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Abstract: Remote Sensing (RS) digital classification techniques require sufficient, accurate and
ubiquitously distributed ground truth (GT) samples. GT is usually considered “true” per se; however,
human errors, or differences in criteria when defining classes, among other reasons, often undermine
this veracity. Trusting the GT is so crucial that protocols should be defined for making additional
quality checks before passing to the classification stage. Fortunately, the nature of RS imagery allows
setting a framework of quality controls to improve the confidence in the GT areas by proposing a
set of filtering rules based on data from the images themselves. In our experiment, two pre-existing
reference datasets (rDS) were used to obtain GT candidate pixels, over which inconsistencies were
identified. This served as a basis for inferring five key filtering rules based on NDVI data, a product
available from almost all RS instruments. We evaluated the performance of the rules in four temporal
study cases (under backdating and updating scenarios) and two study areas. In each case, a set
of GT samples was extracted from the rDS and the set was used both unfiltered (original) and
filtered according to the rules. Our proposal shows that the filtered GT samples made it possible
to solve usual problems in wilderness and agricultural categories. Indeed, the confusion matrices
revealed, on average, an increase in the overall accuracy of 10.9, a decrease in the omission error
of 16.8, and a decrease in the commission error of 14.0, all values in percent points. Filtering rules
corrected inconsistencies in the GT samples extracted from the rDS by considering inter-annual and
intra-annual differences, scale issues, multiple behaviours over time and labelling misassignments.
Therefore, although some intrinsic limitations have been detected (as in mixed forests), the protocol
allows a much better Land Cover mapping thanks to using more robust GT samples, something
particularly important in a multitemporal context in which accounting for phenology is essential.

Keywords: land-cover change mapping; Landsat; digital image classification; ground truth samples;
filtering rules

1. Introduction

Historically, land cover mapping (LCM) has provided specific information for mon-
itoring environmental impacts related, for instance, to soil degradation, deforestation,
water quality and biodiversity loss [1–5]. It also plays a decisive role in local, national and
international management policies [6–8]. Aerial photography [9] was key for the start of a
new era of LCM, a field nowadays strongly related to remote sensing (RS) in the task of
providing land cover information for human needs [10,11]. In 1994, the “Land Use and
Cover Change” project was launched to address how biophysical and anthropogenic fac-
tors impact land dynamics that produce environmental and social impacts [12]. Since then,
LCM has substantially expanded due to the increasing demand for land cover information
due to concern about global change and sustainability management, which are currently
hot research topics within the scientific community. Studies based on LCM have been
carried out practically all over the world (e.g., in Australia [13], Canada [14], China [15],

Remote Sens. 2021, 13, 2662. https://doi.org/10.3390/rs13142662 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1023-5586
https://orcid.org/0000-0002-1101-0453
https://orcid.org/0000-0002-6924-1641
https://doi.org/10.3390/rs13142662
https://doi.org/10.3390/rs13142662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13142662
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13142662?type=check_update&version=3


Remote Sens. 2021, 13, 2662 2 of 36

India [16], Iran [17], Kenya [18], Madagascar [19], Thailand [20], Uganda [21] or the United
States of America [22–24], to cite only a few) and also in the global context [25–27]. Thus,
RS provides data that improve our environmental understanding by making it possible to
analyse time series of land cover change and the drivers involved in this. It contributes
decisively to the definition of management strategies with a time perspective.

Current LCM focuses mainly on using RS data and machine learning classification
algorithms [28]. The most relevant stages usually include: (1) the definition of the mapping
approach, which includes establishing the purpose of the map, its thematic resolution
(level of categorical detail), the geographic extent (local, regional or global scale), as
well as the data and the processing algorithms to be used; (2) the data acquisition and
pre-processing, including geometric and radiometric corrections; (3) the collection of
a reliable dataset of ground truth (GT) samples to be used as training and test areas
(TTA) in the classification stage; (4) the classification processing; (5) the post-classification
phase, comprising generalisation or editing strategies to ensure consistency across the
mapped area, re-examination of unclassified areas, etc.; and (6) a final stage of map
accuracy assessment.

RS imagery has increased its availability since 2008 when the United States Geolog-
ical Survey (USGS) adopted a free and open Landsat data policy [29], which has been
highly beneficial to many segments of society, leading to new science applications and
approaches within the scientific and technical community [30,31]. Since then, similar poli-
cies have been adopted worldwide, such as the joint European Commission and European
Space Agency Copernicus programme [32], with Sentinel instruments that, from 2014
on, provide temporal continuity and systems compatibility with the Landsat and other
satellite series [33]. Furthermore, the release of the Landsat Multispectral Scanner System
(MSS) ESA archive adds a new collection of level 1 products acquired over European and
North African countries as far back as 1975, enlarging Landsat and Copernicus Sentinel-2
satellite series [34].

During the last decades, technical advances have improved LCM production. For
instance, satellite imagery has increased, especially in spatial, temporal and radiometric
resolution capacities, and classification algorithms have led to more robust results, which
frequently require larger datasets for training and validation purposes [35,36]. Furthermore,
image processing systems supporting RS applications have increased in number and capa-
bilities [37,38]. For instance, the Continuous Change Detection and Classification (CCDC)
algorithm provides an efficient model capable of detecting land cover change continuously,
using all the incorporated Landsat images and providing LCM at any time [39]. However,
despite technological improvements, there are still some issues about deriving thematically
precise and reliable GT samples for LCM production, mainly for large areas such as the
ones covered by the above cited programmes [28] and when GT are not “perfect”.

GT samples are a requisite for deriving LCM using most classification strategies.
Several approaches are used to provide GT samples [40,41]: fieldwork campaigns [42], digi-
tising polygons based on expert image photointerpretation of aerial photography and/or
of the satellite imagery itself [43–45], crowdsourcing campaigns or citizen science initia-
tives [46], and data extraction from pre-existing reference datasets (rDS), including forest
inventory data [47,48], or even a combination of them [49]. Recently, efforts have been made
to analyse the influence of the quality of the GT samples during the classification processes
used for LCM. For instance, in [50] the authors provide an overview of the repercussions
of the training data error in machine learning algorithms. The research describes the main
sources of error and the derived impacts. It also provides guidelines for accounting for and
minimising errors. The sources of training data error are failure to adequately represent
the spatial-temporal-spectral domains of the features of interest, including class balance,
labelling accuracy, and class comprehensiveness; temporal unrepresentativeness; spatial
co-registration problems; spatial resolution and scaling issues; and the lack of spatial
representativeness due to uneven geographic contributions. These errors mainly come
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from image misinterpretation, labelling mistakes, semantic ambiguity, intrinsic problems
when pixels are labelled in transitional areas and geolocation inaccuracies.

In traditional Earth observation research, the uncertainty associated with TTA is gener-
ally unreported and it is often considered 100% accurate [50–52]. However, in the strategies
for deriving GT samples, the map producer has to evaluate, among other aspects, the
temporal consistency between the mapping classification imagery and the sources of rDS
used. If an imperfect temporal consistency is assumed (which is usually the case), the map
producer should define strategies to detect and exclude errors in GT samples, especially
in highly dynamic categories such as those related to the wilderness and agriculture. In
a classification context, the existence of errors in TTA is extremely relevant during the
training phase of the classification stage and affects the resulting map accuracy. Moreover,
thematic inconsistencies can produce error propagations towards products derived from
LCM and subsequently have large repercussions in map-based decision making [53].

In LCM production, it is very common to derive GT samples using pre-existing
rDS [54,55]. Examples of rDS are the CORINE land cover map at the European scale, and at
country level, the Sistema de Información sobre Ocupación del Suelo de España (SIOSE), the Land
cover map for Great Britain and the Carte d’occupation des sols du France (Table S1 provides
other rDS examples and their characteristics). These rDS cartographies were generated
at a certain scale (spatial resolution in raster format), thematic resolution (legend) and
temporal reference. The scale establishes a minimum mapping unit (MMU for land cover
objects with cartographic representation [56]. Therefore, real objects that do not reach the
MMU have no cartographic representation and are dissolved with dominant objects. For
instance, traditional CORINE land cover maps were generated with a MMU of 25 ha (5 ha
for change products) and a minimum mapping width (MMW) of 100 m, providing land
cover information across Europe at a 1:100,000 scale [57]. Another example is SIOSE with a
MMU of 0.5, 1 or 2 ha (depending on the cover type) and 15 m of MMW for linear features.
As a consequence of an established scale in the rDS, real phenomena with no cartographic
representation coexist with others in the same cartographic object, and this is a potential
source of error.

The thematic resolution refers to the level of detail of the geospatial information
obtained in a particular cartographic representation [58,59]. It is a property of the rules
defining the hierarchy of categories (when this hierarchy exists), the criteria used to describe
them and the relationships between categories [60]. Historically, the RS community has
produced several legend classification schemes [61–64]. For instance, in a hierarchical
framework scheme [65], son-father-dependent relationships are established between classes.
The more detail in the resolution in the source information, the more detail in the features
(spatially and thematically) that can be interpreted. Classification schemes contain a discrete
number of thematic levels (e.g., the CORINE land cover map distinguishes five classes at
the first level, which are disaggregated into 15 classes at the second level and 44 detailed
classes at the third level [66]). The rDS with hierarchical classification schemes can lead to
potential sources of error, which are larger in the most extensive class levels.

Finally, rDS usually define the temporal reference of the product. For instance, during
the first version of the SIOSE project, high-resolution 2005 SPOT-5 images (at a 10 × 10 m2

resolution), together with auxiliary data were produced from photointerpretation tasks.
Ideally, the cartographic production is updated periodically, providing a temporal pseudo-
continuity. Depending on the availability of an rDS that is temporally close to the imagery
to be used for classification purposes, there will be time differences to a lesser or greater
extent. The lack of temporal consistency between images and rDS can lead to phenological
inconsistencies between the real spectral signatures and the rDS associated labelling. A
previous study detected thematic inconsistencies and errors during the classification pro-
cess when reliable GT samples were derived, both at the training and validation stages,
considering older images with respect to a rDS (namely a backdating effect) [54]. This
work proposed a strategy consisting of finding spectrally invariant pixels for the legend
categories between the rDS date and the imagery date. The same strategy can be used
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when images in the future are used with respect to a former rDS date (being an updating
effect in this case).

In a time series analysis, the lack of temporal continuity in the rDS, due to a budget
reduction or even to no interest in updating, restricts the information to specific dates. This
leads to temporal lags between the imagery and rDS dates, besides the labelling errors
intrinsic to almost any dataset. Moreover, similarly to producing a land cover map for a
certain year, imagery from several months is used (due to phenology properties, and to
avoid cloud or snow problems, etc), and it is intra-annually impossible to have GT samples
that perfectly match a set of images that is multitemporal in nature. Consequently, TTA
candidates derived from rDS should be tested and temporally updated to reduce the errors
also caused by these inconsistencies.

With this perspective, we hypothesise that the application of some filtering rules may
help to exclude issues from the TTA candidates. Therefore, this research proposes applying
some filtering strategies to identify and exclude errors from the GT samples derived from an
rDS (the SIOSE dataset in this case). In our experimental phase, we identified errors in GT
samples associated with various issues: the inter-annual time difference between imagery
for mapping and the rDS used for GT extraction; the intra-annual time variability within
the mapping imagery; the scale problem related to the rDS scale and imagery resolution
compatibility; the existence of multiple behaviours within selector polygons; and, finally,
polygon labelling misassignments. We researched the design and application of a set of
filtering rules using the most used vegetation index, the NDVI. We chose this index due to
its simplicity, because only two bands are involved, and its availability, because red and
near-infrared bands are very widespread in almost all Earth Observation instruments that
are used for LCM. Therefore, our main aim is to define this framework of filtering rules
that can be used to solve real and recurrent problems in GT samples and demonstrate that
they enhance the thematic quality of the final maps. To accomplish these objectives, we
explore the performance of rules in the context of four full Landsat scenes (from 200-030
to 200-033) in the Iberian Peninsula at four temporal moments (1987, 2002, 2012 and 2017
maps) and using rDS with different time differences between the rDS and the year of the
classification imagery. This diverse test bed is aimed at providing information about the
robustness of the proposed filtering rules.

2. Study Area

The study area is located in the Iberian Peninsula (Figure 1) and is defined by the
Landsat scenes with path 200 and rows 030 to 033 of the Landsat Worldwide Reference
System-2 (WRS-2), located between−4◦0′W and 0◦1′E and 38◦0′N and 44◦6′N and covering
about 126,000 km2. The area comprises large part of the Spanish Autonomous Communities
(NUTS 2) of Andalucía, Aragón, Castilla-La Mancha, Castilla y León, Euskadi, Navarra,
La Rioja, some part of Madrid, Comunitat Valenciana and Murcia, and part of the French
Pyrénées-Atlantiques department located in the southwest of France and the Nouvelle-
Aquitaine region. The scenes cover a large sector of the Ebro hydrographic basin and the
head of the Tagus, Jucar, Guadiana and Guadalquivir hydrographic systems.

Spatial heterogeneity characterises the geographical context in terms of its climatology,
topography, geology and land cover. The Pyrenees mark its influence, extending between
the Atlantic Ocean and the Mediterranean Sea, with an elevation that gradually increases
from the Basque mountains near the Bay of Biscay to the central sector, where the highest
elevations are reached. The Iberian System and the north of the Baetic System mark the
limits of extensive valleys where agriculture activities have been developed historically.

The context is characterised by different rainfall and temperature regimes along
longitudinal and latitudinal gradients. The total annual-accumulated precipitation varies
from 450 to 1200 mm, a variation that determines a heterogeneous vegetation distribution
in this context. The north-western extreme is under the oceanic influence, with high
accumulated annual precipitations and relatively small differences between winter and
summer temperatures. The humid conditions gradually diminish eastward and southward,
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where semi-arid Mediterranean conditions prevail, while the central Pyrenees and Iberian
System mainly have continental conditions [67]. The foreland Ebro Basin occupies around
85,000 km2, where agricultural irrigation and industrial activities have historically taken
place due to the water availability and soil fertility provided by the Ebro River [68].
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3. Materials
3.1. Remote Sensing Images

In this study, three temporal classification cases were generated in the context of a land
cover time-series change analysis occupying the north scenes 200-030 and 200-031. The
classification dates corresponded to 1987, 2002 and 2017 (LCM-1987, LCM-2002, LCM-2017),
being the GT samples derived from the SIOSE 2005. Two additional classifications were
developed to evaluate the sensitivity of the filtering rules. The first one considering another
version of the SIOSE dataset (SIOSE 2011), deriving the LCM-2012 for the scenes 200-030
and 200-031. The second classification considering a new spatial context comprising the
southern scenes 200-032 and 200-033. For this case, the SIOSE 2005 rDS was used together
with imagery temporally close generating the LCM-2002 in these southern scenes.

Each classification was performed considering images temporally close to the reference
date and distributed throughout the growing season. This temporal variability is required
for gathering most of the phenological variation of crops and natural land covers (intra-
annual phenological variability) in a multi-temporal perspective [69]. Therefore, images
from the reference year were preferentially selected. However, in their absence (because
of clouds), other images that were as temporally close as possible were selected. This
decreased the disparities with the phenology of the vegetated land cover categories, a
requirement that cannot always be assured in more dynamic categories, such as those with
crop rotation. Nevertheless, if inconsistency does occur, it should be managed through
filtering rules, as described in the following sections.

Level 1 terrain-corrected Landsat images, courtesy of the U.S. Geological Survey
(USGS), were acquired throughout the USGS website portal (https://earthexplorer.usgs.g
ov/, accessed on 8 June 2021) [70] for the four temporal moments (1987, 2002, 2012 and 2017)

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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and the path-rows 200-030 to 200-033. Table S2 in the Supplementary Materials describes
the set of images selected. Imagery corresponds to the Landsat 4–5 Thematic Mapper
(TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land
Imager (OLI).

3.2. Ancillary Data

Topography is a determinant factor that controls the total amount of energy incident
on the Earth’s surface [71]. This affects biophysical processes, water/energy balances, and
acts as a driver in numerous ecological, physiological, and life processes [72]. Ancillary
data, such as digital elevation and related models (slope, aspect, solar radiation), have been
proven to enhance land cover type discrimination and increase the final accuracy of the
digital data in RS classification [73–77]. In the study area, a 30 m spatial resolution Digital
Elevation Model (DEM) was obtained through a 1:5000 lidar dataset from the Spanish
National Plan for Aerial Orthophotography 2010 (PNOA, https://pnoa.ign.es/el-proyect
o-pnoa-lidar, accessed on 5 July 2021) [78]. Two auxiliary variables were generated from
the DEM of the area, using the free MiraMon GIS & RS software [79]:

(1) A summer solar radiation surface (10 kJ/(m2 × day × µm)), following the proce-
dure described in Pons and Ninyerola [80] and implemented in the InsolDia module
of MiraMon.

(2) A slope surface (in degrees), using the Pendent module.

Summer solar radiation and slope were used as independent variables in the classifi-
cation process as they were useful in previous LCM [81].

3.3. Ground Truth from a Reference Dataset (rDS)

The Land Occupation Information System of Spain (SIOSE) dataset was considered to
derive reasonably robust GT samples, divided into training and test area (TTA) subsets. The
SIOSE dataset is produced by photointerpretation at a reference scale of 1:25,000, with 5 m
of planimetric accuracy, following the INSPIRE principles and techniques. During the first
version of the SIOSE project, high-resolution 2005 SPOT-5 images (10 × 10 m2 resolution),
auxiliary Landsat 5 TM (thematic mapper) images (30 × 30 m2) and orthophotographs
(0.25 × 0.25 m2 resolution) of the PNOA were collected for photointerpretation tasks.
Other auxiliary datasets, such as cadastral information, helped to characterise land-use
regimes (dry/irrigated) in agriculture plots. SIOSE is updated periodically, and there are
versions available at the time of this paper for reference dates: 2005, 2009, 2011, and 2014.
High-resolution 2014 and 2017 products are under production.

The SIOSE project adopted an object-oriented data model [82] where the polygon
is the spatial unit that stores every present and displayable land cover enclosed in it,
occupying at least 5% of the total area of the polygon. Every defined land cover type is
a continuous and homogeneous spatial region characterised by its attributes. It can be
described as “simple”, or “composite” in the case of a combination of two or more simple
units. Simple land covers are bare soils (SDN), pastures/grasslands (PST), shrublands
(MTR), broadleaf deciduous forest (FDC), broadleaf evergreen forest (FDP), coniferous
(CNF), rice/not rice herbaceous crops (CHA/CHL), and vineyard/olive groves/citrus fruit
trees (LVI/LOL/LFC). Furthermore, the land covers can be characterised by “attributes” that
confer additional information (i.e., sc (rainfed; CHLsc), rr (irrigated; CHLrr), pl (plantation
forest; CNFpl)).

The SIOSE_CODE database field describes the polygon composition according to the
type of land cover, the cover fraction (percentage of areal occupation within a polygon), and
the spatial distribution/aggregation form (association (A), irregular mosaic (I) and regular
mosaic (R)) in the case of composite land cover polygons. For instance, the SIOSE_CODE
(A(70CNF_20PST_10MTR)) denotes an association of 70% coniferous, 20% grasslands and
10% shrublands, adding up to 100% all together. Thereby SIOSE_CODE served to extract
polygons based on the desired characteristics. Table 1 provides examples of the polygon
labelling definition and its visual correspondence over high-resolution orthophotography,

https://pnoa.ign.es/el-proyecto-pnoa-lidar
https://pnoa.ign.es/el-proyecto-pnoa-lidar
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denoting multiple land cover types coexisting in the composite land cover polygons, being
the more problematic ones to be served as GT for RS imagery classification.

Table 1. Land cover composition and spatial distribution labelling within SIOSE polygons.

Land Cover Composition SIOSE_CODE Database Field Visual Example

Simple CHLsc 1

2 
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Composite in Regular Mosaic R(55FDP_45CHLsc) 2 
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Composite in Association A(40CNF_40PST_20MTR) 2 
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Table 1. Land cover composition and spatial distribution labelling within SIOSE polygons. 

Land Cover Composition SIOSE_CODE Database Field Visual Example 

Simple CHLsc 1 

Composite in Regular Mosaic R(55FDP_45CHLsc) 2 

Composite in Irregular Mosaic I(50CHLsc_35FDP_15PST) 2 

Composite in Association A(40CNF_40PST_20MTR) 2 

A figure to define the percentage occupation is not required in 1 simple land cover polygons since the land cover
occupies 100% of the total area. Any form of 2 composite land cover polygons is characterised by a mixture of land
covers (potentially different phenological responses), which could derive into error-prone GT areas.

Due to the scarceness of simple land cover polygons and the dominance of composite
land cover polygons, there is a strong need to define filtering rules to select locations
agreeing with target category phenology and to exclude other behaviours, besides serving
as updating/backdating information for other temporal moments. The proposed filtering
rules should be applied to composite land cover polygons and are extendible to simple land
cover polygons as an error protection measure (human errors, etc.). The filtering strategies
are assessed in Section 4.2.

4. Methods

This study develops a framework to enhance land cover classification accuracy
through quality control of GT areas based on a set of filtering rules. However, for these
rules to be general and to fulfil the goal that other RS users achieve similar enhancement
effects, it is important to explain the pre-processing of the imagery. The proposed filtering
rules are based on analysing the NDVI time series. Choosing NDVI solves the usual GT
reliability problems that occur in both the wilderness and crop categories, ensuring a likely
phenological behaviour. This allows our method to be widely usable because the NDVI
can be computed from almost all RS instruments. We evaluated the performance of the
filtering rules through classification of study cases. The framework depicted in Figure 2
is divided into three main stages developed in the following subsections: (Section 4.1)
image pre-processing and preparation of other auxiliary variables, (Section 4.2) ground
truth (training and test samples) treatment, and (Section 4.3) classification process and
accuracy assessment.
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Figure 2. Methodology flowchart. Image pre-processing (A) provided the final variables used in the classification process
and NDVI series to characterise the spectral-temporal signatures of the different classes. (B) Structured Query Language
(SQL) statements applied to SIOSE 2005 rDS provided a set of polygon selectors which determined the initial GT candidate
pixels. (C) The rules applied to GT candidate pixels provided a final set of robust GT samples, segregated into training and
test area (TTA) subsets.

4.1. Image Pre-Processing

Satellite imagery was kept in the Universal Transverse Mercator 31 N zone, WGS84,
spatial reference system in order to avoid introducing additional resampling problems.
To generate a unified classification context, images captured on the same day (equal
path/orbit) were mosaicked previously to any other process, using the Mosaic module
of MiraMon. In other cases, a mosaic of neighbour dates was applied after radiometric
correction to derive a coherent surface reflectance composition (see next point).

4.1.1. Geometric and Radiometric Correction

The satellite imagery had an L1TP level of processing (https://www.usgs.gov/core-
science-systems/nli/landsat/landsat-levels-processing, accessed on 5 July 2021) based on
ground control points and a DEM for topographic displacement correction. The average
geometric Root Mean Square Error (RMSE) model was 5.55 m (median 5.26 m), 3.56 m for
minimum and 10.39 m for maximum, for all images considered. Note that these figures
mean an accuracy level clearly lower than half of a 30 m pixel.

https://www.usgs.gov/core-science-systems/nli/landsat/landsat-levels-processing
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-levels-processing
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Images were radiometrically corrected using pseudo-invariant areas following [83,84]
the methods implemented in the CorRad module of MiraMon. The procedure obtains
reflectance values from digital numbers through atmospheric and topographic corrections
using, among other parameters, pseudo-invariant areas (PIA) derived from a long time-
series of MODIS reference locations, sensor calibration parameters, solar illumination and
cast-shadow models for each pixel and date.

4.1.2. Spectral Indices

Spectral indices are based on the properties of the spectral signatures that characterise
the interaction of electromagnetic radiation with a specific surface. Combining several
multispectral bands makes it possible to emphasise land cover characteristics, and identify
where they dominate spatially. In this research, the legend was established based on
previous studies [54], and describes thirteen categories: coniferous forest (CoF), broadleaf
deciduous forest (BDF), broadleaf evergreen forest (BEF) shrublands (Shl), grasslands (Grl), bare
soils (BrS), water bodies (WaB), urban areas and infrastructures (Urb), irrigated herbaceous crops
(IHC), dry herbaceous crops (DHC), irrigated woody crops (IWC), dry woody crops (DWC) and,
finally, rice crops (RiC). According to previous studies in the same geographical context,
indices such as the Normalised Difference Vegetation Index (NDVI), the Normalised
Difference Water Index (NDWI) or the Normalised Difference Snow Index (NDSI) have
proven appropriate for emphasising vegetation phenological patterns, bare soils or water
bodies, and also for excluding snow and cloud covers [54,81,85].

The NDVI [86] is the most widely used index for monitoring vegetation activity and
its dynamics, and enables easy spatial and temporal comparisons. The index is derived
as the difference values measured in red and near-infrared (NIR) bands, divided by their
sum. The NDWI (NDWI3 in [87]) is used for identifying water bodies in classification
processing. It is computed as the difference values measured in shortwave-infrared (SWIR)
and NIR bands, divided by the sum of them. For all the dates considered, the NDVI and
NDWI were used to better characterise many of the land cover classes in the classification
process. Furthermore, the NDVI series were used to derive the filtering strategies carried
out in Section 4.2.

Cloud-cover and cloud-shadow masking are a time cost, but they are a necessary
pre-processing task. These areas were identified using the Fmask algorithm [88]. However, a
visual review and manual corrections over the automatic procedure were required, mainly
when masking thin clouds, contrails and anomalous sensor behaviours, the last of these
being more common in earlier images.

The Normalised Difference Snow Index (NDSI) has a long history in the context of
snow classification and uses the combination of SWIR and visible wavelengths [89,90]. It is
assessed as the difference values measured in Green and SWIR bands, divided by their sum.
We defined a threshold of NDSI > 0.15, lower than the usual 0.40 value [90], to discriminate
snow-covered areas in line with other authors [91–93]. Decreasing the threshold gave better
results when snow cover was discriminated in the Pyrenees, which has a rugged/irregular
terrain and snow with a patchy distribution or mixed with vegetation. Once cloud or snow
masks were derived, they were applied to exclude these areas from the spectral bands.

4.2. Ground Truth (Training and Test Samples) Treatment

In this study, GT (training and test) samples were extracted considering the SIOSE
2005 and 2011 datasets (SIOSE, https://www.siose.es/, accessed on 5 July 2021) [94]
as a GT reference dataset source. We established and applied a set of Structured Query
Language (SQL) statements to the SIOSE_CODE database field. The purest and high-
cover-fraction polygons were identified, avoiding those that mix certain types of land
covers (see Table S3 in the Supplementary Materials). Polygons were eroded, applying a
30 m buffering corresponding to Landsat pixel size, diminishing the influence of mixed
pixels (heterogeneous) and the planimetric error associated with imagery/vectors at the
boundaries [95]. Furthermore, polygons with an area ≤1.0 ha were discarded because

https://www.siose.es/
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of their low representativeness. The remaining polygons masked the initial set of GT
candidate pixels evaluated for each category.

Given the extensive study area (four full Landsat scenes), some empirical tests were
performed with different tile sizes (3 × 3, 5 × 5, 7 × 7 and 9 × 9) to define the best unit
size of analysis, considering the trade-off between computation time and a better poly-
gons subdivision. The selected option was partitioning polygons into tiles of 7 × 7 pixels
(210 m wide) co-registered with the spatial pattern of the imagery. The Fishnet tool from
the ArcGIS® 10.7 software (ESRI, Redlands, CA, USA) was used for tilling. This GIS ech-
nique makes it possible to partition large polygons into homogeneous square-shaped
sub-polygons for sampling purposes, reducing the spatial autocorrelation and increasing
the homogeneity in the spatial distribution of the TTA subset used for modelling. For
each category, we randomly selected 70% of the total area for training and preserved the
remaining 30% for validation purposes, ensuring category representativeness in both sub-
sets. Tiles were also helpful for estimating statistics locally (central tendency and statistical
dispersion measures) to define filtering rules. Final polygon masks defined the initial GT
candidate pixels for each category.

In the exploratory phase, the LCM-2002 imagery was selected because of its temporal
proximity to SIOSE 2005 rDS. The classification imagery should describe the intra-annual
phenology during the growing season of natural and agricultural land covers. Dates span-
ning from Spring to Autumn enhance the phenological contrasts of categories (Table S2).
Images were pre-processed, cloud masked, and the radiometric correction performed
before deriving the NDVI series.

As a form of sensitivity analysis, we evaluated the performance of the rules by using
the SIOSE 2011, as a new rDS, and contemporary imagery, deriving the LCM-2012. Com-
plementarily, rules performance was evaluated in a new spatial context, the scenes 200-032
and 200-033 considering SIOSE 2005 as rDS.

4.2.1. Spectral-Temporal Signatures

The training set of polygons (70% of the GT total area) were masked with the NDVI
series, and their temporal dynamics were evaluated. The objective was to analyse pheno-
logical patterns of each category in order to identify abnormal behaviours. Furthermore,
analysing the temporal patterns served to formulate filtering rules and approximate the
parametrisation of the rules.

Inconsistencies were identified through the temporal frequency distribution as in the
plots in Figure 3. For instance, low NDVI values were observed in coniferous, broadleaf
evergreen, and deciduous forest because of the associations among several categories
within polygons.
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modelled locations are useful when multimodality is assessed [96]. Dates are in year-month-day format.
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Furthermore, bimodal distributions were identified in the case of broadleaf evergreen
forest and irrigated herbaceous crop categories. The inconsistencies were analysed, and
filtering rules applied to exclude them. Histograms of the rest of the categories are detailed
in Figure S1 in the Supplementary Materials.

4.2.2. Identification and Analysis of Inconsistencies

Historical PNOA orthophotography (dates between 1998–2003) and the imagery
spectral bands supported phenological interpretation during the analysis. Furthermore, the
National Forest Inventory (NFI) (version 2 (1986–1995) and version 3 (1997–2007)) provided
robust information about forest species composition in the inventory plot locations over
time [97]. SIOSE datasets provide particularly valuable and useful cartographic information
for the Spanish territory; however, the complexity of the territory and land cover dynamics
makes it necessary to have an appropriate set of filtering measures to avoid inconsistencies
in the TTA. Some of the sources of the identified inconsistencies were:

(a) The inter-annual time difference between the rDS and imagery dates. There is a temporal
lag between rDS and LCM-2002 imagery. Figure 4 depicts the NDVI temporal activity
of several irrigated herbaceous crop patches (tiles) where no photosynthetic signal is
detected during the summer dates of the years previous to 2005. Dry herbaceous
crops or fallow practices were predominant in this area before irrigation plans were
implemented in this geographic context. The set of patches occupies 787 ha, result-
ing in a significant error source that affects the identification of irrigated and dry
herbaceous crop classes.

(b) The intra-annual time series collect annual phenology, which is constrained by the
availability of the imagery. Some intra-annual events (forestry clear-cutting practices
and fire disturbances) causes abrupt phenology changes at an intra-annual time scale.
These events should be managed (selected/excluded/reclassified) in GT candidate
samples. In Figure 5, a forestry clear-cutting practice in a coniferous plantation is
shown; the coniferous phenological activity drops on 24 September 2000, affecting an
area of 176 ha. The polygons that are not affected show a steady temporal profile.

(c) Scale errors are associated with the conflict between the rDS minimum mapping unit
(SIOSE with values of 0.5, 1 or 2 ha, depending on the cover type) and the Landsat
spatial resolution (30 m). SIOSE composite land cover polygons circumscribed different
phenological responses in the imagery resolution, as shown in Table 1. Figure 6
shows a composite land cover polygon with an association of 70% coniferous, 20%
pasture and 10% shrublands. Coniferous forest and sparsely vegetated plots can be
identified in the orthophotography on 28 April, 2001, NDVI, where the lower values
are pastures/grasslands.

(d) Labelling errors in rDS feature labels can be due to the subjectivity of photointerpreta-
tion or human errors when the polygons label are assigned. Figure 7 shows an almost
pure polygon defined as an association of 95% broadleaf evergreen forest and 5%
shrublands. Despite its definition, the observed phenology conforms to deciduous
patterns. In (a), a dense forest structure can be recognised, which corresponds with
dominant deciduous species (Fagus sylvatica, Quercus pyrenaica) inventoried in the NFI
plots. In (b) and (c), 28 April 2001, and 25 July 2001, NDVI showed a clear increase in
NDVI values between the dates. The polygon occupies 198 ha, which can become a
source of characterisation errors between evergreen and deciduous forest classes.

(e) Multiple (phenological) behaviours are mainly associated with agriculture categories.
Crop phenology is complex, and there is a large chance that two neighbouring crop
fields within a polygon can be in very different phenological stages (active crops,
fallow patterns), as well as belong to different categories (winter crops, summer crops
or woody crops). Examples of multiple behaviours were detected in dry and irrigated
herbaceous crop polygons. The latter is exemplified in Figure 8. Only part of the
entire polygon is displayed due to the large area occupied by the irrigated crops in
this area. In (a), the orthophotography depicts the spatial variability, different sizes
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and phenological states of crop fields. In (b), 28 April 2001, NDVI denotes active
winter (red rectangles), perennial crops and other inactive fields. In contrast, on
25 July 2001, NDVI denotes that (c) active summer crops (blue triangle) and inactive
fields dominate the area. The contrasting phenological behaviours in large irrigated
crop polygons become a source of error and confusion between winter/summer
crop categories.
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4.2.3. NDVI Filtering Rules

Filtering rules aim to minimise the impact of errors in GT samples used for classifica-
tion. The rules were generated to deal with issues observed during the exploratory phase
and were constructed based on the previous analysis of spectral-temporal signatures, which
serve to identify the phenological patterns of each category. The phenological patterns
were analysed considering NDVI, but other vegetation indices could be used if their usage
suggests an even better behaviour. We considered the LCM-2002 imagery in the examples
of the rules below.

Rule 1: Maximum NDVI temporal response

This rule serves to select pixel locations with the maximum NDVI temporal response,
dynamically and in each tiled polygon. The rule is defined as:

NDVImax ≥ | ≤ (Max r1_µ_tile ±Max r1_σ_tile), r1_µ ∈ [−1,1], r1_σ ∈ [0,1] (1)

where NDVImax is the maximum value per each pixel in the imagery series and is taken as
a reference value in a per-pixel evaluation form. Individual pixels are evaluated regard-
ing two statistics calculated at a tile-polygon level; (1) the r1_µ_tile is a central tendency
measure (e.g., median (MED)) evaluated for each tile-polygon and date; the maximum of
the central tendency of the series determines the Max r1_µ_tile value; (2) the r1_σ_tile is a
dispersion measure (e.g., the standard deviation (SDV) on the means of the absolute differ-
ences from the median) calculated for each tile-polygon and date; the maximum dispersion
of the series determines the Max r1_σ_tile value. Therefore, each tile-polygon is charac-
terised by the maximum central tendency value, the median, and the maximum dispersion
measure, the dispersion measure for all the dates. Pure SIOSE simple land cover polygons
are expected to be characterised by a median and a relatively low dispersion measure.
However, in composite land cover polygons with a mixture of categories, the dispersion
measure varies according to the tile composition variability. For a dispersion measure, the
cut-off value defined by the Max r1_µ_tile ±Max r1_σ_tile can be displaced towards lower
or upper NDVI values to determine the acceptable variability for the category.

For instance, we focus on a composite land cover polygon tile (e.g., A(65CNF_35MTR)),
defined as an association of 65% coniferous and 35% shrubland in Figure 9. In this tile,
coniferous pixels can be discriminated by selecting pixels with an (NDVImax≥MEDmax−
(1× SDVmax)). Complementarily, pixels with an (NDVImax≤MEDmax− (1× SDVmax))
characterised low NDVI values associated with shrublands. In both statements, transitional
values (red squares) would be incorrectly managed if they were not filtered out.

This rule is appropriate for wilderness land cover categories but is also extendable
to agriculture categories. The rule makes it possible to discriminate forest categories (e.g.,
coniferous) from non-forest vegetation categories (e.g., shrublands), and also differentiate
between the non-forest vegetation categories in the natural succession, especially in com-
posite land cover polygons. Used together with Rule 2, it has the benefit of defining the
range of NDVI values over which a category varies. Thus, this rule is useful for avoiding
scale errors and intra-annual errors, specifically in composite land cover polygons where
several categories and transitional NDVI values coexist. Some categories require selecting
the lower NDVI response, such as bare soils, considering an NDVImax ≤ MEDmax +
(1 × SDVmax).

Rule 1 is applied over a composite land cover polygon defined as an association of
70% coniferous and 30% shrubland depicted in Figure 10. The rule statement is defined
as (NDVImax ≥ MEDmax − (1 × SDVmax)) to select the more densely forested areas.
The orthophotography allows us to differentiate compact and densely forested plots from
sparsely vegetated areas. Tile polygons are depicted with white outlines. The highest
NDVI maximum values are shown from green to blue, whereas the values under ~0.40
are associated with scarce vegetation. The zoom details pixel exclusion in these areas. It is
worth noting that for the tiles where lower NDVI maximum values predominate (e.g., tiles
mixing coniferous and shrubland or those affected by a forest fire), it is essential to consider
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a complementary condition statement to exclude lower NDVI responses, the minimum
NDVI threshold detailed in Rule 2.
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Rule 2: NDVI range along with the ‘n’ dates

This rule determines the range of NDVI values over which a category varies along the
‘n’ dates considered. The rule is defined as:

∀ NDVI ∈ [r2_a,r2_b]; r2_a,r2_b ∈ [−1,1] (2)

where r2_a, r2_b are the NDVI minimum and maximum values, respectively, which define
the NDVI range of variation of a category. Considering the conceptual example shown
previously in Figure 9, Rule 2 was added to manage transitional behaviours, which is
exemplified in Figure 11. The sentence is defined as: (NDVImax ≥ | ≤ MEDmax −
(1 × SDVmax) AND (∀ NDVI ∈ [0.40,0.90])), where values outside the limit are excluded.

This rule complements Rule 1 but can also be used independently. Since the series
of NDVImax is assumed as a reference value, a minimum NDVI threshold is necessary.
The aim is to isolate positions that do not fit the category NDVI characteristic range in the
initial set of GT candidate pixels, especially in composite land cover polygons. Moreover,
intra-annual disturbance events (forestry clear-cuttings or fire events) in forested areas
cause NDVI drops, for which pixels can also be isolated. Rule 2 used independently can be
helpful to extract crop categories characterised with a specific NDVI range of values (e.g.,
rice crops NDVI range approximately between [−0.30,0.80]).

Locations in Figure 10 with low NDVI values were not adequately filtered. Rules 1 and
2 were applied in the exact location, and the results are displayed in Figure 12. Excluding
non-forested locations and anomalous minimum values requires defining a threshold
(NDVI minimum) in accordance with the category variability. The filtering statement is
defined as (NDVImax ≥MEDmax − (1 × SDVmax) AND (∀ NDVI ∈ [0.40,0.90])). Those
pixels under the NDVI < 0.40 are discarded (any disturbance events causing NDVI drops,
sparsely vegetated or low-density forested areas, shrublands, pastures, bare soils or even
water bodies), so that only densely forested plots remain.
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Rule 3: Photosynthetic activity for ‘n’ dates

This rule is a proxy of the total photosynthetic activity for a category considering the
range of values over which the sum of ‘n’ dates NDVI variates. The rule is defined as:

∑i=(1,n) NDVIi ∈ [r3_a,r3_b]; r3_a,r3_b ∈ [−n,n] (3)

where r3_a and r3_b are the minimum and maximum values between which the total sum
(NDVIsum) of ‘n’ NDVI varies for a category. It works at the individual pixel level.

The rule makes it possible to discriminate between active and non-active agriculture
crop fields in herbaceous and woody crop categories. Since the rule amplifies the NDVI
total signal, it enables better recognition between active/non-active crops within dry or
irrigated crop categories in the SIOSE dataset. Defining thresholds to discriminate irrigation
regimes favours deriving consistent TTA sets for LCM time series production, and hence,
more reliable land cover change analysis in these categories, mainly in irrigated woody
crops, where there is also a mixture with dry crops. For the forest categories, the rule is
useful for distinguishing the most active broadleaf deciduous species, especially those
located close to rivers.

We applied this rule in irrigated olive grove plantation polygons, shown in Figure 13.
Orthophotography with a 2001 date can be used to identify consolidated and productive
parcels close to recent plantation fields, besides their total photosynthetic activity corre-
spondence values. Through visual interpretation, we defined the NDVI sum ∈ [1.0, 2.0] to
capture dense plantations, discarding the lower photosynthetic response associated with
recent plantations and non-cultivated areas.

Rule 4: Contrast between NDVImax values of a group of dates

The intra-annual phenology variability is characteristic for each category. The rule
is based on the NDVI maximum difference between the initial and final growing season,
typically the summer and spring dates, but is adaptable to other dates or groups of dates.
The rule is defined as:

NDVIdifference (NDVImax Summer dates − NDVImax Spring dates)
∈ [r4_a,r4_b]; r4_a,r4_b ∈ [−2,2]

(4)

where r4_a, r4_b are the minimum and maximum values derived from the absolute differ-
ence between the NDVImax reached on the summer and spring dates. The NDVI difference
can also be interpreted as the NDVI temporal gradient between two temporal moments.
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herbaceous crops, while the real phenology revealed winter crops or fallow patterns related 
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Figure 13. Rule 3 applied to irrigated olive grove polygons. Brown NDVI colours depict more recent plantations or
low-density plantation schemes. The red square zoom details new plantation fields. The white line in the zoom is a road.

The rule makes it possible to control more dynamic agronomic classes and forest
behaviours. Considering the summer and spring NDVI maximum differences, it is well
known that there is a strong positive temporal gradient during the growing season, charac-
teristic of summer crops (herbaceous or rice crops), deciduous forest species (Fagus sylvatica
and sclerophyllous deciduous and pseudo-deciduous species) and some woody crops
(vineyards). In contrast, the strong negative gradients are typically associated with winter
crops or low-altitude pastures. Other categories (e.g., coniferous, broadleaf evergreen
forest, shrublands or urbanised areas) depict a temporal response with no trend in the
NDVI temporal profiles, which means close to zero NDVI temporal gradients. This rule
distinguishes polarised phenological patterns as winter and summer crops or deciduous
and evergreen forest patterns and allows each category to be characterised with the NDVI
temporal gradient. However, the rule is limited when less contrasting patterns are discrim-
inated (between bare soils and fallow lands or between coniferous and evergreen forest
categories). Furthermore, the rule helps to define the NDVI temporal gradient patterns.
This avoids labelling misassignment or other errors related to rDS and inter-annual time
differences in imagery when rapid transformations occur (e.g., dry to irrigated regimes
and forest conversion from evergreen to deciduous species, or vice-versa). The rule can
also be used to discriminate mixed forest in regular pattern associations when deciduous
with evergreen patterns coexist.

The example in Figure 14 illustrates a labelling inconsistency associated with the rDS
and the inter-annual difference of the imagery. The polygon label is defined as irrigated
herbaceous crops, while the real phenology revealed winter crops or fallow patterns related
to agriculture practices of dry herbaceous crops. Rule 4 was established and applied to
exclude the negative temporal patterns in the initial candidate pixels of irrigated herbaceous
crops. We approximate the NDVI absolute difference range values between [0.05, 2] based
on the local analysis of the pixels involved. Limits should not be restrictive since the aim is
to only exclude the negative NDVI temporal gradients.
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Specific situations require NDVI thresholds to analyse particularly tricky phenolog-
ical patterns. For instance, when there are two relative minimum (or two maximum) 
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Figure 14. Rule 4 applied to irrigated herbaceous crop polygons. Brown NDVI depict negative NDVI temporal gradients;
yellow is related to low contrasting patterns (fallows); green depicts positive NDVI temporal gradients. Positive and
negative gradient domains are detailed in zooms 1 and 2.

Rule 5: Phenological moment

Establishing NDVI thresholds on specific dates or a group of dates or direct compar-
isons between dates or a group of dates may be required. Some casuistics are:

NDVI Spring date or, NDVI max|min Spring dates ≥ | ≤ r5_a
NDVI Summer date or, NDVI max|min Summer dates ≥ | ≤ r5_b
NDVI Autumn date or, NDVI max|min Autumn dates ≥ | ≤ r5_c
NDVI max|min Spring dates ≥ | ≤ NDVI max|min Summer dates

NDVI max|min Summer dates ≥ | ≤ NDVI max|min Autumn dates
NDVI max|min Spring dates ≥ | ≤ NDVI max|min Autumn dates,

r5_a,r5_b,r5_c ∈ [−1,1]

(5)

where r5_a, r5_b, r5_c are specific NDVI thresholds in phenological moments defined for
a particular date or group of dates. For instance, to detect rice fields, we can establish a
threshold in NDVI spring dates ≤0.0 together with high activity during the NDVI summer
dates ≥0.60. Direct comparisons (NDVImax spring dates ≥ NDVImax summer dates,
useful for winter crop characterisation) between dates or a group of dates can also be used
for better phenological control. It is a flexible rule that makes it possible to compare a free
combination of NDVI thresholds between dates.

Specific situations require NDVI thresholds to analyse particularly tricky phenological
patterns. For instance, when there are two relative minimum (or two maximum) NDVI
values in an NDVI temporal profile. The rule helps establish specific NDVI thresholds to
reproduce temporal profiles in specific categories on which the map producer focuses their
interest. For instance, detecting the temporal pattern of double crops requires establishing
an NDVI minimum at the moment of harvesting and two maximum values on early
spring and later summer dates. Furthermore, this rule is helpful for managing vegetation
senescence in temporal profiles.

Figure 15 represents examples where double crops and dry vineyard patterns were
extracted from irrigated herbaceous crops and dry vineyard woody crop polygons. Rule 5 in
double-crop patterns was defined as [NDVI20010428 ≥ 0.50] AND [NDVImin summer ≤ 0.40]
AND [NDVImax summer ≥ 0.50], which makes it possible to capture the variability of
the crop in the summer dates. For characterising active dry vineyard plantation fields,
Rule 5 was defined as [NDVI20010428 ≤ 0.15] AND [NDVImax summer ≥ 0.30] AND
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[NDVI20010701 > NDVI20010911], adapting the rule to capture the characteristic senescence
period of the crop.
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large [54], as it is in the context of two Landsat scenes. 

The variables used in the classification process were Landsat TM and ETM+ bands 3, 
4, 5 and 7, OLI bands 4, 5, 6 and 7 for each date, as well as two indices (NDVI, NDWI) and 
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filtered samples.

We defined the statements of the filtering rules and proposed a parametrisation for
each category, adapted to the geographical context, detailed in Table S4 in the Supplemen-
tary Materials. The initial set of candidate pixels was filtered based on the rules, deriving a
robust set of TTA, which were randomly selected to be used in the classification stage.

4.3. Classification Process and Accuracy Assessment

We used the k-nearest neighbour (kNN) classifier implemented in MiraMon, paral-
lelised for better performance, to derive LCM over which we evaluated the performance of
the filtering rules. kNN is a supervised classification approach that relies on labelled input
samples to learn and produce an output in the new given unlabelled data. The process
is developed in two steps for each pixel in the image: (1) the algorithm determines the
nearest neighbours by calculating a distance metric (e.g., the Euclidean distance) between
the target pixel and each training area provided; then (2) the target pixel label is deter-
mined by selecting the kNN candidates (defined by the map producer), over which the
modal category is calculated. The kNN parameter was fixed to 15, based on a previous
work analysis and considering better robustness when the number of training samples is
large [54], as it is in the context of two Landsat scenes.

The variables used in the classification process were Landsat TM and ETM+ bands
3, 4, 5 and 7, OLI bands 4, 5, 6 and 7 for each date, as well as two indices (NDVI, NDWI)
and three topo-climatic variables (altitude, slope and summer potential solar radiation).
Thermal bands were excluded, and Blue and Green bands were discarded because of their
high correlation and the strong influence of atmospheric aerosols. The spectral bands,
spectral indices, slope, altitude and summer potential solar radiation were all scaled to
0–100 so that values were all unified in the same range. In total, the classification dataset in
all study cases was composed by thirty tree variables.

The map accuracy was assessed by evaluating the agreement between the map pro-
duced and the test areas, summarising the discrepancies by means of the confusion ma-
trix [40,98,99]. The confusion matrix is essential for quantifying the impact of the TTA error
on the map accuracy and the performance of the filtering rules. The unequal presence of
classes in our map obliges us to adapt some computations. For instance, if the commission
errors of dry herbaceous crops are associated with the bare soils category, but the number
of herbaceous crop test samples is considerably larger than the bare soils test samples
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(e.g., one order of magnitude as the first ones are much more frequent in the area), then
the interpretation of the user’s accuracy is incorrect. This could be balanced before the
confusion matrix calculations; however, this implies losing test samples and deciding
where to remove them. Alternatively, it can be corrected by a factor computed as follows:

Factor i = (Map pixels i/Map total pixels)/(Test pixels i/Test total pixels) (6)

where, ‘i’ denotes each category. The factor computed for each category allows us to obtain
a confusion matrix free from these imbalances.

5. Results

The LCM generated for the four temporal cases (LCM-1987, LCM-2002, LCM-2012
and LCM-2017) and the additional spatial case are shown in Figure S2, and their confusion
matrices are detailed in Tables S5–S14 in the Supplementary Materials. For simplicity, only
LCM-2002 results are detailed due to the coherence with the rest of the maps generated.
The performance of the rules is detailed through visual examples, and their confusion
matrices are interpreted in the following subsections.

5.1. The Performance of the Rules in Visual Examples

The visual examples in Figures 16 and 17 illustrate the performance of the rules in
specific locations. The LCM-2002 classifications were compared before and after the rules
were applied.

Example A in Figure 16 represents Rules 1 and 2 applied to coniferous polygons to
prevent the scale and intra-annual time errors. Rule 1 selected all the most active positions
in the period according to the (NDVImax ≥ MEDmax − 1SDVmax) evaluated in tiles,
avoiding the lowest NDVI responses (shrublands, grasslands, bare soils) typically associated
with SIOSE composite polygons. Rule 2 ensured that NDVI values varied within the range
of variation allowed for the category (e.g., ∀ NDVI ∈ [0.40, 0.90] for coniferous forest) on
all dates. The clear-cutting event was misclassified as coniferous forest using unfiltered TTA,
but correctly classified as shrublands when the filtering rule was applied.

Example B in Figure 16 exemplifies a misassignment error, where pixels on a broadleaf
evergreen forest polygon depict a clear deciduous pattern. Rule 4 served to exclude pixels
with deciduous temporal patterns in the evergreen category. The statement rule concate-
nates three terms: (NDVImax≥MEDmax− 1SDVmax) AND (∀ NDVI ∈ [0.40, 0.90]) AND
(NDVI difference ∈ [−0.15, 0.05]), which allow us to extract the most active forested areas
(Rules 1 and 2), and avoid deciduous (positive NDVI gradients) patterns (Rule 4). The
classification results showed a mixture of evergreen and deciduous forest classified pixels
when unfiltered TTA was used, while the filtered set provided pixels correctly classified as
deciduous forest.

Example C in Figure 17 illustrates an inter-annual time error. Several irrigated herba-
ceous crop polygons depicted phenological patterns associated with dry herbaceous crops.
Rule 4 was used to characterise the irrigated crops: a positive NDVI gradient during the
growing season, excluding any negative NDVI gradient associated with the dry crops. The
rule statement was defined as (∀NDVI ∈ [0.05, 0.90]) AND (NDVI difference ∈ [0.05, 2.00]),
capturing the irrigated crops with a positive NDVI temporal gradient. The results showed
the area misclassified as irrigated herbaceous crops when unfiltered TTA was used, while
the filtered set correctly classified the area as dry herbaceous crops.

Example D in Figure 17 describes the existence of multiple behaviours in woody crop
categories. In the example, dry vineyard woody crop polygons depict anomalously high
photosynthetic activity (related to irrigated woody crops) with irrigation ponds located
in parcels.
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Figure 16. Examples of applying the filtering rules. In (A), coniferous polygons affected by clear-
cutting forestry practices are shown (outlined in black). An intra-annual NDVI drop is produced. 
Unfiltered TTA misclassified the area as coniferous forest, while filtered TTA classified the area 

Figure 16. Examples of applying the filtering rules. In (A), coniferous polygons affected by clear-cutting forestry practices
are shown (outlined in black). An intra-annual NDVI drop is produced. Unfiltered TTA misclassified the area as coniferous
forest, while filtered TTA classified the area correctly as shrublands and grasslands. In (B), a mislabelled broadleaf evergreen
forest (in white) polygon and a correctly labelled broadleaf polygon.

The rule statement defined for dry woody crops was (∀ NDVI ∈ [0.05, 0.60]) AND
(NDVIsum ∈ [0.30, 0.75]) AND (NDVIdifference ∈ [0.15, 1.00]) AND ([NDVI max Spring]
< [NDVI max Summer]). The first term made it possible to capture the NDVI range of
variation; the second term, made it possible to determine the minimum total photosynthetic
activity as a dry woody crop; and the third and fourth terms characterised the positive
NDVI difference during the growing season. This made it possible to exclude any pixel
contamination with herbaceous crops or pastures, which generally have negative NDVI
difference patterns. Unfiltered TTA resulted in misclassifying the area as dry woody crops.
Using filtered TTA, the level of NDVI total activity reached in these locations allowed us to
classify them as irrigated woody crops.
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Figure 17. Examples of the application of filtering rules. In (C), irrigated and dry herbaceous crop patterns coexist within
irrigated herbaceous crop polygons (outlined in black). Unfiltered TTA misclassified dry patterns as irrigated crops, while
filtered TTA correctly discriminated between categories. In (D), an irregular, high NDVI activity is located in dry vineyard
woody crop polygons (in black). Unfiltered TTA misclassified the crop fields as dry woody crops, while the filtered TTA
correctly classified them as irrigated woody crops.

5.2. The Performance of the Rules in Confusion Matrices

The results of the confusion matrices, comparing unfiltered and filtered TTA for LCM-
2002, are detailed in Tables 2 and 3. The LCM-2002 overall accuracy (OA) using unfiltered
TTA was 83.8% and 88.6% when it was weighted by the ground truth area considering only
classified pixels (OAw). For the filtered TTA, the OA reached 93.0%, and OAw obtained
96.0%. Therefore, matrices corroborated a better identification of categories when the
filtering rules were applied, decreasing the confusion between classes and avoiding error
inconsistencies. This pattern could also be seen in the rest of the LCM.

Figure 18 compares the omission error and the commission error resulting from the
evaluation of the maps with and without applying the filtering rules. There is a clear
reduction in OE and CE in all categories.
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Table 2. Confusion matrix results derived from unfiltered ground truth samples from SIOSE 2005 rDS and imagery for LCM-2002.

Unfiltered Ground Truth Samples
Classified Map

CoF BDF BEF Shl Grl BrS Urb WaB IHC DHC IWC DWC RiC
Total CE (%) UA (%)

(CoF) Coniferous forest 50,907 823 1058 1612 295 34 31 25 11 55 15 29 1 54,895 7.3 92.7

(BDF) Broadleaf deciduous forest 1044 67,728 1403 1884 1077 91 0 11 163 173 59 0 0 73,634 8.0 92.0

(BEF) Broadleaf evergreen forest 5640 1644 60,658 7398 785 109 5 26 41 197 5 27 0 76,534 20.7 79.3

(Shl) Shrublands 3715 1587 3007 115,688 9356 938 160 105 301 2450 180 2154 7 139,649 17.2 82.8

(Grl) Grasslands 504 678 429 13,544 86,142 1135 39 18 824 8148 224 1252 11 112,948 23.7 76.3

(BrS) Bare soils 64 54 52 488 1214 3545 78 0 58 625 23 67 0 6268 43.4 56.6

(Urb) Urban areas and Infrastructures 1 3 0 66 53 57 2802 7 48 300 57 112 1 3507 20.1 79.9

(WaB) Water bodies 1 10 0 5 9 2 0 1488 1 22 0 4 0 1543 3.5 96.5

(IHC) Irrigated herbaceous crops 17 184 3 424 868 155 145 13 37,114 5524 1526 825 304 47,100 21.2 78.8

(DHC) Dry herbaceous crops 55 51 43 1647 1853 636 293 82 6709 175,596 984 2764 17 190,729 7.9 92.1

(IWC) Irrigated woody crops 26 146 12 274 231 101 226 12 2154 921 9841 4011 27 17,982 45.3 54.7

(DWC) Dry woody crops 99 11 22 1614 545 124 368 26 967 2748 3098 29,232 12 38,866 24.8 75.2

(RiC) Rice crops 5 11 0 20 12 1 6 4 667 34 10 2 1494 2267 34.1 65.9

NoData 31 120 51 84 111 149 0 0 0 0 0 0 0 547

Total 62,110 73,049 66,739 144,748 102,552 7077 4153 1817 49,057 196,793 16,021 40,479 1875 766,469 OA = 83.8%

OE (%) 18.0 7.3 9.1 20.1 16.0 49.9 32.5 18.1 24.3 10.8 38.6 27.8 20.3 OAw = 88.6%

PA (%) 82.0 92.7 90.9 79.9 84.0 50.1 67.5 81.9 75.7 89.2 61.4 72.2 79.7 k = 0.7

OE: omission error, CE: commission error, PA: producer’s accuracy, UA: user’s accuracy, k: kappa index of agreement, OA: overall accuracy, OAw: overall accuracy weighted by the ground truth area considering
only classified pixels (unclassified pixels are not considered errors and are solved by spatial proximity). Figures in bold represent positions where the predicted label is equal to the true label.
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Table 3. Confusion matrix results derived from filtered ground truth samples from SIOSE 2005 rDS and imagery for LCM-2002.

Filtered Ground Truth Samples
Classified Map

CoF BDF BEF Shl Grl BrS Urb WaB IHC DHC IWC DWC RiC
Total CE (%) UA (%)

(CoF) Coniferous forest 46,959 226 525 311 222 0 0 0 3 4 4 0 0 48,254 2.7 97.3

(BDF) Broadleaf deciduous forest 388 83,499 330 55 906 0 0 0 94 0 33 0 0 85,306 2.1 97.9

(BEF) Broadleaf evergreen forest 4891 934 52,718 3278 300 0 0 0 7 17 13 0 0 62,157 15.2 84.8

(Shl) Shrublands 1634 311 1889 115,291 6468 97 39 0 15 410 337 1178 0 127,670 9.7 90.3

(Grl) Grasslands 48 342 18 4281 84,012 32 13 0 66 3616 14 1481 0 93,924 10.6 89.4

(BrS) Bare soils 0 0 0 16 33 10,379 494 0 0 1711 0 60 0 12,692 18.2 81.8

(Urb) Urban areas and Infrastructures 0 0 0 4 1 79 5678 0 0 220 1 133 0 6117 7.2 92.8

(WaB) Water bodies 0 0 0 0 0 0 0 1578 0 0 0 0 0 1578 0.0 100.0

(IHC) Irrigated herbaceous crops 2 84 0 15 134 0 0 0 27,676 181 507 0 5 28,603 3.2 96.8

(DHC) Dry herbaceous crops 0 0 0 57 624 874 759 0 23 189,497 13 1344 0 193,191 1.9 98.1

(IWC) Irrigated woody crops 16 277 18 232 296 0 18 0 1640 183 25,474 90 0 28,244 9.8 90.2

(DWC) Dry woody crops 1 0 0 1422 1208 333 0 0 9 5266 96 68,756 0 77,090 10.8 89.2

(RiC) Rice crops 0 0 0 0 0 0 0 0 201 0 0 0 958 1159 17.3 82.7

NoData 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 53,939 85,672 55,499 124,963 94,204 11,794 7002 1578 29,735 201,105 26,492 73,042 963 765,986 OA = 93.0%

OE (%) 12.9 2.5 5.0 7.7 10.8 12.0 18.9 0.0 6.9 5.8 3.8 5.9 0.5 OAw = 95.9%

PA (%) 87.1 97.5 95.0 92.3 89.2 88.0 81.1 100.0 93.1 94.2 96.2 94.1 99.5 k = 0.9

OE: omission error, CE: commission error, PA: producer’s accuracy, UA: user’s accuracy, k: kappa index of agreement, OA: overall accuracy, OAw: overall accuracy weighted by the ground truth area considering
only classified pixels (unclassified pixels are not considered errors and are solved by spatial proximity). Figures in bold represent positions where the predicted label is equal to the true label.
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Wilderness land cover categories (coniferous forest, broadleaf evergreen forest, broadleaf
deciduous forest, shrublands, grasslands and bare soils) showed a clear reduction in both OE and
CE. This pattern was expected due to the more stable phenological patterns in wilderness
categories and the effect of minor inter-annual time problems. The coniferous forest showed
errors associated mainly with broadleaf evergreen forest, shrublands, and, to a lesser extent,
broadleaf deciduous forest. The application of Rules 1 and 2 reduced the scale errors (the
association of forest with the shrubland, grassland, and bare soil categories) and intra-annual
errors (disturbance events), while Rule 4 served to exclude labelling misassignments
(coniferous polygons mislabelled as deciduous forest). This led to a reduction in OE from
18.0% to 12.9% and in CE from 7.3% to 2.7%. However, the OE for coniferous forest and
broadleaf evergreen forest remained, which shows that a mixture of the two categories in
filtered TTA remains to a certain extent.

Broadleaf deciduous forest errors were associated with broadleaf evergreen forest and
shrublands. Rules 1 and 2 were helpful for reducing the scale errors, and Rule 4 made
it possible to exclude temporal responses without trend NDVI temporal patterns. This
reduced the OE from 7.3% to 2.5% and the CE from 8.0% to 2.1%. Broadleaf evergreen forest
errors were mainly related to shrublands and broadleaf deciduous forest. Rules 1 and 2 served
to reduce the scale errors, and Rule 4 helped exclude deciduous patterns. When the filtering
rules were applied, the confusion matrices reported that the OE dropped from 9.1% to 5.0%
and the CE from 20.7% to 15.2%.

Shrublands were confused mainly with grasslands and broadleaf evergreen forest, dry
herbaceous and dry woody crops. Confusion matrices revealed a decline in the OE from 20.1%
to 7.7% and in the CE from 17.2% to 9.7%. Shrublands are characterized by high intraclass
variability in the study context. The rules aim to capture the intraclass variability with
Rules 1 and 2 and limit the NDVI temporal gradient with Rule 4, excluding deciduous
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patterns associated with grasslands or deciduous forest species. Once the rules have been
applied, there is still confusions with dry woody crops. Grasslands were confused mainly
with shrublands, dry herbaceous crops, and dry woody crops. The confusion matrices revealed
a reduction in the OE from 16.0% to 10.8% and in CE from 23.7% to 10.6%. Rules applied to
grasslands were defined to capture humid and dry phenological patterns separately, where
Rules 1 and 2 capture a wide range of variation and Rules 4 and 5 serve to define NDVI
gradients and restrictions of phenological moments. Nevertheless, after the rules have
been applied, there are still some confusions with the dry woody crop category.

The bare soils category was confused mainly with grasslands, dry herbaceous crops and
dry woody crops. Rules 1 and 2 were applied to capture low NDVI responses, and Rule 4 to
restrict the steady NDVI gradient. Confusion matrices showed a significant drop in the
OE from 49.9% to 12.0% and in the CE from 43.4% to 18.2%. Urban areas and infrastructures
were confused with bare soils and dry herbaceous crops. Confusion matrices showed a drop
in the OE from 32.5% to 18.9% and in the CE from 20.1% to 7.2%. The water bodies category
was confused with several categories, but due to their characteristic shortwave infrared
absorption and negative NDVI values, Rule 2 was sufficient for filtering this category
correctly. The OE dropped from 18.1% to 0.0% and the CE from 3.5% to 0.0%.

Irrigated herbaceous crops were confused mainly with dry herbaceous crops and irrigated
woody crops. Error related to dry crops was associated with the inter-annual time difference
between the rDS and the imagery date, so that the phenological patterns of the winter
crops and summer crops are mixed in the polygons. Once pixels with the dry patterns
were decreased using Rule 4, the OE dropped from 24.3% to 6.9% and the CE from 21.2%
to 3.2%. Resolving this inconsistency in irrigated herbaceous crops also had an effect on
the accuracy of classifying dry herbaceous crops. Dry herbaceous crops were confused with
irrigated herbaceous crops and grasslands and to a lesser extent with dry woody crops. Once
the inconsistencies with irrigated crops were decreased by using Rule 4, the OE dropped
from 10.8% to 5.8% and the CE from 7.9% to 1.9%. Rice crop confusion errors were related
to irrigated herbaceous crops, which share common phenological patterns (positive NDVI
gradient and high photosynthetic activity). The OE dropped from 20.3% to 0.5%, while the
CE decreased from 34.1% to 17.3%.

Irrigated woody crops and dry woody crops are characterised by mixtures of different
photosynthetic activities and soil contributions in crop fields. Based on the proxy of the
photosynthetic activity, Rule 3 aimed to bring order to the greenness level achieved in
different types of woody crops. This strategy excluded new plantations or even cases of
irrigation plans not established on the imagery date. The OE associated with irrigated woody
crops dropped from 38.6% to 3.8%, and dry woody crops did the same from 27.8% to 5.9%.
The CE dropped from 45.3% to 9.8% for irrigated woody crops and from 24.8% to 10.8% for
dry woody crops. The figures show a reduction in confusion with categories other than
woody crops but an increase in the commission error with shrublands and grasslands, which
to a certain extent share common patterns with the spectral variability of dry woody crops.

The LCM-1987 and LCM-2017 were derived considering GT samples generated from
the SIOSE 2005 rDS. The results in the confusion matrices depicted a similar reduction in
OE and CE in the categories, and more significantly in crop categories. The LCM-1987
overall accuracy (OA) using unfiltered TTA was 77.5% and it was 92.5% when filtered TTA
was considered. For LCM-2017, the overall accuracy (OA) using unfiltered TTA was 78.7%
and 93.4% using filtered TTA. When unfiltered TTA was used, the OA in both classifications
was lower than that obtained in LCM-2002, which is related to the temporal lag between
the imagery and rDS. However, all three classifications depicted a similar OA, of around
93.0%, when filtered TTA was used.

In the additional temporal test, we evaluated the performance of the rules by using the
SIOSE 2011 as a new rDS. A new set of unfiltered and filtered TTA was used with imagery
contemporary to SIOSE 2011 to generate LCM-2012. The results showed an OA of 85.6%
considering unfiltered TTA and 94.2% when filtered TTA was used. A reduction in OE and
CE was observed in all categories, and was more significant in agriculture categories in
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accordance with the previously observed pattern. The OA in LCM-2012 was higher than the
OA obtained in LCM-2002. This could be related to the imagery dates selected with respect
to the rDS reference date. For LCM-2012, the selected images were contemporaneous
or later than those of the SIOSE 2011 reference date, while for LCM-2002, they were all
previous to the SIOSE 2005. The results showed a lower temporal repercussion of filtering
when imagery dates were contemporaneous or as near to the rDS selected as possible.
In the case of the spatial test, rules were evaluated in the southern scenes comparing
LCM-2002 confusion matrices without and with rules application. The results showed
an OA of 85.1% considering unfiltered TTA and 92.3% when were filtered. Again, crops
categories denoted a higher reduction in OE and CE in accordance with previous results.

6. Discussion

Collecting precise GT samples is a prerequisite for performing accurate supervised
classifications. Insufficient and unrepresentative reference samples were recognised as the
primary source of errors [50,100]. Despite the substantial progress in LCM production,
the lack of an accurate and representative number of GT samples is still a challenge [101].
On most occasions, the origin and quality of the GT used during the classification process
are not explained or are only mentioned briefly [52,102]. Usually, to derive robust GT
samples, pre-existing reference datasets (rDS) are used as a source of information instead of
field work [54]. However, from an extended multitemporal analysis, the lack of temporal
continuity (due to budget or investment reductions or even a decrease in interest in updates)
limits the rDS to specific dates, leading to temporal lags between the rDS and imagery
dates. Furthermore, error always exists in rDS, and the repercussions are intensified as the
temporal extent increases.

In this study, a large number of GT samples were extracted from the SIOSE dataset,
over which filtering rules were applied to update pixel labelling to the imagery date, di-
minishing error inconsistencies during the classification. The concatenation of the rules
adjusted for each thematic category allowed us to control quality and the updating of
the original pixel assignation to the target imagery date. The filtering rules were help-
ful for reducing inter-annual (time lags), intra-annual (disturbances), scale (associations
of several land covers in polygons), and labelling (misassignments) inconsistencies in
filtered GT samples.

There was a significant decrease in errors in wilderness categories, but there was a
greater decrease in agricultural categories (Figure 18). These results were expected due
to the inner dynamics of crop categories, which are more affected by the inter-annual
time problem that impacts large areas (i.e., a higher number of pixels involved), and the
more stable temporal behaviour of wilderness categories. Crop phenology complexity
implies that two neighbouring crop fields can be in very different phenological stages
(active crops or fallow) or belong to different categories (fallow land or winter crop patterns
within dry or irrigated herbaceous crops). Considering the four temporal cases and the
spatial case analysed, the wilderness categories showed an error reduction, on average, of
over 15.1 percentage points in OE and over 11.6 percentage points in the CE, whereas the
reduction in agricultural categories was over 19.4 percentage points and 21.3 percentage
points, respectively (Table 4).

From the rDS, GT candidate pixels of forest categories were initially associated er-
roneously with shrublands, grasslands, or bare soils due to the scale error problem and the
scarceness of pure polygons. Rules 1 and 2 showed their effectiveness for selecting the
most active positions (forests) in tiles on all the dates considered, excluding low NDVI
responses associated with shrublands, grasslands and bare soils, and any disturbance event
affecting the candidate pixels within the intra-annual period considered (Figure 16A).
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Table 4. Summary statistics of the confusion matrices considering unfiltered and filtered GT samples derived from SIOSE
2005 and 2011 in three temporal cases and one spatial case.

LCM-1987 LCM-2012 LCM-2017 LCM-2002 *

OE (%) CE (%) OE (%) CE (%) OE (%) CE (%) OE (%) CE (%)

uf. f. uf. f. uf. f. uf. f. uf. f. uf. f. uf. f. uf. f.

CoF 22.9 16.8 18.8 8.7 12.0 10.0 5.3 2.1 17.9 11.5 11.1 3.5 13.5 7.4 15.2 6.1

BDF 25.0 3.8 21.2 2.8 5.2 2.6 7.1 1.4 21.1 2.6 14.2 3.3 22.2 6.9 26.1 15.3

BEF 10.3 5.8 25.5 16.0 7.5 3.3 15.7 13.5 9.8 3.3 19.9 13.4 15.3 6.6 18.3 11.6

Shl 36.6 5.4 20.7 9.3 17.4 4.7 17.7 5.9 41.5 6.0 25.1 6.2 49.2 30.6 33.1 16.7

Grl 26.3 12.9 23.5 11.2 16.2 7.1 20.5 8.8 19.6 9.2 24.5 12.1 15.4 8.5 16.9 9.8

BrS 45.1 9.3 40.3 12.2 47.5 13.9 32.4 18.5 51.2 6.3 41.9 22.2 49.2 19.5 41.9 19.9

Urb 56.0 10.4 15.3 19.4 19.6 12.3 10.4 6.0 27.1 8.6 15.2 26.7 46.4 38.2 30.5 14.2

WaB 21.8 0.0 3.3 0.0 3.9 0.2 2.5 0.0 5.3 0.0 4.1 0.0 13.7 0 6.4 0

IHC 31.5 7.3 23.7 6.4 19.0 2.6 23.8 4.9 29.2 2.9 32.1 6.3 17.5 0.7 20.8 1.3

DHC 16.4 6.8 11.2 1.4 11.1 5.1 6.8 1.3 15.0 5.1 8.8 1.4 9.5 6.9 4.2 1.6

IWC 37.7 7.4 50.6 13.5 34.8 12.2 40.4 6.5 42.0 14.9 48.9 5.9 40.2 2.6 60.4 3.4

DWC 15.2 4.8 28.2 10.7 34.5 4.6 25.1 16.0 20.2 17.8 28.3 15.4 12.8 2.6 15.6 12.6

RiC 66.7 0.0 59.8 0.0 18.8 5.0 17.8 1.6 13.4 7.1 43.5 17.6 – – – –

OA 77.5 92.5 85.6 94.2 78.7 93.4 85.1 92.3

K 0.7 0.9 0.8 0.9 0.7 0.9 0.8 0.9

OA = Overall accuracy, OE = omission error, PA = producer accuracy, CE = commission error, UA = user accuracy, K = Kappa statistic,
uf. = unfiltered GT samples, f. = filtered GT samples. LCM-2002 * refers to spatial test assessed in the southern scenes (200-032 and 200-033).

In addition, these two rules used together provide interesting utilities when forested
areas have a discontinuous or sparse distribution (e.g., in open woodlands, such as dehesa).
The map producer can establish an NDVI minimum threshold (using Rule 2) over which
a forest category can be defined, considering the lower values as previous successional
stages (shrublands or grasslands) towards the forest categories. This approach has a crucial
significance during LCM production and its related time-series change analysis because
the classified categories (and the land cover dynamics) have been coherently derived.
Rule 4 was also helpful for reducing the labelling misassignment errors in categories with
contrasting phenological patterns (e.g., between evergreen and deciduous forest categories)
(Figure 16B). It is worth noting that this rule applied to evergreen forest polygons led
to better discrimination between sclerophyllous deciduous species (e.g., Quercus faginea,
Q. pyrenaica) and sclerophyllous evergreen species (e.g., Quercus ilex) in the study area. Er-
rors in polygon labelling were detected in rDS, which is understandable due to difficulties
in differentiating between the textures of sclerophyllous species during photointerpretation
tasks. It could be of interest to discriminate between deciduous and evergreen sclerophyl-
lous species when species transitions, adaptation and plasticity are evaluated in a context
of global change.

Grasslands and shrublands are categories closely related in the study area and coexist in
very different bioclimatic regions. Broad climatic conditions lead to high intraclass variabil-
ity, spanning from the humid North-Atlantic to the dry Mediterranean bioclimatic regions.
The high-class variability could lead to a coexistence of categories under climatic conditions
and other dynamics related to ecological succession processes (e.g., new forest plantation
areas, the tree line afforestation and field abandonment), enhanced by the inter-annual
time problem. The rules applied to shrublands aim to capture this intraclass variability by
considering a wide range of variation in thresholds with Rules 1 and 2 as well as limiting
the NDVI temporal gradient with Rule 4, excluding deciduous patterns associated with
grasslands and deciduous forest species. However, these rules cannot differentiate succes-
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sional transitions at the limit towards the evergreen forest. In grasslands, the rules were
defined to capture humid North-Atlantic and dry Mediterranean phenological patterns
separately, where Rule 1 and 2 captured a wide range of variation and Rule 4 and 5 served
to define NDVI gradients and phenological time restrictions.

Bare soils represent the lower NDVI responses in wilderness categories but were
typically confused with urban areas and infrastructures or crop categories, with a high soil
contribution in the NDVI signal. Rules 1 and 2 were used to extract the lower NDVI
responses, and Rule 4 to limit contrasting phenological patterns (mainly exclusion of
grasslands). Confusion errors between dry herbaceous crops and dry woody crops remained
after the filtering rules were applied, explained by the soil spectral influence during crop
harvesting or fallow periods in dry conditions. In the case of urban areas and infrastructures,
errors remained in association with bare soils and dry herbaceous crops because of their
spectral similarity and soil influence in crop categories. Rule 2 and Rule 4 were applied to
restrict the NDVI values and phenological contrast, respectively, which made it possible to
exclude vegetated areas in urban areas or even industrial polygons defined in rDS but not
built at the imagery date (urban expansion).

Irrigated herbaceous crops are a heterogeneous category with multiple phenological
behaviours (e.g., fallows, winter crops, perennial crops, double crops and summer crops)
coexisting within polygons. The main errors were related to inter-annual time issues as
irrigation plan transformations that have occurred periodically, mixing irrigated and dry
crop patterns in the same polygon (Figure 17C). The irrigation conversion identified in
SIOSE 2005 rDS was consolidated in LCM-2017 but not in LCM-2002 and LCM-1987. In
this sense, rule 4 was crucial for discriminating between irrigated (positive NDVI gradient)
and dry (negative NDVI gradient) herbaceous crops in the LCM and could contribute
also to examining agricultural land fragmentation, identifying the number of parcels per
holding and evaluating land consolidation policies over time. The application of rules
also contributed to better identifying the boundaries of land parcels, more significantly in
irrigated areas, where the multiplicity of phenological behaviours predominates.

Rice crops were mainly confused with irrigated herbaceous crops. Due to their characteris-
tic phenological evolution during the growing season, the rules (mainly 2, 4 and 5) allowed
us to capture rice crop phenology, reducing almost any confusion with other categories. On
the other hand, dry herbaceous crops showed a lower variety of phenological responses (e.g.,
winter crops, fallows) being the main errors related to irrigated herbaceous crops, grasslands
and, to a lesser extent, to dry woody crops. Rule 4 was crucial for characterising its negative
temporal gradient in active crops or almost steady temporal pattern in fallows.

Irrigated woody crops and dry woody crops showed inconsistencies related to the labelling
misassignments in polygons. Since the SIOSE rDS uses complementary cadastral informa-
tion to define woody crop categories, the two regimes can coexist within polygons. Visual
inspection of orthophotography made it possible to identify different crop stages. Thus,
new plantation fields coexisted with older and consolidated fields, besides the variety in
plantation frames (traditional, intensive or superintensive, in most cases accompanied by
irrigation ponds) in irrigated olive or vineyard crop fields. Rule 3 was used to discriminate
between areas (Figure 17D) with a total photosynthetic activity for ‘n’ dates over or under
a threshold, which is a value adjusted to the woody crop type. The additive effect of the
sum of NDVI responses allowed a better threshold definition and avoided selecting a
specific date in the growing season to establish the limit. Rule 2 was used to define the
woody crop range of variation allowed, especially to establish the minimum NDVI whereas
Rule 5 was used as an auxiliary rule when NDVI thresholds were defined in phenological
moments. Therefore, the initial confusion between dry woody crops and irrigated woody crops
was considerably decreased after the rules were applied. However, there remained CE
with dry herbaceous crops, shrublands and grasslands, which shows that some mixtures with
these categories were produced, and rules should be adjusted thoroughly, if possible. Nev-
ertheless, there was a large reduction in confusion between categories, ensuring category
consistency in land-cover time-series change analyses.
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7. Limitations and Future Research

The SIOSE dataset provides high-quality information for the Spanish territory. Thus,
it is a source of a large number of candidate pixels that can be updated by applying
filtering rules to the imagery date. However, filtering rules in a context of high intraclass
variability can eliminate some part of the class variability. In this sense, some studies
suggest the possibility of dividing the territory into more homogenous bioclimatic regions
or spatial stratification based on bioclimatic characteristics [103]. Dividing the territory
into homogeneous eco-climatic regions would make it possible to adjust filtering rules
more accurately and improve the final map accuracy since intraclass variability would be
reduced. This approach is attractive in the context of a large-area classification but requires
reference data for each region (stratum). In this context, filtering rules can be used to derive
robust stratum GT based on expert knowledge of established biogeographic regions.

After applying the filtering rules, shrublands and grasslands showed a general decrease
in confusion with other categories, but there were still errors between them, which can
be explained by their high intraclass variability. However, CE increased with dry woody
crops, which can be related to the phenological and the spectral similarity between them
and shrublands/pastures with high intraclass variability. The filtering rules had also some
limitations when coniferous and sclerophyllous forest categories were discriminated. New
strategies for researching evergreen mixed forest associations are necessary when there is a
lack of phenological contrast. When the OE of coniferous and evergreen forest in LCM-2002
was examined, error locations were detected within coniferous plantation polygons. Clear-
cutting practices are carried out periodically in forest plantations. Therefore, depending on
the time lag between the clear-cutting and the imagery date, coniferous GT pixels were in a
successional stage between shrublands and coniferous forest, with an NDVI signal that
was classified as broadleaf evergreen forest. At the same time, the application of the rules
reduced the confusion of dry herbaceous crops with irrigated herbaceous crops but the mix
up remained with grasslands, whereas errors with bare soils and dry woody crops increased
slightly in relation to the soil contribution during harvesting or fallow periods.

Through the temporal and spatial sensitivity analysis performed, we have obtained
robust results, clearly showing the goodness to apply a set of filtering rules to improve the
GT samples quality. This methodology could be broadly extended and applied using other
remote sensing images (at coarse, medium or high-resolution) providing vegetation indices.
As a future research, we will investigate the application of this framework of filtering rules
using other vegetation indices such as SAVI or EVI, among others.

8. Conclusions

The research objective in this paper was to propose and demonstrate the applicability
of a set of filtering rules to control the quality of GT samples derived from an rDS, the
SIOSE dataset in this study. We firstly identified errors in the GT samples associated with
various issues: the inter-annual time difference between imagery and the rDS dates; the
intra-annual time variability within the imagery dates; the scale problem related to the
rDS scale and imagery resolution compatibility; the existence of multiple behaviours in
rDS polygons; and, finally, labelling misassignments. Secondly, to deal with the error
sources, we designed and applied a framework of filtering rules using the NDVI to reduce
inconsistencies, adapting GT samples to the target imagery date. Thirdly, unfiltered and
filtered sets of GT samples were used to derive LCM classifications for evaluating the
performance of the filtering rules in four temporal study cases: LCM-1987, LCM-2002
and LCM-2017 considering SIOSE 2005, and LCM-2012 considering the SIOSE 2011 as
an additional rDS. An additional spatial case was evaluated for LCM-2002 located in the
southern scenes considering SIOSE 2005 as rDS.

There are several main conclusions: (i) the results of the confusion matrices in the
five study cases yielded, on average, an increase in the overall accuracy of 10.9 percentage
points, with a reduction in the omission error of 16.8 percent points and in the commission
error of 14.0 percent points. Filtered GT samples depicted a clear reduction in the com-
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mission and omission errors. The thirteen categories showed a decrease in error, which
was more remarkable in agriculture categories due to their spatial heterogeneity and
higher temporal sensitivity to the time lag between rDS and imagery dates compared
to wilderness categories. Only a slight increase in the commission error of dry woody
crops with first stages of the natural succession categories was detected. (ii) Filtering rules
can be formulated to characterise the phenology of the categories, which is the basis for
reducing the confusion between classes. Rule 1 together with Rule 2 effectively prevented
scale and intra-annual time errors in wilderness categories. These rules made it possible
to extract pixels in tiles with the maximum NDVI response and also restrict minimum
NDVI values in the series. These two rules together are a decisive strategy for filtering
candidate pixels and avoiding intra-annual time events (e.g., fire disturbances, forestry
management practices) affecting wilderness categories in the target time. Rule 2 was useful
for defining the NDVI range of variation values over which the categories vary. Rule 3
effectively avoided labelling misassignments in woody crop categories. This rule is helpful
for discriminating multiple behaviours in irrigated woody crops, keeping pixels with the
higher photosynthetic activity in the same class while reassigning samples with lower
values to the dry woody crop category. Rule 4 allowed the temporal NDVI gradient to
be characterised, avoiding mixtures of categories with contrasting temporal gradients
(evergreen and deciduous forests, summer and winter crops). This rule prevented labelling
misassignments in herbaceous crops where dry and irrigated phenological patterns coexist,
and even more so in areas where irrigation planning changed over time. The rule also
allowed distinguishing between deciduous and evergreen patterns in forest categories. Fi-
nally, Rule 5 served as an auxiliary rule when the phenology made it necessary to establish
specific thresholds at certain phenological moments. This rule enables binary comparisons
between dates and establishing a threshold value for specific moments.

In short, ideally, a good design of the classes would avoid or reduce the need of
their quality control, but in most cases, reliable GT samples are not available, and some
control of the quality should be applied. rDS availability is restricted and limited to
specific reference dates. In cases of no temporal continuity or the lack of availability of an
rDS on the map producer’s date of interest, it is necessary to filter the samples extracted
from the rDS, which is always discontinuous in time, from a past or future target time.
Otherwise, erroneous GT samples will be included in the classification procedure and, as a
consequence, LCM production for each date and also the derived time-series products will
be much more unreliable.

Supplementary Materials: The following are available online at https://www.mdpi.com/article
/10.3390/rs13142662/s1, Table S1: rDS examples in different geographic ambits, and at different
thematic, spatial and temporal resolutions; Table S2: Details of the imagery considered for each
LCM; Table S3: Examples of SQL queries for forest category polygon extraction of forest categories;
Table S4: Parametrisation of rule statements defined for each category and geographical context;
Table S5: Confusion matrix without the application of filtering rules. SIOSE 2005 rDS ground truth
samples and LCM-1987 imagery; Table S6: Confusion matrix with the application of filtering rules.
SIOSE 2005 rDS ground truth samples and LCM-1987 imagery; Table S7: Confusion matrix without
the application of filtering rules. SIOSE 2005 rDS ground truth samples and LCM-2002 imagery;
Table S8: Confusion matrix with the application of filtering rules. SIOSE 2005 rDS ground truth
samples and LCM-2002 imagery; Table S9: Confusion matrix without the application of filtering
rules. SIOSE 2005 rDS ground truth samples and LCM-2017 imagery; Table S10: Confusion matrix
with the application of filtering rules. SIOSE 2005 rDS ground truth samples and LCM-2017 imagery;
Table S11: Confusion matrix without the application of filtering rules. SIOSE 2011 rDS ground
truth samples and LCM-2012 imagery; Table S12: Confusion matrix with the application of filtering
rules. SIOSE 2011 rDS ground truth samples and LCM-2012 imagery; Table S13: Confusion matrix
without the application of filtering rules. SIOSE 2005 rDS ground truth samples and LCM-2002
imagery (scenes 200-032–200-033); Table S14: Confusion matrix with the application of filtering rules.
SIOSE 2005 rDS ground truth samples and LCM-2002 imagery (scenes 200-032–200-033); Figure S1:
The temporal relative frequency distribution of the NDVI evaluated for each category; Figure S2:
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Classification results considering unfiltered and filtered GT samples from SIOSE 2005 (LCM-1987,
LCM-2002 and 2017), and SIOSE 2011 (LCM-2012).

Author Contributions: Conceptualisation, M.P.-I., P.S., X.P., M.N.; writing—preparation of original
draft, M.P.-I. and P.S.; writing—review and editing, M.P.-I., P.S., M.N., X.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Spanish Ministry of Science and Innovation and Universi-
ties (MCIU) [grant number BES-2016-078262]. This work has been partially funded by the Spanish
MCIU Ministry through the NEWFORLAND research project (RTI2018-099397-B-C21 MCIU/AEI/
ERDF, EU). Xavier Pons is the recipient of an ICREA Academia Excellence in Research Grant.

Acknowledgments: Some of our colleagues at the Grumets Research Group gave useful insights for
this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Peraza-Castro, M.; Ruiz-Romera, E.; Meaurio, M.; Sauvage, S.; Sánchez-Pérez, J.M. Modelling the impact of climate and land

cover change on hydrology and water quality in a forest watershed in the Basque Country (Northern Spain). Ecol. Eng. 2018, 122,
315–326. [CrossRef]

2. Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; et al. Land
use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resour. Res. 2017,
53, 5209–5219. [CrossRef] [PubMed]

3. Biro, K.; Pradhan, B.; Buchroithner, M.; Makeschin, F. Land Use/Land Cover Change Analysis And Its Impact On Soil Properties
In The Northern Part Of Gadarif Region, Sudan. Land Degrad. Dev. 2013, 24, 90–102. [CrossRef]

4. Abd El-Kawy, O.R.; Rød, J.K.; Ismail, H.A.; Suliman, A.S. Land use and land cover change detection in the western Nile delta of
Egypt using remote sensing data. Appl. Geogr. 2011, 31, 483–494. [CrossRef]

5. Rodríguez-Rodríguez, D.; Martínez-Vega, J.; Echavarría, P. A twenty year GIS-based assessment of environmental sustainability
of land use changes in and around protected areas of a fast developing country: Spain. Int. J. Appl. Earth Obs. Geoinf. 2019, 74,
169–179. [CrossRef]

6. Heidrich, O.; Reckien, D.; Olazabal, M.; Foley, A.; Salvia, M.; de Gregorio Hurtado, S.; Orru, H.; Flacke, J.; Geneletti, D.;
Pietrapertosa, F.; et al. National climate policies across Europe and their impacts on cities strategies. J. Environ. Manag. 2016, 168,
36–45. [CrossRef] [PubMed]

7. Reckien, D.; Salvia, M.; Heidrich, O.; Church, J.M.; Pietrapertosa, F.; De Gregorio-Hurtado, S.; D’Alonzo, V.; Foley, A.; Simoes, S.G.;
Krkoška Lorencová, E.; et al. How are cities planning to respond to climate change? Assessment of local climate plans from 885
cities in the EU-28. J. Clean. Prod. 2018, 191, 207–219. [CrossRef]

8. Estrela, T.; Sancho, T.A. Drought management policies in Spain and the european union: From traditional emergency actions to
drought management plans. Water Policy 2016, 18, 153–176. [CrossRef]

9. Colwell, R.N. (Ed.) Manual for Photographic Interpretation; The American Society of Photogrammetry: Washington, DC, USA, 1960.
10. Cihlar, J. Land cover mapping of large areas from satellites: Status and research priorities. Int. J. Remote Sens. 2000, 21, 1093–1114.

[CrossRef]
11. Aplin, P. Remote sensing: Land cover. Prog. Phys. Geogr. 2004, 28, 283–293. [CrossRef]
12. Lambin, E.F.; Helmut, G. Land-Use and Land-Cover Change: Local Processes and Global Impacts; Springer: Berlin, Germany; New

York, NY, USA, 2006; ISBN 978-3-540-32201-6.
13. Calderón-Loor, M.; Hadjikakou, M.; Bryan, B.A. High-resolution wall-to-wall land-cover mapping and land change assessment

for Australia from 1985 to 2015. Remote Sens. Environ. 2021, 252, 112148. [CrossRef]
14. Pan, D.; Domon, G.; De Blois, S.; Bouchard, A. Temporal (1958–1993) and spatial patterns of land use changes in Haut-Saint-

Laurent (Quebec, Canada) and their relation to landscape physical attributes. Landsc. Ecol. 1999, 14, 35–52. [CrossRef]
15. Chen, Y.; Zhang, X.; Fang, G.; Li, Z.; Wang, F.; Qin, J.; Sun, F. Potential risks and challenges of climate change in the arid region of

northwestern China. Reg. Sustain. 2020, 1, 20–30. [CrossRef]
16. Mishra, P.K.; Rai, A.; Rai, S.C. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya,

India. Egypt. J. Remote Sens. Space Sci. 2020, 23, 133–143. [CrossRef]
17. Azimi Sardari, M.R.; Bazrafshan, O.; Panagopoulos, T.; Sardooi, E.R. Modeling the Impact of Climate Change and Land Use

Change Scenarios on Soil Erosion at the Minab Dam Watershed. Sustainability 2019, 11, 3353. [CrossRef]
18. Serneels, S.; Lambin, E.F. Impact of land-use changes on the wildebeest migration in the northern part of the Serengeti-Mara

ecosystem. J. Biogeogr. 2001, 28, 391–407. [CrossRef]
19. Laney, R.M. A process-led approach to modeling land change in agricultural landscapes: A case study from Madagascar. Agric.

Ecosyst. Environ. 2004, 101, 135–153. [CrossRef]
20. Crews-Meyer, K.A. Agricultural landscape change and stability in northeast Thailand: Historical patch-level analysis. Agric.

Ecosyst. Environ. 2004, 101, 155–169. [CrossRef]

http://doi.org/10.1016/j.ecoleng.2018.07.016
http://doi.org/10.1002/2017WR020723
http://www.ncbi.nlm.nih.gov/pubmed/28919651
http://doi.org/10.1002/ldr.1116
http://doi.org/10.1016/j.apgeog.2010.10.012
http://doi.org/10.1016/j.jag.2018.08.006
http://doi.org/10.1016/j.jenvman.2015.11.043
http://www.ncbi.nlm.nih.gov/pubmed/26696604
http://doi.org/10.1016/j.jclepro.2018.03.220
http://doi.org/10.2166/wp.2016.018
http://doi.org/10.1080/014311600210092
http://doi.org/10.1191/0309133304pp413pr
http://doi.org/10.1016/j.rse.2020.112148
http://doi.org/10.1023/A:1008022028804
http://doi.org/10.1016/j.regsus.2020.06.003
http://doi.org/10.1016/j.ejrs.2019.02.001
http://doi.org/10.3390/su11123353
http://doi.org/10.1046/j.1365-2699.2001.00557.x
http://doi.org/10.1016/j.agee.2003.09.004
http://doi.org/10.1016/j.agee.2003.09.024


Remote Sens. 2021, 13, 2662 34 of 36

21. Gabiri, G.; Diekkrüger, B.; Näschen, K.; Leemhuis, C.; van der Linden, R.; Mwanjalolo Majaliwa, J.G.; Obando, J.A. Impact of
climate and land use/land cover change on thewater resources of a tropical inland valley catchment in Uganda, East Africa.
Climate 2020, 8, 83. [CrossRef]

22. Rogan, J.; Miller, J.; Stow, D.; Franklin, J.; Levien, L.; Fischer, C. Land-cover change monitoring with classification trees using
Landsat TM and ancillary data. Photogramm. Eng. Remote Sens. 2003, 69, 793–804. [CrossRef]

23. MacDonald, G.M. Water, climate change, and sustainability in the southwest. Proc. Natl. Acad. Sci. USA 2010, 107, 21256–21262.
[CrossRef]

24. Homer, C.G.; Huang, C.; Yang, L.; Wylie, B.K.; Coan, M. Development of a 2001 National Land Cover Database for the United
States. Photogramm. Eng. Remote Sens. 2004, 70, 829–840. [CrossRef]

25. Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and
monitoring of global land cover: First mapping results with Landsat TM and ETM + data. Int. J. Remote Sens. 2013, 34, 2607–2654.
[CrossRef]

26. Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from
1982 to 2016. Nature 2018, 560, 639–643. [CrossRef] [PubMed]

27. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.;
Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [CrossRef]
[PubMed]

28. Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J.
Photogramm. Remote Sens. 2016, 116, 55–72. [CrossRef]

29. Woodcock, C.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.; Helder, D.; Helmer, E.; et al.
Free Access to Landsat Imagery. Science 2008, 320, 1011. [CrossRef]

30. Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al.
Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [CrossRef]

31. Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the
science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [CrossRef]

32. Jutz, S.; Milagro-Pérez, M.P. Copernicus program. In Comprehensive Remote Sensing; Elsevier: Oxford, UK, 2017; Volume 1,
ISBN 9780128032206.

33. Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [CrossRef]
34. Saunier, S.; Beaton, A.; Lavender, S.; Galli, L.; Ferrara, R.; Mica, S.; Biasutti, R.; Goryl, P.; Gascon, F.; Meloni, M. Bulk processing of

the Landsat MSS/TM/ETM+ archive of the European Space Agency: An insight into the Level 1 MSS processing. In Proceedings
of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–14 September 2017; Bruzzone, L., Ed.; 2017;
Volume 10427, pp. 1–16. [CrossRef]

35. Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7,
3–10. [CrossRef]

36. Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020,
12, 3136. [CrossRef]

37. Tuia, D.; Camps-Valls, G. Recent advances in remote sensing image processing. Proc. Int. Conf. Image Process. ICIP 2009, 3705–3708.
[CrossRef]

38. Gómez, C.; Alejandro, P.; Hermosilla, T.; Montes, F.; Pascual, C.; Ruiz, L.A.; Álvarez-Taboada, F.; Tanase, M.; Valbuena, R. Remote
sensing for the Spanish forests in the 21st century: A review of advances, needs, and opportunities. For. Syst. 2019, 28, eR001.
[CrossRef]

39. Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote
Sens. Environ. 2014, 144, 152–171. [CrossRef]

40. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and
assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [CrossRef]

41. Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 2019, 231.
[CrossRef]

42. Millard, K.; Richardson, M. On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case
Study in Peatland Ecosystem Mapping. Remote Sens. 2015, 7, 8489–8515. [CrossRef]

43. Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs.
Appl. Geogr. 2011, 31, 533–544. [CrossRef]
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