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Plastic production is continuously growing and their wastes

contaminate practically all environmental niches. In the

environment, large plastics undergo continuous degradation

processes generating a broad amount of microplastics and

nanoplastics (MNPLs) that spread through air, land, and seas.

Thus, humans suffer chronic exposures to MNPLs through

different pathways: ingestion, inhalation, and dermal contact.

Here, we have reviewed the recently published data regarding

human exposure to MNPLs. The total load of plastic particles that

humans are exposed to has been estimated based on these

newly reported studies. This analysis of novel literature shows

thatdespite ingestion is the most studiedroute of exposure, other

routes of contact with MNPLs should not be underestimated. At

the same time, gaps regarding the investigation of human

exposures to environmental MNPLs have been detected, as well

as the lack of robust and standardized protocols, operating

procedures, and methodologies to detect/quantify MNPL in

human/biological matrices.
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del Vallès (Barcelona), Spain

2Consortium for Biomedical Research in Epidemiology and Public

Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain

Corresponding author: Marcos, Ricard (ricard.marcos@uab.es)

Current Opinion in Food Science 2021, 39:144–151

This review comes from a themed issue on Microplastics

Edited by Huahong Shi

For complete overview of the section, please refer to the article col-

lection, “Microplastics”

Available online 27th January 2021

https://doi.org/10.1016/j.cofs.2021.01.004

2214-7993/ã 2021 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

Introduction
The word plastic is a term used to describe a wide range of

synthetic or semisynthetic materials. Plastics are made of

organic compounds such as cellulose, carbon, natural gas,

salt, or petroleum. Since 1855, when the first synthetic

plastic material (known today as celluloid) was created, a

wide variety of plastics has been developed until these

days. Innovation in plastic materials continues to grow and
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thanks to its characteristics that include low-cost produc-

tion, high durability, and versatility, they stand out as

attractive materials for multiple applications in different

areas such as product packaging, construction, and build-

ing, automotive, mechanical engineering, agriculture,

medical applications or electronics, among many others.

Depending on its properties, plastic materials can be clas-

sified into different groups: bioplastics, biodegradable plas-

tics, technical plastics, epoxy resins, expanded polystyrene

(EPS), fluoropolymers, polyolefins, polystyrene, polyur-

ethanes (PUR), polyvinylchloride (PVC), polyethylene

(PE), and polypropylene (PP) among others [1]. From large

pieces of these plastics, microplastics and nanoplastics

(MNPLs) originate either in a targeted manner by an

industrial process, or due to a natural continuous process

of aging and degradation into the environment. Depending

on such origin, they are classified into primary and second-

ary MNPLs, respectively [2]. The continuous degradation

of plastics results in mixtures of MNPLs with a wide range

of sizes. While the term nanoparticle, and therefore the

term nanoplastic, is well-defined as sizes ranging from 1 to

<100 nm by the International Organization for Standardi-

zation [3,4], no formal size definition is available for micro-

plastics. Although microplastics should be formally defined

as plastic particles ranging from 1 to 1000 mm, considering

the conventional units of size and their nomenclature, as

recommended by Hartmann et al. [2], there is a lack of

consensus on the size limits. Thus, the limit size for

microplastics is often defined for convenience according

to the sampling method. The Joint Group of Experts on the

Scientific Aspects on Marine Environmental Protection

(GESAMP), consider microplastics as particles from 1

nm to <5 mm since they were pragmatically defined as

particles under 5 mm at the first international research

workshop on the occurrence, effects, and fate of micro-

plastic marine debris celebrated in 2008. This definition

was established taking into account the inclusion of parti-

cles that can be ingested by biota, as well as those particles

that can present properties different from those of macro-

plastics [5]. In this way, most of the studies consider 5 mm

as the upper limit size of microplastics since the biological

effects and properties of those particles are different from

those found for large pieces of plastic. In this review, we

refer to microplastics in the broad sense of the definition, as

proposed by GESAMP, and not in a strict and literal sense

of the definition of the word microplastic. We assume that

this pragmatic use of the term microplastics can mask their

potential biological effects since they are strongly associ-

ated with the size. At the nanosize, nanoplastics can be

more easily uptake and distributed in cells, tissues, and
www.sciencedirect.com
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organs than microplastics. Thus, size is an important factor

modulating the harmful effects of MNPLs [6].

Plastic in different environmental matrices

Only during 2018, 359 million tons of different plastic

materials were produced in the world and many of them

were used to produce one-use goods, becoming waste

after its short/useful life. Moreover, most of the plastics

manufactured for different applications are not biode-

gradable. As a result, plastic waste accumulates in both

landfills and the other environmental compartments.

Although the trend to recycle plastic is indeed increasing,

25% of the plastic post-consumer waste ended up in

landfills in 2018. Of this, an unknown amount of plastic

post-consumer waste that is not collected generated by

littering and unauthorized dumping must be added [7].

All that plastic debris ending in different environmental

matrices translates into contamination supposing a great

environmental challenge.

The amount of plastic found in the different environ-

mental matrices is the sum of macroplastics and MNPLs

that arrive from different sources of contamination, and

those MNPLs that are formed in situ by the degradation

from larger pieces of plastic. In the environment, plastic

materials are exposed to either microbial degradation

[8,9] or different weather and environmental conditions

such as UV radiation, oxidants, rainfalls, and winds among

others [10,11]. In general, both abiotic and biotic path-

ways lead to a great formation of MNPLs.

Regarding the amounts present in different environments

Jambeck et al. [12] calculated that from 275 million metric

tons of plastic waste generated in 192 coastal countries,

from 4.8 to 12.7 million metric tons entered in the oceans

from land in 2010. Moreover, they predicted that the

amount of waste entering into the ocean from the land

would increase by one order of magnitude by 2025. In the

oceans, different garbage patches are found and they

remain to accumulate plastic debris rapidly. For example,

the Great Pacific Garbage Patch placed between California

and Hawaii contains 45–129 thousand tons of plastic float-

ing in an area of 1.6 million km2. In that area, microplastics

account for 8% of the total mass but 94% of the estimated

1.8 (1.1–3.6) trillion pieces floating in the area [13]. Most of

the plastic transported from land to oceans travels through

rivers, and there is evidence of MNPLs in rivers worldwide

[14]. It has been determined that the most relevant source

of river contamination are wastewater treatment plants

[15]. Likewise, contaminated freshwater flows back to

the terrestrial environment through different land use as

agriculture, urban or parks, and recreation areas [16].

On the other hand, pieces of evidence of MNPLs on

airborne have been reported recently [17]. These

MNPLs suspended in indoor and outdoor air are the

result of daily actions such as opening a plastic package,
www.sciencedirect.com 
microfiber detachment from textile garments, or the wear

of vehicle tires, all contributing to the particulate matter

in ambient air [18–20]. Through atmospheric deposition,

these particles arrive at land, aquatic environments, or

even to remote locations where MNPLs have been found

in snow from very different sites [21].

Soil ecosystems have received less attention in compari-

son with aquatic ecosystems. Nevertheless, apart from

atmospheric deposition, MNPLs enter soil through many

other sources: landfills, compost and organic fertilizer,

wastewater-irrigation, land application of sewage sludge,

or agricultural residuals [22–24]. Furthermore, it has been

reported that MNPLs can be transported from the soil

surface to deeper layers by earthworms, making it acces-

sible to soil biota and even with the possibility to reach

groundwater [25].

Human exposure to MNPLs

Wastewater treatment plants, large plastic fragmentation,

solid waste management, aquaculture, runoff, agriculture,

fishing, or industrial factories (among others) are sources

of MNPLs pollution [15,22–24]. Low-density MNPLs

often remain on the surface of seas, rivers, or oceans while

high-density MNPLs tends to tend to sink and reach the

deepest layers of the sediment [12,25]. MNPLs in aquatic

environments can easily enter the food web by trophic

transfer through seafood [13]. Besides, crops watered with

contaminated water are another source of human expo-

sure to MNPLs through ingestion. Agricultural activities

use contaminated water to grow crops and plastics are

continuously being degraded by microorganisms in the

soils where crops are cultivated [9,22]. Moreover, agricul-

tural products are the basis of the livestock farming diet.

Thus, crops, food products derived from animals, and

drinking water are sources of ingestion of MNPLs for

humans. On the other hand, part of the MNPLs produced

by the aforementioned sources remains resuspended in

the air [17]. Accordingly, a continuous exchange of air-

borne pollutants takes place between atmospheric air and

the ground by atmospheric deposition and release of

MNPLs. Thus, a continuous fall of MNPLs occurs over

the aquatic niches, soil, crops, and of course, human

beings, leading to an increase in human exposure to

plastic pollutants. Airborne MNPLs also entails a great

exposure to MNPLs in humans through inhalation [26��].
As a summary, the MNPLs spread over the different

environmental niches as indicated in Figure 1 through an

interconnected network. Consequently, humans are

exposed to plastic microparticles through different

pathways.

Estimation of human global exposure to
MNPLs
To estimate the total burden of exposure to MNPLs in

humans we have carried out a systematic review of

different studies published during the last three years.
Current Opinion in Food Science 2021, 39:144–151
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Figure 1
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Interconnection network through which MNPLs are distributed throughout all environmental niches, reaching humans through different exposure

routes.
In cases that recent studies were not available, we

selected studies previously published. Using PubMed,

we have combined the following keywords: plastic par-

ticles, nanoplastic, microplastic, vegetables, fruit, sea-

food, fish, water, salt, sugar, beer, cereals, meat, milk,

food, ingestion, inhalation, airborne, dermal contact, der-

mal deposition. The mean amount of MNPLs in each

food group is indicated in Table 1, as well as the total

amount of MNPLs ingested and inhaled. The values

shown were obtained averaging over the different

selected studies. Publications analyzed were selected

following three main criteria: they include blanks, they

include one or more methods to identify and verify

MNPLs, and the number of particles/mass of items can

be inferred from the reported results. Regarding the

methods used to detect MNPLs, all the selected studies

include microscopy inspection as a first approach to

identify MNPLs. 87.87% of the total of analyzed pub-

lications verify the identity of the particles using spec-

troscopy-based methods. Thus: 63.63% of the studies use

FTIR (Fourier Transform Infrared), 15.15% using Raman
Current Opinion in Food Science 2021, 39:144–151 
spectroscopy, and 9.09% using SEM (Scanning Electron

Microscopy) coupled to EDX (Energy Dispersive X-Ray

Spectroscopy). The identification of MNPLs in the rest of

the studies (12.12%) is based on different microscopic

techniques such as fluorescence microscopy, polarized

light, or SEM.

Exposure to MNPLs via ingestion
The basic human diet includes fruits and vegetables,

meat, fish, cereals and legumes, and water as the main

hydration source.

The number of particles ingested with fruits and vegeta-

ble intake was recently determined by Oliveri Conti et al.
[27�]. A mean amount of 132 740 p/g (particles/gram)

MNPLs were determined in five frequently consumed

fruits and vegetables (apples, pears, broccoli, lettuce, and

carrots) supplied by different grocery shops. Taking these

data as a representative for this food group, and following

the WHO recommendation to include at least a daily
www.sciencedirect.com
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Table 1

Overall estimation of the total exposure to MNPLs in humans through different routes

Exposure-pathway Product Recommended-estimated
consumption

Mean MNPLs Daily intake
of MNPLs

Annual intake
of MNPLs

Total MNPLs/year

Ingestion Fruit and vegetables 400 g/day 132 740 p/g 53.09 � 106 19.38 � 109

2.93 � 1010

Seafood 22.41 kg/year 0.98 p/g 60.38 22.04 � 103

Bottled water 2 L/day 13.55 � 106 p/L 27.10 � 106 9.89 � 109

Salt 5 g/day 142.80 p/kg 0.71 260.61
Alcohol 6.40 L/year 4.05 p/L 0.07 25.92

Inhalation Air 8.64 m3/day 0.68 p/m3 5.92 2.16 � 103 2 .16 � 103
intake of 400 g of fruit and vegetables [28], humans would

be ingesting 53.096 � 106 p/day.

For the estimation of MNPLs in seafood, meaning

aquatic species fit for human consumption, only publica-

tions from the last three years including data correspond-

ing to particles per gram of seafood were included (see

Supplementary Table). Accordingly, a mean content of

0.98 p/g of seafood was determined. Assuming the annual

global seafood consumption of 22.41 kg per capita [29],

the global per capita MNPLs consumption linked to

seafood is 22.04 � 103 p/year.

Regarding the MNPLs uptake via drinking water, it must

be considered that the adequate water diary intake as

reported by the EFSA [30] is 2 L for females and 2.5 L

for males. Different authors have assessed the amount of

MNPLs in bottled as well as in tap water, reporting high

variability in the data. Thus, although Mason et al. [31]

reported an average of 325 p/L in samples of plastic pack-

aged water purchased globally, 2649 p/L were detected by

Oßmann et al. [32], and only 3.57 p/L were found by Kosuth

et al. [33�]. The aforementioned authors refer to these

particles as anthropogenic debris and they do not

completely ensure the origin of the particles due to the

identification methods used. Conversely, Zuccarello et al.
[34] reported an average of 54 200 000 p/L in the water

contained in plastic bottles. Taking all these data, humans

would ingest an average of 13 552 977.57 p/L of water

packaged in single-use plastic bottles, which translates into

27 105 955.14 p/day assuming a total consumption of 2 L of

bottled water per day. Nevertheless, the large variability of

data makes to be very cautious about the validity of these

data. The lack of powerful and standardized methods to

identify/quantify MNPLs is alarming and huge efforts are

required to fill this weakness [35].

Another common source of MNPL ingestion is table salt.

Many authors have evaluated the microplastics content in

different table salt samples from different countries and

brands. High variability was reported in the different

studies ranging from 9.77 p/kg [36] to 212 p/kg [33�]
although the highest ratio was 506 p/kg found in samples

analyzed by Kim et al. [37]. Averaging these data, we

obtain an estimated amount of MNPLs in table salt of

142.8 p/kg. Since the WHO recommends a limit of salt
www.sciencedirect.com 
intake of 5 g per day for healthy adults, humans would be

ingesting 0.714 p/day with table salt consumption.

The only study determining nanoparticle contamination

in sugar probably is that of Liebezeit et al. [38] in 2013,

where authors determined 217 fibers/kg and 32 frag-

ments/kg in sugar samples. Regarding WHO recommen-

dation about sugar consumption that should not exert the

limit of 27 g/capita/day [39], humans could be ingesting

2,138.53 fibers/year and 315.36 fragments/year. However,

the authors do not mention whether these fragments were

plastic’ particles neither verify the identity. Besides, the

methods used are outdated and there is no recent liter-

ature on this topic; so, numbers may be overestimated.

Regarding MNPLs intake via alcohol consumption, as

reported by the WHO [40], the worldwide alcohol con-

sumption per capita (15 years and older) was 6.4 L in

2016. Only a few studies regarding the presence of

MNPLs in alcoholic beverages have been found, and

all focused on the presence of MNPLs in beer. Never-

theless, most of them are not recent studies, the methods

used to confirm MNPLs presence as well as the inclusion

of blanks are lacking, or have discredited the results [41].

The most recent study was the one published in 2018 by

Kosuth et al. [33�], where the authors determined an

overall mean of 4.05 p/L in different beer samples.

Assuming these particles as MNPLs and an alcohol

consumption comprised entirely of beer, MNPLs uptake

linked to alcohol consumption would be 25.92 p/year.

No data on the presence of MNPLs in cereals has been

found. Nevertheless, Garcı́a-Ibarra et al. [42] studied the

contamination of cereals and cereals-based foods by

chemical migrants from plastic packaging. Although the

presence of MNPL in cereals was not analyzed in this

study, it can be concluded that there is a constant degra-

dation of packaging and release of contaminants to the

content. Besides, irrigation of cereal crops with waters

containing MNPLs may also contribute to food

contamination.

Similarly, contaminants migrating from plastic packaging

in beef pieces were identified [43]. In the same way that

these contaminants can come off from the packaging and

migrate to the food, MNPLs break off can contaminate
Current Opinion in Food Science 2021, 39:144–151
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packaged meat food. Moreover, it has been reported that

ruminants accumulate indigestible plastic materials in the

rumen. Thus, MNPLs and other contaminants can enter

the human food chain through milk and meat contami-

nated products [44]. Unfortunately, there is a lack of data

quantifying MNPLs in, plastic-packaged or not, meat,

milk, cereals, and many other food products. However,

knowing that 6.4, 11.1, 14.7, and 1.8 kg/capita of beef and

veal, pork, poultry meat, and sheep meat, respectively,

were consumed all over the world during 2019 [45], and

taking into account the lack of data regarding MNPLs

content in the many other food groups, the amount of

MNPLs ingested by humans is underestimated.

Exposure to MNPLs via inhalation
Although inhalation is a well-known pathway of expo-

sure to MNPLs in humans, few studies have addressed

this concern. From those studies analyzed [46–48], we

estimated an airborne MNPLs concentration of 0.685

p/m3. Considering a respiration frequency of 12 breaths/

min and a tidal volume of 0.5 L, the breathing rate is

8.64 m3/day; so, humans would inhale 5.918 p/day. How-

ever, airborne MNPLs estimation depends on the sam-

pling methodologies, air renovation rates, and other

factors such as human activity, furniture, or cleaning

habits. Moreover, considering the COVID-19 pandemic,

we assume inhalation of MNPLs is underestimated since

the use of masks for long periods has become common all

over the world.

Exposure to MNPLs via dermal contact
Few are the studies regarding MNPLs fallout in different

geographic locations and environments (indoor/outdoor,

urban/suburban/remote) [17,49��,50]. The variability of

the conditions analyzed in those studies and the results

make it difficult to establish comparisons between them.

Thus, the deposition ratio fluctuates in a wide range

between 36 and 1008 p/m2/day, with a mean value of

366.87 p/m2/day. Regarding deposition rate values, and

considering the continuous shedding of fibers from cloth-

ing [51,52], dermal contact with MNPLs is evident. Even

so, no studies are quantifying dermal exposure to MNPLs

and its potential effects at this point.

Conclusion
Plastics, and specifically MNPLs, are gaining attention as

potential human health risk factors; but the studies found

in this regard are very limited. It is specifically notable for

the lack of human biomonitoring studies evaluating the

health impact of MNPLs. This is caused, basically, by the

difficulty of detecting, characterizing, and analyzing

MNPLs in human samples due to the lack of guidelines

or standardized protocols allowing the homogenization

and harmonization of the results obtained by different

authors [53]. This makes data comparison very difficult.
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Although the greatest exposure to MNPLs in humans

occurs through inhalation and ingestion, other exposure

pathways such as dermal contact cannot be underesti-

mated. However, the lack of studies about this stands

out. Moreover, all exposure quantification studies are car-

riedout ina specific context,by analyzing anexposure route

in a given environment. This makes it difficult to estimate

the overall total exposure to humans anywhere in the world.

Inaddition, it must be remembered that theMNPLs ability

to cross the different epithelial barriers and, consequently,

their distribution in the different organs and tissues, can

determine the associated risk of these exposures. As it has

been previously indicated, the lack of human biomonitor-

ing studies is a great gap limiting the determination of both

the real intake of MNPLs and its potentially harmful

effects. At this point, it should be indicated that using in
vitro models of the human intestinal barrier, an important

uptake of nanopolystyrene (as a model of MNPLs) was

observed, translocating through the barrier [54�]. In this

review microplastics are considered as a whole without

differentiation between chemical composition, morphol-

ogy, and size; but their potential health impact in humans

can be strongly influenced but such characteristics. The

chemical nature of microplastics reflects those of macro-

plastic from which they come. Thus, the chemical nature of

those microplastic most often detected in water and soil are

polyethylene, polyethylene terephthalate, propylene, sty-

rene, polyvinyl chloride, nylon, and polyamides [55��]. In

the same way, the morphologies they show are granules,

fragments, microbeads, fibers, and foams. All this reflects

the complexity of microplastics exposures and, conse-

quently, the difficulties of establishing sound associations

between exposures and effects.

Here, we estimated that the total burden of human

exposure to MNPLs is 2.93 � 1010 p/year, from recent

data available. Nevertheless, it should be remembered

that these values must be taken with caution due to the

lack of strongly established methodologies for their detec-

tion. Even so, this estimation would vary if urbanization,

religious beliefs or ethical concerns, social or cultural

norms, gender, age, and health concerns among other

factors, were considered.

So, we consider that the priority concern is to establish

and validate guidelines and methods to detect and quan-

tify MNPLs in environmental and food samples, as well

as in biological matrices. With this, reported studies

would be more homogeneous and comparable regarding

the methodology used and the data reported. Besides,

reliable quantification of MNPLs in different types of

samples would allow having a reliable reference of the

real exposure of humans to MNPLs. Furthermore, in vivo
and in vitro studies with more realistic concentrations of

MNPLs would be carried out to elucidate the toxic

effects of the aforementioned exposure in different

model systems. Given this information, the following
www.sciencedirect.com
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steps should be to carry out biomonitoring studies in

humans what would allow to accurately establish the

exposure levels and the induced effects of MNPLs. Even

so, some studies are reporting the toxic effects of MNPLs

both in in vivo and in vitro systems, as well as the ability of

MNPLs to cross biological barriers [54�,56,57]. From

these data, it could be hypothesized that MNPLs can

reach the circulatory system affecting the immune system

cells, and be distributed throughout the human body,

even reaching different organs. Although the specific

effects at short and long-term, and the bioaccumulation

of MNPLs in each organ, should be deeply studied to get

conclusions, data suggests that MNPLs are easily inter-

nalized by human cell models and altering their func-

tionality. Moreover, they can disturb the microbiota

affecting homeostasis and triggering toxic effects in the

metabolism of mammalian models [54�,56–58].

Finally, and to highlight the increasing relevance of this

topic, it must be indicating that inside the EU Horizont-

2020 program, a specific call on ‘Microplastics and nano-
plastics in our environment: Understanding exposures and
impacts on human health SC1-BHC-36-2020)’ was launched.

The five recently funded projects in this call have been

organized as a cluster, and the research will start in April

2021. It is expected that most of the questions asked can

be solved during the development of such projects.
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