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Abstract: In the last decade, industrial environments have been experiencing a change in their control
processes. It is more frequent that control strategies adopt Artificial Neural Networks (ANNs) to
support control operations, or even as the main control structure. Thus, control structures can be
directly obtained from input and output measurements without requiring a huge knowledge of the
processes under control. However, ANNs have to be designed, implemented, and trained, which
can become complex and time-demanding processes. This can be alleviated by means of Transfer
Learning (TL) methodologies, where the knowledge obtained from a unique ANN is transferred
to the remaining nets reducing the ANN design time. From the control viewpoint, the first ANN
can be easily obtained and then transferred to the remaining control loops. In this manuscript,
the application of TL methodologies to design and implement the control loops of a Wastewater
Treatment Plant (WWTP) is analysed. Results show that the adoption of this TL-based methodology
allows the development of new control loops without requiring a huge knowledge of the processes
under control. Besides, a wide improvement in terms of the control performance with respect to
conventional control structures is also obtained. For instance, results have shown that less oscillations
in the tracking of desired set-points are produced by achieving improvements in the Integrated
Absolute Error and Integrated Square Error which go from 40.17% to 94.29% and from 34.27% to
99.71%, respectively.

Keywords: control design; industrial control; transfer learning; WWTP

1. Introduction

Industrial environments are characterised by running complex and repetitive pro-
cesses which are sometimes maintained over time. In that sense, control systems are
adopted in order to ensure that these processes perform correctly [1]. Most of the times, the
development of control strategies can become a complex and time-demanding task since a
deep knowledge of the process under control is required. However, the incursion of the
Industry 4.0 paradigm and Artificial Neural Network (ANNs) applications are changing
the way we control and manage industrial environments. Their main aim is to provide the
industries with solutions mainly based on measurements obtained from their systems [2].
Some of these solutions go from basic forecasting systems to more complex solutions, like
predictive maintenance ([3], Chapter 9). However, one of the sectors where Industry 4.0 and
ANNs are making the point corresponds to the industrial control ([3], Chapter 5). There,
ANNs have been adopted for a wide range of tasks, such as the design of soft-sensors or
the detection of malfunctions [4–6]. Not only this, but the industrial control domain is
experiencing a change in its tendency: ANNs are used more and more as the main control
structures than conventional controllers.
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One of the industrial sectors where this tendency is observed corresponds to the
Wastewater Treatment Plants (WWTPs), which are characterised by running very complex
processes where individual operations and actions can change the whole operation of the
plant [7]. For that reason, a huge number of control loops are required in order to ensure
that each individual operation is correctly performed. Proportional Integral (PI) controllers
have mostly been considered as the default and basic controller strategy able to ensure
correct WWTP behaviour [8]. However, a complete reduction of the pollutants present
in the residual waters cannot be ensured. For that reason, more complex structures have
been proposed in order to improve the control performance. Fuzzy and Model Predictive
Controllers (MPCs) have been adopted in [9] as the main control strategy to avoid the
effluent violations of a WWTP plant, whereas in [10], a hierarchical structure with fuzzy
and MPC controllers has also been proposed to determine the control actuation, taking
into account the weather and a variable set-point. In this case, the set-point adopted by the
MPC controllers is determined by the fuzzy controller whose objective is to maintain the
ammonium in the fifth reactor tank of a WWTP at a desired value (please observe Figure 1
to see the distribution of the tanks of a general-purpose WWTP). The problem observed
with this kind of structure lies in the fact that they require a model which replicates
the relationships between input and output measurements. Besides, most of the time,
these relationships consist of non-linear relations which are difficult and tedious to model.
This is where ANNs come in, since they are algorithms offering good performance when
dealing with these kinds of relationships ([11], Chapter 6). The first approach consists
of the adoption of ANNs as elements whose predictions are adopted by conventional
control structures. For instance, the solution proposed in [10] has been improved in [12],
where Long Short-Term Memory (LSTM) cells have been adopted to predict the WWTP
effluent concentrations and determine when and which controller has to actuate. In other
cases, neural networks have been considered to directly determine the optimal set-point
values adopted by conventional controllers [13] or to implement a Reinforcement Learning
(RL) module performing the same task [14]. Moreover, in the last few years, ANNs
have been directly considered as the control strategy. In [15], neural networks have been
considered to implement an Internal Model Controller (IMC) devoted to managing certain
concentrations required in the pollutant reduction tasks performed in the WWTP. This also
entails that the control actuation can be decoupled from the physical specifications of the
environment [16,17].

+

+

-

-

Figure 1. Benchmark Simulation Model No. 1 layout. Qo, Qa, Qr, Qe, and Qw are the influent,
internal recycle, the external recycle, the effluent, and the wastage flow rates, respectively. Dotted
lines correspond to control signals (measured concentrations, desired set-points and actuation
signals), while solid lines correspond to process media.

The incursion of ANNs in the industrial control domain presents its own drawbacks
that have to be taken into account [18]. The most important one consists in the fact that
ANNs have to be designed and trained with amounts of data. This training process is
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devoted to determining the different hyperparameters of the ANNs, such as the numbers
of hidden layers, neurons, learning rates, or even the topology of networks. This has to
be performed for each ANN considered, either to complement a conventional controller
(PI, MPC, Fuzzy), or to act as the controller as such. Besides, this training process can last
hours or even days with regard to the network structure, the hyperparameters, and the
amount of data, accordingly [19]. For that reason, transfer learning (TL) methods have
been considered to alleviate these tasks.

TL was adopted from image classification tasks, where they were considered to obtain
a good image classifier from predesigned and pretrained structures in a source domain [20].
Then, these pretrained structures were retrained with images of the target domain in what
is called a fine-tuning process ([21], Chapter 6). In terms of industrial environments, TL was
adopted in the design process of soft-sensors, where they are firstly designed and trained in
a source domain where a huge number of measurements are available. TL techniques have
been adopted mainly to design and implement soft-sensors in those harsh environments,
showing a lack of measurements. In [22], TL techniques were considered to design a
soft-sensor which would be deployed over a sulphur recovery unit. The problem there
is that this environment shows a severe problem of data scarcity; therefore, a traditional
ANN training process cannot be performed. To alleviate this, the authors proposed the
adoption of TL to design and implement the soft-sensor in an environment without data
scarcity problems (the source domain). Then, the obtained soft-sensor was transferred into
the environment with the scarcity problem (the target domain) and fine-tuned to adapt its
behaviour to this environment [22]. In our case, we propose the adoption of the Transfer
Learning-based Control design approach to implement and design the complete control
strategy of a general-purpose WWTP. The main idea is to substitute all the PI controllers by
LSTM-based PI controllers, where only one is implemented while the others are obtained
from transferred versions. The main point here is that instead of training and designing
as many LSTM-based PIs as PI controllers, we will implement only a unique LSTM-based
structure which will then be transferred into the remaining control loops. In that way,
the design of the control loops can be eased at the same time its complexity is reduced.
Now, efforts will be focused on designing a unique controller, which will be based on data
instead of designing and tuning as many controllers as control loops. In this work, only
two control loops have been designed and implemented following this approach. Thus, the
benefit of this control approach is not as widely explored as it could be in a scenario where
there exists multiple control loops, like in the petrochemical industry [4,23]. However, it
has to be taken into account that this approach is mainly based on the adoption of ANNs,
which are trained with amounts of data coming from the control loops. Therefore, data
have to be accessible in order to adopt this approach; otherwise, the ANNs will not be
properly trained, and consequently, the control loops will not act as they should.

This approach has firstly been conducted in [24], where a LSTM-based PI structure has
been trained with data from a unique control loop and then transferred into the remaining
control loop of a WWTP environment. Notwithstanding this, the structure proposed in [24]
considers a unique LSTM cell which requires a total amount of 4 h of WWTP measurements
in order to achieve a good control approach. Besides, neither the design of the LSTM-based
PI, nor its fine-tuning process is carried out. Therefore, the control performance of the
LSTM-based PI can be improved if it is fine-tuned with measurements coming from the
target domain, that is, the control loop where the LSTM-based PI is transferred. For that
reason, in this manuscript we will continue the work started in [24]. Here, we propose the
fine-tuning process and we also analyse the benefits and losses of implementing the LSTM-
based PI with data coming from different control loops. Moreover, a new LSTM-based PI
structure able to manage the WWTP control loops without requiring 4 h of measurements
will be proposed at the same time the control performance will be improved by means
of the fine-tuning of this LSTM-based PI controller. Results will show that among all the
LSTM-based PI, there exists one able to perform well in the different control loops. Thereby,
the fine-tuning process of this LSTM-based controller and its control performance will also
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be analysed in this work. Besides, the speed-up of the design and implementation process
will be explored and analysed in this manuscript as a function of the amount of time
required to train the LSTM-based structures. The application where it is tested is specific,
but the proposed design approach can be adopted in any kind of industrial environment
where measurements are available. In summary, a TL-based design approach is proposed
to implement the complete control strategy of a WWTP. The main contributions of this
work can be summed up as:

• Conventional PI controllers will be substituted by LSTM-based structures able to
improve the conventional controller performance.

• The required knowledge of the process under control will be reduced, since the LSTM-
based structures only require input and output measurements of the conventional
controllers. Besides, these measurements are easily obtained from a well-known
WWTP digital framework: the Benchmark Simulation Model No. 1 [25].

• The design and implementation process of the LSTM-based structures will be sped up,
since only a LSTM-based structure will be implemented from scratch. The remaining
ones will be obtained through TL approaches.

• A fine-tuning process will be carried out to ensure that the control performance of the
control loop is improved with respect to the conventional WWTP controller.

The structure of the manuscript is as follows. The work presented here is introduced
in Section 1. The materials and methods adopted in this work are presented in Section 2,
especially the Benchmark Simulation Model No. 1 (BSM1), a digital framework which
models a general-purpose WWTP. In addition, the LSTM cells, as well as the TL principles
are explained in this section. Then, the main contribution of this work, that is, the adoption
of TL methods to design and implement the controllers of WWTP control loops are defined
and explained in Section 3. The results of the exploratory analyses carried out are reflected
in Section 4, while Section 5 concludes the paper.

2. Materials and Methods
2.1. Benchmark Simulation Model No. 1

The Transfer Learning-based Control Design approach proposed here is tested over
the Benchmark Simulation Model No. 1 (BSM1). The BSM1 plant is a fictitious WWTP
designed by using the engineering principles of an activated sludge process. It characterizes
a medium-scale and general-purpose WWTP plant whose main objective is to reduce the
nitrogen-derived pollutant products present in residual urban waters [25]. Besides, one
of the major aims of BSM1 is to implement a digital framework where different control
strategies can be designed and tested before being applied in the real environment. Thus,
BSM1 is able to offer generality, easy comparison, and replicability of results in terms of
the different control strategies devoted to maintaining certain pollutant components under
certain levels or limits [8].

In such a context, BSM1 implements the Activated Sludge Model No. 1 (ASM1) which
corresponds to a set of mathematical expressions describing the non-linear and highly
complex biological and biochemical processes carried out inside the WWTP plant [26].
These processes mainly consist of the denitrification and nitrification processes where
the nitrate and ammonia components are transformed into nitrogen and its derivate
products [27]. Notwithstanding this, there are other Activated Sludge Models whose main
aim is not only to model the processes carried out to reduce the nitrogen-derived pollutants,
but also the phosphorus-derived ones. This is the case for the Activated Sludge Models
No. 2, 2d, and 3 [28], which require some updates in the BSM1 framework in order to
either consider the phosphorus removal processes like in the phosphorus removal BSM1
framework (BSM1-P), or the sludge treatment, like in the Benchmark Simulation Model
No. 2 (BSM2) [29,30]. Nevertheless, the study of these behaviours, as well as the layout of
these benchmarks is out of the scope of this work.
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2.1.1. BSM1 Layout

The BSM1 layout consists of a set of five reactor tanks and a settler placed just before
spilling the clean water into the receiving waters (see Figure 1). The five reactor tanks,
where the biological and biochemical processes described in the ASM1 model are carried
out, are characterised by their aerated conditions: the first two are anoxic tanks (working
with a lack of oxygen), whereas the last three work under aerated conditions [8]. They
have a total volume of 6000 m3 , 1000 m3 for each anoxic tank and 1333 m3 for each aerated
tank. The settler has a total volume of 6000 m3. Thus, the total volume of BSM1 equals to
12,000 m3. Besides, the BSM1 framework has been designed to process an average influent
flow rate equal to 18,446 m3/d and an average biodegradable chemical oxygen demand
(COD) of 300 g/m3. This entails that the BSM1 retention time is equivalent to 14.4 h on
average [8,31].

The influent data for municipal WWTP consists of time-series data of the flow and
concentrations of the water quality parameters. These influent flow rates depend on many
factors: the size of the catchment, the type of the sewer system, and the number of person
equivalents, among others. For instance, influent profiles for a WWTP of 100,000 PE are
available in [32]. They include dry, rainy, and stormy weather conditions. Besides, these
are the usual ones considered when working with BSM1, and therefore the ones considered
in the presented work. More information about the BSM1 influent flow and concentrations
can be obtained in the BSM1 specifications [8]. Among these 15 variables, the ones of
interest in this work are the ones related to the BSM1 default control strategies:

• Nitrate and nitrite nitrogen (NO) control loop: control loop in charge of controlling the
nitrate and nitrite nitrogen concentration present in the second reactor tank (SNO,2).

• Dissolved oxygen (DO) control loop: control loop in charge of managing the dissolved
oxygen present in the fifth reactor tank (SO,5).

In the case of the NO control loop, a proportional integral (PI) controller is proposed
to manage the internal recycle flow rate (Qa) in order to ensure that the SNO,2 concentration
is maintained at the default set-point (1 mg/L). The DO control loop considers another
PI structure whose main aim is to maintain the SO,5 concentration at the default set-point
of 2 mg/L. This is performed by means of varying the oxygen transfer coefficient of the
fifth reactor tank (KLa,5) accordingly to the measured SO,5. In that sense, it is worth noting
that the two default PI controllers provided in the BSM1 framework have already been
tuned, that is, the proportional gain and the integral time parameters are predefined by
the BSM1 designers. The control performance of these PI configurations is provided as a
start and a baseline with which a new control structure can be compared. Moreover, we
have considered the default control strategies, that is, their parameters have been left as
the initial configuration proposed by the BSM1 designers.

2.1.2. BSM1 Simulation and Evaluation Protocols

As previously stated, BSM1 has been widely considered as a general-purpose WWTP
digital framework offering generality, easy replication, and comparison between different
control strategies. In order to ensure a fair comparison in the control performance, BSM1
considers two kind of simulations: (i) a simulation where no variations are produced in the
influent, and (ii) a simulation where daily influent and weather variations are produced.
In that sense, four influent profiles considering 14 days of influent measurements are
provided [25]:

• Constant influent: Influent profile showing constant influent concentrations and flow
rates during 14 days.

• Dry influent: Influent profile showing daily variations of the influent concentrations
and without any perturbation induced by weather changes.

• Rainy influent: Influent profile showing daily variations of the influent concentrations.
Two large rainy perturbations are considered during days 9 and 10.
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• Stormy influent: Influent profile showing daily variations of the influent concentrations.
Two short but intense stormy perturbations are produced at days 8 and 11.

Thus, the kind of simulation is set accordingly to the influent profile considered in the
simulation. However, the BSM1 model has to be previously initialised before performing
the simulations. The initialisation process mainly consists in the stabilization of the BSM1
reactor tanks by means of simulating a total amount of 100 days of constant influent ([8],
Section 3). Once the model is stabilised, one can perform the desired simulation. From the
14 days simulated, only the last seven days of the simulation, that is, day 7 to day 14 are
considered in the performance computation ([8], Section 6). It is also worth noting that
only dry, rainy, and stormy influent profiles are considered in this work.

BSM1 also considers its own performance metrics which ease the comparison process
among control strategies. They can be divided into two main categories: the environmental
metrics and the control ones. The environmental metrics are those showing the improve-
ments achieved in terms of the pollutant reduction when a control strategy is considered
instead of another one. Among the different metrics, the two most widely adopted ones
are the Overall Cost Index (OCI) and the Effluent Quality Index (EQI). OCI is related to
the costs generated in the pollutant reduction process, while the EQI can be understood as
a metric telling how clean the water is [8,30]. Nevertheless, we will focus on the control
metrics which do not have either an environmental nor a pollutant flavour. In our case, we
are going to consider the Integrated Absolute (IAE ) and Integrated Squared Errors (ISE)
between the measured variables and their corresponding set-points:

IAE =
∫ t=14th day

t=7th day
|r(t)− y(t)| dt (1)

ISE =
∫ t=14th day

t=7th day
(r(t)− y(t))2 dt, (2)

where r(t) corresponds to the desired set-point, and y(t) to the measured concentra-
tion. In this case, y(t) = {SNO,2(t), SO,5(t)}. Notice that only the control metrics are
considered due to the fact that this work is mainly focused on the adoption of transfer
learning approaches and ANNs to ease and speed up the design and implementation of
the control strategies.

2.2. Long Short-Term Memory Cells

The ANN-based PI controller adopted in this work is mainly based on Long Short-
Term Memory (LSTM) cells. They correspond to a type of gated networks which are
characterised by their good performance when dealing with time-series signals ([11],
Chapter 10). This is possible thanks to the gates that each LSTM cell implements: (i) three
sigmoid activation layers, the input gate (i(t)), the forget gate (f(t)), and the output gate
(o(t)), and (ii) one hyperbolic tangent layer, the state gate (c̃(t)) (see Figure 2).

Figure 2. LSTM cell internal structure.
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In terms of data, the LSTM cell considers the input data (x(t)) and the output data
(h(t)) vectors. Accordingly to them, the forget gate determines the amount of the cell state
information that has to be deleted:

f(t) = σ(W f · x(t) + U f · h(t− 1) + b f (t)). (3)

Then, the input and state gates determine the new information to be stored in the
cell state:

i(t) = σ(Wi · x(t) + Ui · h(t− 1) + bi(t)) (4)

c̃(t) = tanh(Wc · x(t) + Uc · h(t− 1) + bc(t)) (5)

c(t) = f(t) ◦ c(t− 1) + i(t) ◦ c̃(t). (6)

Finally, the output data of the LSTM cell is computed as a function of the input and
previous output, as well as the outcome of the output gate:

o(t) = σ(Wo · x(t) + Uo · h(t− 1) + bo(t)) (7)

h(t) = o(t) ◦ tanh(c(t)). (8)

Notice that Wx and Ux are the weights of the different gates modifying the input and
output data vectors, respectively. bx are the biases of the different gates. Finally, ◦ is the
Hadamard product between two matrices. σ and tanh are the sigmoid and hyperbolic
tangent activation functions, respectively. If more information about LSTM cells and their
behaviour is required, readers are referred to ([11], Section 10.10).

2.3. Transfer Learning

The main contributions of this work are mainly focused on the adoption of Transfer
Learning (TL) techniques to ease and speed up the control design in industrial environ-
ments, especially in the WWTPs. In that sense, TL consists of transferring the knowledge
obtained in the training process of an ANN structure into another one. For instance, TL
techniques have been widely adopted in the design and implementation of image classifiers
among others [20]. One clear example is shown in ([21], Chapter 6), where the Inception
model, a general-purpose image classifier, is adopted to develop a dog breed classifier.
This new classifier is implemented with the Inception classifier without the last layer plus
three new convolutional layers connected to the output of the penultimate Inception layer.
Therefore, the dog breed classification performance will be derived from the Inception
classification one and a new retraining process where a new set of dog breed pictures is
considered ([21], Chapter 6). This shows that TL techniques can be considered as techniques
which not only obtain ANN models performing well from a source model, but also speed
up their designing process since the knowledge of the source model is shared with the new
ones ([21], Chapter 4).

In that sense, TL techniques can be categorised into three classes as a function of the
data availability in the source and target domains or scenarios ([21] Chapter 4, [22]):

• Inductive Transfer Learning: In inductive transfer learning, the source and target
domains do not show data scarcity problems. Therefore, the transfer model can be
designed and firstly trained in the source domain and then fine-tuned in the target
domain in order to adapt its behaviour to its final application.

• Transductive Transfer Learning: Transductive transfer learning is characterised by the
necessity of retraining the transferred model every time a new set of labelled data is
available in the target domain. This is motivated by the fact that at the first moment,
the target domain has no labelled data.

• Unsupervised Transfer Learning: Unsupervised transfer learning is characterised
by the fact that there is no available data neither in the source domain, nor in the
target one. Thus, this technique is mainly focused on solving unsupervised tasks like
dimensionality reduction.
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In our case, we are faced with an Inductive Transfer Learning task, since the source
and target domains do not show a data scarcity problem. Here, the source domain consists
in the SO,5 control loop (DO control loop) or the SNO,2 control loop (NO control loop)
depending on the base ANN-based controller being implemented. In that sense, if the DO
control loop is considered as the source domain, the NO control loop will be considered as
the target domain and vice versa.

2.4. Modelling

Three different tools have been considered in this work to implement and test the
proposed Transfer Learning-based Control Design approach. They correspond to Simulink
and Python. Simulink was adopted due to the fact that the BSM1 model is completely
deployed over this simulator. Simulink version 10.1 running over Matlab R2020b was
considered. Moreover, all the ANNs involved in the proposed approach are also deployed
over the BSM1 model in order to test their behaviour. Thus, they are also implemented in
Simulink. In that sense, the ANNs, and especially the LSTM cells have been designed and
trained by adopting Python 3.6 with three open-source libraries and a NVIDIA GeForce
RTX 2080 Titan GPU memory, which is considered to speed up the LSTM training process:

• NumPy (1.18.1) [33]: library providing a huge amount of tools and operations involv-
ing vectors and matrices.

• Scikit-Learn (0.22.1) [34]: library providing most of the functions considered in data
preprocessing, cross-validation, and evaluation processes.

• Tensorflow (1.14.0) [35]: library providing lots of ANN structures and techniques. It
also implements the Keras API, which offers predefined ANN structures, optimizers,
cost functions, or training algorithms. Therefore, nearly any ANN structure can be
designed by means of concatenating different predefined Keras structures.

3. TL-Based Control Design

As it has been stated, one of the problems in industrial control is related to the
conception and design of the control loop. Most of the times, the design of the controllers
can become a tedious and time-consuming process since one has to determine the topology
of the controller to be used, as well as the plant or process it is going to manage. In that
sense, ANNs have arisen as a possible solution able to alleviate this. They only require pairs
of input and output data of the process to be controlled [15]. However, this has its own
drawbacks: ANNs have to be correctly trained and designed if a good control performance
is required. This can become a time-demanding and computationally expensive process if
there are a lot of control loops to design.

For that reason and to alleviate this issue, we propose in this work the TL-based
Control Design approach, which is focused on designing and implementing the control
strategies of a general purpose WWTP. In this case, the TL-based Control Design approach
consists in two stages: (i) the LSTM-based controller, where the design and training of an
ANN-based controller is carried out, and (ii) the Control Knowledge Transfer approach,
where the transfer of the controller knowledge into the different industrial control loops
is performed. The first stage is mainly based on designing an ANN able to manage the
signals considered in the control of the industrial process. To achieve this, the proposed
ANN-based controller predicts the corresponding actuation signal accordingly to its input
measurements, that is, the measured value and its set-point. In our case, the signals
involved in the control loops correspond to either the SO,5 or the SNO,2 concentrations, and
their respective actuation signals, the KLa,5 or Qa. Besides, the ANN-based controller will
be implemented with LSTM cells due to their good performance when dealing with time-
series signals, such as the ones obtained from the BSM1 framework. ([11] Section 10.10, [8]).
The second stage is mainly focused on transferring the knowledge of the proposed LSTM-
based controller into the other control loops. In this case, the LSTM-based controller is
considered as the baseline strategy to be transferred (see Figure 3). Thus, the objective
is to design only a LSTM-based controller instead of as many LSTM-based structures
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as control loops present in the WWTP. Then, its knowledge will be transferred into the
remaining loops.

It is also important to notice that this transfer approach can be adopted in any indus-
trial scenario. However, there is a requirement that has to be fulfilled; the TL-based Control
Design can only be applied among control loops sharing the same control objective. This is
motivated by the fact that the ANN-based structure trained in the source control loop will
learn how to generate an actuation signal from the controlled ones with the objective of per-
forming certain tasks, for instance, the tracking of a given set-point. Then, the knowledge
of this ANN-based structure will be transferred into the target one, which should have the
same objective. Otherwise, the target structure would generate actuation signals which do
not fulfil the control objective. In the case of this work, the control objective is clear, where
both the DO and the NO control loops are designed to track the given set-points regardless
of the fact that the involved signals show different values and dynamics [8,25].

Figure 3. Graphical description of the TL-based Control Design approach. Notice that DO refers to the Dissolved Oxygen
(SO,5) control loop, whilst NO refers to the nitrate and nitrite (SNO,2) control loop.

Once the knowledge of the LSTM-based control structure is transferred, the control
performance of the LSTM-based controller can be adjusted through a fine-tuning process
which consists in a retraining of the LSTM-based structure. However, this fine-tuning
process is different from the usual fine-tuning processes performed in the usual applications
of transfer learning, that is, the development of image classifiers. There, the data considered
to carry out the fine-tuning process consist in a set of new images where the labels are
intrinsically obtained from the same images. Taking up the dog breed classifier, the TL
fine-tuning process is performed to the Inception structure with images of different dog
breeds where the labels are obviously clear. When talking about industrial processes,
the situation completely changes. The new measurements have to be obtained from the
control loop where the LSTM-based controller is going to be transferred. In addition,
the knowledge about how to control this loop has to also be obtained. For that reason,
the data required to perform the fine-tuning processes have to be obtained by means of
simulating the behaviour of the industrial process when an existing and conventional
controller is applied. If not, the LSTM-based controller will not be able to offer a good
control performance.

In this manuscript, two LSTM-based controllers will replicate the behaviour of the
default WWTP PIs since they are the ones present in the BSM1 digital framework [8]. This
is motivated by the fact that the LSTM-based PI controller can be obtained with data from
the DO control loop (DO LSTM-based PI) and then transferred into the NO control loop, or
it can be designed considering measurements from the NO control loop (NO LSTM-based
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PI) and then transferred into the DO loop. From these two controllers, the one offering the
best control performance in both control loops will be fine-tuned.

3.1. LSTM-Based PI

As it has been previously stated, the controller proposed in the TL-based Control
Design approach consists in a LSTM-based controller which will act as a PI controller man-
aging either the SO,5, or the SNO,2 concentrations. Hence, two LSTM-based PI candidates
are proposed since there exists two control loops, the DO and the NO control loop. For that
reason, we will analyse the control performance of each one in order to determine which
LSTM-based PI will be transferred and fine-tuned. The first LSTM-based PI controller
corresponds to the DO LSTM-based PI, which is derived from the PI managing the SO,5
concentration, while the second one corresponds to the NO LSTM-based PI. It is derived
from measurements of the default PI managing the SNO,2. Before designing and training
the two LSTM-based PIs, one can guess which one will offer the best control performance.
If the control performance of the default PI controllers is taken into account (see Figure 4),
one can observe that the best PI corresponds to the one managing the SO,5, since it is able
to maintain the SO concentration at the desired value (2 mg/L). On the other hand, the
PI managing the SNO,2 is not able to maintain the desired set-point. Thereby, the control
performance of the LSTM-based ones will be similar to the default PI controller from which
the data were obtained. In other words, the better the conventional controller performance,
the better the LSTM-based one.

(a) SNO,2 Default PI control (b) SO,5 Default PI control

Figure 4. Control performance when the default PI controllers are adopted. Notice that the worst performance is offered by
the SNO,2 default PI controller.

The DO LSTM-based PI and the NO LSTM-based PI structures are obtained by means
of a grid search method where different LSTM-based structures are trained with the same
set of measurements. The efforts of the grid search are focused on determining the number
of LSTM cells, feedforward layers, and hidden neurons per layer of the LSTM-based
structure. Then, the LSTM structure offering the best prediction performance without
committing overfitting is the one considered as the main structure in which the LSTM-
based PI is based on. In that sense, the grid search is performed instead of finding the
parameters characterising the PI controller, that is, the integral time and the proportional
gain [36]. This means that a deep knowledge of the process under control is not required.
Only pairs of input and output measurements of the existing default PI controllers are
needed. To obtain them, a complete year of randomly distributed weather profiles has
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been simulated in order to achieve a good control performance regardless of the weather
conditions. From all the available measurements, the input and output measurements
of the LSTM-based PI controller will be determined accordingly to the control loop they
will manage:

• DO Control loop: the measurements involved in the DO control loop are the dissolved
oxygen (SO,5), its desired set-point (SO,5set−point ), and the oxygen transfer coefficient of
the fifth reactor tank of the WWTP (KLa,5).

• NO Control loop: the measurements involved in the NO control loop are the ni-
trate and nitrite nitrogen (SNO,2), its desired set-point (SNO,2set−point ) and the internal
recirculation flow of the WWTP (Qa).

These measurements are the ones considered to carry out the grid search method
devoted to determining the LSTM-based PI structures. Each one of these measurements is
split into three different sets: 70% of the measurements to train the different LSTM-based
net configurations, 15% to validate them, and the remaining 15% to test the structures. The
grid search process has been carried out adopting the Adam optimizer ([11], Sections 6.5
and 8.5.3) and a total amount of 500 epochs. The initial learning rate value has been set to
1× 10−3, however, it is reduced along the process. In addition, LSTM nets are also known
to suffer overfitting problems, where they memorise the input and output measurements
instead of deriving a model from them ([11], Chapter 7). To avoid this problem, the L2
parameter regularisation technique and early stopping method are considered. The L2
parameter regularisation consists in the addition of extra penalty to the weights of the
corresponding layer ([11], Section 7.1.1). This extra penalty is known as the weight decay
parameter, which in this case has been set to 5× 10−4. On the other hand, early stopping
acts as a technique which stops the training process when the validation performance
changes its tendency with respect to the training one ([11], Section 7.8). Here, the important
point corresponds to the early patience, which determines the amount of epochs that this
change of tendency is allowed. In this work, we consider an early patience of five epochs,
understanding an epoch as a complete pass over the training dataset ([37], Chapter 2).
Both LSTM-based controllers consider the same LSTM-based structure (see Figure 5) which
mainly consists in two LSTM cells devoted to extracting and obtaining information from the
time correlation between measurements and two feedforward layers which will transform
this information into the desired output. Moreover, each structure considers Normalisation
and Denormalisation stages in charge of normalising the input measurements towards
zero mean and unity variance, and to take them into its natural range, respectively. These
two stages are needed since the range of the measurements involved in the control loops
are quite different: the mean of the measurements involved in the DO control loop equal to
1.9752 and 144.68 for the SO,5 and the KLa,5, respectively. In the case of the NO loop, the
mean values of the variables involved in the control are equal to 0.9937 and 2.1802× 104 for
the SNO,2 and Qa measurements. As a summary, the DO LSTM-based and NO LSTM-based
structures are as follows:

• DO LSTM-based PI

– Input measurements: the dissolved oxygen in the fifth reactor tank (SO,5(t)) and
its desired set-point (SO,5set−point(t)). Besides, the DO LSTM-based net considers
the Nonlinear Autoregressive Exogenous principle (NARX) where the output
predicted by the net will be considered as an extra input. This extra input
provides the LSTM-based structure with information about its performance in
the prediction process [38], thus it will be able to correct its predictions as a
function of this extra input. In this case, the extra input corresponds to the
previously computed actuator signal (KLa,5(t− 1)).

– Normalisation Stage: stage devoted to normalising the input measurements
towards zero mean and unity variance.
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– LSTM-based Net: main part of the LSTM-based Controller. It consists of two
LSTM cells with 100 and 50 hidden neurons and two feed forward layers with 50
and 25 hidden neurons, respectively.

– Denormalisation Stage: stage devoted to denormalising the actuation signal (DO
LSTM-based Net output) towards its real range of values.

– Output: the actuation signal which corresponds to the oxygen transfer coefficient
of the fifth reactor tank (KLa,5(t)).

• NO LSTM-based PI

– Input measurements: the nitrate and nitrite nitrogen in the second reactor tank
(SNO,2(t)) and its desired set-point (SNO,2set−point(t)). As it happens with the DO
LSTM-based PI, the NO LSTM-based controller also considers the NARX princi-
ple. In this case, the extra input corresponds to the previously computed actuator
signal (Qa(t− 1)).

– Normalisation Stage: stage devoted to normalising the input measurements
towards zero mean and unity variance.

– LSTM-based Net: main part of the LSTM-based Controller. It consists of two
LSTM cells with 100 and 50 hidden neurons and two feed forward layers with 50
and 25 hidden neurons, respectively.

– Denormalisation Stage: stage devoted to denormalising the actuation signal (DO
LSTM-based Net output) towards its real range of values.

– Output: the actuation signal which corresponds to the WWTP internal recircula-
tion flow rate (Qa(t)).

Figure 5. LSTM-based net considered in the LSTM-based Controller. l corresponds to the number of inputs, which in this
case is set to three measurements: the measured concentration of interest, SO,5(t) or SNO,2, its set-point, SO,5set−point (t) or
SNO,2set−point (t), and the actuation variable, KLa,5(t− 1) or Qa(t− 1).

The prediction performance of both structures has been computed in terms of the
difference between the predicted actuation variables and the expected ones (remember
that the DO LSTM-based PI predicts the KLa,5), whereas the NO one predicts the Qa. Five
metrics are adopted, the Root Mean Squared Error (RMSE), the Mean Absolute Error
(MAE), the Mean Average Percentage Error (MAPE) the determination coefficient (R2), and
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the training time [39]. The RMSE and the MAE tell us how the prediction errors are, that
is, if the predictions are close to the expected measurements or not. However, they are
absolute metrics in terms of how they do not tell us how big or small these errors are. For
that reason, we consider the MAPE, which compares the errors with respect to the expected
value. R2 is considered to determine the correlation between the predicted and expected
measurements. Finally, the training time is considered to determine the amount of time
to train unique network. Notice that all the prediction metrics are computed considering
normalised values, with the exception of the MAPE in order to avoid divisions by zero and
the training time. In that sense, the results show that the proposed LSTM-based structures
are able to offer a good prediction performance (see Table 1) since both structures yield
low RMSE, MAE and MAPE values at the same time they offer a R2 nearly equal to 1.
Therefore, it is corroborated that these structures can be used to implement PI controllers
which are mainly based on data.

Table 1. Prediction performance of the DO LSTM-based PI and the NO LSTM-based PI.

LSTM-Based Prediction Performance

RMSE MAE MAPE R2 Training Time

DO LSTM-based PI 0.026 mg/L 0.018 mg/L 1.347% 0.999 69.91 s
NO LSTM-based PI 0.048 mg/L 0.037 mg/L 6.26% 0.997 98.60 s

3.2. Control Knowledge Transfer Approach

The Control Knowledge Transfer approach corresponds to the stage of the TL-based
Control Design devoted to transferring the knowledge of the LSTM-based PI structures
of one WWTP control loop into the other. The adoption of this stage is motivated by the
fact that we looked for the ease and speed-up of the controller design and implementation
process, respectively.

In this manuscript, three different TL approaches are considered to achieve the transfer
of the control knowledge between control loops. Two of them are considered to determine
which controller, the DO or the NO LSTM-based PI, has to be transferred and then fine-
tuned. The third approach mainly consists in the adoption of the controller showing the
best performance in the source and target domains and its fine-tuning to adapt its behaviour
to the dynamics of the target domain, the control loop where it has been transferred. As a
summary, the three considered control approaches are:

• Transfer Learning from DO to NO
The DO LSTM-based PI structure is transferred directly from the DO to the NO control
loop. Here, it is important to notice that the structure is not fine-tuned, that is, the
LSTM-based PI controller has been trained to manage the SO,5 concentration. Besides,
only the normalisation and denormalisation stages are adapted to the NO control
loop measurements.

• Transfer Learning from NO to DO
The NO LSTM-based PI structure is directly transferred from the NO to the DO control
loop without performing any change, neither in its structure, nor in its weights and
biases. Thus, the knowledge on how to manage SNO,2 concentration is transferred
into the DO control loop. The unique change performed in this transfer approach
corresponds to the normalisation and denormalisation stages. They have been adapted
to normalise and denormalise the measurements coming from the NO control loop
instead of the DO control loop. Following this, the NO LSTM-based PI will be at
least equal to the default PI managing the SNO,2 concentration, that is, the NO control
loop PI. If Figure 4 is taken into account, one can assure that the NO LSTM-based PI
controller will not offer such a good control performance as the DO LSTM-based PI
derived from the DO control loop.

• LSTM-based controller Fine-tuning & Transfer
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This transfer approach is the most important one since it corresponds to the transfer
method performing a fine-tuning process and therefore, adapting the behaviour of the
transferred controller to the target domain dynamics. In other words, in this transfer
learning approach the LSTM-based controller yielding the best control performance
between the Transfer Learning from DO to NO and the Transfer Learning from NO
to DO will be considered as the candidate to be fine-tuned. Results in Section 4
show that the best control performance is offered by the DO LSTM-based PI. For
that reason, this is the LSTM-based controller considered in the fine-tuning process.
Nevertheless, this choice can be done at the very beginning if the performance offered
by the conventional PI structures is considered (see Figure 4).
In terms of the three TL classes, the LSTM-based controller Fine-tuning and Transfer
approach consists in an inductive transfer learning task: data from the source domain,
the DO control loop, is considered to firstly obtain the DO LSTM-based PI structure.
Then it is fine-tuned (retrained) with data coming from the PI controlling the target
domain, the NO control loop. In other words, the default SNO,2 controller whose
performance is observed in Figure 4a has been considered to perform the fine-tuning
process of the DO LSTM-based PI controller. Thus, the obtained controller, the fine-
tuned DO LSTM-based PI (FTDO LSTM-based PI) will know how to correctly manage
the desired variable, but adapted to the NO control loop. This clearly shows that
an existing controller managing the target control loop is compulsory to obtain the
measurements considered in the fine-tuning process. This differs from traditional and
conventional TL applications, where labelled data are available.
The main point here is that in the fine-tuning process not all the layers of the DO
LSTM-based PI controller will be retrained with measurements of the target domain:
the weights of the two LSTM cells are blocked whilst the weights and biases of the two
feedforward layers (see Figure 5) are modified in the fine-tuning process. The LSTM
cells are the ones that are blocked since they are the layers gathering the information
about the time-dependence between measurements. The feedforward layers mainly
take this information to adapt the output of the controller to the desired control loop.
For that reason, these are the layers which will be retrained just to adapt the outcomes
of the LSTM layers to the new domain.
The measurements of the target domain are again obtained by performing a whole-
year simulation of the BSM1 behaviour when the three weather profiles, dry, rainy,
and stormy, are randomly distributed. The weights and biases of the two retrained
feedforward layers are obtained considering the same training parameters as in the
case of the DO LSTM-based PI training process: initial learning rate equals to 1× 10−3,
the weight decay equals to 5× 10−4 and the early patience is set to 5 epochs.

4. Results
4.1. TL-Based Control Design Results

The performance of the TL-based Control Design approach is determined by means
of analysing the control performance of each one of the proposed TL approaches: (i) the
Transfer Learning from DO to NO, (ii) the Transfer Learning from NO to DO, and (iii) the
LSTM-based controller Fine-tuning and Transfer. In that sense, the two first results will
determine which controller, the DO LSTM-based PI or the NO LSTM-based PI, is perform-
ing better in both control loops when no fine-tuning process is carried out. Finally, the
one performing better is fine-tuned and its control performance is computed in the last TL
approach. Results will show which is the best option not only to obtain a complete and
good control approach mainly based on data, but also to speed-up the design process of
the complete WWTP control strategy.

The control performance has been computed in terms of fix and variable set-points in
order to determine if the TL-based Control Design approach is suitable for both types of
set-points. Fix set-points are considered since the default control strategy considers them in
order to assure that the nitrification and denitrification processes, the ones performing the
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pollutant reduction task, are correctly performed [8,27]. They have been set to 2 mg/L and
1 mg/L for the SO,5 and SNO,2 control loops, respectively. Notwithstanding, variable set-
points are the ones of most interest since most of the times the set-points are computed by
means of other control strategies or are varied in order to optimise the pollutant reduction
process [10,14,40,41]. In this case, the variable DO set-point has been computed accordingly
to the Fuzzy Logic adopted in [10], where the Fuzzy controller is considered to determine
the SO,5 set-point generating the lower SNH,5. Moreover, the three different BSM1 weather
profiles have also been simulated to determine if the control design approach can be
considered regardless of the weather conditions.

4.2. Transfer Learning from DO to NO

The first computed control performance corresponds to the situation where the DO
LSTM-based PI is obtained with data from the DO control loop. Then, it is transferred into
the NO control loop without performing any fine-tuning process. Results are shown in
Table 2, where the first important effect that one can notice is that the control performance
in the DO control loop, that is, in the management of SO,5, is even better than the control
offered by the default PI. This effect is motivated by two situations: (i) the fact that the
DO LSTM-based PI has been trained through the simulation of the control strategy when
random variations in the set-point are provided, and (ii) the NARX principle which pro-
vides the LSTM-based structure with information about the previous predicted outcomes.
Thus, the LSTM-based structure has learnt how to correct variations present either in the
set-point, or in the measured concentration.

Table 2. Control performance when the DO LSTM-based PI derived from the DO control loop is transferred into the NO
control loop.

Transfer Learning from DO to NO Control Loop

Fix Set-point

Dry Weather Rainy Weather Stormy Weather

Structure IAE ISE IAE ISE IAE ISE

PI—SO,5 0.148 0.007 0.143 0.007 0.158 0.007
DO LSTM-based PI—SO,5 0.006 9.98× 10−6 0.006 1.12× 10−5 0.006 1.29× 10−5

PI—SNO,2 1.594 0.691 1.922 0.951 1.874 0.977
DO LSTM-based PI—SNO,2 1.008 0.290 1.401 0.578 1.033 0.357

Variable Set-point

PI—SO,5 0.185 0.016 0.155 0.014 0.206 0.020
DO LSTM-based PI—SO,5 0.013 2.34× 10−4 0.016 4.48× 10−4 0.016 4.05× 10−4

PI—SNO,2 1.792 0.858 2.132 1.089 1.884 0.989
DO LSTM-based PI—SNO,2 1.271 0.503 1.672 0.758 1.358 0.593

In terms of the IAE and ISE metrics, one can observe that they are improved with
respect to the default PI control performance when a fixed set-point is considered. In
addition, these improvements are achieved regardless of the weather profile. In other
words, the IAE and ISE values were improved by around a 95.98% and a 99.84% in
average with respect to the default PI controller, respectively. For instance, the highest IAE
improvement is achieved when the stormy influent profile is simulated. The IAE offered by
the default SO,5 PI controller is equivalent to 0.158, while it is reduced until 0.006 when the
DO LSTM-based PI is considered. This entails that the difference between the measured
and the SO,5 controller is minimal. In terms of the ISE, the highest improvement is obtained
when the dry weather is simulated. The achieved improvement equals to 99.86% with
respect to the default PI controller. Notwithstanding, this improvement equals to 99.84%
and 99.82% when the rainy and stormy weathers are considered, respectively. These results
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show that the DO LSTM-based PI is able to be highly improved when a fixed set-point is
considered. However, the important results are the ones obtained when a variable set-point
is considered, since it corresponds to the most frequently adopted set-point topology.

In such a context, the same effect is observed when a SO,5 variable set-point is consid-
ered. In this case, the average improvement in terms of the IAE and ISE equals to 91.67%
for the IAE and a 97.77% for the ISE. Now, the highest improvement is achieved when
the dry weather is considered: the IAE and the ISE are improved by 92.97% and 98.54%
with respect to the default PI controller performance. This is motivated by the fact that
rainy and stormy influents are derived from the dry weather where the rainy and stormy
episodes are included. For that reason, the LSTM-based structure has more often observed
the effects of the PI controlling the SO,5 when dry episodes are observed rather than stormy
or rainy ones. In addition, the control performance clearly shows that the DO LSTM-based
PI controller can be adopted as the main controller in the DO control loop (see Figure 6). As
it is observed, the output of the controller is much closer to the given set-point of 2 mg/L
than the default PI output.

Figure 6. Control performance for the DO control loop when the LSTM-based PI is considered.

However, the most important point is to determine the control performance of the
NO control loop, since in this case the DO LSTM-based PI is directly transferred into
the NO control loop. The changes performed in the control structure correspond to the
normalisation and denormalisation stages, which have been adapted to the range of values
involved in the control of SNO,2. Results show that the control performance of the DO
LSTM-based PI controller can be improved by, on average, 33.07% and 42.94% in the case
of the IAE and the ISE, respectively, when it is managing the SNO,2 and considering a fixed
set-point. For instance, the highest improvement with respect to the default PI structure
is achieved when the stormy weather is considered. The IAE and ISE obtained in such
a situation equal to 1.033 and 0.357, respectively, which in percentage values equal to an
improvement of a 44.88% and a 63.46% for the IAE and ISE respectively. At the same time,
this represents a reduction of the IAE and ISE improvement of 51.32 and 36.36 percentage
points with respect to the improvement achieved when the DO LSTM-based PI is managing
the SO,5. This is clearly motivated by the fact that the DO LSTM-based PI is designed to
offer its best performance when managing the DO control loop. When a SO,5 variable
set-point is chosen, one can observe that the average improvements in the NO control loop
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and in terms of the IAE and ISE are equal to 26.19% and 37.27%, respectively, being the dry
weather the one showing the highest improvement (see Figure 7). The IAE values go from
1.792 to 1.271 while the ISE values go from 0.858 to 0.503, respectively.

Figure 7. Control performance for the NO control loop when the LSTM-based PI derived from the
DO control loop is transferred into it.

These results show that the DO LSTM-based PI controller is able to improve the
default PI controllers performance. For that reason, it is considered as a candidate to be
fine-tuned in order to adapt its behaviour to the SNO,2 control management and therefore,
achieve a better improvement in the management of this loop.

4.3. Transfer Learning from NO to DO

Before performing the fine-tuning process, the control performance of the NO LSTM-
based PI is also computed to determine its behaviour when managing the NO control loop
(its source domain) and its performance when managing the DO loop (its target domain).
Results are shown in Table 3 where at first sight it is clearly observed that the IAE and
ISE metrics are improved with respect to the default SNO,2 PI controller. When a SO,5 fix
set-point is considered, the NO control loop IAE is improved in average a 24.32% while
the corresponding ISE is improved around a 39.03% in average. Both with respect to the
default NO control loop PI controller. The ISE improvement shows that the proposed NO
LSTM-based PI controller, which has been derived from the NO control loop, is able to
reduce the highest errors between the measured SNO,2 and its set-point, with respect to
the default PI controller. However, the control performance can be still improved since
the improvement achieved in terms of the IAE error is still low. For instance, the best
improvement is observed when the stormy weather is considered. There, the obtained IAE
goes from 1.874 to 1.360, whereas the ISE goes from 0.977 to 0.543. These values represent
an improvement around a 27.43% and a 44.42% when the obtained IAE and ISE values are
compared to the default PI control metrics. In terms of the SO,5 control performance, the
transferred NO LSTM-based PI shows that the IAE performance is degraded instead of
improved. For instance, when the NO LSTM-based PI is adopted, the IAE is increased from
0.148 to 0.158 when the dry weather is considered. This effect is motivated by the fact that
the default PI of the NO control loop is not offering such a good control performance as
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the default PI of the DO control loop. Thus, the control performance will not be improved
if data from the NO control loop is obtained to derived the NO LSTM-based PI and then
transfer it into the DO control loop.

Table 3. Control performance when the NO LSTM-based PI derived from the NO control loop is
transferred into the DO control loop.

Transfer Learning from NO to DO Control Loop

Fix Set-point

Dry Weather Rainy Weather Stormy Weather

Structure IAE ISE IAE ISE IAE ISE

PI—SNO,2 1.594 0.691 1.922 0.951 1.874 0.977
NO LSTM-based PI—SNO,2 1.302 0.486 1.399 0.542 1.360 0.543

PI—SO,5 0.148 0.007 0.143 0.007 0.158 0.007
NO LSTM-based PI—SO,5 0.158 0.004 0.146 0.004 0.160 0.004

Variable Set-point

PI—SNO,2 1.792 0.858 2.132 1.089 1.884 0.989
NO LSTM-based PI—SNO,2 1.266 0.464 1.574 0.662 1.372 0.557

PI—SO,5 0.185 0.016 0.155 0.014 0.206 0.020
NO LSTM-based PI—SO,5 0.288 0.030 0.239 0.022 0.385 0.049

Visually, one can observe that the SNO,2 control performance is slightly improved
with respect to the default PI (see Figure 8). The peaks of SNO,2 concentration are reduced,
however, the desired set-point is not achieved. In terms of the SO,5, the control performance
is even slightly degraded with respect to the default PI controller. As it can be observed, the
measured SO,5 does not show variations as the default PI controller, however, there exists
an offset which produces the IAE increment. For that reason, the ISE metric in terms of the
SO,5 is still reduced, it now equals to 0.004 in average instead of 0.007. Notice that the ISE
tells if there exists a huge difference between the measured and the desired concentration,
whereas the IAE tells if the difference is maintained over time.

When a variable set-point is considered, one can observe that the control performance
is only improved in terms of the NO control loop. The IAE and ISE metrics are improved
in averages with respect to the default PI controller of 27.56% and 42.94%, respectively. In
terms of the DO control loop performance, results show that transferring the NO LSTM-
based PI controller derived from the NO loop into the DO loop is not an option, since all
the control metrics are degraded. For instance, the IAE and ISE metrics are nearly doubled
with respect to the default PI controller when the stormy weather profile is simulated.
These results entail that the NO LSTM-based PI cannot be considered as a candidate to
be fine-tuned since it does not improve the control performance of target domain at the
same time that the improvement achieved in the source domain is much lower than the
one achieved by the DO LSTM-based PI. In addition, this also corroborates one of the
main ideas stated before: the better the conventional control performance, the better the
LSTM-based one. For that reason, the DO LSTM-based PI is the one considered to perform
the fine-tuning process. It is important to notice that the initial training of both structures,
the DO LSTM-based PI and the NO LSTM-based PI is not compulsory. In Figure 4b it is
clearly observed that the control loop offering the best performance corresponds to the PI
managing the DO control loop. Hence, the DO LSTM-based PI can be initially adopted
to be trained. Then, it will be transferred into the NO control loop and fined-tuned. As a
consequence, there is no need to train or even implement the NO LSTM-based PI.
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Figure 8. Control performance for the NO and DO control loops when the stormy weather is
considered. The LSTM-based PI managing the DO control loop is derived from the NO control loop
and transferred into the DO one.

4.4. LSTM-Based Controller Fine-Tuning & Transfer

Once the control performance of the DO and NO LSTM-based PI controllers is com-
puted one can clearly observe that the DO LSTM-based PI is the controller offering the
best control performance in both control loops. For that reason, the fine-tuning of the
DO LSTM-based PI controller is proposed. To perform this tasks, data coming from the
default SNO,2 PI controller is considered. In that sense, information about how to control
and manage the SNO,2 concentration is provided to the DO LSTM-based PI. Thus, the
fine-tuned version of the controller, the FTDO LSTM-based PI, should be able to improve a
better control performance in terms of the SNO,2 managing process.

Now, the prediction performance of the FTDO LSTM-based PI equals to a RMSE of
0.095 mg/L, a MAE of 0.067 mg/L, a MAPE of 6.24% and a R2 of 0.991. Its training time
equals to 20.27 s. At first sight one can observe that prediction performance is degraded
with respect to the DO and NO LSTM-based PI controllers. However, this degradation is
motivated by the fact that the proposed FTDO LSTM-based PI controller has learnt how to
correctly manage the SO,5 and SNO,2 concentration instead of a unique one. In addition,
the training time in this occasion equals to 20.27 s, which means that the time spent in the
fine-tuning process is largely reduced with respect to training the LSTM-based structure
from scratch. This effect is motivated by the information already present in the LSTM
structure, that is, the weights and biases of the blocked LSTM cells. This corroborates that
TL techniques can be adopted to simplify and speed up the control design process. Let’s
suppose that instead of transferring the knowledge of the DO LSTM-based PI into the NO
control loop and performing a fine-tuning process, we decide to control each loop with
its corresponding LSTM-based PI structure. The amount of time devoted to training the
networks correspond to 69.91 and 98.60 s for the DO and NO control loops, respectively.
This equals to a total time of 168.51 s only in terms of the training time. Although this time
is affordable, if the DO LSTM-based PI is transferred into the NO control loop, only 69.91 s
plus the time spent in the fine-tuning process, no more than 21 s is required. Thus, the
total amount of time invested in the design process equals to 90.18 s, which represents a
reduction of 78.33 s with respect to training two individual nets. Therefore, the reduction of
the training time is clearly observed. In addition, it is important to notice that the WWTP
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we are dealing with only considers two control loops. However, this reduction of time will
be higher in these situations where the number of control loops to design is larger. In that
sense, an estimation of the training time reduction can be performed. If we suppose that
the training time of the baseline LSTM-based PIs (from scratch) correspond to tbaseline and
that the time spent in the fine-tuning process on average equals to t f t, the reduction of time
(∆t) provided by our approach can be computed as:

∆t = N · tbaseline − [tbaseline + (N − 1) · t f t] = (N − 1)[tbaseline − t f t], (9)

where t f t � tbaseline. N equals to the number of control loops where the baseline LSTM-
based PI is the transfer. As it is observed, the higher the number of control loops to design,
the higher the reduction of time and the higher the benefit of the proposed methodology.
Not only this, but this methodology can also be applied in those situations where the
control of a new WWTP scenario has to be designed. In such a context, the new control
structure can be derived by transferring the knowledge of the control structure of an
already controlled WWTP. This would involve an even higher reduction of the complexity
and time required in the development of the control strategy. All these facts motivate us to
consider the TL methods in the design of the WWTP control loops.

In terms of the control performance, results of the FTDO LSTM-based PI control are
shown in Table 4, where the IAE and ISE values are computed for different weather profiles
and set-points. It is worth noticing that the SNO,2 is now managed by the fine-tuned
and transferred DO LSTM-based PI, that is, the FTDO LSTM-based PI, whereas the SO,5
concentration is managed by the DO LSTM-based PI.

Table 4. Control performance when the DO LSTM-based PI derived from the DO control loop is transferred into the NO
control loop. Then, the NO controller is fine-tuned with data from the default PI controller managing the SNO,2.

LSTM-Based Controller Fine-Tuning & Transfer

Fix Set-point

Dry Weather Rainy Weather Stormy Weather

Structure IAE ISE IAE ISE IAE ISE

PI—SO,5 0.143 0.007 0.143 0.007 0.158 0.007
DO LSTM-based PI—SO,5 0.004 5.12× 10−6 0.008 2.43× 10−5 0.006 1.76× 10−5

PI—SNO,2 1.594 0.691 1.922 0.951 1.874 0.977
FTDO LSTM-based PI—SNO,2 0.091 0.002 1.150 0.625 0.357 0.151

Variable Set-point

PI—SO,5 0.185 0.016 0.155 0.014 0.206 0.020
DO LSTM-based PI—SO,5 0.013 1.99× 10−4 0.017 3.91× 10−4 0.017 3.72× 10−4

PI—SNO,2 1.792 0.858 2.132 1.089 1.884 0.989
FTDO LSTM-based PI—SNO,2 0.129 0.004 0.643 0.261 0.324 0.122

When a fixed set-point is considered, one can observe that the control performance
is hugely improved not only in terms of the SO,5, but also in terms of the SNO,2. The
improvement of the DO control loop with respect to the default PI controller is translated
into an average reduction of the IAE around a 95.94% and an average reduction in the ISE
around a 99.78%. Thereby, this is translated in a better tracking process of the SO,5 and
consequently, a better management of this concentration. In terms of the NO control loop,
one can observe that the IAE and ISE are hugely improved as well. However, there is an
exception with the rainy weather. In this case, the SNO,2 IAE and ISE are only improved
a 40.17% and a 34.27%, respectively. This is motivated by the fact that the rainy weather
profile shows two large perturbation during days 9 and 11. Besides, the fine-tuning process
is performed with measurements obtained from the SNO,2 default PI controller when a
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whole year of randomly distributed weathers is simulated. Thus, this entails that most of
the knowledge provided to the DO LSTM-based PI consists in the control actuations to
manage the SNO,2 concentration when the dry weather is considered (remember that rainy
and stormy weathers are equal to the dry weather with the exception of the two rainy and
the two stormy episodes). On average, the NO control loop IAE and ISE are reduced by
73.47% and 72.84% with respect to the default SNO,2 PI control performance. The greatest
improvement is observed when the dry weather is considered. The IAE is reduced from
1.594 to 0.091, whereas the ISE is decreased from 0.691 to 0.002 (see Figure 9). In the case of
the rainy weather, the reduction of the IAE and ISE is lower, the IAE changes from 1.922
to 1.150 and the ISE from 0.951 to 0.625. Nevertheless, this IAE value corresponds to the
lowest NO control loop IAE value of the three TL approaches considered in this work.

Figure 9. Control performance for the NO and DO control loops when a SO,5 fix set-point and dry
weather are considered. The LSTM-based PI managing the NO loop is transferred from the DO
control loop and fined-tuned with data from the NO control loop.

Results of the control performance when a variable set-point is considered show the
same tendency as the fix set-point ones. The IAE and ISE metrics have been improved for
all the weather profiles. Again, the most important results are the ones corresponding to
the NO control loop, which is the controller whose control performance improvement is
sought with the fine-tuning process. In that sense, the best improvement is now observed
when the dry weather is simulated. The IAE has been decreased from 1.792 to 0.129, which
equals to an improvement of 92.80%. In terms of the ISE, it is decreased from 0.858 to
0.004, which represent an improvement of a 99.53%. It is important to notice that the
lowest control performance is obtained when the rainy weather is considered, the IAE
deceases from 2.132 to 0.643 while the ISE is reduced from 1.089 to 0.261. Although these
improvements are not so high as the ones achieved with the dry weather, they are still
much better than the performance obtained when the fine-tuning process is not carried
out. For instance, the IAE has been improved a 69.84% whilst the ISE has been improved a
76.03%. The IAE improvement represents an increase of 48.26 and 42.63 percentage points
with respect to the improvements achieved in the Transfer Learning from DO to NO and
from NO to DO. In terms of the ISE, these increments equal to 45.64 and 36.82 percentage
points, respectively. Visually, we can observe in Figure 10 that the SNO,2 desired value of
1 mg/L is obtained at the same time the SO,5 variable set-point is correctly tracked. In
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addition, the rainy episodes are plotted to show that the FTDO LSTM-based PI controller
requires some more knowledge to finally learn how to manage these events.

Figure 10. Control performance for the NO and DO control loops when a SO,5 variable set-point and
rainy weathers are considered. The LSTM-based PI managing the NO loop is transferred from the
DO control loop and fined-tuned with data from the NO control loop.

As a summary, the control performance is improved in all terms regardless of the
set-point topology and the weather profiles. This entail that the best option to design or
improve a control strategy of an industrial plant, and especially a WWTP, is to obtain a first
baseline controller, the DO LSTM-based PI, and then transfer its knowledge to the rest of
control loops. The main point is to design the baseline controller with data coming from the
controller performing better. In our case, this controller corresponds to the SO,5 default PI
controller. Then, the obtained DO LSTM-based PI is transferred into the remaining control
loops and fine-tuned with data coming from controllers actuating in the target domain.
Moreover, this approach entail that control loops can be designed without requiring a
high knowledge of the different processes carried out in the plant. Only input and output
measurements of a control strategy performing well are required. The rest of the control
loops will be derived from the implemented one. Thus, the higher the number of control
loops, the higher the benefit offered with this design approach. In our case, this benefit
is not widely exploded since we have only transferred the LSTM-based PI between two
control loops. However, this approach can be adopted in other scenarios where the number
of control loops is largely higher than the ones managed here. In that sense, the benefit of
this approach should be much higher than the one observed here.

Finally, the results observed in this manuscript motivates us to open a new research
line where the transfer learning approach presented here is considered as the initial process
of a reinforcement learning based control design. Then, instead of performing the fine-
tuning process with measurement coming from a conventional control approach, it could
be performed following a reinforcement leaning process. In that sense, the controller would
be fine-tuned over time, adapting its output to the incoming measurements.

5. Conclusions

In this work, we presented a new industrial control design process which involves
the application of LSTM-based neural networks and transfer learning approaches. The
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main purpose was to design and implement the control loops managing a general-purpose
WWTP. The application is specific; however, the design approach can be adopted in any
kind of industrial environment. The main idea is that TL techniques allow us to derive new
control strategies from a baseline one without performing a deep tuning process of each
control structure. This reduces the control design complexity, as well as the time invested
in the training process of each data-based control structure. Thus, the higher the number of
control loops, the higher the improvement achieved.

In our case, the proposed control design approach consists in two main processes:
(i) the design of a neural network-based controller with data obtained from an existing
control loop and (ii) the transfer of the controller knowledge into the remaining loops.
To achieve that, three different design approaches were proposed, two of them mainly
consisting in the design of the LSTM-based controller with data from a control loop and
then transferring it to the others without retraining the net structure. In that sense, we
considered the development of the LSTM-based PI controller either with measurements
from the SO,5 control loop or from the SNO,2 one, both from a general-purpose WWTP.
The third option considers the development of the LSTM-based PI with data from the
SO,5 control loop and the fine-tuning of its transferred version. Results show that there
exists a trade-off between deriving the LSTM-based PI with measurement from the SNO,2
or the SO,5 control loops. If the LSTM-based PI controller is derived with measurements
from the SO,5 control loop, one can observe that the SO,5 control performance is highly
improved with respect to the default PI controller regardless of the weather influent and
the considered set-point. In addition, the SNO,2 control performance experiences a slight
improvement as well. On the other hand, the NO control performance experienced an
improvement at expense of degrading the SO,5 control performance when the LSTM-based
PI transferred into the DO control loop is implemented with measurements from the NO
control loop. To solve this trade-off, we considered the third option, where the LSTM-based
PI derived from the SO,5 control loop was adopted and transferred into the DO control
loop. Its transferred version was fine-tuned with measurements coming from the default
PI controller managing the SNO,2 control loop.

Results show that a high improvement is achieved in the SO,5 control loop as well
as in the SNO,2 one. Besides, the lowest IAE and ISE improvements in terms of the SNO,2
when compared to the default SNO,2 PI controller equalled to 69.84% and 76.03% for the
IAE and ISE, respectively, which are even higher improvements than in the cases where the
fine-tuning process is not considered. This clearly shows that designing a LSTM-based PI
in a control loop, transferring it to another different one, and then performing a fine-tuning
process is the best option if a high level of improvement of the control performance is
sought. Besides, this also entails a speed-up and a complexity reduction of the control
design process since only the design and training of one control loop has to be performed.
Again, the higher the number of control loops to design, the higher the benefit obtained
following this design approach.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
ASM1 Activated Sludge Model N.1
BSM1 Benchmark Simulation Model No. 1
BSM1-P Benchmark Simulation Model No. 1 with Phosphorus processing
BSM2 Benchmark Simulation Model No. 2
bx Biases of the xth hidden layer
DO Dissolved Oxygen in the fifth reactor tank (SO,5) control loop
DO LSTM-based PI LSTM-based PI controller trained with data from the SO,5 control loop
FTDO LSTM-based PI DO LSTM-based PI fine-tuned with data from the SNO,2 control loop
IAE Integrated Absolute Error
ISE Integrated Squared Error
KLa,x Oxygen Transfer Coefficient of the xth reactor tank measured in day−1

LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Average Percentage Error
MLP Multilayer Perceptron
MPC Model Predictive Controller
NO Nitrate and nitrite nitrogen in the second reactor tank (SNO,2) control loop
NO LSTM-based PI LSTM-based PI controller trained with data from the SNO,2 control loop
PI Proportional Integral controller
PID Proportional Integral Derivative controller
Q0 Influent flow rate
Qa Internal recirculation flow rate
Qr External recirculation flow rate
R2 Determination coefficient
RMSE Root Mean Squared Error
SNO,x Nitrate and nitrite nitrogen in the xth reactor tank measured in mg/L
SNH,x Ammonium concentration in the xth reactor tank measured in mg/L
SO,x Dissolved oxygen concentration in the xth reactor tank measured in mg/L
TL Transfer Learning
Ux Weights affecting the previous output data of the xth hidden layer
WWTP Wastewater Treatment Plant
Wx Weights affecting the input data of the xth hidden layer
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