

This is the **accepted version** of the article:

Valenciano, Alberto; Morales, Jorge; Azanza, Beatriz; [et al.]. «Aragonictis araid, gen. et sp. nov., a small-sized hypercarnivore (Carnivora, Mustelidae) from the late middle Miocene of the Iberian Peninsula (Spain)». Journal of vertebrate paleontology, (January 2022). DOI 10.1080/02724634.2021.2005615

This version is available at https://ddd.uab.cat/record/251463

under the terms of the **COBY-NC-ND** license

1	Aragonictis araid gen. et sp. nov., a small-sized hypercarnivore (Carnivora, Mustelidae)
2	from the late middle Miocene of the Iberian Peninsula (Spain)
3	
4	ALBERTO VALENCIANO, ^{1,*} , JORGE MORALES, ² BEATRIZ AZANZA, ¹ and
5	DANIEL DeMIGUEL ^{3,1,4}
6	
7	¹ Departamento de Ciencias de la Tierra, and Instituto Universitario de Investigación en
8	Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50009, Zaragoza,
9	Spain, <u>a.valenciano@unizar.es;</u> azanza@unizar.es;
10	² Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC. C/ José
11	Gutiérrez Abascal, 2, 28006, Madrid, Spain. mcnm166@mncn.csic.es;
12	³ ARAID foundation, 50018, Zaragoza, Spain, <u>demiguel@unizar.es;</u>
13	⁴ Institut Català de Paleontologia Miquel Crusafont, Universidad Autònoma de
14	Barcelona, Campus de la UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain.
15	
16	*Corresponding author
17	
18	RH: VALENCIANO ET AL.—A NEW SMALL MIDDLE MIOCENE MUSTELID
19	
20	ABSTRACT—Small to medium-sized mustelids from the last 18 million years
21	represent a heterogeneous group of carnivorans with a wide-ranging record in the
22	northern hemisphere. They were first referred to the genera Mustela and Martes, but
23	lately ascribed to the latter, and hence considered as the longest-lived genus within
24	Mustelidae. However, a great many of these forms have been based upon fragmentary
25	material and Martes has conformed progressively to a wastebasket nomen for species of

uncertain relationships. Here, we describe dentognathic material of a small-sized 26 27 mustelid from three middle Miocene (MN7+8, latest Aragonian) localities of the Iberian Peninsula that constitutes a new genus and species. Aragonictis araid gen. et sp. nov. 28 represents a distinct taxon if compared to early/middle Miocene forms ascribed to 29 "Martes" spp., especially the similar-sized early Miocene Circamustela? laevidens and 30 the middle Miocene "Martes" caedoti and "Martes" delphinensis. The finding of 31 particular features in A. araid (low p2-3, loss or reduction of the p4 accessory cuspid 32 with its main cuspid centrally located, presence of a sharp, beveled and lingually open 33 m1 talonid, and reduction of M1 lingual platform) indicates affinities with the late 34 Miocene Circamustela in the range of hypercarnivory. Our reassessment of "Martes" 35 36 indicates possible evidence of cladogenesis for Miocene mustelidae with, at least, two different events being recognized in Europe—the latter during MN7+8 to MN9 with 37 38 presence of Aragonictis and Circamustela. The finding of A. araid further confirms the presence of more densely forested environments than expected in inner Iberia during the 39 40 latest middle Miocene. 41 42 **INTRODUCTION** 43 Small to medium-sized mustelids from the early and middle Miocene are a 44 heterogeneous group of carnivorans with a wide-ranging record in Europe, Asia, and 45 North America (e.g., Baskin, 1998; Ginsburg, 1999; Peigné, 2012; Valenciano et al., 46 2020a). They were conventionally referred to both extant genera Mustela Linnaeus, 47 1758 (Mustelinae) and Martes Pinel, 1792 (Guloninae), albeit since the last century they 48 49 have been classified as Martes (Lartet, 1851; Depéret, 1887; Mayet, 1908; Hughes, 2012 and references herein). Accordingly, it represents the genus with the longest fossil 50

51 recor

record in Mustelidae with more than 18 million years of duration from its emergence

52 (e.g., Dehm, 1950; Ginsburg, 1999; Peigné, 2012; Hughes, 2012).

However, the classification of a great many of these fossil forms has been based 53 upon fragmentary or incomplete material and have numerous plesiomorphic 54 traits/convergences with Martes, which makes of this genus a wastebasket nomen for 55 various small mustelids of uncertain relationships (Werdelin and Peigné, 2010; Samuels 56 et al., 2018). It remains to be discussed whether these Miocene forms should be 57 assigned to Martes (e.g., Jiangzuo et al., 2021), and emerges as an urgent task to 58 perform a comparison with the type species of the genus. While some of these forms 59 60 have morphological features closely related to Guloninae, others could instead represent 61 stem groups outside of the crown clade Guloninae (Anderson, 1970, 1994; Sato et al., 2003; Wang et al., 2012; Li et al., 2014; Samuels and Calvin, 2013; Samuels et al., 62 63 2018). For instance, Anderson (1994) proposed Martes laevidens Dehm, 1950 from the early Miocene (MN3) of Wintershof-West (Germany) as the earliest member of the 64 65 genus, but such assignation to Martes has been recently discarded (Sato et al., 2003)though it is not fully discussed (as occur with the remaining European middle Miocene 66 67 species, Valenciano et al., 2020a). Within this complex scenario, it is debatable whether 68 the early late Miocene Martes melibulla Petter, 1963 from the Vallès-Penedès and Madrid basins (Spain) represents the first true Martes (Valenciano, 2017; Valenciano et 69 al., 2020a), or it is instead the late Pliocene Martes wenzensis Stach, 1959 from Weże 1 70 71 (Poland) (Sato et al., 2003). Unfortunately, this systematics issue is far to be fully clarified with the known mustelid material. 72

Herein, we report and describe new dentognathic remains of a small-sized
mustelid from three late middle Miocene Iberian localities (Aragonian, MN7+8, G3
local zone) (Fig. 1). This material greatly differs from that considered to date for *Martes*

and the other Miocene species included in the same genus. With the view to address this
challenge about this genus, the discovery of this new mustelid has the potential to shed
light on the obscure history and systematic intricacies of the genus *Martes*.

79

80 Geological Context and Age

We include material from the fossil sites of Andurriales and Toril 3A, which are 81 located in the Daroca area (province of Zaragoza, Spain) -one of the regions with the 82 highest concentration of mammalian fossil localities from Spain (Alcalá et al., 2000). 83 Both localities are magnetostratigraphically dated at 11.33 and 12.65 Ma, respectively, 84 85 hence belonging to local zone G3 (MN unit 7+8, upper Aragonian, middle Miocene) 86 (van Dam et al., 2014). The geology of the sites has been interpreted as an alluvial fan that alternate with lake deposits (Alcalá et al., 2000; Azanza et al., 2004; van Dam et al., 87 88 2014; Barasoain and Azanza, 2018). Toril 3A exhibit an exceptional and abundant fauna of vertebrates including amphibians, reptiles and birds, aquatic chelonians, small size 89 90 hornless ruminants, rhinos, cricetid species, and beavers, among others. This fauna reveals the existence of areas of permanent or temporary fresh water and humid 91 92 conditions (Azanza et al., 2004; DeMiguel et al., 2011). The locality of Escobosa de 93 Calatañazor locality is a karstic infilling placed in the northern border of the Almazán 94 Basin (province of Soria, Spain). The micromammal association is correlated with local zone G3 (as Nombrevilla 2), dated at 11.9 Ma (van Dam et al., 2014; Morales et al., 95 2018). 96

97

98

MATERIAL AND METHODS

99

100 Nomenclature and Measurements

101 Dental nomenclature follows Ginsburg (1999) and Smith and Dodson (2003).

Measurements were made using Mitutoyo Absolute digital caliper to the nearest 0.1mm.

104

105 Abbreviations

106 Institutional Abbreviations-SNSB-BSPG, Staatliche Naturwissenschaftliche 107 Sammlungen Bayerns - Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany; FMNH, Field Museum of Natural History Chicago, Illinois, USA; 108 IPS, collection of the Institut Català de Paleontologia Miquel Crusafont (ICP), 109 110 Universitat Autònoma de Barcelona, Spain; MGUV, Museu de Geologia de la 111 Universitat de València, Burjassot; MNCN, Museo Nacional de Ciencias Naturales, 112 Madrid, Spain; MNHN, Muséum national d'Histoire naturelle, Paris, France; MPZ, 113 collection of the Museo de Ciencias Naturales de la Universidad de Zaragoza (MCNUZ), Zaragoza, Spain; NMA, Naturmuseum Augsburg, Germany; NMB, 114 115 Naturhistorisches Museum Basel, Switzerland; PMU, Palaeontological Museum, 116 University of Uppsala, Uppsala, Sweeden; SMF, Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt, Germany; and UCBL-FSL, Université Claude Bernard Lyon 117 118 1 Lyon, France. Other Abbreviations—c, lower canine; L, maximum length; M, upper molar; m, 119 120 lower molar; P, upper premolar; p, lower premolar; and W, maximum width. 121 122 **Study Material** 123 The study material includes unpublished dentognathic remains from the Spanish

124 localities of Andurriales and Escobosa de Calatañazor housed in the MNCN, and Toril

125 3A housed in the MCNUZ. The comparative material includes fossils of

126	"Martes" sanjoni (Mayet, 1908) and "Martes" burdigaliensis Beaumount, 1974 from
127	Artesilla (early Miocene, MN4, Spain) (Azanza et al., 1993) housed in the MCNUZ;
128	"Martes" sp., from La Barranca (middle Miocene, MN6, Spain) (Peigné et al., 2006)
129	housed in the MNCN; Martes ginsburgi Montoya, Morales and Abella, 2011 from
130	Venta del Moro (late Miocene, MN13, Spain) housed in the MGUV; "Martes"
131	sansaniensis (Lartet, 1851) from Sansan (middle Miocene, MN6, France) housed at
132	MNHN; Martes melibulla Petter, 1963 from the localities of Can Llobateres (late
133	Miocene, MN9, Spain) and Trinxera Nord de l'Autopista (late Miocene, MN10, Spain)
134	housed in the ICP; Martes aff. anderssoni from Can Poncic 1 (late Miocene, MN9)
135	(Petter, 1967) housed in the ICP; "Martes" munki Roger, 1900 from Sant Quirze del
136	Valles (middle Miocene, MN7+8, Spain) and Circamustela dechaseauxi Petter, 1967
137	from Can Llobateres housed in the ICP; Circamustela peignei Valenciano et al., 2020a
138	from Batallones-3 and 5 (late Miocene, MN10, Spain) housed in the MNCN; and both
139	Sinictis dolichognathus Zdansky, 1924 from Loc.108 of Zdansky (1924) (late Miocene
140	c. Turolian/Ventian, China), and <i>Pekania palaeosinensis</i> from localities 11, 30, 30 (5),
141	31, 108 and 111 of Zdansky (1924) (late Miocene c. Turolian/Ventian, China) housed in
142	the PMU. We also established comparisons with casts of "Martes" delphinensis
143	Depéret, 1892, "Martes" filholi (Depéret, 1887) and "M." munki from La Grive (middle
144	Miocene, MN7+8, France) housed in the MNCN. Additionally, we examined
145	photographs of specimens of the following taxa: "M." laevidens from Wintershof-West
146	(early Miocene, MN3, Germany) (Dehm, 1950) housed in the BSPG; five marten-like
147	taxa from Vieux-Collonges (middle Miocene, MN5, France) ("Martes" collengensis
148	Roth and Mein, 1987, "Martes" cadeoti Mein, 1958, "M." burdigaliensis, "M." munki
149	and "M." filholi) housed in the UCBL; "M." munki from Häder (middle Miocene, MN5,

150	Germany) (Roger, 1900) housed in the NMA; and Circamustela? from Dorn-Dürkheim
151	1 (late Miocene, MN11, Germany) (Morlo, 1997) housed in the SMF.
152	The extant specimens used for comparison are the following: Martes foina
153	(Erxleben, 1777) (MNCN); Martes martes Linnaeus, 1758 (MNCN); Pekania pennanti
154	(Erxleben, 1777) (FMNH); Mustela putorius Linnaeus, 1758 (MNCN); and Mustela
155	nivalis Linnaeus, 1766 (MNCN).
156	
157	SYSTEMATIC PALEONTOLOGY
158	
159	Order CARNIVORA Bowdich, 1821
160	Suborder CANIFORMIA Kretzoi, 1943
161	Family MUSTELIDAE Batsch, 1788
162	Subfamily GULONINAE Gray, 1825
163	Genus ARAGONICTIS gen. nov.
164	
165	Type and Only Included Species—Aragonictis araid, gen. et sp. nov.
166	Etymology—Aragon-, for the autonomous community of Spain in where was
167	defined the Aragonian biozone (European Land Mammal Age: late early
168	Miocene/middle Miocene); -ictis, Greek suffix for weasel-like mammals.
169	Diagnosis—Mustelidae of small size. Slender dentition with narrow canines and
170	slender unicuspid premolars; p1 present; cuspids of p2-3 lower in height than the p4;
171	absence of diastema between p2-3; p4 long and unicuspid in the specimens from the
172	type locality, and with a very reduced distal accessory cuspid in the specimen from
173	Escobosa; m1 with subequal protoconid and paraconid, but slightly taller protoconid.
174	Small m1 metaconid. Sectorial and lingually open m1 talonid composed by a buccal

175	hypoconid relatively tall, beveled, lingually longer, with a reduced hypoconulid, and a
176	very low entocristid reaching the basal level of the paraconid crown; trapezoidal m2
177	with protoconid and metaconid of similar size, rectilinear buccal wall, and convex
178	lingual wall; slender P4 protocone mesially placed, paracone-metastyle blade elongated;
179	M1 mesiodistally narrow, with both mesial and distal walls straight but concave tooth
180	profile in mesial view; large parastylar area, reduced metacone, mesial crest-like
181	protocone, absent metaconule and short lingual platform.
182	
183	ARAGONICTIS ARAID sp. nov.
184	(Figs. 2, 3)
185	Martes delphinensis Sesé 1980:133
186	
187	Holotype—Left fragmentary hemimandible, MNCN 150.003, including the
188	complete dental formula c, p1-4, and m1-2.
189	Type Locality—Andurriales, MN7+8, local zone G3 (11.33 Ma; Van Dam et al.,
190	2014), Zaragoza, Spain.
191	Other Localities—Toril 3A, MN7+8, local zone G3 (12.65 Ma; Van Dam et al.,
192	2014), Zaragoza, Spain and Escobosa de Calatañazor, MN7+8, local zone G3 (ca. 12
193	Ma; Morales et al., 2018).
194	Referred Material—Andurriales: MNCN 150.004, right fragmentary
195	hemimandible with p2-3 and m1 (found associated with MNCN 150.003, probably
196	belonging to the same individual); Toril 3A: MPZ 2020/474, left dp4; MPZ 2020/482,
197	left fragmentary M1; Escobosa de Calatañazor: MNCN 26577, right fragmentary
198	hemimandible with p2, p4-m2 and MNCN 150.007, left fragmentary maxillary with P4-
199	M1.

Etymology—After ARAID (acronym for the Fundación Agencia Aragonesa para
la Investigación y el Desarrollo—in English, Aragonese Foundation for Research and
Development), an agency created by the Government of Aragon with the aim of
promoting research, development and innovation. In recognition of its implication in the
research of vertebrate paleontology in Aragon.

205 **Diagnosis**—As for genus.

206 **Description**—The mandibular corpus is long and low (Fig. 2). Two mental foramina are present, one below the p2 and other at the level of the p3. The c is narrow. 207 The lower premolars are elongated and unicuspids. There is not diastema between the 208 209 lower premolars (Fig. 2A-C). The p1 is present. The cuspid of both p2-3 are lower than p4 and placed mesially. The p4 is tall with a cuspid situated in the middle of the tooth 210 211 and reaches the high of the m1 paraconid. A low and reduced distal accessory cusp is 212 present in the specimen MNCN 26577 (Fig. 2M-O). A mesial and distal crown cingulids are present. The m1 is long compared with the p4. The trigonid represents 213 214 three fourths of the total length of the molar. The protoconid is the tallest cuspid, 215 although the paraconid is relatively tall. It has a small metaconid, and a bucco-lingually 216 reduced talonid. The hypoconid is clearly separated from the postprotocristid. It is 217 buccally placed, and shows a beveled morphology, being bulbous in the buccal wall, and with a marked lingual slope in the lingual wall towards the entoconid crista. There 218 are no entoconid or hypoconulid in the type, but a small hypoconulid is presents in 219 MNCN 26577. The m1 entocristid is very low reaching the basal level of the paraconid 220 crown, providing an open talonid valley (Fig. 2B-E-O). This area is broken in MNCN 221 26577 (Fig. 2M-O). The m2 is trapezoidal. It has a protoconid and a metaconid of 222 similar size. The trigonid is larger than the talonid. The buccal wall is rectilinear and 223 includes the paraconid, protoconid and hypoconid. On the contrary, the lingual wall is 224

225	convex. The lower deciduous carnassial (dp4) (Fig. 2J-L) is very similar to that of the
226	described m1. It differs in an acuter talonid, being relatively shorter and sharper with a
227	smaller hypoconid. The P4 paracone-metastyle blade is elongated, compared with the
228	M1 width (Fig. 3). The parastyle is very low and the protocone is mesially located and
229	isolated. The M1 lacks the typical eight-shaped mustelid morphology and is reduced
230	compared with extant gulonines (Fig. 3). The mesial and distal walls are rectilinear,
231	although the tooth profile is concave in mesial view. It has a large parastylar area, and a
232	reduced metacone compared to the paracone. There is not metaconule. The protocone is
233	crest-like and mesially placed. The lingual platform is not mesiodistally expanded. The
234	specimen MPZ 2020/482 is larger to MNCN 150.007, but morphologically similar,
235	including a crest-like and mesially placed (Fig. 3B).
236	Measurements—Measurements are provided in Table 1.
237	
238	DISCUSSION
239	
240	The new mustelid here reported from the latest middle Miocene of the Iberian
241	Peninsula differs from the living genera Mustela and Martes in multiple morphological
242	traits. It differs from Mustela (type species Mustela erminea Linnaeus, 1758), as well as
243	other living Mustela spp., in a larger size, longer and slender mandible, presence of p1,
244	longer lower premolars (especially the p4), taller m1 protocone, presence of m1
245	metaconid, larger and wider m1 talonid with smaller hypoconid, and well-developed
246	entocristid. M1 with both larger parastylar area and metacone, along with absence of
247	narrowing of the crown at about mid-width.
248	The seven extant species of marten sensu stricto (Martes) are categorized among
249	other traits by having long, relatively narrow skulls, a long auditory bulla, a large P4

lingual platform (inner lobe), and a relatively elongated and basined m1 talonid, with a 251 252 conical hypoconid linking the metaconid by an entocristid (Anderson, 1970, 1994; 253 Jiangzuo et al., 2021). The new Spanish mustelid also differs from M. foina and other living Martes spp. in a smaller size (Figs. 4-5), unicuspid and slenderer p4 comprising a 254 centrally located cuspid, m1 without mesoconid, stronger metaconid, slenderer talonid, 255 256 with much lower entocristid, and more open talonid valley, plus an absent or reduced 257 hypoconulid. It also has a lesser subquadrangular talonid in occlusal view. The m2 is more asymmetric, and comprises a more developed talonid. The P4 protocone is 258 slenderer and the M1 has a larger parastylar area, an absence of both metaconule and 259 260 narrowing of the crown at about mid-width, besides of a much more reduced lingual platform. Therefore, this new form can be confidently described as a genus distinct of 261 262 *Martes.* However, based on the hitherto known fossils of this new form, it is difficult to 263 determine with accuracy its systematic position at the subfamily level. Accordingly, we provisionally place it into the extant subfamily Guloninae, whose early members, as 264 265 Dehmictis Ginsburg and Morales, 1992, and Iberictis Ginsburg and Morales, 1992, are recorded in the early Miocene of Central and Western Europe (Valenciano et al., 266 2020b). 267

268 The described specimens of Aragonictis araid shown a range of variability in dental size and morphology comparable to those of marten-like mustelids found in the 269 localities of Wintershof-West (Dehm, 1950) and Sansan (Peigné, 2012), being also 270 similar to living Martes foina (Figs. 4-5). Aragonictis araid specimens from Escobosa 271 are easily recognized by being the smaller ones, whereas specimens from Toril 3A 272 represent the largest in size among the sample (Figs. 4-5, Table 1). However, the fact of 273 sharing a lower p2, p4 with the main cuspid centrally located, together with a great 274 reduction of the p4 accessory cuspid, a similar m1 talonid (lingually broken in the one 275

from Escobosa), and a reduced M1 lingual platform with a crest-like protocone, allowsthe assignment of all these fossils into the same taxon.

278 Over the course of the 19th and 20th centuries, fourteen species of Martes have been described in the Miocene of Europe, ranging from MN3 to MN13 (Ginsburg, 279 1999; Montoya et al., 2011; Peigné, 2012; Hughes, 2012). They represent a group 280 widely heterogeneous and unevenly known, which has led researchers to often place 281 282 their mustelid material of small size and marten-like morphology inside of the wastebasket name of Martes. Sato et al. (2003) specified Martes wenzensis from the late 283 Pliocene of Weże 1 (Poland) as the oldest known Martes. This taxon is very similar in 284 285 morphology to living Martes martes, but larger in size (Anderson, 1970), and its assignment to the genus is not questionable. Despite this, Martes remains can be found 286 in older sediments than late Pliocene. Several key features of marten are already present 287 288 in late Miocene forms such as Martes melibulla from the Vallès-Penedès localities of Can Llobateres (late Miocene, MN9) and Trinxera Nord de l'Autopista (late Miocene, 289 290 MN10) (Petter, 1963; Pons-Moyà, 1990), as well as the early late Miocene Martes aff. anderssoni of Can Poncic 1 (MN9), also in the Vallès-Penedès Basin (Petter, 1967). 291 These traits are the enlargement of the M1 lingual platform, and a relatively elongated 292 293 and basined m1 talonid with a conical hypoconid connected with the metaconid by an entocristid. More complete material of these forms would be needed to further 294 investigate the validity of this hypothesis. 295 296 Independent of which taxa represent the oldest record of Martes, there are findings that clearly indicate that abundant small marten-like mustelids from the early 297

and middle Miocene of Eurasia ascribed to "*Martes*" show a dissimilar morphology

with *Martes* and stand in need of thorough revision (e.g., Hughes, 2012; Peigné, 2012).

300 Among these heterogeneous sample, four distinct groups can be distinguished:

301	(1) "Martes" spp. that are close to Martes but exhibit primitive traits which
302	distinguished them from this genus. This group is composed by the small-sized "M."
303	cadeoti (Fig. 6A-D) and "M." collongensis from Vieux-Collonges (middle Miocene,
304	MN5, France) (Mein, 1958; Roth and Mein, 1987), "M." burdigaliensis from Vieux-
305	Collonges, Artesilla and Artenay (early and middle Miocene, MN4-MN5) (Beaumount,
306	1974; Azanza et al., 1993; Ginsburg, 2002), and by the large-sized "M." munki from
307	Häder, Sandelzhausen, Sant Quirze del Vallès, La Grive (middle Miocene, MN5-
308	MN7+8) (Roger, 1900; Villalta Comella and Crusafont Pairó 1943; Viret 1951; Mein,
309	1958; Nagel et al., 2009) and "Martes" sansaniensis from Sansan (middle Miocene,
310	MN6) (Peigné, 2012). All the above include taxa that resemble Martes in having a
311	similar carnassial and M1; a p4 distal accessory cuspid; a relatively elongated and
312	basined m1 talonid (shorter in "M." burdigalensis) with a conical hypoconid linking the
313	metaconid by an entocristid; a large P4 protocone; an enlarged M1 lingual platform; and
314	presence of a narrow M1 crown at about mid-width (Fig. 6A-D). Furthermore, all of
315	these extinct forms share several primitive traits: diastema between p2-3, presence of a
316	m1 protoconid very tall, m1 metaconid well developed and tall (especially in "M."
317	cadeoti, and "M." collongensis), M1 with distinct proportions (being more elongated
318	buccolingually, Fig. 5) with a M1 parastyle and metacone more developed, a
319	metaconule, and a protocone located more buccally compared with living Martes.
320	Aragonictis araid is different from this group having a lower p2-3; absence of diastema
321	in the lower dentition; absence or reduction of the distal accessory p4; m1 paraconid and
322	protoconid close in high, m1 talonid mesiodistally and buccolingually shorter with a
323	beveled hypoconid, a lower entocristid, reduced hypoconulid and distal cingulid, and a
324	more open valley; reduced m2; slenderer P4 protocone; and M1 with larger parastyle

area, reduced metacone, absent metaconule, absence of narrowing of the crown at aboutmid-width, and a much reduced lingual platform.

327 (2) "Martes" sainjoni from Artenay (type locality), Artesilla and Bezian (Mayet, 1908; Ginsburg and Bulot, 1982; Azanza et al., 1993; Ginsburg, 2002), for which only 328 the lower dentition is known. This early-middle Miocene mustelid is different from 329 Aragonictis and Martes in being a more robust form, and having a distinct m1talonid 330 331 including a massive hypoconid, centrally positioned, and a strong cingulum. More specifically, A. araid differs from "M." sainjoni in a smaller size; slenderer mandibular 332 corpus; lower p4; absence of cingulid in both p4 and m1; shorter length of the trigonid 333 334 and less conical m1 hypoconid. Thus, "M." sainjoni emerges as closer to basal Miocene 335 gulonines such as Dehmictis Ginsburg and Morales, 1992, Laphictis Viret, 1933, and Ischyrictis Helbing, 1930. 336

337 (3) "Martes" filholi from La Grive (type locality), Viex-Collonges (Depéret, 1887; Viret, 1951; Mein, 1958), and (albeit with certain doubts) Rudabánya (Werdelin, 2005). 338 339 It has diastema in the lower dentition; higher p2-3; longer m1 talonid; much developed 340 m2; shorter P4; and a much more distinct M1 with reduced parastyle, enlarged 341 metacone, a much-enlarged lingual platform and a very marked narrowing of the crown 342 at about mid-width than A. araid. It is clearly different from Martes, being probably more related to Trochictis Meyer, 1842, or related genera (see Morlo et al., 2021). 343 (4) Small sized-mustelids with slender dentition comprising "Martes" 344 delphinensis and "Martes" laevidens. The former, which conforms the smallest mustelid 345 among the analyzed sample (Fig. 4), is recorded throughout the middle Miocene of 346 347 Western Europe, in the fossil sites of La Grive (type locality), Vieux-Collonges, Manchones (MN6, Calatayud-Daroca Basin, Spain), Hostalets de Pierola (MN7+8, 348 Vallès-Penedès Basin, Spain) (Depéret, 1892; Villalta Comella and Crusafont Pairó 349

1943; Viret, 1951; Mein, 1958; Petter, 1976), and in all probability La Barranca (MN6, 350 351 Calatayud-Daroca Basin, Spain) (described previously as Martes sp. by Peigné et al., 352 2006). "Martes" delphinensis is represented only by mandibles and lower dentition, so it has been scarcely studied in the past. Nevertheless, Mein (1958) described and figured 353 a maxillary with a complete M1 (Mein, 1958;fig. 56) for which a re-examination allows 354 355 us to confirm that it may belong to the stem mephitid Proputorius Filhol, 1890 which 356 also occurs in the locality (Proputorius pusillus [Viret, 1951]). The dimensions of A. araid and its superficial similarities with the small-size mustelid "M." delphinensis 357 makes its comparison somewhat intricate. Indeed, the mandible MNCN 26577 from 358 359 Escobosa was previously described as "M." delphinensis in Sesé (1980). Aragonictis 360 araid differs from "M." delphinensis in a larger size; a lower p2-3; a central position of 361 the main cuspid of the p4; an absence/reduction of the p4 distal accessory cuspid; a m1 362 paraconid higher; and a more open and longer m1 talonid with a much lower entocristid. With regard to "Martes" laevidens from the early Miocene (MN3) of Wintershof-West 363 364 (Germany) (Dehm, 1950), this can be considered as the oldest species in the group. Sato et al. (2003) discarded its assignation to Martes based on the basiocranial fragment 365 366 described by Dehm (1950:fig. 130), but they did not analyze its dentition. The sample 367 described in Dehm (1950) has some size variability (Figs. 4-5). The lower dentition is slender, and has a diastema between p2-3, a well-developed distal accessory cuspid in 368 p4, and a buccolingually reduced m1 talonid. The P4 protocone is relatively robust 369 370 when compared with A. araid, and the M1 (although it shows some variability, see Fig. 6E-N) is characterized by an elongated parastylar area, a reduced metacone (almost 371 absent in SNSB-BSPG 1937 II 13372, see Fig. 6L), and a reduced lingual platform with 372 some degree of expansion. It must be emphasized that the original ascription by Dehm 373 (1950) of the M1 SNSB-BSPG 1937 II 13723 (Fig. 6O) with mustelid features to "M." 374

375	laevidens, must be discarded due to its distinct morphology. Aragonictis araid differs
376	from "M." laevidens in having a less sigmoid dp4 with a less developed metaconid;
377	absence of both diastema between p2-3 and lower cuspids; p4 with less crowned mesial
378	and distal cingulids; absence or reduction of p4 distal accessory cuspid; beveled m1
379	hypoconid, slenderer P4; as well as smaller M1 parastylar area with more developed M1
380	metacone. The extremely reduced metacone in the M1 SNSB-BSPG 1937 II 13372
381	(Fig. 6L) of "M." laevidens is almost fuses in a crista with the paracone (Schmidt-
382	Kittler, 1981). This feature is shared with Circamustela dechaseauxi (type specie of
383	Circamustela Petter, 1967) from Can Llobateres (late Miocene, MN9, Vallès-Penedès
384	Basin). The m1 of both species—which is the only possible additional comparison—
385	shows the same morphological pattern in which the metaconid is reduced and the
386	talonid is narrow (Petter, 1967, 1976; Valenciano et al., 2020a). For all these reasons,
387	and considering the limitation of comparisons in the rest of the dentition and the
388	important separation in age between these two species, it seems convenient to reclassify
389	the Wintershof-West species as Circamustela? laevidens (Dehm, 1950).
390	Additionally, albeit A. araid shares several dental traits (including a slender
391	dentition, a similar P4, and a reduced M1 lingual platform; Valenciano et al., 2020a)
392	with the early late Vallesian Circamustela spp., it is different in many others. For
393	instance, the new species is smaller in size, and it has absence of diastema between p2-
394	3, as well as lower p2-3, presence of m1 metaconid (quite reduced in <i>C. dechaseauxi</i>),
395	slenderer m1 talonid with lower entocristid and more open valley, M1 more concave in
396	distal view with deeper trigone valley, and more developed metacone than the type
397	specie. Moreover, a similar sized M1 of Circamustela? appeared in younger (early
398	Turolian, MN11) sediments of Dorn-Dürkheim 1 (Germany) (Morlo, 1997). Despite its
399	small size, (closer to A. araid than to Circamustela spp., Fig. 5), its reduced parastylar

area, and the narrowing of the crown at about mid-width, as well as the less reducedlingual platform, allows us to propose that the German M1 is closer related to

402 *Circamustela* than to *Aragonictis*.

An overview of the described groups suggests the inclusion of *Aragonictis* within the "*M*." *delphinensis* and *C*.? *laevidens* group, being probably related to *Circamustela*. However, more dentognathic material is necessary in order to further determine its systematic affinities and verify whether these similarities are a consequence of a convergence towards hypercarnivorism or are instead result of close evolutionary relationships

409

410 Paleobiological Insights

Compared with small to medium-sized living gulonines (e.g., stone marten, beech 411 marten, fisher) of omnivore diets (Larivière and Jennings, 2009) and with Miocene 412 forms of "Martes" from Europe (Fig. 4), A. araid shares similarly narrower teeth (e.g., 413 m1, P4 and M1) to those of the early Miocene Circamustela? laevidens and the late 414 Miocene Circamustela (Vallesian, MN9-10) and Sinictis (Turolian, MN11-MN13). 415 416 Because these late Miocene mustelids have been customarily interpreted as hypercarnivores (Valenciano et al., 2020a), we interpret A. araid as a hypercarnivore 417 form as well. 418 419 It is remarkable how the discovery of this new Iberian mustelid and our review of 420 Miocene "Martes" suggest the occurrence of several cladogenesis events in Central and Western Europe in this epoch. A first event took place at the end of the early Miocene 421 422 (MN3-4) and the beginning of the middle Miocene (MN5) in both Central (Germany) and Western (France and Iberian Peninsula) Europe. During such a relatively long 423

424 event, roughly coinciding with the Miocene Climatic Optimum (Zachos et al., 2008),

members of the group of "Martes" appeared. An increase in the carnivoran's Spanish 425 426 turnover rate during the late Aragonian MN7+8, as noticed by Morales et al. (2015), 427 informs about a second cladogenesis event. It was probably triggered, among other factors, by an increase of the precipitation levels compared to the previous biozone (Van 428 Dam, 2006), thus increasing the forest areas of the region. The presence of small 429 mustelids has been traditionally considered as indicative of forested habitat (Ginsburg 430 431 and Morales, 1992; Baskin, 1998). Therefore, the large diversity of small mustelids in Toril 3A, which comprises several species of "Martes" and the new form A. araid, 432 might suggest the presence of forest patches embedded in a mosaic environment for this 433 434 locality at ca. 12.65 Ma. This fits well with the hypothesis of a climate change towards more humid conditions and increased canopy cover by the latest Aragonian in the 435 Daroca-Nombrevilla area (DeMiguel et al., 2011, 2012; García Paredes et al., 2016). 436 437 Such kind of habitats would have probably been suitable for other contemporaneous mammals from the same basin customarily interpreted as forest-dwellers. Therefore, the 438 439 discovery of A. araid strongly indicates that a cladogenesis event for small to mediumsized mustelids of hypercarnivorous dentition took place, at least at a regional scale, at 440 441 the end of the Aragonian (ca. 12.65 Ma). As such, some of these clades seem to have 442 increased in size during the late Miocene, as occurred for the Vallesian Circamustela (Vallès-Penedès and Tagus Basins, Spain) (Valenciano et al., 2020a), and for later 443 forms such as the Turolian Sinictis (China and Greece) (Zdansky, 1924; Valenciano et 444 al., 2020a). An in-depth review of marten and weasel-like forms from other 445 contemporaneous localities from Eurasia would be the logical next step to further 446 investigate this cladogenesis event at a more global scale during the latest Aragonian. 447 448

CONCLUSIONS

449

451	We describe new mustelid material from the latest middle Miocene sites of
452	Andurriales, Toril 3A and Escobosa de Calatañazor (Iberian Peninsula). This form
453	constitutes a new genus and species that we name as Aragonictis araid.
454	Our analyses show that A. araid is morphologically different from living Mustela
455	and Martes, and also differs from the early and middle European Miocene forms of
456	Europe ascribed sensu lato to "Martes" spp., thus rejecting the conventional view that
457	all small to medium-sized Miocene mustelids belong to Martes. A preliminary
458	reassessment of these heterogenous taxa (formerly considered as Martes) allows us to
459	distinguish four different groups: (1) early to middle Miocene "Martes" spp.—distinct
460	from Martes sensu stricto-including "M." collongensis, "M." cadeoti, "M."
461	burdigaliensis, "M." munki and "M." sansaniensis; (2) early to middle Miocene
462	"Martes" sainjoni from Western Europe-much closer to basal Miocene gulonine (such
463	as Dehmictis, Laphictis, and Ischyrictis) than to Martes; (3) middle Miocene "Martes"
464	filholi—a form probably related with Trochictis; and (4) early Miocene "Martes
465	delphinensis" and "Martes" laevidens-the latter being herein reassessed as
466	Circamustela?.
467	Finally, from a paleobiological viewpoint, we interpreted the new Iberian
468	Aragonictis araid as a hypercarnivorous mustelid that lived in forest patches of mosaic
469	environments.
470	
471	ACKNOWLEDGMENTS
472	
473	We thank the following colleagues for kindly providing us comparative material
474	and photographs of fossil mustelids: P. Mein and E. Robert (UCBL, France), C. Argot
475	(MNHN), G. Rössner and M. Schellenberger (BSPG, Germany), M. Morlo, O. Kullmer

476	and C. Hemm (SMF, Germany), M. Rummel (Naturmuseum Augsburg, Germany), S.
477	Fraile and A. Garvía (MNCN, Spain), J. M. Robles and D. M. Alba (ICP, Spain), I.
478	Canudo (MCNUZ, Spain), L. Costeur (NMB, Switzerland), J. O. R. Ebbestad and V.
479	Berg-Madsen (PMU, Sweeden), and the staff of Servicio de Técnicas No Destructivas:
480	Microscopía Electrónica y Confocal y Espectroscopía del MNCN-CSIC. We also thank
481	C. Langa for finding the fossils from Andurriales, and E. Cantero (MNCN) for the
482	preparation of the material. We are indebted to the editor T. Martin and the reviewers L.
483	Werdelin and M. Morlo for their useful comments and suggestions, which made
484	meaningful improvements to the original manuscript. This study was supported by the
485	Government of Aragon (Group ref. E33_20R), the Research Group UCM 910607, the
486	Spanish Ministry of Economy and Competitiveness and FEDER funds (Research
487	Projects PGC2018-094122-B-100 and PID2020-116220GB-I00), and the Spanish
488	Ministry of Science, Innovation, and Universities ("Juan de la Cierva Formación", ref.
489	FJC2018-036669-I).
490	
491	LITERATURE CITED
492	
493	Alcalá, L., A. M. Alonso-Zarza, M. A. Álvarez, B. Azanza, J. P. Calvo, J. C. Cañaveras,
494	J.A. van Dam, M. Garcés, W. Krijgsman, A. J. van der Meulen, J. Morales, P.
495	Peláez, A. Pérez-González, S. Sánchez, R. Sancho, and E. Sanz. 2000. El registro
496	sedimentario y faunístico de las cuencas de Calatayud-Daroca y Teruel. Evolución
497	paleoambiental y paleoclimática durante el Neógeno. Revista de la Sociedad
498	Geológica de España13:323–343.
499	Anderson, E. 1994. Evolution, prehistoric distribution and systematics of Martes;
500	pp.13–25 in S. W. Buskirk, A. S. Harestad, Raphael and R. A. Powell (eds.),

- 501 Martens, Sables and Fishers: Biology and Conservation. Cornell University Press,
- 502 Ithaca, New York.
- 503 Anderson, E. 1970. Quaternary evolution of the genus *Martes* (Carnivora, Mustelidae).
- 504 Acta Zoologica Fennica 130:1–132.
- Azanza, B., E. Cerdeño, L. Ginsburg, J. Van der Made, J. Morales, and P. Tassy. 1993.
- 506 Les grands mammifères du Miocène inférieur d'Artesilla, bassin de Calatayud-
- 507 Teruel (province de Saragosse, Espagne). Bulletin du Museum National d'Histoire
 508 naturelle 15:105–153.
- 509 Azanza, B., A. M. Alonso-Zarza, M. A. Álvarez-Sierra, J. P. Calvo, S. Fraile, I. García-
- 510 Paredes, E. Gómez, M. Hernández, A. van der Meulen, D. DeMiguel, P. Montoya, J.
- 511 Morales, X. Murelaga, P. Peláez-Campomanes, B. Pérez, V. Quiralte, M. J. Salesa, I.
- 512 M., Sánchez, A. Sánchez, and D. Soria. 2004. Los yacimientos de vertebrados
- 513 continentales del Aragoniense superior (Mioceno medio) de Toril, Cuenca de
- 514 Calatayud-Daroca. Geo-Temas 6:271–274.
- 515 Barasoain, D. and B. Azanza. 2018. Geoheritage and education: a practical example
- from the Rhinoceros of Toril 3 (Calatayud-Daroca Basin, Spain). Geoheritage

517 10:363–374.

- 518 Baskin, J. A. 1998. Mustelidae; pp. 152-173 in C. M. Janis, K. M. Scott, L. L. Jacobs
- 519 (eds.), Evolution of Tertiary Mammals of North America, Volume 1: Terrestrial
- 520 Carnivores, Ungulates, and Ungulate-like Mammals. Cambridge University Press,521 Cambridge.
- 522 Batsch, A. J. G. C. 1788. Versuch einer Anleitung, zur Kenntniβ und Geschichte der
- 523 Thiere und Mineralien, für akademische Vorlesungen entworfen und mit den
- 524 nöthigsten Abbildungen versehen. Erster Theil. Academische Buchhandlung, Jena.

- 525 Beaumount, G. de 1974. Un nouveau Mustélidé (Carnivora), Martes burdigaliensis n.
- 526 sp., du Miocène inférieur de Vieux-Collonges, Rhône. Comptes Rendus des Séances,
- 527 Société de Physique et d'Histoire naturelle de Genève 9:81–83.
- 528 Bowdich, T. E. 1821. An Analysis of the Natural Classifications of Mammalia For The
- 529 Use Of Students And Travelers. J. Smith, Paris, 115 pp.
- 530 Dehm, R. 1950. Die Raubtiere aus dem Mittel-Miocän (Burdigalium) von Wintershof-
- 531 West bei Eichstätt in Bayern. Abhandlungen der Bayerischen Akademie der
- 532 Wissenschaften. Mathematisch-naturwissenschaftliche Klasse, n. F. 58: 1-158.
- 533 DeMiguel, D., B. Azanza, and J. Morales. 2011. Paleoenvironments and paleoclimate of
- the Middle Miocene of central Spain: a reconstruction from dental wear of
- ruminants. Palaeogeography, Palaeoclimatology, Palaeoecology 302:452–463.
- 536 DeMiguel, D., I. M. Sánchez, D. M. Alba, J. Galindo, J. M. Robles, and S. Moyà-Solà.
- 537 2012. First evidence of *Tethytragus* Azanza and Morales, 1994 (Ruminantia,
- Bovidae), in the Miocene of the Vallès-Penedès Basin (Spain). Journal of Vertebrate
 Paleontology 32:1457–1462.
- 540 Depéret, C. 1887. Recherches sur la succession des faunes de vertébrés miocènes de la
- 541 vallée du Rhône. Archives du Muséum d'Histoire naturelle de Lyon 4:45–269.
- 542 Depéret, C. 1892. La faune des Mammifères miocènes de la Grive-Saint-Alban (Isère)
- 543et de quelques autres localités du bassin du Rhône. Archives du Muséum d'Histoire
- naturelle de Lyon 5:1–93.
- 545 Erxleben, J. C. P. 1777. Systema regni animalis per classes, ordines, genera, species,
- 546 varietates cum synonymia et historia animalium. Classis I. Mammalia. Weigand,
- 547 Leipzig: I-XLVII:1–636.
- 548 Filhol, H. 1890. Étude sur les mammifères de Sansan. Bibliothèque des Hautes Études
- section des Sciences naturelles 37:1–319.

- García-Paredes, I., M. A. Álvarez-Sierra, L. W. Van den Hoek Ostende, V. HernándezBallarín, K. Hordijk, P. López-Guerrero, A. Oliver, and P. Peláez-Campomanes.
 2016. The Aragonian and Vallesian high-resolution micromammal succession from
- the Calatayud-Montalbán Basin (Aragón, Spain). Comptes Rendus Palevol 15:781–
- 554 789.
- 555 Ginsburg, L. 1999. Order Carnivora; pp. 109–148 in G. E. Rössner, and K. Heissig
- 556 (eds.), The Miocene Land Mammals of Europe. Friedrich Pfeil, München.
- 557 Ginsburg, L. 2002. Les carnivores fossiles des sables de l'Orléanais. Annales de
- 558 Paléontologie 88:115–146.
- 559 Ginsburg, L. and C. Bulot. 1982. Les carnivores du Miocène de Bézian près de la
- 560 Romieu. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen
 561 Serie B 85:53–76.
- 562 Ginsburg, L., and J. Morales. 1992. Contribution à la connaissance des Mustélidés
- 563 (Carnivora, Mammalia) du Miocène d'Europe *Trochictis* et *Ischyrictis*, genres affines
- et genres nouveaux. Comptes Rendus de l'Académie des Sciences 315:111–116.
- 565 Gray, J. E. 1825. An outline of an attempt at the disposition of Mammalia into tribes
- and families, with a list of the genera apparently appertaining to each tribe. Annals of
- 567 Philosophy 10:337–344.
- 568 Helbing, H. 1930. Zur Kenntnis der miocänen, "Mustela" zibethoides Blainville.
- 569 Eclogae Geologicae Helvetiae 23:637–644.
- 570 Hughes, S. S. 2012. Synthesis of *Martes* evolutionary history; pp. 3–22 in K.B. Aubry,
- 571 W. J. Zielinski, M. G. Raphael, G. Proulx, S. W. Buskirk (eds.), Biology and
- 572 Conservation of Martens, Sables, and Fishers. Cornell University Press, New York.

- Jiangzuo, Q.-G., D. Gimranov, J.-Y. Liu, S.-Z. Liu, C.-Z. Jin, and J.-Y. Liu. 2021. A
- new fossil marten from Jinyuan Cave, northeastern China reveals the origin of the
- 575 Holarctic marten group. Quaternary International 591:47–58.
- 576 Kretzoi, M. 1943. *Kochictis centennii* n. g. n. sp. az egeresi felső oligocenből. Földtani
 577 Közlöny 73:10–17.
- 578 Larivière, S., and A. P. Jennings. 2009. Family Mustelidae (Weasels and Relatives); pp.
- 579 564–656 in D. E. Wilson and R. A. Mittermeier (eds.), Handbook of Mammals of the

580 World. 1. Carnivores. Lynx Editions, Barcelona, Spain.

- 581 Lartet, E. 1851. Notice Sur La Colline de Sansan, Suivie D'Une Recapitulation Des
- 582 Diverses Espèces D'Animaux Vertébrés Fossiles, Trouvés Soit À Sansan, Soit Dans
- 583 D'Autres Gisements Du Terrain Tertiaire Miocène Dans Le Bassin Souspyrénéen. J.
- 584 A. Portes, Auch, 60 pp.
- Li, B., M. Wolsan, D. Wu, W. Zhang, Y. Xu, and Z. Zeng. 2014. Mitochondrial
- genomes reveal the pattern and timing of marten (*Martes*), wolverine (*Gulo*), and
- fisher (*Pekania*) diversification. Molecular Phylogenetics and Evolution 80:156–64.
- 588 Linnaeus, C. 1758. Systema Naturae Per Regna Tria Naturae, Secumdum Classes,
- 589 Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis.
- 590 Laurentius Salvius, Stockholm, 823 pp.
- 591 Linnaeus, C. 1766. Systema naturae per regna tria naturae, secundum classes, ordinus,
- 592 genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio
- 593 duodecima, reformata. Laurentius Salvius, Stockholm. 532 pp.
- 594 Mayet, L. 1908. Études de Mammifères miocènes des sables de l'Orléanais et des faluns
- de la Touraine. Annales de l'Université de Lyon 24:1–336.
- 596 Mein, P. 1958. Les mammifères de la faune sidérolithique de Vieux-Collonges.
- 597 Nouvelles Archives du Muséum d'Histoire naturelle de Lyon 5:1–122.

- Meyer von H. 1842. Mittheilungen an Professor Bronn gerichtet. Neues Jahrbuch für
 Geologie und Paläontologie 1842:583–589.
- 600 Montoya, P., J, Morales, and J. Abella. 2011. Musteloidea (Carnivora, Mammalia)
- from the late Miocene of Venta del Moro (Valencia, Spain). Estudios Geológicos
 602 67:193–206.
- 603 Morales, J., J. L. Cantalapiedra, A. Valenciano, D. Hontecillas, S. Fraile, B. A. García
- 604 Yelo, P. Montoya, and J. Abella. 2015. The fossil record of the Neogene Carnivore
- Mammals from Spain. Palaeobiodiversity and Palaeoenvironments 95:373–386.
- 606 Morales, J., P. Peláez-Campomanes, P. Pérez, M. T. Alberdi, B. Azanza, M. Pickford,
- 607 M. Ríos, O. Sanisidro, G. Alcalde, J. L. Cantalapiedra, S. Fraile, B. García Yelo, A.
- 608 R Gómez Cano, V. Hernández-Ballarín, A. Oliver, E. Cantero, A. Valenciano, and P.
- 609 Montoya. 2018. Neogene Mammal sites from Molina de Aragón (Guadalajara,
- 610 Spain): correlation to other karstic sites of the Iberian Chain, and Geoheritage values.
- 611 Geoheritage 10:353–362.
- Morlo, M. 1997. Die Raubtiere (Mammalia, Carnivora) aus dem Turolium von
- Dorn-Dürkheim 1 (Rheinhessen). Teil 1: Mustelidae, Hyaenidae, Percrocutidae,
- Felidae. Courier Forschungs-Institut Senckenberg 197:11–47.
- 615 Morlo, M., A. Le Maitre, K. Bastl, T. Engel, H. Lutz, B. Lischewsky, A. von Berg,
- and D. Nagel. 2021. First record of the mustelid *Trochictis* (Carnivora,
- Mammalia) from the early Late Miocene (MN 9/10) of Germany and a re-
- appraisal of the genus *Trochictis*. Historical Biology 33:1183–1195.
- 619 Nagel, D., C. Stefen, and M. Morlo. 2009. The carnivoran community from the
- 620 Miocene of Sandelzhausen (Germany). Paläontologische Zeitschrift 83:151–174.

- Peigné, S. 2012. Les Carnivora de Sansan; pp559–660 in: S. Peigné, and S. Sen (eds.),
- 622 Mammifères de Sansan. Mémoires du Muséum national d'Histoire naturelle. Paris:

623 Publications du Muséum, 203.

- 624 Peigné, S., M. J. Salesa, M. Antón, and J. Morales. 2006. New data on carnivores from
- the Middle Miocene (Upper Aragonian, MN6) of Arroyo del Val area (Villafeliche,
- 626 Zaragoza Province, Spain). Estudios Geológicos 62:359–373.
- 627 Petter, G. 1963.Contribution à l'étude des Mustélidés des bassins néogènes du Vallès-
- 628 Penedès et de Calatayud-Teruel (Espagne orientale). Mémoires de la Société
- 629 géologique de France 43:1–44.
- 630 Petter, G. 1967. Mustélidés nouveaux du Vallésien de Catalogne. Annales de
- 631 Paléontologie 53:93–113.
- 632 Petter, G. 1976. Étude d'un nouvel ensemble de petits carnivores du Miocène
- d'Espagne. Géologie Méditerranéenne 3:135–154.
- 634 Pinel, P. 1792. Recherches sur une nouvelle méthode de classification des quadrupèdes,
- 635 fondée sur la structure méchanique des parties osseuses qui servent à l'articulation de
- la mâchoire inférieure. Actes de la Societé d'Histoire naturelle de Paris 1:50–60.
- 637 Pons-Moyà, J. 1990. Presencia de carnívoros turolienses en el Vallesiense terminal
- 638 (MN10) de Terrassa (Catalunya). Paleontologia i Evolució 23:199–203.
- 639 Roger, O. 1900. Wirbeltierreste aus dem Dinotheriensande. Naturwissenschaftlichen
- 640 Vereins für Schwaben und Neudorf in Augsburg 34:53–70.
- 641 Roth, C. and P. Mein. 1987. Martes collongensis n. sp. aus der miozänen Fundstelle
- 642 Vieux-Collonges (Dépt. Rhône, Frankreich). Mainzer geowissenschaftliche
- 643 Mitteilungen 16:157–164.

- 644 Samuels, J. X. and J. Cavin. 2013. The earliest known fisher (Mustelidae), a new
- species from the Rattlesnake Formation of Oregon. Journal of Vertebrate

646 Paleontology 33: 448-454.

- 647 Samuels, J.X., K. E. Bredehoeft, and S. C. Wallace. 2018. A new species of Gulo from
- 648 the early Pliocene Gray fossil site (eastern United States); rethinking the evolution of
- 649 wolverines. PeerJ 6: p.e4648.
- 650 Schmidt-Kittler, N. 1981. Zur Stammesgeschichte der marderverwandten
- 651 Raubtiergruppen. Eclogae Geologicae Helvetiae 74:753–801.
- 652 Smith, J. B., and P. Dodson. 2003. A proposal for a standard terminology of anatomical
- notation and orientation in fossil vertebrate dentitions. Journal of Vertebrate
- 654 Paleontology 23:1–12.
- Stach, J. 1959. On some Mustelinae from the Pliocene bone breccia of Węże. Acta
 Palaeontologica Polonica 4:101–117.
- 657 Sato, J. J., T. Hosoda, M. Wolsan, K. Tsuchiya, M. Yamamoto, and H. Suzuki. 2003.
- 658 Phylogenetic relationships and divergence times among mustelids (Mammalia:
- 659 Carnivora) based on nucleotide sequences of the nuclear interphotoreceptor retinoid
- binding protein and mitochondrial cytochrome b genes. Zoological Science 20:243–
- 661 264.
- 662 Sesé, C. 1980. Mamíferos del Mioceno de Escobosa de Calatañazor (Soria). Ph.D.
- dissertation, Universidad Complutense de Madrid, Madrid, 388 pp.
- 664 Valenciano, A. 2017: Mofetas, martas, tejones y rateles gigantes del Cerro de los
- Batallones; pp. 322–336 in J. Morales (ed), La Colina de los Tigres Dientes de Sable.
- 666 Los Yacimientos Miocenos del Cerro de los Batallones (Torrejón de Velasco,
- 667 Comunidad de Madrid). Museo Arqueológico Regional, Madrid.

668	Valenciano, A., A. Pérez-Ramos, J. Abella, and J. Morales. 2020a. A new
669	hypercarnivorous mustelid (Mammalia, Carnivora, Mustelidae) from Batallones, late
670	Miocene (MN10), Torrejón de Velasco, Madrid, Spain. Geodiversitas 42:103-121.
671	Valenciano, A., J. Abella, D. M. Alba, J. M. Robles, M. A. Álvarez-Sierra, and J.
672	Morales. 2020b. New early Miocene material of Iberictis, the oldest member of the
673	wolverine lineage (Carnivora, Mustelidae, Guloninae). Journal of Mammalian
674	Evolution 27:73–93.
675	Van Dam, J. A. 2006. Geographic and temporal patterns in the late Neogene 12-3Ma
676	aridification of Europe: the use of small mammals as paleoprecipitation proxies.
677	Palaeogeography, Palaeoclimatology, Palaeoecology 238:190-218.
678	Van Dam, J. A., W. Krijgsman, H. Abels, M. A. Álvarez-Sierra, I. García-Paredes, P.
679	López-Guerrero, P. Peláez-Campomanes, and D. Ventra. 2014. Updated chronology
680	for the Middle to Late Miocene mammal sites of the Daroca Area (Calatayud-
681	Montalbán Basin, Spain). Geobios 47:325–334.
682	Villalta Comella J. F. de, and M. Crusafont Pairó. 1943. Los vertebrados del Mioceno
683	continental de la cuenca del Vallès-Penedès (provincia de Barcelona). I. Insectívoros
684	II. Carnívoros. Boletín del Instituto Geológico y Minero de España 56:145-336.
685	Viret, J. 1933. Contribution à l'étude des Carnassiers miocènes de La Grive-Saint-
686	Alban (Isère). Travaux du Laboratoire de Géologie de la Faculté des Sciences de
687	Lyon 21:1–31.
688	Viret, J. 1951. Catalogue critique de la faune des Mammifères miocènes de La Grive
689	Saint-Alban (Isère). Première partie. Chiroptères, Carnivores, Édentés pholidotes.

- 690 Nouvelles Archives du Muséum d'Histoire naturelle de Lyon 3:1–104.
- Wang, X., Z. J., Tseng, and G. T. Takeuchi. 2012. Zoogeography, Molecular
- 692Divergence, and the Fossil Record-the Case of an Extinct Fisher, Pekania

- 693 *palaeosinensis* (Mustelidae, Mammalia), from the Late Miocene Baogeda Ula
- 694 Formation, Inner Mongolia. Vertebrata PalAsiatica 50:293–307.
- 695 Werdelin, L. 2005. The carnivores of Rudabánya; pp. 163–180 in: R. L. Bernor, L.
- 696 Kordos and L. Rook (eds.), Multidisciplinary Research at Rudabánya.
- 697 Palaeontographia Italica 90, Italy.
- 698 Werdelin, L., and S. Peigné. 2010. Carnivora; pp. 603–657 in L. Werdelin and W.
- 699 Sanders (eds.), Cenozoic Mammals of Africa. University of California Press,
- 700 Berkeley, California.
- 701 Zachos, J.C., Dickens, G.R., and Zeebe, R.E. 2008. An early Cenozoic perspective on
- greenhouse warming and carbon-cycle dynamics. Nature 451:279–283.
- 703 Zdansky, O. 1924. Jungtertiäre carnivoren Chinas. Palaeontologica Sinica 2:1–149.
- Submitted July 27, 2021; revisions received August 27, 2021; accepted Month DD,
- 705 YYYY
- 706 FIGURE CAPTIONS
- 707 FIGURE 1: Geographic location of fossil localities with Aragonictis araid gen. et sp.
- nov. in the Iberian Peninsula. Abbreviations: 1, Escobosa de Calatañazor (Almazan
- 709 Basin); 2, Toril 3A (Calatayud-Daroca Basin); and 3, Andurriales (Calatayud-Daroca
- 710 Basin). Modified from Morales et al. (2018). [planned for 2/3 page width]
- 711
- 712 FIGURE 2: Mandibles and lower dentition of Aragonictis araid gen. et sp. nov. from
- 713 Andurriales, Toril 3A, and Escobosa de Calatañazor. A–C, MNCN 150.003 (holotype)
- from Andurriales, left fragmentary hemimandible in A, buccal, B, lingual and C,
- occlusal views; **D–I**, MNCN 150.004, right fragmentary hemimandible with m1 (D-F)
- and p2-3 (G-I) from Andurriales in **D**, buccal, **E**, lingual, **F**, occlusal, **G**, buccal, **H**,
- ⁷¹⁷ lingual, and I, occlusal views; J–L, MPZ 2020/474, left dp4 from Toril 3A in J, buccal,
- 718 K, lingual, and L, occlusal views; M–O, MNCN 26577, right fragmentary

720	Calatañazor in M, buccal, N, occlusal, and O, lingual views. [planned for full-page
721	width]
722	
723	FIGURE 3: Maxillary and upper dentition of Aragonictis araid gen. et sp. nov. from
724	Escobosa de Calatañazor and Toril 3A. A MNCN 150.007, left fragmentary maxillary
725	from Escobosa de Calatañazor. Screenshots of the 3D model from CT scans in stereo
726	occlusal views; B , MPZ 2020/482, left fragmentary M1 from Toril 3A in occlusal view.
727	[planned for column width]
728	
729	FIGURE 4: Bivariate plot of the length (L) and width (W) of the m1 of Neogene
730	marten-like mustelids and the extant Martes foina (type species of Martes). The linear
731	regression a' (r2 =0.90) is defined by Miocene "Martes", Martes melibulla and Pekania
732	palaeosinensis, mostly characterized by their robust m1 talonid. The linear regression b'
733	$(r^2 = 0.04)$ is defined by a sample of 19 specimens of <i>M. foina</i> . The linear regression c'
734	$(r^2 = 0.85)$ is defined by relatively hypercarnivorous mustelids, characterized by slender
735	m1 and comprises Aragonictis araid, Circamustela spp., and Sinictis dolichognathus.
736	Values given in mm (Log). Abbreviations: r2, coefficient of determination; Log,
737	logarithm; 1, variability range of selected <i>M. foina</i> ; 2, variability range of "Martes"
738	munki from numerous localities of Europe (MN4-MN8). The m1s pictures are showed
739	unscaled between them. Metric data from: Mayet (1908); Zdansky (1924); Villalta
740	Comella and Crusafont Pairó (1943); Dehm (1950); Viret (1951); Mein (1958); Petter
741	(1963,1967, 1976); Beaumont (1974); Ginsburg and Bulot (1982); Roth and Mein
742	(1987); Pons-Moyà (1990); Azanza et al. (1993); Ginsburg (2002); Peigné et al. (2006);
743	Nagel et al. (2009); Peigné (2012); Valenciano et al. (2020a) and this work. [planned for
744	full-page width]

hemimandible, screenshots of the 3D model of the CT scans from Escobosa de

TABLE 1. Tooth measurements (in mm) of the specimens of Aragonictis araid gen. et sp. nov. from Andurriales, Toril 3A and Escobosa de Calatañazor.

	с		p1		p2		p3		p4		m1		m2		dp4		P4		M 1	
	L	W	L	W	L	W	L	w	L	W	L	W	L	W	L	W	L	W	L	W
Andurriales																				30
MNCN 150.003	2.9	2.4	1.3	1.7	3.0	1.6	3.7	1.7	4.5	1.8	7.1	3.0	2.1	2.2			_	—	—	_
MNCN 150.004		_		1.0	3.2	1.8	3.3	2.0	-		7.3	3.1	_	_			_	_	_	_
Escobosa de Calatañazor																				
MNCN 26577	_	_	_	_	2.9	1.5			4.3	1.9	6.5	2.6	1.6	1.7			—	—	_	_
MNCN 150.007	_	_		_	_	_	_			_	_	_	_	_			6.3	3.2	2.6	6.2
Toril 3A																	1000	100	2010	1000
MPZ 2020/482											_	_	_	_				_	3.0	_
MPZ 2020/474	—	—	—	-	—	—	_	_	-	—	_	_	—	-	7.6	3.0	-	-	—	-

В

5 mm

- + Circamustela? laevidens MN3
- "Martes" sainjoni MN4
- "Martes" burdigaliensis MN4-MN5
- "Martes" cadeoti Vieux-Collonges MN5
- * "Martes" collongensis Vieux-Collonges MN5
- "Martes" delphinensis MN5-MN8
- × "Martes" filholi MN5-MN8
- ▲ "Martes" sp. La Barranca MN6

- "Martes" sansaniensis sp. MN6
- Aragonictis araid Andurriales MN7+8
- Circamustela dechaseauxi MN9
- Circamustela peignei MN10
- Martes melibulla MN9
- Sinictis dolichognathus MNII-MNI3
- Pekania palaeosinensis MNII-MNI3

