonging to other vertebrates, including crocodilians, 168	
  

notoungulates, sirenians, rodents, as well as undetermined carnivorans (Dentzien-Dias 169	
  

et al. 2018); some of them even reveal shark bite marks (Godfrey & Smith 2010).  170	
  

Batallones-3 does not present any typically large durophagous bone-cracker species; 171	
  

hence, study of these coprolites constitutes a very interesting approach to bone 172	
  

consumption in other dietary groups of carnivorans. The main aim of the present 173	
  

research paper involves analysing the morphology and bone content of the only two 174	
  

coprolites unearthed in the whole Cerro de los Batallones site complex in order to 175	
  



obtain information on the possible producer of the scat and to more clearly elucidate 176	
  

their dietary ecology. 177	
  

 178	
  

Materials and methods 179	
  

Abbreviations. BAT: Batallones fossil site from Cerro de los Batallones fossil site 180	
  

complex.  181	
  

MNCN- Museo Nacional de Ciencias Naturales, Madrid, Spain. 182	
  

 183	
  

Studied material. The fossil sample of coprolites of BAT-3 comprises the following two 184	
  

specimens: BAT-3’9.178 and BAT-3’10.153.  185	
  

 186	
  

Methodology. We followed the method proposed by Diedrich (2012) and modified by 187	
  

Wang et al. (2018) to characterise the external morphology of hyaenid coprolite 188	
  

aggregate pellets (Figure 2). 189	
  

 190	
  

3-D models. Coprolites BAT-3’9.178 and BAT-3’10.153 were CT-scanned at the 191	
  

“Servicio de Técnicas No Destructivas: Microscopía Electrónica y Confocal y 192	
  

Espectroscopía” of the MNCN-CSIC in Madrid, Spain. The scanned data were imported 193	
  

into FIJI 1.52 (National Institutes of Health, USA) for artefact removal and contrast 194	
  

enhancement. The data were finally segmented, rendered and analysed in Avizo 7.1.0 195	
  

(VSG, Burlington, MA, USA) in order to generate 3D models and to perform metrical 196	
  

and morphological analyses. We measured the trend and plunge of elongated bone 197	
  

fragments with a clearly longer axis, using the coprolites’ long axis as the pole (0º trend, 198	
  

90º plunge) and its corresponding plane (0º trend, 0º plunge) with a theoretical fixed 199	
  

north bearing to measure the trend. Trend and plunge data were plotted on an equal area 200	
  



Schmidt stereographic projection with inverse area smoothing. 201	
  

Following Esteban-Nadal et al. (2010), all the fragments were measured in length and 202	
  

volume (Supplementary material 1). However, only the ones exhibiting a more 203	
  

complete morphology are presented in the present paper (TABLE 1). The label number 204	
  

was given in the order of segmentation and has no specific meaning whatsoever. 205	
  

 206	
  

Results 207	
  

Bone fragments inside the coprolites showed preferential orientations very similar to 208	
  

that of their major axis (0/360º trend, 90º plunge). This is particularly so in the large 209	
  

one, with a mean trend and plunge closely resembling the coprolite’s major axis (308.0º 210	
  

trend, 87.7º plunge; Figure 3), whereas in the small one, bones present a smaller, albeit 211	
  

still steep (93.9º trend, 64.4º plunge) mean plunge compared to that of the coprolite’s 212	
  

major axis (Figure 3). 213	
  

 214	
  

Description and interpretation.  215	
  

BAT-3’9.178: Consists of a large fragment of an almost cylindrical coprolite 116.3 mm 216	
  

in length, 52.5 mm in width, 34.7 mm in height and a volume of 83.5738 cm3 (Figure 217	
  

4). It shows no apparent torsion and consists of one massive portion of scat, with no 218	
  

internal or external divisions. The total number of bone fragments presenting a volume 219	
  

greater than 4.21 mm3 is 134, although most of them are exclusively small fragments of 220	
  

trabecular bone. In consequence, few fragments are of sufficient size or have 221	
  

sufficiently intact surfaces to be considered for description. Hence, we mainly focused 222	
  

upon fragments with some preserved portion of cortical bone, and on others displaying 223	
  

any outstanding morphological trait. 224	
  

 225	
  



The main bones found in the coprolite are (3D images as supplementary files, each one 226	
  

with its label number): 227	
  

 228	
  

9: Two associated fragments of bone (21.13 mm), one of these constituting a large piece 229	
  

of cancellous bone and the other a relatively flat fragment of triangular cortical bone. 230	
  

The latter presents a rounded depression that might represent a partial tooth mark.  231	
  

 232	
  

29: A relatively large and flat portion of cancellous bone (24.19 mm). Although its 233	
  

shape is not recognizable, its size and morphology are worth highlighting. 234	
  

 235	
  

104: A thick portion of cortical and cancellous bone (14.28 mm) possibly belonging to 236	
  

the surface of a bone epiphysis or vertebra. 237	
  

 238	
  

107: A large portion of cancellous bone attached to a thick portion of curved cortical 239	
  

bone (27.61 mm). Possibly also from the side of a bone epiphysis or vertebra. 240	
  

 241	
  

108: A large and robust portion of cortical bone (19.38 mm). It has a marked crest along 242	
  

the centre, this constitutes one of the only distinctive structures recovered in this 243	
  

sample. 244	
  

 245	
  

116: Fragment of curved bone surface (18.92 mm), which may represent the largest and 246	
  

most distinct portion of bone surface in the whole sample. However, its overall size and 247	
  

shape are insufficient for a precise anatomical determination. 248	
  

 249	
  



BAT-3’10.153: It is much smaller in size than the other coprolite, measuring 51.6 mm 250	
  

in length, 22.3 mm in width and 21.8 mm in height (Figure 4). It consists of three 251	
  

clumped fragments, which show a slight torsion-like morphology. It is relatively thick 252	
  

and although it is thinner at both ends it does not present an elongated tip. 253	
  

The main bones found in the coprolite are (3D images as supplementary files #2): 254	
  

 255	
  

15: An elongated fragment (8 mm) of cortical bone, which shows a foramen half-way 256	
  

along its length. It could be part of a larger bone. 257	
  

16: A relatively large fragment of an undetermined bone (21.02 mm). It represents a 258	
  

portion of the curved shaft of a long bone, with cancellous bone in its inner part. 259	
  

 260	
  

17: A relatively long and flat bone fragment (17.83 mm) with several longitudinal crests 261	
  

dividing the surface into several flat-to-concave areas. It could be part of the epiphysis 262	
  

of a long bone or a fragment of the spine of a scapula. 263	
  

 264	
  

21: An elongated and triangular bone fragment (20.97 mm). This bone is one of the 265	
  

most complete remains; it appears to be almost complete, only missing the two 266	
  

epiphyses. It also presents a foramen towards the central part of the shaft. 267	
  

 268	
  

22: A large and almost semi-circular bone fragment (17.60 mm). It might be one half of 269	
  

a proximal epiphysis, likely belonging to a femur. There is a small cavity interpreted 270	
  

herein as the fovea capitis, which serves for the attachment area for the ligamentum 271	
  

teres. It also presents a rounded puncture and a cutting chip that could be interpreted as 272	
  

a tooth mark. 273	
  

 274	
  



26: An elongated and curved bone fragment (4.98 mm). There are two rounded 275	
  

structures in the middle of the bone, one larger than the other, forming a line running 276	
  

parallel to both sides of the bone. This could represent a mandibular or maxillary 277	
  

fragment with tentatively two teeth. 278	
  

 279	
  

27, 29 and 30: These three elongated bone fragments (3.03 mm, 5.24 mm and 8.37 mm, 280	
  

respectively) could belong to one single larger fragment which, due to its morphology, 281	
  

could be interpreted as a small vertebrate mandible. It has some sulci and foramina 282	
  

similar to those found in reptile bones, but this is difficult to assert due to the corrosion 283	
  

and general state of preservation of the specimen. 284	
  

 285	
  

33: A compact small cylindrical fragment of bone (2.68 mm) with a foramen on one of 286	
  

its sides. It could be identified as a fragment of a large long bone, but its broken nature 287	
  

hinders a more specific determination. 288	
  

 289	
  

43: A robust bone structure (19.96 mm) that appears to be part of a larger, more 290	
  

complex structure, due to its morphology and overall inner structure. Although it cannot 291	
  

be completely proven due to its state of preservation, this structure might well represent 292	
  

a partial skull of a small undetermined vertebrate. 293	
  

 294	
  

Discussion 295	
  

 296	
  

Following Diedrich (2012), BAT-3’9.178 is a long oval portion of scat similar in shape 297	
  

to those of Ursus arctos (Chame 2003) (Figure 5). The large amount of broken bone 298	
  

material in the coprolite appears to indicate a high consumption rate of bone matter; 299	
  



however, this is still far from that found in modern hyaenas (Estes 1991). Although 300	
  

some of the remains still possess some cortical bone, most of the fragments consist 301	
  

mainly of cancellous bone. This leads to the interpretation that only parts of the 302	
  

epiphysis of long bones or vertebrae were gnawed and consumed by the producer of the 303	
  

coprolite, similar to what is mostly consumed by modern canidae (Mech 1970; Munthe, 304	
  

1989; Sillero-Zubiri 2009). 305	
  

The size of this coprolite fragment means it can only have been produced by one of the 306	
  

four large-sized carnivorans present in BAT-3 (TABLE 2): the sabre-tooth cat 307	
  

Machairodus aphanistus, the amphicyonids Ammitocyon kainos and Magericyon 308	
  

anceps or the bear Indarctos arctoides. The first two are large hypercarnivorous 309	
  

carnivorans, [Machairodus aphanistus 117-285 kg following Domingo et al. (2013a) 310	
  

and Ammitocyon kainos 231 kg according to Morales et al. (in press)] with an extreme 311	
  

specialized dentition for cutting meat which would have prevented them from eating all 312	
  

but the most easily accessible portions of flesh on a carcass, leaving large quantities of 313	
  

food (including bones) for other carnivorans and scavengers (Ewer 1954, 1998; Turner 314	
  

1992; Pesquero et al. 2011). 315	
  

At the other end of the diet spectrum is the hypocarnivorous Indarctos arctoides, a 316	
  

member of the Ursidae family related to modern giant pandas. Its estimated body mass 317	
  

ranges from 137 to 266 kg (Abella 2011; Abella et al. 2013; Domingo et al. 2016). It 318	
  

has been suggested that this bear might have had a more omnivorous diet than that of 319	
  

giant pandas (Abella et al. 2012; Abella et al. 2011; Abella et al. 2014), but also that 320	
  

their diet would have included abundant plant material (Abella et al. 2011; Monescillo 321	
  

et al. 2014; Domingo et al. 2016). Consequently, as frequently occurs with other bear 322	
  

scats (Hewitt & Robbins 1996), this would have hindered the fossilization process. 323	
  

However, the dentition of I. arctoides shows a certain capacity for durophagy, similar to 324	
  



that of smaller species of related bears (de Bonis et al. 2017). This would have allowed 325	
  

this species to shift from eating tough plant material to gnawing bone with some degree 326	
  

of success, especially in individuals challenged with finding their favourite food 327	
  

sources, e.g. the young. For this reason, this species cannot be completely ruled out as 328	
  

the producer of this particular coprolite. 329	
  

Finally, Magericyon anceps was a large amphicyonid (Peigné et al. 2008) present in 330	
  

two of the Batallones fossil traps (BAT-1 and BAT-3; Siliceo et al. 2015, 2017, 2020), 331	
  

with an estimated body mass of 175-195 Kg (Domingo et al. 2013a; Siliceo et al. 2015). 332	
  

The described dentition is similar to other larger Amphicyonidae, but slightly more 333	
  

trenchant, thus indicating a dentition less capable of crushing (Peigné et al. 2008). 334	
  

However, the wear pattern observed in the carnassial teeth of M. anceps is quite similar 335	
  

to that of other large amphicyonines, implying a similar occlusal mechanism, which 336	
  

probably helped this animal to gnaw on the epiphysis (much softer than the diaphysis) 337	
  

of long bones, using its P4-M2 and m1-m2 teeth in the same way as extant canidae. 338	
  

Moreover, although in BAT-3 there are not abundant remains of this species, the same 339	
  

mortality rate as in BAT-1 is to be expected, because the majority of the individuals are 340	
  

young adults and juveniles (Peigné et al. 2008). As previously mentioned, this age 341	
  

group might well have consumed a slightly different diet than their more adult 342	
  

counterparts. We therefore hypothesize that this species represents the most likely 343	
  

producer of this coprolite. 344	
  

In this specific case we do not coincide with Lofgren et al. (2017), who consider that 345	
  

the coprolite was likely produced by the more abundant of the two species, since the 346	
  

reconstructed diet of M. anceps more closely resembles the crushed bone fragments 347	
  

found inside the coprolite. 348	
  

 349	
  



BAT-3´10.153 constitutes an irregular portion of scat following Diedrich (2012). It is 350	
  

similar in shape to the scats of the living aardwolf Proteles cristatus (Sparrman 1783) 351	
  

(Stuart & Stuart 1994) or the common genet Genetta genetta (Linnaeus  1758), and 352	
  

similar in size to the latter (Chame 2003) (Figure 5). Isolated bones account for 35.79% 353	
  

of the total volume of the coprolite (approximately 26.13% were individualised), but a 354	
  

large amount thereof could consist of digested bone matter or powder as described in 355	
  

Estes (1991). Most of the bone fragments are amorphous and unidentifiable, and just a 356	
  

few of them can be partly identified anatomically, but not taxonomically. In other 357	
  

published articles, the percentage of unidentifiable (both anatomically and 358	
  

taxonomically) bone fragments from fossil coprolites and extant scats from canids 359	
  

ranges from 80% to 95% (Fosse et al. 2012; Wang et al. 2018) 360	
  

 361	
  

The three individual sections of the coprolite can be characterised by containing bone 362	
  

fragments presenting different sizes and morphologies, especially on comparing the 363	
  

ones located at both ends. The assemblage in one of these sections could represent the 364	
  

remains of a small vertebrate (perhaps a reptile), due to the abundance of small, dense 365	
  

individual bones (around 15), together with a large mass of broken cancellous bone 366	
  

matter. On the other hand, the other outer section mainly consists of relatively large 367	
  

cortical bones or fragments of long bones arranged subparallel to the long axis of the 368	
  

coprolite (see figure 4). Indeed, the relative size of these fragments is noteworthy in 369	
  

relation to the size of the coprolite, even more so when compared with the larger one 370	
  

(Figure 6). The size and morphology of this coprolite appear to indicate that several 371	
  

carnivorans that could have produced it. The first and most probable carnivoran is 372	
  

Protictitherium crassum, a small-medium sized carnivoran situated at the base of the 373	
  

Hyaenidae (Fraile 2016, 2017; Morales et al. 2019). This coprolite morphology is 374	
  



similar to that of small hyenas such as Proteles cristatus (Stuart & Stuart 1994) and its 375	
  

size fits well with the ones produced by medium-to-large viverrids (Chame 2003). 376	
  

Furthermore, the fact that the coprolite has relatively large broken cortical bone 377	
  

fragments might suggest that this individual was already performing “bone-cracking” 378	
  

feeding, but did not have the enzymatic adaptation of extant hyenas to almost 379	
  

completely dissolve bones, reducing them to powder during digestion (Estes 1991). 380	
  

This fits well with an early member of the hyaenid family, such as P. crassum, which 381	
  

has slightly enlarged premolars but does not yet present reduced postcarnasssial molars 382	
  

like the more derived hyaenids, thus distributing the crushing dental apparatus between 383	
  

the premolars and the molars (Fraile 2016, 2017).  384	
  

Another species that could have produced this coprolite is the medium-sized feline 385	
  

Pristifelis Salesa, Siliceo, Antón, Peigné, Morales 2012. However, this species is not 386	
  

described in BAT-3, and as occurred with the larger coprolite, these felids are 387	
  

interpreted as hypercarnivorous animals, and might not have been able to break bones to 388	
  

feed upon them. Furthermore, the shape of the coprolite does not fit well with those of 389	
  

this group, since felid scats are more elongated (Chame 2003). Gilmour & Skinner 390	
  

(2011), however, on studying the scats of small felids, concluded that they have 391	
  

disproportionately large bone fragments in their scat compared with canids, whose scats 392	
  

contain relatively more abundant and smaller bone fragments. Furthermore, a broad 393	
  

musteloid sample is present in BAT-3, comprising relatives of the living martens, 394	
  

badgers, skunks, and honey badgers, of which the badger-sized Adroverictis sp. 395	
  

Ginsburg & Morales, 1996 and the giant sized Eomellivorini Eomellivora piveteaui 396	
  

(Valenciano et al. 2015; Valenciano & Govender 2020b) might have been the producers 397	
  

of the coprolite. Eomellivora may have had a clearly durophagous diet, based on dental 398	
  

morphology. However, its large size rules out its assignment to this coprolite. Although 399	
  



the size could fit well with a mustelid the size of Adroverictis, the reconstructed diet 400	
  

(which was likely more omnivorous) together with the morphology of the scat also 401	
  

brings us to rule out this species with a certain degree of certainty. 402	
  

As previously mentioned, the carnivoran guild of BAT-3 is the most complex of all the 403	
  

Batallones fossil sites, presenting many different body sizes and dietary groups. 404	
  

Moreover, the Batallones carnivoran assemblage is unique compared to sites of similar 405	
  

age on the Iberian Peninsula due to the complete absence of large or medium hyenas. 406	
  

The lack of these forms, present both before and after this period in this region (Fraile et 407	
  

al.  1997; Morales et al. 2015), is difficult to assess without conducting a detailed 408	
  

analysis comparing the ecomorphologies of the carnivoran guilds of the Vallesian, in 409	
  

order to provide a broader view of how the ecological roles of these niches evolved 410	
  

throughout this time period; similar to those already performed by Morlo et al. (2020) 411	
  

across the Middle/Late Miocene boundary in Germany. 412	
  

Finally, a taphonomical issue is raised by the presence of these coprolites in BAT-3. As 413	
  

previously mentioned, the lower carnivoran-dominated assemblages, such as BAT-3 414	
  

and BAT-1 have been interpreted as natural traps (Domingo et al. 2013a, 2013b; 415	
  

Domingo et al. 2016; Domingo et al. 2011). In BAT-1 for example, none of the large 416	
  

bones within the trap were found to be eaten or gnawed (Domingo et al. 2013), although 417	
  

some Moschidae remains present corrosion surfaces that could be interpreted as 418	
  

resulting from digestion (Sánchez et al. 2011). Future taphonomical analyses for 419	
  

Batallones-3 should address whether or not the presence of coprolites suggest the site 420	
  

acted as a den rather than a natural trap, since the latter is likely to present fewer 421	
  

coprolites. 422	
  

 423	
  

Conclusions 424	
  



Two coprolites were discovered in one of the nine sites of the Batallones complex. 425	
  

Although these fossils are rarely preserved, the particular genesis of these carnivoran 426	
  

natural traps in cavities would theoretically have helped to conserve them.  427	
  

The larger coprolite could be described as a “long oval” portion of a scat. It mainly 428	
  

presents broken parts possibly involving an epiphysis of a long bone or a vertebra. This 429	
  

fact would indicate that the producer would have been able to gnaw on a bone, 430	
  

Magericyon anceps being the most likely species or, to a lesser extent, Indarctos 431	
  

arctoides. 432	
  

The small coprolite could be defined as an almost terminal “irregular portion” of a scat 433	
  

with the size and morphology of those produced by large viverrids and small hyaenas. It 434	
  

presents two differentiated parts: one that appears to result from eating a complete and 435	
  

unidentified small vertebrate, and the second produced by swallowing the remains of a 436	
  

relatively large broken bone. The species that produced this coprolite could have been 437	
  

possibly either Protictitherium crassum or, less likely, Adroverictis sp.  438	
  

Finally, study of these coprolites provides direct evidence of bone consumption 439	
  

amongst carnivorans in the trophic network of the feeding complex of the Batallones 440	
  

palaeocommunity. In the case of Magericyon, this bone consumption appears to confirm 441	
  

that large Amphicyonidae display adaptations related to generalist feeding; nonetheless, 442	
  

one of the members of the group, Magericyon anceps seems to have developed a 443	
  

tendency towards hypercarnivorism. 444	
  

 445	
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Figure 1 929	
  

A, Map of the Iberian Peninsula showing the location of Madrid and Valdemoro. B, 930	
  

Location of Batallones-1 and Batallones-3 sites, west of Valdemoro. 931	
  

 932	
  

Figure 2 933	
  

Nomenclature of individual pellets in a complete assemblage of faeces from a single 934	
  

dropping event by the extant spotted hyena, Crocuta crocuta. Horizontal axis indicates 935	
  

the orientation of the dropping. After Diedrich (2012): Figure 4 and Wang et al. (2018): 936	
  

Figure 1. 937	
  

 938	
  

Figure 3 939	
  

Stereographic projections of the elongated axis of bone fragments in the coprolites. 940	
  

Mean trend and plunge represented by plus sign. A, BAT-3’9.178 coprolite. B, BAT-941	
  

3’10.153 coprolite.  942	
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Figure 4 944	
  

View of the disposition of the bone fragments present in A, Transparent outline of the 945	
  

coprolite BAT-3-’10.153 with the fragments in colours. B, Inner view of coprolite 946	
  

BAT-3-’10.153 with amorphous bone matter in grey and fragments in colours. C, Inner 947	
  

view of coprolite BAT-3-’10.153 only showing fragments in colours. 948	
  



D, Transparent outline of the coprolite BAT-3’9.178 with the fragments in colours. E, 949	
  

Inner view of coprolite BAT-3’9.178 only showing fragments in colours. Scale bar 1 950	
  

cm. 951	
  

 952	
  

Figure 5 953	
  

Figure comparing extant dropping outline morphology from Chame (2003) to the 954	
  

coprolites BAT-3’9.178 and BAT-3-’10.153  955	
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Figure 6 957	
  

View of the disposition of the bone fragments present at the coprolites. A, BAT-3’9.178 958	
  

and B, BAT-3-’10.153. Same size, not to scale. 959	
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Table 1 962	
  

Measurements of the Maximum length and second maximum length (in mm) and the 963	
  

volume (in mm3) of the described bone fragments found inside the coprolites BAT-964	
  

3’9.178 and BAT-3’10.153 from BAT-3, Spain.  965	
  

 966	
  

Table 2 967	
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used for comparison. References: 1.-­‐	
  Domingo et al. 2013a, 2016; 2.- Fraile 2016; 3.-970	
  

Garshelis 2009; 4.- Holekamp and Kolowski 2009; 5.- Larivière S. & Calzada, J. 2001; 971	
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Measurements of the Maximum length and second maximum length (in mm) and the 979	
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Table	
  1	
  
	
  

Coprolite label Number 
Maximum 

length (mm) 

Second 
maximum  

length (mm) 
Volume 
(mm3) 

BAT-3’9.178 #9 21.13 16.53 507.07 
  #29 24.19 22.05 577.15 
  #104 15.27 9.63 193.45 
  #107 27.61 19.33 1088.14 
  #108 19.38 9.5 232.48 
  #116 18.92 8.49 206.44 
          

BAT-3’10.153 #15 8 1.99 9.841 
  #16 21.02 12.4 645.641 
  #17 17.83 5.07 107.562 
  #21 20.97 8.91 270.119 
  #22 17.6 16.19 902.955 
  #26 4.98 0.77 2.036 
  #27 3.03 1.46 1.763 
  #29 5.25 1.56 3.871 
  #30 8.37 2.15 12.228 
  #33 2.68 1.89 3.911 
  #43 19.96 8.83 355.843 
	
  



Table	
  2	
  

Fossil Species 
Estimated body  

mass (Kg) Ref.  Extant Species 
Average body  

mass (Kg) Ref. 
Coprolite 

length (cm) 
Machairodus 
aphanistus 117-285 1 Panthera leo 120-225 9 15 

Magericyon anceps 175-195 1 Ursus americanus  40-225 3 8-11 
Thaumastocyon sp. 170-321 1 Canis lupus   18- 80 8 16  
Indarctos arctoides 137-266 1 

    Promegantereon 
ogygia 28-97 1 Panthera onca    31- 121 9 2.6- 11.2  

Eomellivora 
piveteaui 35.8-45.5 10 Puma concolor   34- 72 9 3.7- 6.1  
Leptofelis 

vallesiensis 7–9 12 
Parahyaena 

brunnea 28- 47.5 4 5 
Protictitherium 

crassum  6- 7 2 Gulo gulo 6- 18 6 13  
Circamustela 

peignei  3-5 12 Mellivora capensis 7- 13 7 6.8  
Adroverictis sp. 8-12 12 Taxidea taxus 6.3- 8.7 6 3.4- 4.9  
Promephitis sp. 1-5 12 Genetta genetta 1- 3 5 5.5  
Mephitidae Gen.  
nov and sp. nov  1-2.5 12 Mephitis mephitis  1.2-5.3 11  3-4.4  


