Signal Processing: Image Communication 99 (2021) 116503

journal homepage: www.elsevier.com/locate/image

Contents lists available at ScienceDirect

Signal Processing: Image Communication

Real-time 16K video coding on a GPU with complexity scalable BPC-PaCo n

Carlos de Cea-Dominguez ®*, Juan C. Moure ", Joan Bartrina-Rapesta ?, Francesc Auli-Llinas?

Check for
updates

2 Department of Information and Communications Engineering, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
b Department of Computer Architecture and Operating Systems, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain

ARTICLE INFO ABSTRACT

Keywords:

High throughput image and video coding
GPU

CUDA

JPEG2000

HTJ2K

The advent of new technologies such as high dynamic range or 8K screens has enhanced the quality of digital
images but it has also increased the codecs’ computational demands to process such data. This paper presents a
video codec that, while providing the same coding features and performance as those of JPEG2000, can process
16K video in real time using a consumer-grade GPU. This high throughput is achieved with a technique that
introduces complexity scalability to a bitplane coding engine, which is the most computationally complex

stage of the coding pipeline. The resulting codec can trade throughput for coding performance depending on
the user’s needs. Experimental results suggest that our method can double the throughput achieved by CPU
implementations of the recently approved High-Throughput JPEG2000 and by hardwired implementations of

HEVC in a GPU.

1. Introduction

Image and video coding are primary needs of industries such as
digital cinema, content streaming or video production, among others.
Two main standards satisfy the requirements of many such industries,
namely, JPEG2000 [1] and HEVC [2]. JPEG2000 is commonly em-
ployed in digital cinema and medical imaging, whereas HEVC is often
used for media streaming and video production. Both standards have
advanced features like high compression efficiency, quality scalability,
interactive transmission, or error resilience. Both standards also de-
mand ample computational resources, posing a challenge when high
quality video (of 4K or more resolution and/or with high dynamic
range) need to be coded in real time. In computational-constrained
devices, the image quality may need to be reduced to achieve real-time
processing. Other scenarios such as digital cinema or medical imaging
require the highest quality possible, so expensive hardware solutions
are often in use.

The literature employs different approaches to increase the codecs’
throughput. Some works focus on the coding algorithms to reduce com-
putational complexity [3-5]. Others implement the codec in hardware
devices such as Field-Programmable Gate Arrays (FPGAs) [6-9]. FPGAs
are attractive despite their high price due to their high performance,
so they are used in scenarios such as digital cinema [10] or medical
imaging [11-13]. The highly parallel architecture of Graphics Process-
ing Units (GPUs) has also been employed to parallelize the codec’s
tasks [14-16]. The lower cost and the capacity for general-purpose
computing of GPUs have made these accelerators very popular in recent
years.

* Correspondence to: Escola Enginyeria, UAB - 08193 Bellaterra, Spain.

When the algorithms exhibit fine-grained parallelism, implemen-
tations in GPUs can achieve high throughput thanks to the inherent
Single Instruction Multiple Data (SIMD) architecture of these devices
in combination with a Multiple Instruction Multiple Data (MIMD)
architecture. Together, both characteristics allow processing thousands
of threads executing the same instruction on different data. Some
algorithms can be accelerated up to 20x as compared to implemen-
tations on traditional Central Processing Units (CPUs) [17]. Unfortu-
nately, such speedups are not achieved when implementing conven-
tional image/video codecs because their core algorithms exhibit poor
fine-grained parallelism. In general, these algorithms are devised to
exploit only the MIMD-based architecture of CPUs (or GPUs), which can
process tenths of threads executing different instructions on different
data.

The coding pipeline of a traditional JPEG2000 codec has three main
stages: discrete wavelet transform (DWT), bitplane and entropy coding
(BPC), and codestream re-organization (CR). The DWT and CR stages
can be easily mapped to a SIMD-based architecture since their opera-
tions can be parallelized and do not hold critical data dependencies.
Contrarily, the BPC stage has data dependencies that force the samples
to be coded sequentially in each tile of data. This stage accounts for
85% of the total execution time, so it is key in the codec’s overall
throughput.

Aimed to provide more parallelism to the BPC engine, the Joint
Photographic Experts Group approved in 2019 Part 15 of the standard,
named High-Throughput JPEG2000 (HTJ2K). This new part adopts the
algorithm proposed in [18], which exploits vector (SIMD) instructions

E-mail addresses: carlos.decea@uab.cat (C. de Cea-Dominguez), juancarlos.moure@uab.cat (J.C. Moure), joan.bartrina@uab.cat (J. Bartrina-Rapesta),

francesc.auli@uab.cat (F. Auli-Llinas).

https://doi.org/10.1016/j.image.2021.116503

Received 1 March 2021; Received in revised form 2 September 2021; Accepted 11 September 2021

Available online 21 September 2021

0923-5965/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.image.2021.116503
http://www.elsevier.com/locate/image
http://www.elsevier.com/locate/image
http://crossmark.crossref.org/dialog/?doi=10.1016/j.image.2021.116503&domain=pdf
mailto:carlos.decea@uab.cat
mailto:juancarlos.moure@uab.cat
mailto:joan.bartrina@uab.cat
mailto:francesc.auli@uab.cat
https://doi.org/10.1016/j.image.2021.116503
http://creativecommons.org/licenses/by-nc-nd/4.0/

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta et al.

55 1 1 1 1 1 1

50

45

40

35

PSNR (in dB)

30

25 -

JPEG2000 ——CS-BPC-PaCo
BPC-PaCo HTJ2K ———
20 L L Il L
0 05 1 1.5 2 25 3
rate (in bps)

Fig. 1. Evaluation of rate-distortion performance for JPEG2000, HTJ2K, BPC-PaCo
and CS BPC-PaCo (with K = 0.5) when transmitting the color image “Portrait” at 100
different rates.

included in modern CPUs and GPUs. HTJ2K can increase the through-
put of a conventional JPEG2000 codec by about 10x at the expense
of sacrificing: codestream compliance, compression efficiency (about
10%) and, quality scalability. Codestream compliance and compression
efficiency are inevitably affected when modifying the coding engine,
but these features are not essential in most scenarios. Quality scal-
ability, on the other hand, is a valuable feature that allows partial
decoding of the codestream at different rates while minimizing the
distortion of the recovered image. See, for instance, in Fig. 1, the
performance achieved by JPEG2000 and HTJ2K when the “Portrait”
image (of corpus ISO/IEC 12640-1) is compressed and then transmitted
at 100 different rates distributed between 0.01 and 3 bits per sample
(bps). The vertical axis of the figure reports the quality of the recovered
image in Peak Signal to Noise Ratio (PSNR), whereas the horizontal axis
is the transmission rate. The quality achieved by HTJ2K is much lower
than that achieved by the original JPEG2000 due to the lack of quality
scalability.

This paper continues our line of research focused on providing
fine-grained parallelism to all coding stages of an image/video codec.
Our work originates in coding techniques that break the causality
of classical coding strategies [19-21]. These techniques led to the
development of a lightweight arithmetic coder that allows fine-grained
parallelism [22,23]. After that, the research focused on the stages of
a JPEG2000-like codec. First, we proposed a GPU implementation of
the DWT [14,24] employing a highly-efficient register-based strategy.
Second, the BPC engine was reformulated, resulting in a BPC with
parallel coefficient processing (BPC-PaCo) [25,26] that can efficiently
exploit the resources of a GPU [15]. Third, we presented the GPU
architecture for the end-to-end codec [16]. This codec can code up to
12K video in real time, achieves a compression efficiency comparable to
that of the original JPEG2000 standard, and does not sacrifice quality
scalability. See in Fig. 1 that the coding performance achieved by this
codec is approximately only 2% inferior to that of JPEG2000.

Our last step proposes a complexity scalable technique for the
coding engine. Complexity scalability allows trading computational
complexity by compression efficiency so that the user can tune the
codec to run more or less rapidly while marginally increasing the size
of the compressed file. As it was studied in [27] and seen in Fig. 1, the
proposed Complexity Scalable BPC-PaCo (CS BPC-PaCo) decreases only
slightly the coding performance with respect to BPC-PaCo. This paper
extends that work by first analyzing the computational bottleneck of
the original BPC-PaCo in the GPU, which guides the development of
the complexity scalable technique. Second, the proposed technique is
introduced in our end-to-end codec evaluating its memory footprint, oc-
cupancy and performance, as well as the overall throughput achieved in

Signal Processing: Image Communication 99 (2021) 116503

GPU
| registers | | registers | | registers |
shared mem shared mem shared mem
L1 cache L1 cache L1 cache
SM SM SM
L2 cache
global/local memory

Fig. 2. Memory hierarchy of a Nvidia GPU.

different test conditions. Finally, experimental results evaluate the cod-
ing performance, throughput, and power consumption of the proposed
method compared to other state-of-the-art codecs.

The rest of the paper is organized as follows. Section 2 reviews the
architecture of the GPU, JPEG2000 and HTJ2K. Section 3 overviews
the architecture of our codec, examines the aspects of BPC-PaCo that
limit its throughput, and describes the implementation of CS BPC-PaCo.
Experimental results are presented in Section 4 comparing the proposed
method with JPEG2000, HTJ2K, and HEVC. Section 5 concludes with
a brief summary.

2. Background
2.1. GPU architecture

Arguably, the most popular accelerators are currently those man-
ufactured by Nvidia due to their low price, high performance, and
capacity for general-purpose computing through the CUDA program-
ming language, so they are employed in this work. Nvidia GPUs are
constituted by many individual computing units called Streaming Mul-
tiprocessors (SM). Each SM is responsible of managing the execution
of multiple 32-wide vector instructions in parallel. A GPU can have
from one to a hundred of SMs. CUDA virtualizes each lane of a 32-
wide vector instruction into a software thread. The group of 32 threads
is referred to as a warp. Warps are organized in thread blocks, which
are assigned to a SM for execution. Each thread block within a SM
can execute tasks independently from the others, so different kernels
(i.e., CUDA functions) from the same or different applications can run
concurrently on the same SM. To organize the execution of kernels,
CUDA provides the so-called streams. Each stream executes one or
various kernels of an application in a pre-determined order. Since the
GPU has abundant computational resources, concurrent streams of the
same application can be executed in parallel to process different data.

Until CUDA v6.2, every thread in a warp executed instructions
in a synchronous, lock-step fashion with the other threads of the
warp. Implicit synchronization was featured at the end of every di-
vergence in the execution flow. Since the release of CUDA v7.0, every
thread in a warp can be executed asynchronously, so synchronization
among threads must be explicitly programmed when needed. Our
codec considers this aspect, producing the same result regardless of the
architecture employed. For simplicity, the following sections assume
that implicit synchronization is employed.

As Fig. 2 depicts, the memory architecture of a GPU has three levels:
global memory, shared memory, and registers. The global memory
is located in the device RAM or DRAM, has a size in the order of
GBs, and is accessible by all SMs. This memory has high latency but
relatively high bandwidth, so data transfers are to be carried out in a

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta et al.

coalesced way (i.e., using consecutive memory positions) to maximize
performance. The shared memory has a size in the order of MBs, has
low latency and higher bandwidth, and can be accessed by all threads
of a block. Each SM has an individual memory bank for this memory.
The registers have very fast access, very high bandwidth, and a size of
typically 256 KB. When the registers cannot hold all the data required
by the application, some data are temporarily moved to a reserved
space in the device memory, the so-called local memory. This is called
register spilling. It significantly affects the application’s performance
because transfers from/to the device memory render threads in an idle
state due to the memory latency.

The memory architecture of the GPU is devised so that each execu-
tion kernel transfers the data required for computation from the global
memory to the registers and then transfers back the results to the global
memory. Communication among threads is commonly carried out via
the shared memory or register shuffling. Each GPU has a Level 1 (L1)
and Level 2 (L2) cache to minimize the latency when moving data
from/to the device memory to/from the shared memory and registers.
The L1 cache is located in the memory bank within the SM that also
holds the shared memory, whereas the L2 cache is in a separate memory
bank between the SMs and the device memory.

2.2. JPEG2000 architecture

As previously stated, the JPEG2000 coding pipeline has three main
stages. The first reduces the spatial redundancy of the image through
the DWT. The input to the DWT is either a gray image or a color image
that has been converted to a color space that holds the luminance in the
first component and the blue and red chrominance in the second and
third component, respectively. The color transform (CT) is a pixel-wise
operation without dependencies, so it is easily mapped to SIMD-based
instructions. The DWT applies a series of arithmetic operations to
all rows and columns of the image employing the so-called lifting
scheme [28]. There are no dependencies between rows/columns, so
these operations can be performed in parallel, suiting well SIMD pro-
gramming too. The resulting wavelet coefficients are then reordered in
four different subbands of one quarter the size of the original image.
One of these subbands holds the low-pass details of the image, whereas
the other three hold the high-pass details. In general, the DWT is
applied 5 times on the low-pass subband to further compact the image
energy. JPEG2000 provides reversible and irreversible operations for
both the CT and DWT operations. The reversible path employs integer
operations, so the original image can be recovered losslessly. The
irreversible path employs floating-point operations that provide higher
compression efficiency but produce losses in the reconstructed image.
These losses can be controlled via the dead-zone quantization that is
applied just after the DWT.

The second stage of the coding pipeline is the BPC. It is applied
independently on data tiles that typically contain a set of 64 x 64
wavelet coefficients, called codeblocks. The coefficients within each
codeblock are processed in a bitplane-by-bitplane fashion. A bitplane
is the collection of bits b; from all coefficients at binary position j,
with [bpy_1.bpr—as ..., b1, bgl, b; € {0,1)} representing the binary repre-
sentation of integer v produced by the DWT (and quantization when
using the irreversible path). The first non-zero bit of each coefficient,
denoted by b, is referred to as significant bit. The sign of v is denoted
by d € {+,-} and is coded immediately after b, so that the decoder can
start approximating v as soon as possible. JPEG2000 codes all bits of
each bitplane in three coding passes. Each pass scans all the coefficients
within the codeblock but only codes the bits of a group of selected
coefficients. This three-pass strategy codes first the information that
mostly reduces the distortion of the image. Each bit, with contextual
information about the coefficient’s neighbors, is fed to an arithmetic
coder. The arithmetic coder employs this contextual information to
adaptively adjust the probabilities of the processed bits, which is key
to achieve compression. The output of the BPC stage is a bitstream per

Signal Processing: Image Communication 99 (2021) 116503

codeblock that can be truncated and re-organized in different layers of
quality in the final codestream by the CR stage, the last of the coding
pipeline.

The coding of codeblocks by independent threads provides the
coarse-grained parallelism that suits CPUs, but GPUs need a finer par-
allelism. The BPC stage has many data dependencies. The most crucial
is imposed by the arithmetic coder, which requires the result of the last
processed bit to start coding the next. The contextual information and
the group of coefficients selected in each coding pass also depend on the
previously coded data, though these dependencies might be avoided at
the expense of more computations. These aspects prevent parallelism
at a coefficient level, which is the kind of fine-grained parallelism that
GPUs may exploit more efficiently.

Part 15 of JPEG2000 (ISO/IEC 15444-15) provides more opportu-
nities for fine-grained parallelism [18]. The logical partition in code-
blocks is maintained but, instead of using a bitplane coding strategy,
the coefficients are coded with a single coding pass in sets of 4 x 4 co-
efficients called quads. Most of the operations to code each quad do not
hold critical dependencies with other quads. Entropy coding is carried
out via variable-to-variable length codes, allowing parallel processing
of quads. This coding strategy allows the use of vector instructions in
modern CPUs and GPUs. Nonetheless, the use of a single coding pass
disables quality scalability because the bitstream of each codeblock
cannot be truncated and re-organized as in the original JPEG2000. As
seen in Fig. 1, this significantly reduces the quality of a compressed
image transmitted at progressive rates. Also, the compression efficiency
is penalized due to the use of a less efficient entropy coder than that of
the original JPEG2000.

3. Proposed method
3.1. Codec architecture

The method proposed in this work extends our previous GPU-based
architecture for the end-to-end codec [16] by introducing complexity
scalability. The goal is to accelerate the coding process at the expense
of decreasing compression efficiency in a way that can be controlled by
the user.

First, let us briefly describe the architecture of our codec. Fig. 3
depicts the employed kernels. The architecture is devised so that each
kernel performs all operations to a chunk of data before it needs to be
re-organized for the following operations. This minimizes the transfers
from/to the global memory since the data are fetched and returned to
this memory only once in each kernel. More precisely, the CT kernel
processes data tiles containing three color components from an image
region, the DWT kernel processes data tiles containing samples of a
single component, the BPC-PaCo kernel codes codeblocks, and the CR
kernel re-organizes the bitstreams produced for each codeblock in the
final codestream. This organization allows each kernel to compute
many small data tiles in parallel, maximizing the overall throughput. In
addition, the codec leverages the computational resources of the GPU
through asynchronous I/0 and multi-stream processing, and favors
the use of register-based operations to communicate among threads in
detriment of shared memory to avoid the latency of this memory.

Fig. 3 depicts below each kernel its computational load. BPC-PaCo
approximately spends 85% of the total execution time, so its optimiza-
tion may significantly increase the overall throughput. The remaining
kernels represent less than 15% of the total load and their operations
are indispensable and already highly optimized. As it is formulated
in [16], the BPC-PaCo kernel uses two coding passes per bitplane.
The significance pass codes the bits of those coefficients that were not
significant in previous bitplanes, more precisely, those with s < j,
with j representing the current bitplane. The refinement pass codes
the bits of the remaining coefficients. The scanning order is devised
so that each thread of a warp visits two columns of coefficients from
the top to the bottom row. For significance coding, the context of

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta et al.

Signal Processing: Image Communication 99 (2021) 116503

device
————— data transfers from host to device (and reverse)
host i host
data transfers within device 13
r———«l:rame |—»| CTH DWT H BPC-PaCo | —CR— T
frame 1 fframe 2 | |

z i /
5 e
&

original N
data main memory

~9%

disk

compressed
data

main memory

~2% disk

Fig. 3. Illustration of the codec architecture when employing a single stream of execution in the GPU.

Table 1
Evaluation of memory and cache transfers when the kernels BPC-PaCo and CS BPC-PaCo code a 4K image in a RTX
2080 Ti GPU.
Data reading (MB) Data writing (MB) Cache hit rates
MP SR L2 - L1 L1 - L2 R — MP L1 L2
BPC-PaCo 251 283 129 108 69% 39%
K =05 234 265 119 97 70% 39%
K=1 182 212 106 78 72% 43%
CS BPCPaCo 118 145 % 58 76% 51%
K=6 91 108 94 57 79% 55%

the current coefficient » is determined via the significance state of its
eight adjacent neighbors as ¢, (v, /) = X, @(*,), with v*,1 < k <8
denoting the neighbors and @(v¥, j) = 1 or 0 when o* is significant or
not, respectively. The context employed to code sign d is denoted by
@5ign(v, j) and employs a similar strategy, whereas the refinement pass
uses a single context since little gain is achieved with more complex
models [21], so ¢,, (0, 7)=0. The probability estimate that the encoded
bit » ;is 0 s extracted from a lookup table (LUT) known by encoder and
decoder that is accessed as P, i1, with u denoting the wavelet
subband. This LUT is pre-computed offline with a training set of images
according to

2/ -1

Z Fu(U | ¢sig(v7j))
v=0
pXad |

> F | b))
v=0

Pyg(b; =0 | ¢y (v,) = , (€Y

where F,(v | ¢, (v,) is the probability mass function of the quantized
coefficients at bitplane j given their context. Its support is [0, ..., 2/*! —
1] since it contains coefficients that were not significant in bitplanes
greater than j. Probabilities for sign and refinement coding are de-
rived similarly. Their respective LUTs are denoted by P/ and P/.
Entropy coding of the emitted bits and their probabilities are carried
out by each thread with an arithmetic coder that produces fixed-length
codewords [29]. Threads cooperate among them to dispatch these
codewords to the bitstream in a quality embedded order.

In BPC-PaCo, coefficients v and ancillary data to process them are
stored in the registers. Typically, each thread processes 128 coefficients
(belonging to 2 columns of 64 coefficients), ideally requiring 128
registers of 32 bits plus some more for ancillary data. In current GPUs,
this is too much information to hold in the register space. Each SM in
current GPUs (Turing architecture) has 256 KB for registers and can
run a maximum of 1024 threads. If all threads run in parallel, they can
only access a maximum of 64 registers without causing register spilling
and rendering some threads in an idle state.

As illustrated in the first row of Table 1, register spilling is the
main bottleneck of the BPC-PaCo kernel. The table reports the transfers
between memory device MP and registers R that occur when the
kernel processes a 4K image (gray scale, 8 bps). The component’s data
approximately requires 32 MB but, as seen in the table, 251 MB are read
from MP due to the extensive use of local memory, as much as 8x. This
increase is approximately 4x for writing. Table 1 also reports the data

transfers between caches, which are similar, and the cache hit rates,
which are moderately high because the data employed by the threads
are frequently accessed and easily foreseeable. Despite the acceleration
that the caches may provide, register spilling severely handicaps this
kernel.

3.2. Complexity scalable BPC-PaCo

The register spilling that occurs in BPC-PaCo is mainly caused by
the multiple scanning of the coefficients during the coding process.
The average number of coded bitplanes is 8, resulting in 16 accesses
per coefficient. This generates multiple data transfers back and forth
from the local memory since registers cannot hold all the coefficients
simultaneously.

The only way to reduce register spilling is minimizing the number of
times that the coefficients are visited. However, the two-pass strategy is
necessary to provide accurate estimates that achieve compression, and
multiple truncation points that achieve quality scalability. The adopted
strategy must alleviate the impact on these coding features, regulating
the coding passes performed in each codeblock but without affecting
the most relevant information in terms of distortion.

The technique employed herein was presented in [27] from a the-
oretical perspective that evaluates the impact on coding performance
and quality scalability, but without implementing it in our end-to-
end GPU codec. Its main insight is to code bitplanes [M — 1, N] with
the same two-pass strategy of BPC-PaCo, and then use a fast mode
that codes bitplanes [N — 1,0] in a single pass. This codes the most
relevant information in terms of distortion (contained in the highest
bitplanes [M — 1, N]) more progressively than the lesser relevant infor-
mation, minimizing the impact on compression efficiency and quality
scalability.

Choosing a suitable N is key to balance throughput and compression
efficiency. A high N causes the coding of many bitplanes in fast mode,
increasing the throughput but penalizing coding performance. A low
N does not affect coding performance significantly though it does
not provide significant throughput gains either. Instead of using the
same N for all codeblocks, the strategy proposed in [30] uses different
Ns depending on the codeblock’s wavelet subband « and magnitude
bitplanes M according to

N =min <M, [M-£J> .)
£u

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta et al.

Algorithm 1 CS BPC-PaCo

Parameters: u subband, ¢ stripe, M total magnitude bitplanes, N bitplanes
coded in fast mode

1: for j € [M -1,N] do

2: SignificancePass()

3 RefinementPass()

4: end for

5: for y € [0,numRows — 1] do

6: for xe[t-2,1-2+1] do
7.
8

Cc « d);,g(vy,va -1
: for j € [N - 1,0] do
9: if d(v,

yxoJ +1) =0 then
10: ACencode(b;, P,[jllc], 1)
11: ifbj=] then
12: ACencode(d, P} [l sz (0, N = D], 1)
13: end if
14: else
15: AGencode(b;, P/'[j1[0], 1)
16: end if
17: end for
18: end for
19: end for

L, is the L, norm of the synthesis basis vectors of the subband filter-
bank (which is computed offline assuming equal energy gain factor in
all subbands). Large Ks result in large N's, so more bitplanes are coded
with the fast mode, increasing the codec’s throughput. Note that K is
the user parameter that controls the speedup or, in other words, the
mechanism through which complexity scalability is managed.

The coding technique embodied in Eq. (2) sets lower Ns to code-
blocks within subbands in smaller resolution levels. Although these
subbands have fewer codeblocks than in larger levels, these codeblocks
have higher entropy than the rest, so coding them with more coding
passes significantly enhances the quality scalability of the system. This
is illustrated in Fig. 4. It depicts the images recovered when coding
the “Portrait” image with (a) the same N in all codeblocks, and (b) the
proposed strategy. Both codecs are set to achieve the same throughput.!
The strategy that uses a fixed N (Fig. 4(a)) significantly degrades the
image quality because the bitstream of some codeblocks within the
lowest resolution levels are not included in the final codestream. The
proposed strategy (Fig. 4(b)) provides an image with much higher
quality. This holds for other coding parameters and images.

3.3. Implementation

Algorithm 1 details the proposed kernel from a thread perspective.
The bitplanes in the range [M — 1, N] are coded with the original
BPC-PaCo (lines 2 and 3) as described in [15,16]. A significance and
refinement pass are employed in each bitplane. The fast mode is used
from bitplane N — 1 to 0. Instead of visiting the coefficients twice per
bitplane, the fast mode visits them only once and codes all their bits.
Lines 5 and 6 in Algorithm 1 scan the coefficients. Since the context
for significance coding is the same from bitplane N — 1 onward, it is
only computed once in line 7. Our implementation avoids this operation
when all the coefficients are already significant. The loop in line 8
codes all bits of the coefficient considering its significance state. The
arithmetic coder employs the procedure described in [15], which is not
detailed herein for simplicity.

As previously stated, key to achieve high throughput is to reduce
the number of registers that each thread employs. To this end, the
32-bit registers of the GPU hold all the information needed by the
algorithm. In general, 24 bits are enough to hold the value of the

1 Coding parameters for this test are: lossy compression, 2 DWT levels,
64 x 64 codeblocks, target rate 0.25 bps, N = 15, and K = 6 for the fixed and
variable strategy, respectively.

Signal Processing: Image Communication 99 (2021) 116503

coefficient (including the possible data expansion that the lossy DWT
may produce), so ancillary data are stored in the remaining bits. Fig. 5
illustrates the binary representation of a GPU register. The lowest 24
bits store the magnitude and sign of v, with the sign stored at the lowest
bit. The highest 8 bits are employed for auxiliary information. The 3
upper bits are used in the SignificancePass() and RefinementPass() of
Algorithm 1 to signal information regarding the significance state of the
coefficient. The remaining 5 bits are employed to store the significance
bitplane of the coefficient (i.e., s), which is employed in the fast mode
to accelerate the operations that compute the context (i.e., in ¢y;,(-)).
In the example of Fig. 5, M = 8 and N = 4. The bitplanes depicted in
blue represent those that are coded with two coding passes, whereas
the bitplanes depicted in red are coded with the fast mode.

This bit-allocation strategy in the registers minimizes the amount of
local memory employed during execution time. The previous analysis
of memory transfers for BPC-PaCo depicted in Table 1 also reports
the results obtained for CS BPC-PaCo when different Ks are used.
Data reading from MP to R is proportionally reduced to the value of
K. High Ks employ more extensively the fast mode of CS BPC-PaCo,
reducing memory transfers. When K = 6, the proposed method only
requires 36% of the memory transfers employed by the original BPC-
PaCo. Memory transfers from L2 to L1 are reduced similarly. Data
writing is reduced slightly less, though for K = 6 the proposed method
approximately halves the transfers of BPC-PaCo. Since fewer data are
employed by the algorithm, the cache hit rates for both L1 and L2 are
increased, which provides even faster access to the data.

Table 2 illustrates the impact in the throughput achieved by the
CS BPC-PaCo kernel when using different Ks as a result of reducing
memory transfers. This evaluation employs the same 4K image of the
test reported in Table 1. The second column reports the average number
of clock cycles that each executed instruction is blocked due to the
latency of the local memory, and the average cycles needed to execute
each instruction (CPI). These metrics clearly illustrate the beneficial
effect of using less local memory. BPC-PaCo blocks almost 10 cycles
per instruction, requiring 15 cycles to execute each instruction. CS BPC-
PaCo reduces the number of cycles in which instructions are blocked
proportionally to the use of the fast mode. For K = 6, instructions are
blocked only 1.56 cycles, whereas instructions only require 8 cycles
to complete, on average. This improvement is also noted in the in-
structions executed per cycle (IPC) reported in the third column, which
is almost doubled as compared to BPC-PaCo. The memory bandwidth
(fourth column) employed by the kernel indicates that less bandwidth
is needed as fewer coding passes are performed. The warp efficiency
and GPU occupancy (fifth and sixth columns) is almost the same for all
kernels since the algorithms have similar divergence (i.e., conditional
paths in the execution flow). The total number of executed instructions
(seventh column) is slightly higher in CS BPC-PaCo due to more instruc-
tions are needed when switching to the fast mode. Despite executing
more instructions, the execution time of CS BPC-PaCo is reduced for
all K's because of the fewer memory transfers, with a reduction of 31%
when K = 6.

Nvidia allows developers to manually set the number of registers
assigned to the threads of a kernel. Evidently, to use too few registers
per thread requires more local memory, while too many may cause an
underuse of the GPU. Since the throughput achieved by our method
highly depends on the local memory employed, the register assignment
is carefully studied to yield maximum performance. Table 3 provides
an evaluation of the throughput achieved when a different number of
registers per thread is assigned to the proposed kernel. Different Ks are
employed to consider different running conditions. The test is carried
out for the same conditions as in previous evaluations, though results
hold for other images and parameters. The third and fourth columns
of the table depict the theoretical maximum and real GPU occupancy
achieved, respectively. The maximum occupancy is calculated as the
number of threads that can be run in parallel using the assigned number
of registers. It is only from a theoretical point of view since, in practice,

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta et al.

Signal Processing: Image Communication 99 (2021) 116503

1SO 400

(b)

Fig. 4. Visual evaluation of a (a) fixed and (b) variable strategy to set the bitplanes coded in fast mode with CS BPC-PaCo.

15|14 (2159|7630

1326|5248 |95(81

8311082382646

>

26(38|29|13| 17|43 | representation in
bitplanes

1119|7243 |52 (64

34|65|91(37(21(58

6x6 codeblock

/
/
Vs bits used in normal mode
/ 8 bits
/ (ancillary
/ information) bits used in fast mode

/

bitplanes coded
in fast mode

CEEERECIEEC - -CeeeeEE0)

N N 24 bits —> significant bit
(coded
data)
AN
AN
AN —> sign

N

32-bit GPU register

Fig. 5. Illustration of a codeblock and the bit-allocation strategy in the 32-bit registers of the GPU employed by CS BPC-PaCo.

Table 2
Evaluation of throughput metrics when the kernels BPC-PaCo and CS BPC-PaCo code a 4K image in a RTX 2080 Ti GPU.
#cycles per inst. IPC Bandwidth Warp Occupancy #inst. Time (ms)
blocked (total CPI) (GB/s) efficiency (x109)
BPC-PaCo 9.58 (15.29) 65 200 53% 46% 153 2.17
K=05 6.49 (12.95) 77 156 56% 46% 159 1.93
K=1 3.73 (10.33) 94 107 55% 46% 157 1.81
€S BPC-PaCo K=2 1.86 (8.32) 114 74 53% 45% 153 1.61
K=6 1.56 (8.00) 122 73 53% 46% 152 1.39

threads are commonly blocked due to register spilling and other as-
pects. As seen in Table 3, even though 64 registers per thread achieves a
theoretical maximum occupancy of 100%, the real occupancy achieved
is about 63%. To assign 72 registers per thread decreases the maximum
occupancy to 87,5%, though in practice is about 62% too. Also, to use
72 registers instead of 64 improves the throughput achieved since less
register spilling occurs, decreasing the execution time of the kernel
and of the end-to-end codec (5th and 6th columns in the table). To
use more registers per thread slightly improves the performance of the
CS BPC-PaCo kernel because less register spilling occurs, though for the
overall end-to-end codec this is not beneficial because the other kernels

running in parallel do not have enough resources. In all tests reported
in this work, the CS BPC-PaCo kernel uses 72 registers per thread.
The speedup that the proposed kernel achieves with respect to the
original BPC-PaCo is evaluated in Fig. 6. The figure reports in the
vertical axis the speedup achieved for the Ks depicted in the horizontal
axis, for both lossy and lossless compression when using a video se-
quence (see below). The results indicate that our method yields higher
speedups for lossless compression, reaching a speedup of 70% for
the highest K evaluated. Lossy compression achieves more moderate
speedups, approximately up to 30%. This is because the floating-point
DWT produces wavelet coefficients with higher magnitudes, and so
more bitplanes are coded. We remark that the increase in throughput is

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta et al.

Table 3

Signal Processing: Image Communication 99 (2021) 116503

Evaluation of occupancy and execution time achieved by CS BPC-PaCo with different Ks when assigning a different number
of registers to the threads, for a 4K image in a RTX 2080 Ti GPU.

Registers per thread Occupancy Time (in ms)
Maximum Real Kernel Total Total av.
K=05 48% 1.86 11.77
K=1 49% 1.76 10.6
0,
K=2 96 62.5% 48% 1.6 9.65 1017
K=6 48% 1.4 8.65
K=05 56% 1.88 11.43
K=1 54% 1.81 10.53
0,
K=2 80 75% 55% 1.6 9.65 10.06
K=6 56% 1.38 8.65
K=05 63% 1.96 11.62
K=1 61% 1.86 10.73
0/
K=2 64 100% 64% 1.67 9.78 10.4
K=6 66% 1.44 9.47
80 80
701 1 170
lossy lossless
60 1 1 60
X 50t] 1 50
£ encoder
S 40 40
3 decoder
o]
2 301 30
20 20
10 10
0

0.5

0.75 1 1.5 2 6

K

0.5 0.75 1

Fig. 6. Evaluation of the throughput gain achieved by CS BPC-PaCo with respect to BPC-PaCo for different Ks.

Table 4
Evaluation of lossless compression performance for JPEG2000, HTJ2K, HEVC,
BPC-PaCo, and CS BPC-PaCo (with different Ks). Results are reported in bps.

CS BPC-PaCo BPC-PaCo JPEG2000 HTJ2K HEVC
K =025 3.82

K=05 3.83

K =075 3.89

K=1 3.91 3.82 3.79 4.06 4.03
K=15 4.00

K=2 4.01

K=6 4.05

higher than the increase in rate in all cases. When K = 6, for instance,
CS BPC-PaCo achieves a speedup of approximately 65% (23%) while
the rate increase is 14% (8%) for lossless (lossy) compression.

4. Experimental results

The proposed CS BPC-PaCo is compared with BPC-PaCo and state-
of-the-art codecs widely employed in the field, more precisely, the
standard JPEG2000 and its new part HTJ2K, and the standard HEVC.
All results below report the coding performance or throughput achieved
by the end-to-end codec instead of only focusing on the CS BPC-PaCo
kernel as in the previous section. Our method is run in two commodity
GPUs from Nvidia, namely, the RTX 2080 Ti (68 SMs with 4352 cores at
1.6 GHz with 11 GB of RAM) and the GTX 1080 Ti (28 SMs with 3585
cores at 1.9 GHz with 11 GB of RAM). The former GPU uses the Nvidia

microarchitecture called Turing (CUDA capability v7.5) and runs in a
workstation with an Intel i9-9900K CPU with 16 GB of RAM. The latter
uses the previous microarchitecture Pascal (CUDA capability v6.0) and
runs in a workstation with an Intel i7-3770 CPU with 8 GB of RAM. Re-
sults for JPEG2000 and HTJ2K are obtained with Kakadu (v8.0.3) [31],
which is among the fastest CPU implementations for JPEG2000 opti-
mized with assembly and vector instructions. It runs in the i9-9900K
workstation with 16 execution threads, yielding higher throughput than
implementations of JPEG2000 for GPUs such as CuJ2K [32] and GPU-
J2K [33]. Although HTJ2K can also be optimized for GPUs [34], to
the best of our knowledge, there is no implementation that allows
testing in the environment employed herein. Results for HEVC are
obtained with the Nvidia implementation of the standard [35] running
in both GPUs, which use a hardwired and specialized chip in the
device. Coding parameters for our method and JPEG2000 are: lossy
or lossless compression as indicated, 5 DWT levels, and codeblocks
of 64 x 64. For HTJ2K, parameter “Cplex={6,EST,0.25,0}” is also
employed to allow the codec to attain the specified target rate. HEVC
uses a rate control method with constant quantization (1-51) for lossy
compression, GOP=32, and high performance mode, which achieves
maximum throughput in our tests. Throughput and power consumption
results use a 2-minute segment of the “Star Wars: The Last Jedi” movie
at 4K that has 2,880 color frames, resulting in 67.8 GB of uncompressed
data. Coding performance results use the color image “Portrait” (with
a size of 2560 x 2048) and a segment of the previous video sequence
containing 948 gray-scale frames at 2K.

The first test evaluates lossy coding performance. Fig. 7 extends the
results of Fig. 1 by including different Ks for the proposed method

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta et al.

Signal Processing: Image Communication 99 (2021) 116503

60 T T T T T T T T T T T T r 60
55 | o
50 o
. 45 .
)
g 40
P4
)
& 35 N
%0 JPEG2000 —— (L R 1 5
BPC-PaCo K=1.5 -----n--
2 K=0.25 KD -eenneen
“F K=0.5 K= -------- q 25
K=0.75 -------- HTJ2K ——
20 : : I L L L L L 1 ! ! 1 I 20
0 05 1 1.5 2 25 3 0 05 1 15 2 25 3 35 4
rate (in bps)

Fig. 7. Evaluation of rate—distortion performance for JPEG2000, HTJ2K, BPC-PaCo and CS BPC-PaCo (with different Ks) when transmitting an image at 100 different rates (left)

and a video sequence at 30 different rates (right).

and the results for video. We recall that this test depicts rate vs.
quality when the codestream is compressed and then transmitted at
different rates. For both tests, the performance achieved by CS BPC-
PaCo decreases as more coding passes are coded in fast mode (i.e., with
higher values of K). The results indicate that the quality scalability of
the proposed method is significantly better than that of HTJ2K since
even when K = 6 and most passes are coded in a single pass, the drop in
quality is approximately 5 dB with respect to JPEG2000 and BPC-PaCo,
as compared to the losses of about 15 dB of HTJ2K.

The second test evaluates lossless compression. Table 4 reports
the rate achieved when coding the video with all methods evaluated.
BPC-PaCo yields almost same performance to that of JPEG2000, while
CS BPC-PaCo penalizes it slightly more with increments in rate of about
7% when K = 6. This increment is lower than that of HTJ2K, which
almost obtains the same performance to that of CS BPC-PaCo when
K =6.

The third test evaluates throughput for both lossy and lossless video
compression. In this test, the quality of the recovered video for lossy
compression yields 50 dB in all codecs. Fig. 8 shows the results for
all codecs and GPUs (or CPU for JPEG2000 and HTJ2K), reported
in mega samples coded per second (MS/s). Two bars are depicted
for each codec. The left bar corresponds to the encoder whereas the
right to the decoder. BPC-PaCo is depicted with wide blue bars. The
proposed CS BPC-PaCo is depicted with three thinner purple bars
within that of BPC-PaCo, corresponding to the throughput achieved
when K = {0.75,2,6}, with the thinnest bar for the highest K. The
figure also shows with horizontal lines the throughput needed to code
4K, 8K, 12K, and 16K video at 24 frames per second in real time.
As seen in the figure, the proposed method significantly increases the
throughput with respect to BPC-PaCo, mostly in the encoder. In the
decoder the gains are not as significant because the decoding process
in our implementation needs more ancillary data, which hinders the
overall throughput achieved. HTJ2K yields high throughput too, being
slightly superior to that of our method for the GTX 1080 Ti in the case
of lossless compression, though being 50% inferior (or more, depending
on the K) when CS BPC-PaCo runs in the RTX 2080 Ti. The throughput
achieved by JPEG2000 is much lower than that of HTJ2K due to the
lack of opportunities for fine-grained parallelism in the algorithm. The
throughput achieved by HEVC is modest as compared to the other
codecs despite using a hardwired chip in the GPU. This is due to
the techniques employed in this coding system, which achieve high
coding performance at the expense of higher computational complexity.
Finally, we remark that the scalability by complexity introduced in
BPC-PaCo allows our codec to encode 16K (12K) lossy video in real
time with the RTX 2080 Ti (GTX 1080 Ti) when K = 2, obtaining a
good tradeoff between coding performance and throughput.

The previous test evaluates throughput for very high video quality.
Some scenarios may allow lower video quality due to transmission or
visualization aspects. The next test evaluates the throughput achieved
when different quality levels are employed. Fig. 9 depicts in the hor-
izontal axis the quality of the recovered video, which is set from 50
to 38 dB in all codecs. Lower quality yields similar results to those
obtained for 38 dB. Again, results are reported in MS/s for the encoder
and decoder. Blue and purple plots respectively correspond to BPC-
PaCo and CS BPC-PaCo with the same Ks as those employed before.
As expected, the lower the quality, the higher the throughput since
fewer data are coded. The highest gains are achieved by the encoder
of the proposed method. At 38 dB, all codecs except the proposed
achieve similar throughput when encoding, which is about 3 to 4x
lower than that of CS BPC-PaCo. The decoder presents more variations,
with HEVC gaining much throughput for low qualities. It is worth
noting that HTJ2K yields similar results regardless of the quality,
obtaining the same throughput to that of JPEG2000 when encoding or
decoding at 38 dB. These results suggest that the proposed CS BPC-PaCo
achieves the highest throughput gains when using high quality, while
low qualities render the throughput of the codec to almost the same as
that of BPC-PaCo.

The last experimental test is aimed at energy consumption. The
power demand of codecs running in the GPUs (CPUs) is obtained with
the nvidia-smi (PowerTOP) tool, which provides the real consumption
of the microprocessor depending on the workload. Fig. 10 reports
the results in MS coded per Joule consumed when coding video at
50 dB. The figure illustrates the results in the same form as that of
Fig. 8. The proposed method reduces energy consumption with respect
to BPC-PaCo, with less consumption for higher Ks. Even so, these
improvements are not as high as those obtained with the throughput.
This is seen as the larger bars corresponding to CS BPC-PaCo in Fig. 8
vs. those depicted in Fig. 10. These results indicate that more energy
has to be spent per coded sample to increment the codec’s throughput.
Even so, the results achieved with the RTX 2080 Ti suggest that our
method consumes less energy than the other codecs evaluated. HTJ2K
also consumes little energy compared to JPEG2000, which is the most
demanding. The hardwired chip of HEVC in the GPU yields good results
as well, except for decoding with the GTX 1080 Ti, which consumes
energy similarly to the decoder of JPEG2000.

5. Conclusions

High-throughput and low-power consumption image and video
codecs are a current necessity for new applications, cameras, and
displays to allow real-time processing of very high resolution video and
to extend the battery life of power-constrained devices. International

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta et al.

12000

Signal Processing: Image Communication 99 (2021) 116503

12000

10000 |-

10000

8000 | lossy

6000

MS/s

lossless - 8000

- 6000

4000 -

2000 -

1
HEVC JPEG2000 HTJ2K

4000

2000

JPEG200 HTJ2K Proposed

video compression for all codecs and GPUs/CPUs.

16000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16000
encoder decoder 2080 Ti 1080 Ti i9-9900K
14000 |- h BPC-PaCo + BPC-PaCo X JPEG2000+ | 14000
K=0.75 + K=0.75 X HTJ2K +
12000 | E K=2 + K=2 x H 12000
K=6 + K=6 %
HEVC + HEVC
10000 |- E 16K 4 10000
@
%] 8000 |- 8000
=
6000 |- 6000
4000 | 4000
2000 | 2000
0 L L L L L L L L L L L L L L 0
50 48 46 44 42 40 38 50 48 46 44 42 40 38 36
PSNR (in dB)

Fig. 9. Throughput evaluation for lossy compression of video at different quality levels. Results are for BPC-PaCo and CS BPC-PaCo except when indicated.

45

MS / Joule

|
Proposed

1 19—
HEVC JPEG2000 HTJ2K

Fig. 10. Evaluation of energy consumption for lossy video compression for all codecs
and GPUs/CPUs.

organizations and researchers are proposing novel techniques, systems,
and standards to fulfill these requirements. Some works pursue this goal
by exploiting the high-performance computing of massively parallel
architectures such as those found in Graphics Processing Units (GPUs).
This is the line of research followed in this paper, which began by
adapting and implementing all stages of a JPEG2000-based coding
pipeline to the fine-grained parallelism that suits GPUs. The bottleneck
of the resulting codec is the bitplane and arithmetic coding stage, which
spends most of the execution time. This work has analyzed this bottle-
neck by carefully profiling its execution on a GPU. Its main drawback

is that it needs to transfer too much data from the local memory of the
GPU to the registers (and vice versa) due to the coding of the image
samples in many successive passes. The complexity scalable technique
employed herein is tailored to increase the codec throughput in GPUs
by reducing the coding passes performed. The proposed technique
allows a user-handled control of the speedup achieved while minimiz-
ing losses in coding performance and quality scalability. Experimental
results suggest that our codec attains higher throughput than other
state-of-the-art codecs without sacrificing any feature of the coding
system. Under some coding conditions, our method achieves real-time
16K coding of color video in a consumer-grade GPU (considering also
memory transfers from host-to-device and vice versa), which is well
above the current needs of most practical scenarios.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been partially supported by the Spanish Ministry of
Economy and Competitiveness and the European Regional Develop-
ment Fund under Grants TIN2017-84553-C2-1-R and RT12018-095287-
B-I00 (MINECO/FEDER, UE), and by the Catalan Government, Spain
under Grants 2017SGR-463 and 2017SGR-313.

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta et al.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

ISO/IEC, Information Technology - JPEG 2000 Image Coding System - Part 1:
Core Coding System, Dec. 2000.

International Telecommunication Union, High Efficiency Video Coding Standard,
2013.

I. Marzuki, J. Ma, Y.-J. Ahn, D. Sim, A context-adaptive fast intra coding
algorithm of high-efficiency video coding (HEVC), J. Real-Time Image Process.
16 (2019) 883-899.

G. Correa, P. Assuncao, L. Agostini, L.A. da Silva Cruz, Complexity scalability
for real-time HEVC encoders, J. Real-Time Image Process. 12 (2016) 107-122.
Y. Wu, P. Liu, Y. Gao, K. Jia, Medical ultrasound video coding with H.265/HEVC
based on ROI extraction, PLoS One (Nov.) (2016).

K.H. Yanzhe Li, Luc. Claesen, M. Zhao, A real-time high-quality complete system
for depth image-based rendering on FPGA, IEEE Trans. Circuits Syst. Video
Technol. 29 (4) (2019) 1179-1193.

JW. P, et al., A low-cost and high-throughput FPGA implementation of the
retinex algorithm for real-time video enhancement, IEEE Trans. Very Large Scale
Int. Syst. 28 (1) (2020) 101-114.

X.W. Xin Guo, Y. Liu, An FPGA implementation of multi-channel video processing
and 4k real-time display system, in: International Congress on Image and Signal
Processing, BioMed. Eng. Inform. (2018) 1-6.

Z. He, H. Huang, M. Jiang, Y. Bai, G. Luo, FPGA-Based real-time super-resolution
system for ultra high definition videos, in: Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2018, pp. 181-188.
A. Descampe, F.-O. Devaux, G. Rouvroy, J.-D. Legat, J.-J. Quisquater, B. Macq,
A flexible hardware JPEG 2000 decoder for digital cinema, IEEE Trans. Circuits
Syst. Video Technol. 16 (11) (2006) 1397-1410.

I. Chiuchisan, A new FPGA-based real-time configurable system for medical
image processing, in: E-Health and Bioengineering Conference (EHB), 2013, pp.
1-4.

V. Kasik, Z. Chvostkova, FPGA in technical resources of medical imaging, in: IEEE
11th International Symposium on Applied Machine Intelligence and Informatics
(SAMI), 2013, pp. 193-196.

Junying. Chen, Shunfeng. Zhou, Huaqing. Min, Implementation of parallel
medical ultrasound imaging algorithm on CAPI-enabled FPGA, in: International
Conference on Field-Programmable Technology (FPT), 2016, pp. 311-314.

P. Enfedaque, F. Auli-Llinas, J.C. Moure, Implementation of the DWT in a GPU
through a register-based strategy, IEEE Trans. Parallel Distrib. Syst. 26 (12)
(2015) 3394-3406.

P. Enfedaque, F. Auli-Llinas, J.C. Moure, GPU implementation of bitplane coding
with parallel coefficient processing for high performance image compression,
IEEE Trans. Parallel Distrib. Syst. 28 (8) (2017) 2272-2284.

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta, F. Auli-Llinas, GPU-
Oriented architecture for an end-to-end image/video codec based on JPEG2000,
IEEE Access 8 (1) (2020) 68474-68487.

10

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]

Signal Processing: Image Communication 99 (2021) 116503

M.S. Nobile, P. Cazzaniga, A. Tangherloni, D. Besozzi, Graphics processing units
in bioinformatics, computational biology and systems biology, Brief. Bioinform.
18 (5) (2017) 870-885.

D. Taubman, A. Naman, R. Mathew, High throughput block coding in the
HTJ2K compression standard, in: Proc. IEEE International Conference on Image
Processing, 2019, pp. 1079-1083.

F. Auli-Llinas, Local average-based model of probabilities for JPEG2000 bitplane
coder, in: Proc. IEEE Data Compression Conference, 2010, pp. 59-68.

F. Auli-Llinas, I. Blanes, J. Bartrina-Rapesta, J. Serra-Sagrista, Stationary model
of probabilities for symbols emitted by bitplane image coders, in: Proc. IEEE
International Conference on Image Processing, 2010, pp. 497-500.

F. Auli-Llinas, Stationary probability model for bitplane image coding through
local average of wavelet coefficients, IEEE Trans. Image Process. 20 (8) (2011)
2153-2165.

F. Auli-Llinas, Highly efficient, low complexity arithmetic coder for JPEG2000,
in: Proc. IEEE International Conference on Image Processing, 2014, pp.
5601-5605.

F. Auli-Llinas, Entropy-based evaluation of context models for wavelet-
transformed images, IEEE Trans. Image Process. 24 (1) (2015) 57-67.

P. Enfedaque, F. Auli-Llinas, J.C. Moure, Strategies of SIMD computing for image
coding in GPU, in: Proc. IEEE International Conference on High Performance
Computing, 2015, pp. 345-354.

F. Auli-Llinas, P. Enfedaque, J.C. Moure, I. Blanes, V. Sanchez, Strategy of mi-
croscopic parallelism for bitplane image coding, in: Proc. IEEE Data Compression
Conference, 2015, pp. 163-172.

F. Auli-Llinas, P. Enfedaque, J.C. Moure, V. Sanchez, Bitplane image coding
with parallel coefficient processing, IEEE Trans. Image Process. 25 (1) (2016)
209-219.

C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta, F. Auli-Llinas, Complexity
scalable bitplane image coding with parallel coefficient processing, IEEE Signal
Process. Lett. 27 (2020) 840-844.

W. Sweldens, The lifting scheme: A construction of second generation wavelets,
SIAM J. Math. Anal. 29 (2) (1998) 511-546.

F. Auli-Llinas, Context-adaptive binary arithmetic coding with fixed-length
codewords, IEEE Trans. Multimedia 17 (8) (2015) 1385-1390.

F. Auli-Llinas, J. Serra-Sagrista, JPEG2000 quality scalability without quality
layers, IEEE Trans. Circuits Syst. Video Technol. 18 (7) (2008) 923-936.

D. Taubman, Kakadu software, http://www.kakadusoftware.com, Jul. 2020.
University of Stuttgart, CuJ2K, http://cuj2k.sourceforge.net/, Jul. 2020.
Poznan Supercomputing, Networking Center, GPUJ2K, http://apps.man.poznan.
pl/trac/jpeg2k/wiki, Feb. 2020.

A. Naman, D. Taubman, Decoding high-throughput JPEG2000 (HTJ2K) on a
GPU, in: Proc. IEEE International Conference on Image Processing, 2019, pp.
1084-1088.

Nvidia, HEVC SDK, https://developer.nvidia.com/nvidia-video-codec-sdk, Dec.
2018.

http://refhub.elsevier.com/S0923-5965(21)00245-9/sb1
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb1
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb1
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb2
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb2
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb2
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb3
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb3
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb3
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb3
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb3
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb4
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb4
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb4
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb5
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb5
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb5
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb6
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb6
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb6
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb6
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb6
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb7
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb7
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb7
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb7
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb7
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb8
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb8
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb8
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb8
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb8
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb10
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb10
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb10
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb10
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb10
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb14
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb14
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb14
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb14
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb14
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb15
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb15
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb15
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb15
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb15
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb16
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb16
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb16
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb16
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb16
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb17
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb17
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb17
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb17
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb17
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb21
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb21
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb21
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb21
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb21
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb23
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb23
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb23
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb26
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb26
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb26
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb26
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb26
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb27
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb27
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb27
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb27
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb27
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb28
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb28
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb28
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb29
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb29
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb29
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb30
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb30
http://refhub.elsevier.com/S0923-5965(21)00245-9/sb30
http://www.kakadusoftware.com
http://cuj2k.sourceforge.net/
http://apps.man.poznan.pl/trac/jpeg2k/wiki
http://apps.man.poznan.pl/trac/jpeg2k/wiki
http://apps.man.poznan.pl/trac/jpeg2k/wiki
https://developer.nvidia.com/nvidia-video-codec-sdk

	Real-time 16K video coding on a GPU with complexity scalable BPC-PaCo
	Introduction
	Background
	GPU architecture
	JPEG2000 architecture

	Proposed method
	Codec architecture
	Complexity scalable BPC-PaCo
	Implementation

	Experimental results
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

