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We show local and global scale invariant regularity estimates for subsolutions 
and supersolutions to the equation − div(A∇u + bu) + c∇u + du = − div f + g, 
assuming that A is elliptic and bounded. In the setting of Lorentz spaces, under the 
assumptions b, f ∈ Ln,1, d, g ∈ L

n
2 ,1 and c ∈ Ln,q for q ≤ ∞, we show that, with the 

surprising exception of the reverse Moser estimate, scale invariant estimates with 
“good” constants (that is, depending only on the norms of the coefficients) do not 
hold in general. On the other hand, assuming a necessary smallness condition on 
b, d or c, d, we show a maximum principle and Moser’s estimate for subsolutions 
with “good” constants. We also show the reverse Moser estimate for nonnegative 
supersolutions with “good” constants, under no smallness assumptions when q < ∞, 
leading to the Harnack inequality for nonnegative solutions and local continuity of 
solutions. Finally, we show that, in the setting of Lorentz spaces, our assumptions 
are the sharp ones to guarantee these estimates.

© 2021 The Author. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous montrons des estimations de régularité invariante à l’échelle locale et globale 
pour les sous-solutions et les supersolutions de l’équation − div(A∇u + bu) + c∇u +
du = − div f + g, en supposant que A est elliptique et borné. Dans le cadre des 
espaces de Lorentz, sous les hypothèses b, f ∈ Ln,1, d, g ∈ L

n
2 ,1 et c ∈ Ln,q pour 

q ≤ ∞, nous montrons qu’à l’exception surprenante de l’estimation de Moser inverse, 
les estimations invariantes d’échelle avec de “bonnes” constantes (c’est-à-dire ne 
dépendant que des normes des coefficients) ne tiennent pas en général. D’autre part, 
en supposant une condition de petitesse nécessaire sur b, d ou c, d, nous montrons 
un principe du maximum et l’estimation de Moser pour les sous-solutions avec de 
“bonnes” constantes. Nous montrons également l’estimation inverse de Moser pour 
les supersolutions non négatives avec de “bonnes” constantes, sous des hypothèses de 
non petitesse lorsque q < ∞, conduisant à l’inégalité de Harnack pour les solutions 
non négatives et la continuité locale des solutions. Enfin, nous montrons que, dans 
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le cadre des espaces de Lorentz, nos hypothèses sont les plus pointues pour garantir 
ces estimations.

© 2021 The Author. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this article we are interested in local and global regularity for subsolutions and supersolutions to the 
equation Lu = − div f + g, in domains Ω ⊆ Rn, where L is of the form

Lu = − div(A∇u + bu) + c∇u + du.

In particular, we investigate the validity of the maximum principle, Moser’s estimate, the Harnack inequality 
and continuity of solutions, in a scale invariant setting; that is, we want our estimates to not depend on the 
size of Ω. We will also assume throughout this article that n ≥ 3.

In this work A will be bounded and uniformly elliptic in Ω: for some λ > 0,

〈A(x)ξ, ξ〉 ≥ λ‖ξ‖2, ∀x ∈ Ω, ∀ξ ∈ Rn .

For the lower order coefficients and the terms on the right hand side, we consider Lorentz spaces that are 
scale invariant under the natural scaling for the equation. That is, we assume that

b, f ∈ Ln,1(Ω), c ∈ Ln,q(Ω), d, g ∈ L
n
2 ,1(Ω), q ≤ ∞.

In the case that q = ∞, it is also necessary to assume that the norm of c is small for our results to hold. 
As explained in Section 6, these assumptions are the optimal ones to imply our estimates in the setting of 
Lorentz spaces. Note also that there will be no size assumption on Ω and no regularity assumption on ∂Ω.

The main inspiration for this work comes from the local and global pointwise estimates for subsolutions 
to the fore mentioned operator in [1], where it is also assumed that d ≥ div c in the sense of distributions. 
Focusing on the case when c, d ≡ 0 for simplicity, and assuming that b ∈ Ln,1, a maximum principle for 
subsolutions to − div(A∇u + bu) ≤ − div f + g is shown in [1, Proposition 7.5], while a Moser type estimate 
is the context of [1, Proposition 7.8]. The main feature of these estimates is their scale invariance, with 
constants that depend only on the ellipticity of A and the Ln,1 norm of b, as well as the L∞ norm of A for 
the Moser estimate.

Following this line of thought, it could be expected that the consideration of all the lower order coefficients 
in the definition of L should yield the same type of scale invariant estimates, with constants being “good”; 
that is, depending only on n, q, the ellipticity of A, and the norms of the coefficients involved (as well as 
‖A‖∞ in some cases). However, it turns out that this does not hold. In particular, if B1 is the unit ball in Rn, 
in Proposition 6.3 we construct a bounded sequence (dN ) in L

n
2 ,1(B1) and a sequence (uN ) of nonnegative 

W 1,2
0 (B1) solutions to the equation −ΔuN + dNuN = 0 in B1, such that

‖uN‖W 1,2
0 (B1) ≤ C, while ‖uN‖L∞(B1/2) −−−−→N→∞

∞.

We also show in Remark 6.4 that the equation −Δu − div(bu) + c∇u = 0 has the same feature, which 
implies that the constants in Moser’s local boundedness estimate, as well as the Harnack inequality, cannot 
be “good” without any further assumptions.

Since scale invariant estimates with “good” constants do not hold in such generality, we first prove 
estimates where the constants are allowed to depend on the coefficients themselves. This is the context of 
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the global bound in Proposition 3.2, where it is shown that, if Ω ⊆ Rn is a domain and u ∈ Y 1,2(Ω) (see 
(2.1)) is a subsolution to Lu ≤ − div f + g, then, for any p > 0,

sup
Ω

u+ ≤ C sup
∂Ω

u+ + C ′

⎛
⎝ˆ

Ω

|u+|p
⎞
⎠

1
p

+ C‖f‖n,1 + C‖g‖n
2 ,1, (1.1)

where C is a “good” constant, while C ′ depends on the coefficients themselves and p. In the subcritical 
setting, an analogous estimate is the context of [2, Theorem 8.15]; however, despite considering the optimal 
scale invariant setting for such an estimate to hold, the constant C ′ in (1.1) is not “good”. Note also the 
appearance of a constant in front of the term sup∂Ω u+; such a constant can be greater than 1, and this 
follows from the fact that constants are not necessarily subsolutions to our equation in the generality of our 
assumptions.

Having proven the previous estimate, we then turn to show various scale invariant estimates with “good” 
constants, assuming an extra condition on the lower order coefficients, which is necessary in view of the fore 
mentioned discussion. Such a condition is some type of smallness: in particular, we either assume that the 
norms of b, d are small, or that the norms of c, d are small. Under these smallness assumptions, we show in 
Propositions 3.3 and 3.4 that we can take C ′ = 0 in (1.1), leading to a maximum principle, and the Moser 
estimate for subsolutions to Lu ≤ − div f + g is shown in Propositions 4.4 and 4.6; that is, in the case when 
b, d are small, or c, d are small, then for any p > 0,

sup
Br

u ≤ C

⎛
⎝  

B2r

|u+|p
⎞
⎠

1
p

+ C‖f‖Ln,1(B2r) + C‖g‖
L

n
2 ,1(B2r), (1.2)

where the constant C is “good”, and also depends on p. In addition, the analogous estimate close to the 
boundary is deduced in Propositions 4.9 and 4.10.

On the other hand, somewhat surprisingly, we discover that even if the scale invariant Moser estimate with 
“good” constants requires some type of smallness, it turns out that the scale invariant reverse Moser estimate 
with “good” constants holds in the full generality of our initial assumptions. That is, in Proposition 5.3, 
we show that if u ∈ W 1,2(B2r) is a nonnegative supersolution to Lu ≥ − div f + g, and under no smallness 
assumptions (when q < ∞), then for some α = αn,

⎛
⎝  

Br

uα

⎞
⎠

1
α

≤ C inf
Br/2

u + C‖f‖Ln,1(B2r) + C‖g‖
L

n
2 ,1(B2r), (1.3)

where C is a “good” constant. Moreover, the analogue of this estimate close to the boundary is deduced in 
Proposition 5.5. Then, the Harnack inequality (Theorems 5.6 and 5.7) and continuity of solutions (Theo-
rems 5.8 and 5.9) are shown combining (1.2) and (1.3); for those, in order to obtain estimates with “good” 
constants, it is again necessary to assume a smallness condition. Finally, having shown the previous es-
timates, we also obtain their analogues in the generality of our initial assumptions, with constants that 
depend on the coefficients themselves (Remarks 4.7, 4.11 and 5.10).

As a special case, we remark that all the scale invariant estimates above hold, with “good” constants, in 
the case of the operators

L1u = − div(A∇u) + c∇u, L2u = − div(A∇u + bu),

under no smallness assumptions when b ∈ Ln,1 and c ∈ Ln,q, q < ∞.
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The techniques. The assumption that the coefficients b, d lie in scale invariant spaces is reflected in the 
fact that the classical method of Moser iteration does not seem to work in this setting. More specifically, 
an assumption of the form b ∈ Ln,q for some q > 1 does not necessarily guarantee pointwise upper bounds 
(see Remark 6.1), and it is necessary to assume that b ∈ Ln,1 in order to deduce these bounds. However, 
Moser’s method does not seem to be “sensitive” enough to distinguish between the cases b ∈ Ln,1 and 
b ∈ Ln,q for q > 1. Thus, a procedure more closely related to Lorentz spaces has to be followed, and the 
first results in this article (Section 3) are based on a symmetrization technique, leading to estimates for 
decreasing rearrangements. This technique involves a specific choice of test functions and has been used in 
the past by many authors, going back to Talenti’s article [3]; here we use a slightly different choice, utilized 
by Cianchi and Mazya in [4]. However, since all the lower order coefficients are present, our estimates are 
more complicated, and we have to rely on an argument using Grönwall’s inequality (as in [5], for example) 
to give a bound on the decreasing rearrangement of our subsolution.

On the other hand, the main drawback of the symmetrization technique is that it does not seem to work 
well when we combine it with cutoff functions; thus, we are not able to suitably modify it in order to directly 
show local estimates like (1.2). The idea to overcome this obstacle is to pass from small to large norms using 
a two-step procedure (in Section 4), utilizing the maximum principle. Thus, relying on Moser’s estimate 
for the operator L0u = − div(A∇u) + c∇u when the norm of c is small, the first step is a perturbation 
argument based on the maximum principle that allows us to pass to the operator L when all the lower order 
terms have small norms. Then, the second step is an induction argument relying on the maximum principle 
(similar to the proofs of [1, Propositions 3.4 and 7.8], inspired by the argument of the proof of [6, Theorem 
2.5’]), which allows us to pass to arbitrary norms for b or c. To the best of our knowledge, the combination 
of the symmetrization technique with the fore mentioned argument in order to obtain local estimates has 
not appeared in the literature before (with the exception of [1, Proposition 7.8], which used estimates on 
Green’s function), and it is one of the novelties of this article.

Since we do not obtain Moser’s estimate (1.2) using test functions and Moser’s iteration, in order to 
deduce the reverse Moser estimate (1.3) we transform supersolutions to subsolutions via exponentiation (in 
Section 5). The advantage of this procedure is that, if the exponent is negative and close to 0, we obtain a 
subsolution to an equation with the coefficients b, d being small, thus we can apply (1.2) to obtain a scale 
invariant estimate with “good” constants, without any smallness assumptions (when q < ∞). This estimate 
has negative exponents appearing on the left hand side, and we show (1.3) passing to positive exponents 
using an estimate for supersolutions and the John-Nirenberg inequality (as in [7]). One drawback of this 
technique is that we do not obtain the full range α ∈ (0, n

n−2 ) for the left hand side, as in [2, Theorem 8.18], 
but this does not affect the proof of the Harnack inequality. Then, the Harnack inequality and continuity 
of solutions are deduced combining (1.2) and (1.3).

Finally, the optimality of our assumptions is shown in Section 6. In particular, the sharpness of our spaces 
to guarantee some type of estimates (either having “good” constants, or not) is shown, and the failure of 
scale invariant estimates with “good” constants is exhibited by the construction in Proposition 6.3.

Past works. The first fundamental contribution to regularity for equations with rough coefficients was made 
by De Giorgi [8] and Nash [9] and concerned Hölder continuity of solutions to the operator − div(A∇u) = 0; 
a different proof, based on the Harnack inequality, was later given by Moser in [7]. The literature concerning 
this subject is vast, and we refer to the books by Ladyzhenskaya and Ural’tseva [10] and Gilbarg and 
Trudinger [2], as well as the references therein, for equations that also have lower order coefficients in Lp. 
However, in these results, the norms of those spaces are not scale invariant under the natural scaling of 
the equation, so it is not possible to obtain scale invariant estimates without extra assumptions on the 
coefficients (like smallness, for example). One instance of a scale invariant setting where b, d, f, g ≡ 0 and 
c ∈ Ln was later treated by Nazarov and Ural’tseva in [6].
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Another well studied case of coefficients is the class of Kato spaces. The first work on estimates for 
Schrödinger operators with the Laplacian and potentials in a suitable Kato class was by Aizenman and 
Simon in [11] using probabilistic techniques, which was later generalized (with nonprobabilistic techniques) 
by Chiarenza, Fabes and Garofalo in [12], allowing a second order part in divergence form. The case in [11]
was also later treated using nonprobabilistic techniques by Simader [13] and Hinz and Kalf [14]. In these 
works, b, c ≡ 0, while d is assumed to belong to K loc

n (Ω), which is comprised of all functions d in Ω such 
that ηΩ1,d(r) → 0 as r → 0, for all Ω1 compactly supported in Ω, where

ηΩ,d(r) = sup
x∈Rn

ˆ

Ω∩Br(x)

|d(y)|
|x− y|n−2 dy

(or, in some works, the supremum is considered over x ∈ Ω). Moreover, adding the drift term c∇u, regularity 
estimates for c in a suitable Kato class were shown by Kurata in [15].

Finally, considering all the lower order terms, Mourgoglou in [16] shows regularity estimates when the 
coefficients b, d belong to the scale invariant Dini type Kato-Stummel classes (see [16, Section 2.2]), and also 
constructs Green’s functions. However, the framework we consider in this article for the Moser estimate and 
Harnack’s inequality, as well as our techniques, are different from the ones in [16]. For example, focusing on 
the case when c, d ≡ 0, the coefficient b in [16, Theorems 4.4, 4.5 and 4.12] is assumed to be such that |b|2 ∈
KDini,2, which does not cover the case b ∈ Ln,1, since for any α > 1, the function b(x) = x|x|−2 (− ln |x|)−a

is a member of Ln,1(B1/e), while |b|2 /∈ KDini,2(B1/e).
We conclude with a brief discussion on symmetrization techniques. Such a technique was used by Wein-

berger in [17] in order to show boundedness of solutions with vanishing trace to − div(A∇u) = − div f and 
− div(A∇u) = g, where f ∈ Lp and g ∈ L

p
2 , p > n. Another well known technique consists of a use of test 

functions that leads to bounds for the derivative of the integral of |∇u|2 over superlevel sets of u, where 
u is a subsolution to Lu ≤ − div f + g. This bound, combined with Talenti’s inequality [3, estimate (40)], 
gives an estimate for the derivative of the decreasing rearrangement of u, leading to bounds for u in various 
spaces and comparison results. This technique has been used by many authors in order to study regularity 
properties of solutions to second order pdes, some works being [18], [19], [5], [20], [21], [22], [23], [24], [25]. 
However, as we mentioned above, to the best of our knowledge, no local boundedness results have been 
deduced using this method so far.

We also mention that, in order to treat lower order coefficients, pseudo-rearrangements of functions are 
also considered the literature, which are derivatives of integrals over suitable sets Ω(s) ⊆ Ω (see, for example, 
[1, page 11]). On the contrary, in this work we avoid this procedure, and as we mentioned above we rely 
instead on a slightly different approach, inspired by [4].
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2. Preliminaries

2.1. Definitions

If Ω ⊆ Rn is a domain, W 1,2
0 (Ω) will be the closure of C∞

c (Ω) under the W 1,2 norm, where

‖u‖W 1,2(Ω) = ‖u‖L2(Ω) + ‖∇u‖L2(Ω).
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When Ω has infinite measure, the space W 1,2(Ω) is not well suited to the problems we consider. For this 
reason, we let Y 1,2

0 (Ω) be the closure of C∞
c (Ω) under the Y 1,2 norm, where

‖u‖Y 1,2(Ω) = ‖u‖L2∗ (Ω) + ‖∇u‖L2(Ω), (2.1)

and 2∗ = 2n
n−2 is the Sobolev conjugate to 2. From the Sobolev inequality

‖φ‖L2∗ (Ω) ≤ Cn‖∇φ‖L2(Ω),

for all φ ∈ C∞
c (Ω), we have that Y 1,2

0 (Ω) = W 1,2
0 (Ω) in the case |Ω| < ∞. We also set Y 1,2(Ω) to be the 

space of weakly differentiable u ∈ L2∗(Ω), such that ∇u ∈ L2(Ω), with the Y 1,2 norm.
If u is a measurable function in Ω, we define the distribution function

μu(t) = |{x ∈ Ω : |u(x)| > t}| , t > 0. (2.2)

If u ∈ Lp(Ω) for some p ≥ 1, then μu(t) < ∞ for any t > 0. Moreover, we define the decreasing rearrangement 
of u by

u∗(τ) = inf{t > 0 : μu(t) ≤ τ}, (2.3)

as in [26, (1.4.2), page 45]. Then, u∗ is equimeasurable to u: that is,

|{x ∈ Ω : |u(x)| > t}| = |{s > 0 : u∗(s) > t}| for all t > 0. (2.4)

Given a function f ∈ Lp(Ω), we consider its maximal function

Mf (τ) = 1
τ

τ̂

0

f∗(σ) dσ, τ > 0. (2.5)

Let p ∈ (0, ∞) and q ∈ (0, ∞]. If f is a function defined in Ω, we define the Lorentz seminorm

‖f‖Lp,q(Ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝ ∞̂

0

(
τ

1
p f∗(τ)

)q dτ

τ

⎞
⎠

1
q

, q < ∞

sup
τ>0

τ
1
p f∗(τ), q = ∞,

(2.6)

as in [26, Definition 1.4.6]. We say that f ∈ Lp,q(Ω) if ‖f‖Lp,q(Ω) < ∞. Then ‖ · ‖p,q is indeed a seminorm, 
since

‖f + g‖p,q ≤ Cp,q‖f‖p,q + Cp,q‖g‖p,q, (2.7)

from [26, (1.4.9), page 50]. In addition, from [26, Proposition 1.4.10], Lorentz spaces increase if we increase 
the second index, with

‖f‖Lp,r ≤ Cp,q,r‖f‖Lp,q for all 0 < p < ∞, 0 < q < r ≤ ∞. (2.8)

Hölder’s inequality for Lorentz functions states that

‖fg‖Lp,q ≤ Cp1,q1,p2,q2‖f‖Lp1,q1‖g‖Lp2,q2 , (2.9)
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whenever 0 < p, p1, p2 < ∞ and 0 < q, q1, q2 ≤ ∞ satisfy the relations 1
p = 1

p1
+ 1

p2
, 1

q = 1
q1

+ 1
q2

(see [26, 
Exercise 1.4.19]).

If p ∈ (1, ∞] and q ∈ [1, ∞), then [27, Theorem 3.21, page 204] implies that

‖Mf‖p,q ≤ Cp‖f‖p,q, (2.10)

where Mf is the maximal function defined in (2.5).
For a function u ∈ Y 1,2, we will say that u ≤ s on ∂Ω if (u − s)+ = max{u − s, 0} ∈ Y 1,2

0 (Ω). Moreover, 
sup∂Ω u will be defined as the infimum of all s ∈ R such that u ≤ s on ∂Ω.

We now turn to the definitions of subsolutions, supersolutions and solutions. For this, let Ω ⊆ Rn be a 
domain, and let A be bounded in Ω, b, c, f ∈ Ln,∞(Ω), d, g ∈ L

n
2 ,∞(Ω). If Lu = − div(A∇u +bu) +c∇u +du, 

we say that u ∈ Y 1,2(Ω) is a solution to the equation Lu = − div f + g in Ω, if
ˆ

Ω

A∇u∇φ + b∇φ · u + c∇u · φ + duφ =
ˆ

Ω

f∇φ + gφ, ∀φ ∈ C∞
c (Ω).

Moreover, we say that u ∈ Y 1,2(Ω) is a subsolution to Lu ≤ − div f + g in Ω, if
ˆ

Ω

A∇u∇φ + b∇φ · u + c∇u · φ + duφ ≤
ˆ

Ω

f∇φ + gφ, ∀φ ∈ C∞
c (Ω), φ ≥ 0. (2.11)

We also say that u is a supersolution to Lu ≥ − div f + g, if −u is a subsolution to L(−u) ≤ div f − g.

2.2. Main lemmas

We now discuss some lemmas that we will use in the sequel. We begin with the following estimate, in 
which we show that a function in Ln,q for q > 1 fails to be in Ln,1 by a logarithm, with constant as small 
as we want. This fact will be useful in the proof of Lemma 3.1.

Lemma 2.1. Let f ∈ Ln,q(Ω) for some q ∈ (1, ∞). Then, for any 0 < σ1 < σ2 < ∞ and ε > 0,

σ2ˆ

σ1

τ
1
n−1f∗(τ) dτ ≤ ε ln σ2

σ1
+ C‖f‖qn,q,

where C depends on q and ε.

Proof. Let p ∈ (1, ∞) be the conjugate exponent to q. Then, from Hölder’s inequality and (2.6),

σ2ˆ

σ1

τ
1
n−1f∗(τ) dτ =

σ2ˆ

σ1

τ−
1
p τ

1
n− 1

q f∗(τ) dτ

≤

⎛
⎝ σ2ˆ

σ1

τ−1 dτ

⎞
⎠

1
p
⎛
⎝ σ2ˆ

σ1

τ
q
n−1f∗(τ)q dτ

⎞
⎠

1
q

≤
(
p ε ln σ2

σ1

) 1
p

· (p ε)− 1
p ‖f‖n,q ≤ ε ln σ2

σ1
+ (p ε)−

q
p

q
‖f‖qn,q,

where we also used Young’s inequality for the last step. �
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The following describes the behavior of the Lorentz seminorm on disjoint sets.

Lemma 2.2. Let Ω ⊆ Rn be a set, and let X, Y be nonempty and disjoint subsets of Ω. If f ∈ Lp,q(Ω) for 
some p, q ∈ [1, ∞), then

‖f‖rLp,q(Ω) ≥ ‖f‖rLp,q(X) + ‖f‖rLp,q(Y ), r = max{p, q}.

Proof. Let μ, μX , μY be the distribution functions of f, f |X and f |Y , respectively. As in [1, Lemma 2.4], 
we have that μ ≥ μX + μY . Also, if p ≥ q, then qp ≤ 1, hence the reverse Minkowski inequality shows that

⎛
⎝ ∞̂

0

(μX(t) + μY (t))
q
p sq−1 ds

⎞
⎠

p
q

≥

⎛
⎝ ∞̂

0

μX(t)
q
p sq−1 ds

⎞
⎠

p
q

+

⎛
⎝ ∞̂

0

μY (t)
q
p sq−1 ds

⎞
⎠

p
q

.

On the other hand, if q > p, then qp > 1, hence a
q
p + b

q
p ≤ (a + b)

q
p for all a, b > 0. Therefore,

∞̂

0

(μX(t) + μY (t))
q
p sq−1 ds ≥

∞̂

0

μX(t)
q
p sq−1 ds +

∞̂

0

μY (t)
q
p sq−1 ds.

Then, the proof follows from the expression for the Lp,q seminorm in [26, Proposition 1.4.9]. �
The next lemma will be useful in order to reduce to the case d = 0.

Lemma 2.3. Let Ω ⊆ Rn be a domain, and d ∈ L
n
2 ,1(Ω). Then there exists a weakly differentiable vector 

valued function e ∈ Ln,1(Ω), with div e = d in Ω and ‖e‖Ln,1(Ω) ≤ Cn‖d‖Ln
2 ,1(Ω).

Proof. Extend d by 0 outside Ω, and consider the Newtonian potential v of d; that is, we set

w(x) = Cn

ˆ

Rn

d(y)
|x− y|n−2 dy.

From [2, Theorem 9.9] we have that w is twice weakly differentiable in Ω, and Δw = d. Setting e = ∇w, 
we have that div e = d. Moreover, |e(x)| = |∇w(x)| ≤ Cn

´
Rn

|d(y)|
|x−y|n−1 dy, and the estimate follows from the 

first part of [26, Exercise 1.4.19]. �
The next lemma shows that u∗ is locally absolutely continuous, when u ∈ Y 1,2.

Lemma 2.4. Let Ω be a domain and u ∈ Y 1,2
0 (Ω). Then u∗ is absolutely continuous in (a, b), for any 

0 < a < b < ∞.

Proof. Extending u by 0 outside Ω, we may assume that u ∈ Y 1,2(Rn).
Consider the function u∗ defined in [28, (2), page 153] (this u∗ is not the same as the one in (2.3)!), and 

the function ũ(|x|) = u∗(x) (as in [28, page 154]). Then, from the argument for the proof of [1, Lemma 2.6], 
it is enough to show that ũ is locally absolutely continuous in (0, ∞).

To show this, note that the proof of [28, Lemma 2.4] shows that u∗ ∈ Y 1,2(Rn) whenever u ∈ Y 1,2(Rn)
(since Y 1,2(Rn) is reflexive, bounded sequences have subsequences that converge weakly, and the rest of the 
argument runs unchanged). Hence, u∗ ∈ W 1,2

loc (Rn), and combining with [28, Proposition 2.5], we obtain 
that ũ is locally absolutely continuous in (0, ∞), as in [28, Corollary 2.6], which completes the proof. �
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We now turn to the following decomposition, which is similar to [1, Lemma 2.8]. This will be useful in a 
change of variables that we will perform in Lemma 2.6, as well as in the proof of the estimate in Lemma 3.1.

Lemma 2.5. Let Ω ⊆ Rn be a domain, and let u ∈ Y 1,2
0 (Ω). Then we can write

(0,∞) = Gu ∪Du ∪Nu,

where the union is disjoint, such that the following hold.

i) If x ∈ Gu, then u∗ is differentiable at x, μu is differentiable at u∗(x), and (u∗)′(x) �= 0. Moreover,

μu(u∗(x)) = x and μ′
u(u∗(x)) = 1

(u∗)′(x) , for all x ∈ Gu. (2.12)

ii) If x ∈ Du, then u∗ is differentiable at x, with (u∗)′(x) = 0.
iii) Nu is a null set.

Proof. The proof is the same as the proof of [1, Lemma 2.8], where we use continuity of u∗ shown in 
Lemma 2.4, instead of [1, Lemma 2.6]. �

We now turn to the following lemma, which is based on [4, Lemma 3.1]. As we mentioned in the intro-
duction, the properties of the function Ψ defined below will be crucial in the proof of Lemma 3.1 and, using 
this lemma, we avoid the construction of pseudo-rearrangements (as in [1, pages 11 and 12]).

Lemma 2.6. Let Ω ⊆ Rn be a domain and u ∈ Y 1,2
0 (Ω) with u ≥ 0. For any f ∈ L1(Ω), the function

Rf,u(τ) =
ˆ

[u>u∗(τ)]

|f |

is absolutely continuous in (0, ∞), and if Ψf,u = R′
f,u ≥ 0 is its derivative, then for any p > 1 and q ≥ 1,

‖Ψf,u‖Lp,q(0,∞) ≤ Cp,q‖f‖Lp,q(Ω). (2.13)

Moreover, for almost every τ > 0,

(−u∗)′(τ) ≤ Cnτ
1
n−1

√
Ψ|∇u|2,u(τ). (2.14)

Proof. Let u◦ be the function defined in [4, page 660]; that is, we define

u◦(τ) = sup{t′ : μu(t′) ≥ τ},

where μu coincides with our definition of the distribution function (2.2), since u ≥ 0. We will show that 
u∗ = u◦, so that Rf,u coincides with the function in [4, Lemma 3.1]. Then, the proof of the same lemma 
(where for absolute continuity of u∗, we will use Lemma 2.4) will show absolute continuity of Rf,u. Moreover, 
(2.13) for q ≥ 1 will follow from [4, (3.12), page 661] and (2.10), while the case q < 1 will follow from [26, 
Theorem 1.4.19] (note that, in the terminology of the aforementioned theorem, the operator Mf in (2.5) is 
quasilinear, from [4, (3.2), page 660].

Note first that, from the definitions, u∗(τ) ≤ u◦(τ) for all τ . If now u∗(τ) < u◦(τ), then we can find t < t′

with μu(t) ≤ τ and μu(t′) ≥ τ . Since μu is decreasing, this will imply that μu(t′) ≤ μu(t), hence μu is equal 
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to τ in [t, t′], which is a contradiction with continuity of u∗ from Lemma 2.4. This shows that u◦ = u∗, and 
completes the proof of the first part.

To show estimate (2.14), set Tu(t) =
ˆ

[u>t]

|∇u|2, and note that, from [3, estimate (40)],

Cn ≤ μu(t) 2
n−2(−μ′

u(t))

⎛
⎜⎝− d

dt

ˆ

[u>t]

|∇u|2

⎞
⎟⎠ = Cnμu(t) 2

n−2(−μ′
u(t))(−Tu)′(t), (2.15)

for every t ∈ F , where F ⊆ (0, supΩ u) has full measure (this estimate is shown for u ∈ W 1,2
0 (Ω), but the 

same proof as in [3, pages 711-712] gives the result for u ∈ Y 1,2
0 (Ω)).

Consider now the splitting (0, ∞) = Gu ∪Du ∪Nu in Lemma 2.5. We claim that u∗(τ) ∈ F for almost 
every τ ∈ Gu: if this is not the case, then there exists G ⊆ Gu, with positive measure, such that if τ ∈ G, 
then u∗(τ) /∈ F . Then, the set u∗(G) has measure zero and u∗ is differentiable at every point τ ∈ G, hence 
[29, Theorem 1] shows that (u∗)′(τ) = 0 for almost every τ ∈ G. However, u∗(τ) �= 0 for every τ ∈ Gu from 
Lemma 2.5, which is a contradiction with the fact that G has positive measure. So, u∗(τ) ∈ F for almost 
every τ ∈ Gu, and for those τ , plugging u∗(τ) in (2.15), we obtain that

Cn ≤ μu(u∗(τ)) 2
n−2(−μ′

u(u∗(τ))(−Tu)′(u∗(τ)),

and using (2.12), we obtain that

(−u∗)′(τ) ≤ Cnτ
2
n−2(−Tu)′(u∗(τ)),

for almost every τ ∈ Gu. Moreover, R|∇u|2,u = Tu ◦ u∗, and since Tu is differentiable at u∗(τ) for almost 
every τ ∈ Gu, multiplying the last estimate with (−u∗)′(τ) implies that

((−u∗)′(τ))2 ≤ Cnτ
2
n−2(−Tu)′(u∗(τ)) · (−u∗)′(τ) = Cnτ

2
n−2R′

|∇u|2,u(τ),

which shows that (2.14) holds for almost every τ ∈ Gu. On the other hand, (u∗)′(τ) = 0 when τ ∈ Du, so 
(2.14) also holds for almost every τ ∈ Du. Since Nu has measure zero, (2.14) holds almost everywhere in 
(0, ∞), which completes the proof. �

Finally, the following is a Grönwall type lemma, which we prove in the setting that will appear in 
Lemma 3.1. The reason for this is that the function g2g3 will not necessarily be integrable close to 0, which 
turns out to be inconsequential.

Lemma 2.7. Let M > 0, and suppose that f, g1, g2, g3 are functions defined in (0, M), with g2, g3 ≥ 0. 
Assume that g2g3 is locally integrable in (0, M), g3f ∈ L1(0, M) and

exp

⎛
⎝−

τ̂

τ0

g2g3

⎞
⎠ g1(τ)g3(τ) ∈ L1(0,M), exp

⎛
⎝ τ0ˆ

ε

g2g3

⎞
⎠ εˆ

0

g3f −−−→
ε→0

0,

for some τ0 ∈ (0, M). If f(τ) ≤ g1(τ) + g2(τ) 
τ̂

0

g3f in (0, M), then, for every τ ∈ (0, M),

f(τ) ≤ g1(τ) + g2(τ)
τ̂

g1(σ)g3(σ) exp

⎛
⎝ τ̂

g2(ρ)g3(ρ) dρ

⎞
⎠ dσ.
0 σ
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Proof. Define G(τ) =
´ τ

0 g3f and H(τ) =
´ τ

τ0
g2g3, then G is absolutely continuous in [0, M ] and H is 

locally absolutely continuous in (0, M). Then, we have that (e−HG)′ = e−H(G′ − H ′G) ≤ e−Hg1g3, and 
since e−HG is absolutely continuous in (ε, τ) for 0 < ε < τ < M , we integrate to obtain

e−H(τ)G(τ) − e−H(ε)G(ε) ≤
τ̂

ε

e−Hg1g3.

The proof is complete after letting ε → 0 and plugging the last estimate in the original estimate for f . �
3. Global estimates

3.1. The main estimate

The following lemma is the main estimate that will lead to global boundedness for subsolutions. The 
test function we use comes from [4, page 663, proof of Theorem 2.1] and it is a slight modification of test 
functions that have been used in the literature before (see, for example, the references for the decreasing 
rearrangements technique in the introduction).

Lemma 3.1. Let Ω ⊆ Rn be a domain. Let A be uniformly elliptic and bounded in Ω, with ellipticity λ. 
Let also b, f ∈ Ln,1(Ω) and g ∈ L

n
2 ,1(Ω). There exists ν = νn,λ such that, if c = c1 + c2 ∈ Ln,∞(Ω) with 

c1 ∈ Ln,q(Ω) for some q < ∞ and ‖c2‖n,∞ < ν, then for any subsolution u ∈ Y 1,2
0 (Ω) to

− div(A∇u + bu) + c∇u ≤ −div f + g

in Ω, and any τ ∈ (0, 1),

−v′(τ) ≤ C1τ
1
n−1

√
Ψ|f |2(τ) + C1τ

2
n−1Mg(τ)

+ C1e
C2‖c1‖q

n,qτ
1
n− 3

2

τ̂

0

σ
1
n− 1

2

√
Ψ|f |2(σ)Ψ|c|2(σ) dσ

+ C1e
C2‖c1‖q

n,qτ
1
n− 3

2

τ̂

0

σ
2
n− 1

2Mg(σ)
√

Ψ|c|2(σ) dσ

+ C1v(τ)τ 1
n−1

√
Ψ|b|2(τ) + C1e

C2‖c1‖q
n,qτ

1
n− 3

2

τ̂

0

σ
1
n− 1

2 v(σ)
√

Ψ|b|2(σ)Ψ|c|2(σ)σ 1
n− 1

2 dσ, (3.1)

where C1 depends on n, λ, C2 depends on n, λ, q, and where v = (u+)∗ is the decreasing rearrangement of 
u+, Mg is as in (2.5), and Ψ|b|2 = Ψ|b|2,u+ , Ψ|c|2 = Ψ|c|2,u+ , Ψ|f |2 = Ψ|f |2,u+ are defined in Lemma 2.6.

Proof. Fix τ > 0 such that v(τ) > 0. From right continuity of v (see [26, Proposition 1.4.5, (10)], for h > 0
small, we have that v(τ + h) > 0. Consider now the function

ψ =

⎧⎪⎨
⎪⎩

0, 0 ≤ u+ ≤ v(τ + h)
u− v(τ + h), v(τ + h) < u+ ≤ v(τ)
v(τ) − v(τ + h) u+ > v(τ).
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Since ψ ∈ W 1,2
0 (Ω), ψ ≥ 0 and ψ is supported on a set of finite measure, an approximation argument using 

[1, Lemma 2.2] and Hölder’s inequality (2.9) shows that we can use it as a test function in (2.11). Then, 
from ellipticity of A,

λ

ˆ

[v(τ+h)<u≤v(τ)]

|∇u|2 ≤ v(τ)
ˆ

[v(τ+h)<u≤v(τ)]

|b∇u| + (v(τ) − v(τ + h))
ˆ

[u>v(τ+h)]

|c∇u|

+
ˆ

[v(τ+h)<u≤v(τ)]

|f∇u| + (v(τ) − v(τ + h))
ˆ

[u>v(τ+h)]

|g|.

Letting Ψ(τ) = Ψ|∇u|2,u+ (as in Lemma 2.6), dividing by h, using the Cauchy-Schwartz inequality and 
letting h → 0, we obtain that

Ψ(τ) ≤ Cλv(τ)
√

Ψ|b|2(τ)
√

Ψ(τ) + Cλ(−v′)(τ)
ˆ

[u>v(τ)]

|c∇u|

+ Cλ

√
Ψ|f |2(τ)

√
Ψ(τ) + Cλ(−v′(τ))

ˆ

[u>v(τ)]

|g|, (3.2)

where we also used continuity of the functions R|c∇u|,u+ and R|g|,u+ , from Lemma 2.6. Moreover, from 
absolute continuity of R|c∇u|,u+ and the Cauchy-Schwartz inequality, we obtain

ˆ

[u>v(τ)]

|c∇u| =
τ̂

0

Ψ|c∇u|,u+ ≤
τ̂

0

√
Ψ|c|2

√
Ψ. (3.3)

Let now μ be the distribution function of u+, and consider the decomposition (0, ∞) = Gu+ ∪Du+ ∪Nu+

from Lemma 2.5. Then, for τ ∈ Gu+ , the Hardy-Littlewood inequality (see, for example, [30, page 44, 
Theorem 2.2]) and (2.12) show that

(−v′(τ))
ˆ

[u>v(τ)]

|g| ≤ (−v′(τ))
μ(v(τ))ˆ

0

g∗ = (−v′(τ))
τ̂

0

g∗ = τ(−v′(τ))Mg(τ).

On the other hand, if τ ∈ Nu+ , then −v′(τ) = 0, and since Nu+ has measure 0, the last estimate holds 
almost everywhere. Hence, plugging the last estimate and (3.3) in (3.2), we obtain that

Ψ(τ) ≤ Cλv(τ)
√

Ψ|b|2(τ)
√

Ψ(τ) + Cλ(−v′)(τ)
τ̂

0

√
Ψ|c|2

√
Ψ

+ Cλ

√
Ψ|f |2(τ)

√
Ψ(τ) + Cλτ(−v′(τ))Mg(τ).

Let τ such that Ψ(τ) > 0. Then, dividing the last estimate by 
√

Ψ(τ) and using (2.14),

√
Ψ(τ) ≤ Cλv(τ)

√
Ψ|b|2(τ) + Cλ(−v′)(τ)√

Ψ(τ)

τ̂

0

√
Ψ|c|2

√
Ψ

+ Cλ

√
Ψ|f |2(τ) + Cλτ(−v′(τ))Mg(τ)√
Ψ(τ)
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≤ C
√

Ψ|f |2(τ) + Cτ
1
nMg(τ) + Cv(τ)

√
Ψ|b|2(τ)

+ Cτ
1
n−1

τ̂

0

√
Ψ|c|2

√
Ψ,

where C = Cn,λ. On the other hand, the last estimate holds also when Ψ(τ) = 0, hence it holds for almost 
every τ > 0.

Note now that, from subadditivity of Ψ and Lemma 2.1 (since we can assume that q > 1) for any ε > 0,

τ̂

σ

ρ
1
n−1

√
Ψ|c|2(ρ) dρ ≤

τ̂

σ

ρ
1
n−1

√
Ψ|c1|2(ρ) dρ +

τ̂

σ

ρ
1
n−1

√
Ψ|c2|2(ρ) dρ

≤ ε ln τ

σ
+ Cq,ε

∥∥∥√Ψ|c1|2
∥∥∥q
n,q

+
τ̂

σ

ρ
1
n−1

∥∥∥√Ψ|c2|2
∥∥∥
n,∞

ρ−
1
n dρ

≤ ε ln τ

σ
+ Cn,q,ε‖c1‖qn,q + Cn‖c2‖n,∞ ln τ

σ
.

We choose ε = εn,λ and νn,λ such that C εn,λ +CCnνn,λ ≤ 1
2 − 1

n ; then, we will have that

exp

⎛
⎝C

τ̂

σ

ρ
1
n−1

√
Ψ|c|2(ρ) dρ

⎞
⎠ ≤ eC2‖c1‖q

n,q

( τ
σ

) 1
2− 1

n

, (3.4)

where C2 depends on n, q and λ. Then, using that v ∈ L2∗(0, ∞), (3.4) and Lemma 2.6, it is straightforward 
to check that the hypotheses of Grönwall’s lemma (Lemma 2.7) are satisfied, hence we obtain that

√
Ψ(τ) ≤ C

√
Ψ|f |2(τ) + Cτ

1
nMg(τ) + Cv(τ)

√
Ψ|b|2(τ)

+ Cτ
1
n−1

τ̂

0

√
Ψ|f |2(σ)

√
Ψ|c|2(σ) exp

⎛
⎝C

τ̂

σ

ρ
1
n−1

√
Ψ|c|2(ρ) dρ

⎞
⎠ dσ

+ Cτ
1
n−1

τ̂

0

σ
1
nMg(σ)

√
Ψ|c|2(σ) exp

⎛
⎝C

τ̂

σ

ρ
1
n−1

√
Ψ|c|2(ρ) dρ

⎞
⎠ dσ

+ Cτ
1
n−1

τ̂

0

v(σ)
√

Ψ|b|2(σ)
√

Ψ|c|2(σ) exp

⎛
⎝C

τ̂

σ

ρ
1
n−1

√
Ψ|c|2(ρ) dρ

⎞
⎠ dσ,

where C = Cn,λ. Finally, using (2.14) to bound 
√

Ψ from below, and (3.4), the proof is complete. �
3.2. The maximum principle

Using Lemma 3.1, we now show global boundedness of subsolutions.

Proposition 3.2. Let Ω ⊆ Rn be a domain. Let A be uniformly elliptic and bounded in Ω, with ellipticity λ. 
Let also b, f ∈ Ln,1(Ω), d, g ∈ L

n
2 ,1(Ω), and suppose that c = c1 + c2 ∈ Ln,∞(Ω) with c1 ∈ Ln,q(Ω) for some 

q < ∞ and ‖c2‖n,∞ < ν, where ν = νn,λ appears in Lemma 3.1.
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There exists τ0 ∈ (0, ∞), depending on b, c1, c2 and d such that, for any subsolution u ∈ Y 1,2(Ω) to

− div(A∇u + bu) + c∇u + du ≤ −div f + g

we have that

sup
Ω

u+ ≤ C sup
∂Ω

u+ + Cv(τ0) + C‖f‖n,1 + C‖g‖n
2 ,1, (3.5)

where C depends on n, q, λ, ‖b‖n,1, ‖c1‖n,q and ‖d‖n
2 ,1. In particular, for any p > 0,

sup
Ω

u+ ≤ C sup
∂Ω

u+ + Cτ
−1/p
0

⎛
⎝ˆ

Ω

|u+|p
⎞
⎠

1
p

+ C‖f‖n,1 + C‖g‖n
2 ,1. (3.6)

Proof. If s = sup∂Ω u+ ∈ (0, ∞), then for every s′ > s,

− div(A∇(u− s′) + b(u− s′)) + c∇(u− s′) + d(u− s′) ≤ −div(f − s′b) + g − s′d,

and (u − s′)+ ∈ Y 1,2
0 (Ω); hence, we can assume that s = 0, so u+ ∈ Y 1,2

0 (Ω).
Consider the function e from Lemma 2.3 that solves the equation div e = d in Rn. Then, if we define 

b′ = b − e and c′ = c − e, u is a subsolution to

− div(A∇u + b′u) + c′∇u ≤ −div f + g.

Set c′1 = c1 − e, then c′ = c′1 + c2. Let C1, C2 be the constants in Lemma 3.1, and denote C1e
C2‖c′1‖q

n,q by 
C0. Moreover, set

H(τ) = C1τ
1
n−1

√
Ψ|f |2(τ) + C1τ

2
n−1Mg(τ)

+ C0τ
1
n− 3

2

τ̂

0

σ
1
n− 1

2

√
Ψ|f |2(σ)Ψ|c′|2(σ) dσ

+ C0τ
1
n− 3

2

τ̂

0

σ
2
n− 1

2Mg(σ)
√

Ψ|c′|2(σ) dσ.

(3.7)

From Lemma 2.6, we have that

∥∥∥√Ψ|f |2
∥∥∥
n,1

≤ Cn‖f‖n,1,
∥∥∥√Ψ|c′|2

∥∥∥
n,∞

≤ Cn‖c′‖n,∞. (3.8)

Then, since 1
n − 3

2 < −1, changing the order of integration and using (2.9) and (3.8), we have

∞̂

0

τ
1
n− 3

2

τ̂

0

σ
1
n− 1

2

√
Ψ|f |2(σ)Ψ|c′|2(σ) dσ dτ ≤ Cn

∞̂

0

τ
2
n−1

√
Ψ|f |2(σ)Ψ|c′|2(σ) dσ

≤ Cn‖c′‖n,∞‖f‖n,1,

and also, using (2.10), we obtain that
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∞̂

0

τ
1
n− 3

2

τ̂

0

σ
2
n− 1

2Mg(σ)
√

Ψ|c′|2(σ) dσ ≤ Cn

∞̂

0

σ
3
n−1Mg(σ)

√
Ψ|c′|2(σ) dσ dτ

≤ Cn‖c′‖n,∞‖g‖n
2 ,1.

The last two estimates and the definition of H in (3.7) imply that

∞̂

0

H ≤ C(‖c′‖n,∞ + 1)
(
‖f‖n,1 + ‖g‖n

2 ,1
)
, (3.9)

where C depends on n, q, λ and ‖c′1‖n,q.
Set now

R(τ) = C1τ
1
n−1

√
Ψ|b′|2(τ), G(σ) = C1σ

2
n−1

√
Ψ|b′|2(σ)Ψ|c′|2(σ).

Then, if ‖c′1‖ = ‖c′1‖n,q, (3.1) shows that

−v′(τ) ≤ H(τ) + R(τ)v(τ) + eC2‖c′1‖q

τ
1
n− 3

2

τ̂

0

v(σ)σ 1
2− 1

nG(σ) dσ,

as long as ‖c2‖n,∞ < νn,λ. Since also 
´∞
0 R ≤ Cn,λ‖b′‖n,1 from Lemma 2.6, we obtain that

−
(
e
´ τ
0 Rv

)′
= e

´ τ
0 R (−v′ −Rv)

≤ e
´ τ
0 R

⎛
⎝H(τ) + eC2‖c′1‖q

τ
1
n− 3

2

τ̂

0

v(σ)σ 1
2− 1

nG(σ) dσ

⎞
⎠

≤ eCn,λ‖b′‖n,1H(τ) + eCn,λ‖b′‖n,1+C2‖c′1‖q

τ
1
n− 3

2

τ̂

0

v(σ)σ 1
2− 1

nG(σ) dσ.

(3.10)

Set B = exp (Cn,λ‖b′‖n,1) and C ′ = exp (Cn,λ‖b′‖n,1 + C2‖c′1‖q), and let τ2 > τ1 > 0. Then v is absolutely 
continuous in (τ1, τ2), from Lemma 2.4; hence, integrating (3.10) in (τ1, τ2), we obtain that

e
´ τ1
0 Rv(τ1) ≤ e

´ τ2
0 Rv(τ2) + B

τ2ˆ

τ1

H + C ′
τ2ˆ

τ1

τ̂

0

τ
1
n− 3

2 v(σ)σ 1
2− 1

nG(σ) dσdτ

≤ B (v(τ2) + ‖H‖1) + C ′
τ2ˆ

τ1

τ̂

0

τ
1
n− 3

2 v(σ)σ 1
2− 1

nG(σ) dσdτ.

(3.11)

Using Fubini’s theorem, the last integral is equal to

τ1ˆ

0

τ2ˆ

τ1

τ
1
n− 3

2σ
1
2− 1

nG(σ) dτdσ +
τ2ˆ

τ1

τ2ˆ

σ

τ
1
n− 3

2 v(σ)σ 1
2− 1

nG(σ) dτdσ

≤ Cnτ
1
n− 1

2
1

τ1ˆ

0

v(σ)σ 1
2− 1

nG(σ) dσ + Cn

τ2ˆ

τ1

v(σ)G(σ) dσ,
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therefore, plugging the last estimate in (3.11), and using that v is decreasing, we obtain

v(τ1) ≤ B (v(τ2) + ‖H‖1) + C ′Cnτ
1
n− 1

2
1

τ1ˆ

0

v(σ)σ 1
2− 1

nG(σ) dσ + C ′Cnv(τ1)
τ2ˆ

τ1

G(σ) dσ. (3.12)

Consider now τ0 > 0 such that

τ0ˆ

0

G ≤ 1
2C ′Cn

; (3.13)

note that such τ0 always exists, since G ∈ L1(0, ∞) from Lemma 2.6. Then, if 0 < τ1 ≤ τ0, setting τ2 = τ0
and plugging (3.13) in (3.12) we obtain that

v(τ1) ≤ 2B (v(τ0) + ‖H‖1) + 2C ′Cnτ
1
n− 1

2
1

τ1ˆ

0

v(σ)σ 1
2− 1

nG(σ) dσ.

Then, for τ1 ∈ (0, τ0), the hypotheses of Lemma 2.7 are satisfied, and we obtain that

v(τ1) ≤ 2B (v(τ0) + ‖H‖1) + 2C ′Cnτ
1
n− 1

2
1

τ1ˆ

0

2B (v(τ0) + ‖H‖1)σ
1
2− 1

nG(σ)e2C′Cn

´ τ1
σ

G dσ

≤ 2B (v(τ0) + ‖H‖1) + 4C ′CnB (v(τ0) + ‖H‖1) e2C′Cn‖G‖1

τ1ˆ

0

G(σ) dσ.

This estimate holds for every 0 < τ1 ≤ τ0, as long as (3.13) holds. Then, letting τ1 → 0+, and using the 
definition of B and Lemma 2.3, we obtain that

lim
τ1→0+

v(τ1) ≤ 2B (v(τ0) + ‖H‖1)

≤ exp
(
Cn,λ

(
‖b‖n,1 + ‖d‖n

2 ,1
))

(v(τ0) + ‖H‖1) ,

as long as ‖c2‖n,∞ < νn,λ and (3.13) hold. Combining with (3.9) then shows (3.5), and (3.6) follows from 
the fact that v is decreasing and (2.4). �

As a corollary, we obtain the following maximum principle, which generalizes [1, Proposition 7.5]. From 
Remark 6.4, to have such an estimate with constants depending only on the norms of the coefficients for 
arbitrary b ∈ Ln,1 requires that c should have small norm; hence, we will assume that c belongs to Ln,∞

and has small norm.

Proposition 3.3. Let Ω ⊆ Rn be a domain. Let A be uniformly elliptic and bounded in Ω, with ellipticity λ, 
and let b, f ∈ Ln,1(Ω), g ∈ L

n
2 ,1(Ω), with ‖b‖n,1 ≤ M .

There exists β = βn,λ,M > 0 such that, if c ∈ Ln,∞(Ω) and d ∈ L
n
2 ,1(Ω) with ‖c‖n,∞ < β and ‖d‖n

2 ,1 < β, 
then for every subsolution u ∈ Y 1,2(Ω) to

− div(A∇u + bu) + c∇u + du ≤ −div f + g

in Ω, we have that
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sup
Ω

u ≤ C sup
∂Ω

u+ + C‖f‖n,1 + C‖g‖n
2 ,1,

where C depends on n, λ and M .

Proof. Assume that ‖c‖n,∞ < β and ‖d‖n
2 ,1 < β, for β to be chosen later. Consider the νn,λ from Lemma 3.1, 

and take c1 ≡ 0 and q = 1 in Proposition 3.2. We will take β ≤ νn,λ, so it is enough to show that we can 
take τ0 = ∞ in (3.5), since limτ→∞ v(τ) = 0. Hence, from (3.13), and the definitions of C ′ and e from the 
proof of Proposition 3.2, it will be enough to have that

∞̂

0

σ
2
n−1

√
Ψ|b−e|2(σ)Ψ|c−e|2(σ) dσ ≤ C exp (−C‖b− e‖n,1 − C‖e‖n,1) , (3.14)

where C depends on n and λ only.
We first bound the left hand side from above using Lemmas 2.6 and 2.3, to obtain

∞̂

0

σ
2
n−1

√
Ψ|b−e|2(σ)Ψ|c−e|2(σ) dσ =

∥∥∥√Ψ|b−e|2Ψ|c−e|2
∥∥∥

n
2 ,1

≤ C
∥∥∥√Ψ|b−e|2

∥∥∥
n,1

∥∥∥√Ψ|c−e|2
∥∥∥
n,∞

≤ C‖b− e‖n,1‖c− e‖n,∞ ≤ C(M + β)β,

while

−C‖b− e‖n,1 − C‖e‖n,1 ≥ −C‖b‖n,1 − C‖e‖n,1 ≥ −CM − Cβ.

From the last two estimates, (3.14) will be satisfied as long as

C(M + β)βeCM+Cβ ≤ 1.

So, choosing β > 0 depending on n, λ and M , such that the last estimate is satisfied and also β ≤ νn,λ
completes the proof. �

In addition, we also obtain the following maximum principle, which concerns perturbations of the operator 
− div(A∇u) + c∇u.

Proposition 3.4. Let Ω ⊆ Rn be a domain. Let A be uniformly elliptic and bounded in Ω, with ellipticity λ, 
and let q < ∞, c = c1 + c2 ∈ Ln,∞(Ω), with ‖c2‖n,∞ < ν and ‖c1‖n,q ≤ M , where ν = νn,λ appears in 
Lemma 3.1. Assume also that f ∈ Ln,1(Ω), g ∈ L

n
2 ,1(Ω).

There exists γ = γn,q,λ,M > 0 such that, if b ∈ Ln,1(Ω) and d ∈ L
n
2 ,1(Ω) with ‖b‖n,1 < γ and ‖d‖n

2 ,1 < γ, 
then for any subsolution u ∈ Y 1,2(Ω) to

− div(A∇u + bu) + c∇u + du ≤ −div f + g

in Ω, we have

sup
Ω

u ≤ C sup
∂Ω

u+ + C‖f‖n,1 + C‖g‖n
2 ,1,

where C depends on n, q, λ and M .
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Proof. As in the proof of Corollary 3.3, we will take γ ≤ νn,λ, and it will be enough to have that

∞̂

0

σ
2
n−1

√
Ψ|b−e|2(σ)Ψ|c−e|2(σ) dσ ≤ C exp

(
−C‖b− e‖n,1 − C‖c1 − e‖qn,q

)
,

whenever ‖b‖n,1 < γ and ‖d‖n
2 ,1 < γ, and where C = Cn,q,λ. Then, a similar argument as in the proof of 

Proposition 3.3 completes the proof. �
4. Local boundedness

4.1. The first step: all coefficients are small

The first step to obtain the Moser estimate is via a coercivity assumption, which we now turn to. The 
following lemma is standard, and we only give a sketch of its proof. We will set 2∗ = 2n

n+2 .

Lemma 4.1. Let Ω ⊆ Rn be a domain, and A be uniformly elliptic and bounded in Ω, with ellipticity λ. There 
exists θ = θn,λ > 0 such that, if b ∈ Ln,1(Ω), c ∈ Ln,∞(Ω) and d ∈ L

n
2 ,1(Ω) with ‖b‖n,1 ≤ θ, ‖c‖n,∞ ≤ θ

and ‖d‖n
2 ,1 ≤ θ, then the operator

Lu = − div(A∇u + bu) + c∇u + du

is coercive, and every solution v ∈ W 1,2
0 (Ω) to the equation Lu = − divF+G for F ∈ L2(Ω) and G ∈ L2∗(Ω)

satisfies the estimate

‖∇v‖L2(B2r) ≤ Cn,λ‖F‖L2(Ω) + Cn,λ‖G‖L2∗ (Ω). (4.1)

Also, if Ω = B2r and w ∈ W 1,2(B2r) is a subsolution to − div(A∇w + bw) + c∇w + dw ≤ 0, then
ˆ

Br

|∇w|2 ≤ C

r2

ˆ

B2r

|w+|2, (4.2)

where C depends on n, λ and ‖A‖∞.
Moreover, for any subsolution u ∈ W 1,2(B2r) to − div(A∇u) + c∇u ≤ 0 in B2r and α ∈ (1, 2), we have 

that

sup
Br

u ≤ C

(α− 1)n/2

⎛
⎝  

Bαr

|u+|2
⎞
⎠

1
2

, (4.3)

where C depends on n, λ and ‖A‖∞.

Proof. We first show (4.3), following the lines of the proof of [2, Theorem 8.17]: if φ is a smooth cutoff 
function, then an approximation argument using [1, Lemma 2.2] and Hölder’s inequality (2.9) shows that 
we can use u+φ2 as a test function, and we obtain

ˆ

B2r

A∇u+∇u+ · φ2 ≤ −2
ˆ

B2r

A∇u+∇φ · u+φ−
ˆ

B2r

c∇u+ · u+φ2

≤ C‖φ∇u+‖L2(B2r)‖u+∇φ‖L2(B2r)

+
∥∥cu+φ

∥∥
L2(B2r) ‖φ∇u+‖L2(B2r).

(4.4)



G. Sakellaris / J. Math. Pures Appl. 156 (2021) 179–214 197
Then, assuming that ‖c‖n,∞ ≤ θ, for θ to be chosen later, using Hölder’s estimate (2.9) we have

∥∥cu+φ
∥∥
L2(B2r) ≤ Cn‖c‖n,∞‖u+φ‖L2∗,2(B2r) ≤ Cnθ‖u+φ‖L2∗,2(B2r),

and combining with [1, Lemma 2.2], we have

∥∥cu+φ
∥∥
L2(B2r) ≤ Cnθ‖∇(u+φ)‖L2(B2r)

≤ Cnθ‖φ∇u+‖L2(B2r) + Cnθ‖u+∇φ‖L2(B2r).
(4.5)

So, choosing θ such that Cnθ < λ
4 , and plugging in (4.4), we obtain that

ˆ

B2r

|φ∇u+|2 ≤ C

ˆ

B2r

|u+∇φ|2,

where C depends on n, λ and ‖A‖∞. This estimate corresponds to [2, (8.53), page 196], and following the 
lines of the argument on [2, pages 196 and 197] we obtain that

sup
Br

u ≤ C

⎛
⎝  

B2r

|u+|2
⎞
⎠

1
2

,

where C depends on n, λ and ‖A‖∞. To complete the proof of (4.3) note that, for all x ∈ Br, the last 
estimate shows that

sup
Bα−1

2 r
(x)

u ≤ C

⎛
⎜⎝  

B(α−1)r(x)

|u+|2

⎞
⎟⎠

1
2

≤ C

(α− 1)n/2rn/2

⎛
⎝ ˆ

Bαr

|u+|2
⎞
⎠

1
2

,

since B(α−1)r(x) ⊆ Bαr, and considering the supremum for x ∈ Br shows (4.3).
Finally, coercivity of L, (4.1) and (4.2) follow via a combination of the procedure as in (4.4) and (4.5), 

where for (4.1) we use v as a test function, and for (4.2) we use w+φ2 as a test function. �
We now turn to local boundedness when all the lower order coefficients have small norms.

Lemma 4.2. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ. There exists θ′ = θ′n,λ > 0
such that, if b ∈ Ln,1(B2r), c ∈ Ln,∞(B2r) and d ∈ L

n
2 ,1(B2r) with ‖b‖n,1 ≤ θ′, ‖c‖n,∞ ≤ θ′ and ‖d‖n

2 ,1 ≤ θ′, 
then for any subsolution u ∈ W 1,2(B2r) to − div(A∇u + bu) + c∇u + du ≤ 0,

sup
Br

u+ ≤ C

⎛
⎝  

B2r

|u+|2
⎞
⎠

1
2

,

where C depends on n, λ and ‖A‖∞.

Proof. Consider the θn,λ that appears in Lemma 4.1. We will take θ′ ≤ θn,λ, so that the operator is coercive. 
Then, if u is a subsolution to Lu ≤ 0, the proof of [31, Theorem 3.5] implies that u+ is a subsolution to 
Lu+ ≤ 0; therefore, we can assume that u ≥ 0.
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Assume first that b, c, d are bounded in B2r, then [2, Theorem 8.17] shows that

sup
Br

u < ∞. (4.6)

Let 1
4 ≤ η < η′ ≤ 1

2 . From coercivity of the operator L0u = − div(A∇u) + c∇u, and since div(bu) − du ∈
W−1,2(Bη′r) =

(
W 1,2

0 (Bη′r)
)∗

, the Lax-Milgram theorem shows that there exists v ∈ W 1,2
0 (Bη′r) such that

− div(A∇v) + c∇v = div(bu) − du.

If β is as in Proposition 3.3, taking θ′ ≤ βn,λ,θn,λ
the same proposition shows that

sup
Bη′r

v ≤ Cn,λ‖bu‖Ln,1(Bη′r) + Cn,λ‖du‖Ln
2 ,1(Bη′r) ≤ Cn,λθ

′ sup
Bη′r

u, (4.7)

since u ≥ 0. In addition, from the Sobolev inequality, estimate (4.1) and the Hölder inequality,

‖v‖L2∗ (Bη′r) ≤ Cn‖∇v‖L2(Bη′r)

≤ Cn,λ‖bu‖L2(Bη′r) + Cn,λ‖du‖L2∗ (Bη′r) ≤ Cn,λ‖u‖L2∗ (Bη′r).
(4.8)

Moreover, the function w = u − v is a subsolution to − div(A∇w) + c∇w ≤ 0, so (4.3) implies that

sup
Bηr

w ≤ C

(η′

η − 1)n/2

⎛
⎜⎝  

Bη′r

|w+|2

⎞
⎟⎠

1
2

≤ C

(η′ − η)n/2

⎛
⎜⎝  

Bη′r

|u|2

⎞
⎟⎠

1
2

+ C

(η′ − η)n/2

⎛
⎜⎝  

Bη′r

|v|2

⎞
⎟⎠

1
2

≤ C

(η′ − η)n/2

⎛
⎜⎝  

Bη′r

|u|2∗

⎞
⎟⎠

1
2∗

≤ C

(η′ − η)n/2

⎛
⎜⎝  

Br/2

|u|2∗

⎞
⎟⎠

1
2∗

,

where we also used (4.8) for the penultimate estimate, and C depends on n, λ and ‖A‖∞. Hence, the 
definition of w, the last estimate and (4.7) show that

sup
Bηr

u ≤ sup
Bηr

v + sup
Bηr

w ≤ Cn,λθ
′ sup
Bη′r

u + C

(η′ − η)n/2

⎛
⎜⎝  

Br/2

|u|2∗

⎞
⎟⎠

1
2∗

,

where C depends on n, λ and ‖A‖∞.
We now set ηN = 1

2 − 4−N and apply the previous estimate for η = ηN and η′ = ηN+1. Then,

sup
BηNr

u ≤ Cn,λθ
′ sup
BηN+1r

u + 2nNC

⎛
⎜⎝  

Br/2

|u|2∗

⎞
⎟⎠

1
2∗

.

Inductively, this shows that, for any N ∈ N,
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sup
Bη1r

u ≤ (Cn,λθ
′)N sup

BηN+1r

u + C

N∑
i=1

(Cn,λθ
′)i−12ni ·

⎛
⎝  

Br

|u|2∗

⎞
⎠

1
2∗

.

We will consider θ′ such that Cn,λθ
′ ≤ 1

2 . Then, letting N → ∞ and using (4.6), we obtain that

sup
Br/4

u ≤ C
∞∑
i=1

(2nCn,λθ
′)i−1 ·

⎛
⎜⎝  

Br/2

|u|2∗

⎞
⎟⎠

1
2∗

,

and choosing θ′ that also satisfies 2nCn,λθ
′ ≤ 1

2 shows that

sup
Br/4

u ≤ C

⎛
⎜⎝  

Br/2

|u|2∗

⎞
⎟⎠

1
2∗

≤ C

⎛
⎝  

B2r

|u|2
⎞
⎠

1
2

, (4.9)

where we used (4.2) and the Sobolev inequality for the last estimate, and where C depends on n, λ and 
‖A‖∞.

In the case that b, c, d are not necessarily bounded, let bj be the coordinate functions of b, and define 
bN having coordinate functions bjN = bjχ[|bj |≤N ] for N ∈ N; define also similar approximations cN and dN
for c, d respectively. We then have that ‖bN‖n,1 ≤ ‖b‖n,1, and similarly for cN and dN . Since θ′ ≤ θn,λ, 
from coercivity in Lemma 4.1 and the Lax-Milgram theorem there exists vN ∈ W 1,2

0 (Br/2) that solves the 
equation

− div(A∇vN + bNvN ) + cN∇vN + dNvN = − div(A∇u + bNu) + cN∇u + dNu

in Br/2. Then, from (4.1),

‖∇vN‖L2(Br/2) ≤ C‖A∇u + bNu‖L2(Br/2) + C‖cN∇u + dNu‖L2∗ (Br/2)

≤ C

r
‖u‖L2(B2r),

(4.10)

where we also used (4.2) and Hölder’s inequality for the last estimate. So, (vN) is bounded in W 1,2
0 (Br/2), 

hence from Rellich’s theorem there exists a subsequence (vN ′) such that

vN ′ → v0 weakly in W 1,2
0 (Br/2) and strongly in L

n
n−2 (Br/2),

vN ′(x) → v0(x) ∀x ∈ F,
(4.11)

where F ⊆ Br/2 is a set with full measure.
Note now that wN = u − vN is a solution to − div(A∇wN + bNwN ) + cN∇wN + dNwN = 0 in Br/2, 

and bN , cN and dN are bounded, so (4.9) (where B2r is replaced by Br/2) is applicable to w+; therefore, for 
x ∈ FN , where FN ⊆ Br/16 has full measure,

w+
N (x) ≤ sup

Br/16

w+
N ≤ C

⎛
⎜⎝  

Br/2

|w+
N |2

⎞
⎟⎠

1
2

≤ C

⎛
⎜⎝  

Br/2

u2

⎞
⎟⎠

1
2

+ C

⎛
⎜⎝  

Br/2

v2
N

⎞
⎟⎠

1
2

,

where C depends on n, λ and ‖A‖∞. Therefore, for all x ∈ FN ,
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u(x) = vN (x) + wN (x) ≤ vN (x) + C

⎛
⎜⎝  

Br/2

u2

⎞
⎟⎠

1
2

+ C

⎛
⎜⎝  

Br/2

v2
N

⎞
⎟⎠

1
2

≤ vN (x) + C

⎛
⎝  

B2r

u2

⎞
⎠

1
2

,

where we used the Sobolev inequality and (4.10) for the last estimate.
Let now F0 = F ∩

⋂∞
N=1 FN , then F0 ⊆ Br/16 has full measure, and if x ∈ F0, then letting N ′ → ∞ in 

the previous estimate, (4.11) implies that

u(x) ≤ lim sup
N ′→∞

vN ′(x) + C

⎛
⎝  

B2r

u2

⎞
⎠

1
2

= v0(x) + C

⎛
⎝  

B2r

u2

⎞
⎠

1
2

, (4.12)

for all x ∈ F0. Finally, note that vN ′ is a subsolution to

− div(A∇vN + bNvN ) + cN∇vN + dNvN ≤ −div((bN − b)u) + (cN − c)∇u + (dN − d)u

in Br/2, and since bN ′ → bN and cN ′ → cN strongly in L2(Br/2), while dN ′ → dN strongly in L
n
2 (Br/2), using 

(4.11) and the variational formulation of subsolutions (2.11) we obtain that v0 is a W 1,2
0 (B2r) subsolution 

to

− div(A∇v0 + bv0) + c∇v0 + dv0 ≤ 0.

Hence, since θ′ ≤ βn,λ,θn,λ
, Proposition 3.3 implies that v0 ≤ 0 in Br/2, and plugging in (4.12) and covering 

Br with balls of radius r/16 completes the proof. �
4.2. The second step: b or c have large norms

We now turn to scale invariant estimates with “good” constants when d is small, and either b or c are 
small as well. We first consider the case of small c and assume that the right hand side is identically 0, for 
simplicity; the terms on the right hand side will be added in Proposition 4.4.

Lemma 4.3. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ, and b ∈ Ln,1(B2r) with 
‖b‖n,1 ≤ M .

There exists θ = θn,λ,M > 0 such that, if c ∈ Ln,∞(B2r) and d ∈ L
n
2 ,1(B2r) with ‖c‖n,∞ < θ and 

‖d‖n
2 ,1 < θ, then for any subsolution u ∈ W 1,2(B2r) to − div(A∇u + bu) + c∇u + du ≤ 0, we have

sup
Br

u ≤ C

⎛
⎝  

B2r

|u+|2
⎞
⎠

1
2

, (4.13)

where C depends on n, λ, ‖A‖∞ and M .

Proof. We will proceed by induction on M . Consider the θ′n,λ and the constant C0 = Cn,λ,‖A‖∞ ≥ 1 that 
appear in Lemma 4.2. In addition, for any integer N ≥ 0, set C ′

n,λ,N = Cn,λ,2N/nθ′
n,λ

≥ 1, where the last 
constant appears in Proposition 3.3.
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We claim that, if ‖b‖Ln,1(B2r) ≤ 2N/nθ′n,λ, then there exists θn,λ,N > 0 such that, if we have that 
‖c‖Ln,∞(B2r) < θn,λ,N and ‖d‖

L
n
2 ,1(B2r) < θn,λ,N , then

sup
Br

u ≤ 8nN
2 C0

N∏
i=0

C ′
n,λ,i

⎛
⎝  

B2r

|u+|2
⎞
⎠

1
2

. (4.14)

For N = 0, letting θn,λ,0 = θ′n,λ, the previous estimate holds from Lemma 4.2.
Assume now that this estimate holds for some integer N ≥ 0, for some constant θn,λ,N . From Propo-

sition 3.3 there exists β′
n,λ,N = βn,λ,2N/nθ′

n,λ
> 0 such that, if Ω ⊆ Rn is a domain, A′ is elliptic in Ω

with ellipticity λ, ‖b′‖Ln,1(Ω) ≤ 2N/nθ′n,λ, ‖c′‖Ln,∞(Ω) < β′
n,λ,N and ‖d′‖

L
n
2 ,1(Ω) < β′

n,λ,N , then for any 

subsolution v ∈ Y 1,2(Ω) to − div(A′∇v + b′v) + c′∇v + d′v ≤ 0 in Ω, we have that

sup
Ω

v ≤ C ′
n,λ,N sup

∂Ω
v+.

We then set θn,λ,N+1 = min{θn,λ,N , β′
n,λ,N+1}, and assume that

‖b‖Ln,1(B2r) ≤ 2(N+1)/nθ′n,λ, ‖c‖Ln,∞(B2r) < θn,λ,N+1, and ‖d‖
L

n
2 ,1(B2r) < θn,λ,N+1. (4.15)

We will show that, in this case, (4.14) holds for N + 1. To show this, we distinguish between two cases: 
‖b‖Ln,1(B3r/2) ≤ 2N/nθ′n,λ, and ‖b‖Ln,1(B3r/2) > 2N/nθ′n,λ.

In the first case, let x ∈ Br. Then, since θn,λ,N+1 ≤ θn,λ,N and Br/2(x) ⊆ B3r/2, we have that

‖b‖Ln,1(Br/2(x)) ≤ 2N/nθ′n,λ, ‖c‖Ln,∞(Br/2(x)) < θn,λ,N , and ‖d‖
L

n
2 ,1(Br/2(x)) < θn,λ,N .

Therefore, from (4.14) for N (in the ball Br/2(x) instead of B2r), we have

sup
Br/4(x)

u ≤ 8nN
2 C0

N∏
i=0

C ′
n,λ,i

⎛
⎜⎝  

Br/2(x)

|u+|2

⎞
⎟⎠

1
2

≤ 8nN
2 C0

N∏
i=0

C ′
n,λ,i2n

⎛
⎝  

B2r

|u+|2
⎞
⎠

1
2

≤ 8
n(N+1)

2 C0

N+1∏
i=0

C ′
n,λ,i

⎛
⎝  

B2r

u2

⎞
⎠

1
2

,

where we used that C ′
n,λ,N+1 ≥ 1 for the last step. So, (4.14) holds for N + 1 in this case.

In the second case, let y ∈ ∂B7r/4. Then Br/4(y) ⊆ B2r \B3r/2, therefore, from Lemma 2.2,

‖b‖nLn,1(Br/4(y)) ≤ ‖b‖nLn,1(B2r) − ‖b‖nLn,1(B3r/2)

< 2N+1(θ′n,λ)n − 2N (θ′n,λ)n = (2N/nθ′n,λ)n.

Moreover, from (4.15), we have ‖c‖Ln,∞(Br/4(y)) < θn,λ,N and ‖d‖
L

n
2 ,1(Br/4(y)) < θn,λ,N , hence (4.14) for N

(in the ball Br/4(y) instead of B2r) implies that

sup
Br/8(y)

u ≤ 8nN
2 C0

N∏
i=0

C ′
n,λ,i

⎛
⎜⎝  

|u+|2

⎞
⎟⎠

1
2

≤ 8
n(N+1)

2 C0

N∏
i=0

C ′
n,λ,i

⎛
⎝  

B

u2

⎞
⎠

1
2

.

Br/4(y) 2r
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Then, the last estimate, (4.15) and Proposition 3.3 show that

sup
Br

u ≤ C ′
n,λ,N+1 sup

∂B7r/4

u ≤ C ′
n,λ,N+1 · 8

n(N+1)
2 C0

N∏
i=1

C ′
n,λ,i

⎛
⎝  

B2r

|u+|2
⎞
⎠

1
2

,

which shows that (4.14) for N + 1 in this case as well.
Therefore, (4.14) holds for any N ∈ N, which completes the proof. �
Finally, we show Moser’s estimate allowing right hand sides to the equation, and considering also different 

Lp norms on the right hand side of the estimate.

Proposition 4.4. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ. Let also b ∈ Ln,1(B2r)
with ‖b‖n,1 ≤ M , and p > 0, f ∈ Ln,1(B2r), g ∈ L

n
2 ,1(B2r).

There exists ε = εn,λ,M > 0 such that, if c ∈ Ln,∞(B2r) and d ∈ L
n
2 ,1(B2r) with ‖c‖n,∞ < ε and 

‖d‖n
2 ,1 < ε, then for any subsolution u ∈ W 1,2(B2r) to − div(A∇u + bu) + c∇u + du ≤ − div f + g, we have 

that

sup
Br

u ≤ C

⎛
⎝  

B2r

|u+|p
⎞
⎠

1
p

+ C‖f‖Ln,1(B2r) + C‖g‖
L

n
2 ,1(B2r), (4.16)

where C depends on n, p, λ, ‖A‖∞ and M .

Proof. Consider the βn,λ,M from Proposition 3.3. If ‖c‖n,∞ < βn,λ,M and ‖d‖n
2 ,1 < βn,λ,M , any solution 

u ∈ W 1,2
0 (B2r) to the equation − div(A∇u + bu) + c∇u + du = 0 in B2r should be identically 0, from 

Proposition 3.3. Hence, adding a term of the form +Lu to the operator, for some large L > 0 depending 
only on n, λ, M , the operator becomes coercive, and a combination of the Lax-Milgram theorem and the 
Fredholm alternative (as in [32, Theorem 4, pages 303-305], for example) shows that there exists a unique 
v ∈ W 1,2

0 (B2r) such that

− div(A∇v + bv) + c∇v + dv = − div f + g,

in B2r. Then, Proposition 3.3 implies that

sup
B2r

|v| ≤ C‖f‖Ln,1(B2r) + C‖g‖
L

n
2 ,1(B2r), (4.17)

where C depends on n, λ and M .
Consider now the θn,λ,M from Lemma 4.3 and set ε = min{βn,λ,M , θn,λ,M}. Then, assuming that 

‖c‖n,∞ < ε and ‖d‖n
2 ,1 < ε, since w = u − v is a subsolution to − div(A∇w + bw) + c∇w + dw ≤ 0, 

(4.13) implies that

sup
Br

w ≤ C

⎛
⎝  

B2r

|w+|2
⎞
⎠

1
2

, (4.18)

where C depends on n, λ, ‖A‖∞ and M . Then, (4.16) for p = 2 follows adding (4.17) and (4.18).
Finally, in the case p ≥ 2, (4.16) follows from Hölder’s inequality, while in the case p ∈ (0, 2), the proof 

follows from the argument on [33, pages 80-82]. �
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We now turn to the case when c ∈ Ln,q with q < ∞ is allowed to have large norm.

Lemma 4.5. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ. Let also q < ∞ and c1 ∈
Ln,q(B2r) with ‖c1‖n,q ≤ M .

There exist ξ = ξn,λ > 0 and ζ = ζn,q,λ,M > 0 such that, if b ∈ Ln,1(B2r), c2 ∈ Ln,∞(B2r) and 
d ∈ L

n
2 ,1(B2r) with ‖b‖n,1 < ζ, ‖c2‖n,∞ < ξ and ‖d‖n

2 ,1 < ζ, then for any subsolution u ∈ W 1,2(B2r) to 
− div(A∇u + bu) + (c1 + c2)∇u + du ≤ 0, we have that

sup
Br/4

u ≤ C

⎛
⎝  

B2r

|u+|2
⎞
⎠

1
2

,

where C depends on n, q, λ, ‖A‖∞ and M .

Proof. Let Cn ≥ 1 be such that ‖h1 +h2‖n,∞ ≤ Cn‖h1‖n,∞ +Cn‖h2‖n,∞ for all h1, h2 ∈ Ln,∞ (from (2.7)), 
and Cn,q ≥ 1 be such that ‖h‖n,∞ ≤ Cn,q‖h‖n,q for all h ∈ Ln,q (from (2.8)).

Set

ξn,λ = 1
2Cn

min
{
νn,λ, θ

′
n,λ

}
> 0,

where νn,λ and θ′n,λ appear in Proposition 3.3 and Lemma 4.2, respectively. For N ≥ 0, set also C ′
n,q,λ,N =

Cn,q,λ,2N/qC−1
n,qξn,λ

> 1, where the last constant appears in Proposition 3.4, and consider the constant 
C0 = Cn,λ,‖A‖∞ ≥ 1 that appears in Lemma 4.2.

We claim that, for any integer N ≥ 0, if ‖c1‖n,q ≤ 2N/qC−1
n,qξn,λ, then there exists ζn,q,λ,N such that, if 

‖b‖n,1 < ζn,q,λ,N , ‖c2‖n,∞ < ξn,λ and ‖d‖n
2 ,1 < ζn,q,λ,N , then

sup
Br/4

u ≤ 8nN
2 C0

N∏
i=0

C ′
n,q,λ,i

⎛
⎝  

B2r

u2

⎞
⎠

1
2

. (4.19)

For N = 0 we can take ζn,q,λ,0 = ξn,λ, since we then have that

‖c‖n,∞ ≤ CnCn,q‖c1‖n,q + Cn‖c2‖n,∞ ≤ 2Cnξn,λ ≤ θ′n,λ,

and also ‖b‖n,1 ≤ θ′n,λ, ‖d‖n
2 ,1 ≤ θ′n,λ, therefore (4.19) for N = 0 holds from Lemma 4.2.

Assume now that (4.19) holds for some N ≥ 0, and set ζn,q,λ,N+1 = min{ζn,q,λ,N , γ′
n,q,λ,N+1}, where 

γ′
n,q,λ,N = γn,q,λ,2N/qC−1

n,qξn,λ
, and the γ appears in Proposition 3.4. We then continue as in the proof of the 

Lemma 4.3, using Lemma 2.2 for q > n and Proposition 3.4 instead of Proposition 3.3; this shows that 
(4.19) holds for N + 1 if ‖c1‖n,q ≤ 2(N+1)/qC−1

n,qξn,λ, as long as ‖b‖n,1 < ζn,q,λ,N+1, ‖c2‖n,∞ < ξn,λ and 
‖d‖n

2 ,1 < ζn,q,λ,N+1, and this completes the proof. �
Finally, we add right hand sides and allow different Lp norms.

Proposition 4.6. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ, and q < ∞, c1 ∈ Ln,q(B2r)
with ‖c1‖n,q ≤ M . Let also p > 0 and f ∈ Ln,1(B2r), g ∈ L

n
2 ,1(B2r).

There exist ξ = ξn,λ > 0 and δ = δn,q,λ,M > 0 such that, if b ∈ Ln,1(B2r), c2 ∈ Ln,∞(B2r) and 
d ∈ L

n
2 ,1(B2r) with ‖b‖n,1 < δ, ‖c2‖n,∞ < ξ and ‖d‖n

2 ,1 < δ, then for any subsolution u ∈ W 1,2(B2r) to 
− div(A∇u + bu) + (c1 + c2)∇u + du ≤ − div f + g, we have that
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sup
Br

u ≤ C

⎛
⎝  

B2r

|u+|p
⎞
⎠

1
p

+ C‖f‖Ln,1(B2r) + C‖g‖
L

n
2 ,1(B2r),

where C depends on n, p, q, λ, ‖A‖∞ and M .

Proof. The proof is similar to the proof of Proposition 4.4, using Proposition 3.4 instead of Proposition 3.3
and Lemma 4.5 instead of Lemma 4.3. �
Remark 4.7. Note that the analogue of Propositions 4.4 and 4.6 will hold under no smallness assumptions 
for b, d or c, d (when c ∈ Ln,q, q < ∞), but then the constants depend on b, d or c, d and not just on their 
norms. This can be achieved considering r′ > 0 small enough, so that the norms of b, d or c, d are small 
enough in all balls of radius 2r′ that are subsets of B2r, and after covering Br with balls of radius r′.

4.3. Estimates on the boundary

We now turn to local boundedness close to the boundary. We will follow the same process as in the case 
of local boundedness in the interior.

The following are the analogues of (4.2) and (4.3) close to the boundary; the proof is similar to the one 
of Lemma 4.1 (as in [2, proof of Theorem 8.25]) and it is omitted.

Lemma 4.8. Let Ω ⊆ Rn be a domain and B2r ⊆ Rn be a ball. Let also A be uniformly elliptic and bounded 
in Ω ∩B2r, with ellipticity λ.

There exists θ = θn,λ > 0 such that, if b ∈ Ln,1(Ω ∩B2r), c ∈ Ln,∞(Ω ∩B2r) and d ∈ L
n
2 ,1(Ω ∩B2r) with 

‖b‖n,1 ≤ θ, ‖c‖n,∞ ≤ θ and ‖d‖n
2 ,1 ≤ θ, then, if w ∈ W 1,2(Ω ∩B2r) is a subsolution to − div(A∇w + bw) +

c∇w + dw ≤ 0 with w ≤ 0 on ∂Ω ∩B2r, we have that

ˆ

Ω∩Br

|∇w|2 ≤ C

r2

ˆ

Ω∩B2r

|w+|2,

where C depends on n, λ and ‖A‖∞.
Moreover, for any subsolution u ∈ W 1,2(Ω ∩B2r) to − div(A∇u) +c∇u ≤ 0 in Ω ∩B2r and any α ∈ (1, 2), 

we have that

sup
Ω∩Br

u ≤ C

(α− 1)n/2

⎛
⎝  

Bαr

v2

⎞
⎠

1
2

,

where v = u+χΩ∩B2r , and C depends on n, λ and ‖A‖∞.

To show local boundedness close to the boundary, we will need the following definition from [2, Theorem 
8.25]: if u is a function in Ω and ∂Ω ∩B2r �= ∅, we define

su = sup
∂Ω∩B2r

u+, ũ(x) =
{

sup{u(x), su}, x ∈ B2r ∩ Ω
su, x ∈ B2r \ Ω

(4.20)

where the supremum over ∂Ω ∩B2r is defined as on [2, page 202].
The following proposition concerns the case of large b.
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Proposition 4.9. Let Ω ⊆ Rn be a domain, and B2r be a ball of radius 2r. Let also A be uniformly elliptic 
and bounded in Ω ∩B2r, with ellipticity λ, b ∈ Ln,1(Ω ∩B2r) with ‖b‖n,1 ≤ M , and p > 0, f ∈ Ln,1(Ω ∩B2r), 
g ∈ L

n
2 ,1(Ω ∩B2r).

There exists ε = εn,λ,M > 0 such that, if c ∈ Ln,∞(Ω ∩B2r) and d ∈ L
n
2 ,1(Ω ∩B2r) with ‖c‖n,∞ < ε and 

‖d‖n
2 ,1 < ε, then for any subsolution u ∈ W 1,2(Ω ∩B2r) to − div(A∇u + bu) + c∇u + du ≤ − div f + g, we 

have that

sup
Ω∩Br

ũ ≤ C

⎛
⎝  

B2r

|ũ|p
⎞
⎠

1
p

+ C‖f‖Ln,1(Ω∩B2r) + C‖g‖
L

n
2 ,1(Ω∩B2r),

where ũ is defined in (4.20), and where C depends on n, p, λ, ‖A‖∞ and M .

Proof. Subtracting a constant from u, and since ũ ≥ su in B2r, we can reduce to the case when u ≤ 0
on ∂Ω ∩ B2r (that is, su = 0). Then, based on Lemma 4.8 and [2, Theorem 8.25] instead of Lemma 4.1
and [2, Theorem 8.17], respectively, we can show the analogue of Lemma 4.2, replacing all the balls by 
their intersections with Ω, for subsolutions u ∈ W 1,2(Ω ∩ B2r) with u ≤ 0 on ∂Ω ∩ B2r. We then continue 
with a similar argument as in the proofs of Lemma 4.3 and Proposition 4.4, replacing all the balls by their 
intersections with Ω. �

Finally, using a similar argument to the above, and going through the arguments of the proofs of 
Lemma 4.5 and Proposition 4.6, we obtain the following estimate close to the boundary, in the case that c
is large.

Proposition 4.10. Let Ω ⊆ Rn be a domain, and B2r be a ball of radius 2r. Let also A be uniformly elliptic 
and bounded in Ω ∩B2r, with ellipticity λ, and consider q < ∞ and c1 ∈ Ln,q(Ω ∩B2r) with ‖c1‖n,q ≤ M . 
Let also p > 0, f ∈ Ln,1(Ω ∩B2r), and g ∈ L

n
2 ,1(Ω ∩B2r).

There exist ξ = ξn,λ > 0 and δ = δn,q,λ,M > 0 such that, if b ∈ Ln,1(Ω ∩ B2r), c2 ∈ Ln,∞(Ω ∩ B2r) and 
d ∈ L

n
2 ,1(Ω ∩B2r) with ‖b‖n,1 < δ, ‖c2‖n,∞ < ξ and ‖d‖n

2 ,1 < δ, then for any subsolution u ∈ W 1,2(Ω ∩B2r)
to − div(A∇u + bu) + (c1 + c2)∇u + du ≤ − div f + g, we have that

sup
Ω∩Br

ũ ≤ C

⎛
⎝  

B2r

|ũ|p
⎞
⎠

1
p

+ C‖f‖Ln,1(Ω∩B2r) + C‖g‖
L

n
2 ,1(Ω∩B2r),

where ũ is defined in (4.20), and where C depends on n, p, q, λ, ‖A‖∞ and M .

Remark 4.11. As in Remark 4.7, the analogues of Propositions 4.9 and 4.10 will hold under no smallness 
assumptions for b, d or c, d (when c ∈ Ln,q, q < ∞), with constants depending on b, d or c, d and not just 
on their norms.

5. The reverse Moser estimate and the Harnack inequality

5.1. The lower bound

In order to deduce the Harnack inequality, we will consider negative powers of positive supersolutions to 
transform them to subsolutions of suitable operators, where the coefficients b, d will be small. This is the 
context of the following lemma.
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Lemma 5.1. Let Ω ⊆ Rn be a domain, b, c, f ∈ Ln,∞(Ω) and d, g ∈ L
n
2 ,∞(Ω). Let also u ∈ W 1,2(Ω) be a 

supersolution to − div(A∇u + bu) + c∇u + du ≥ − div f + g with infΩ u > 0, and consider the function 
v = u + ‖f‖Ln,1(Ω) + ‖g‖

L
n
2 ,1(Ω). Then, for any k < 0, vk is a W 1,2(Ω) subsolution to

− div
(
A∇(vk) + k(bu− f)

v
vk

)
+

(
(k − 1)(bu− f)

v
+ c

)
∇(vk) + k(du− g)

v
vk ≤ 0. (5.1)

Proof. We compute

− div(A∇(vk)) = −k div(A∇v)vk−1 − k(k − 1)A∇v∇v · vk−2.

From ellipticity of A we have that A∇v∇v ≥ 0. Since also k < 0, the last identity shows that 
− div(A∇(vk)) ≤ − div(A∇u) · kvk−1. Since k < 0, vk−1 > 0 and u is a supersolution, we have

− div(A∇(vk)) ≤ (div(bu) − c∇u− du− div f + g)kvk−1,

and the proof is complete after a straightforward computation. �
The next lemma bridges the gap between Lp averages for positive and negative p.

Lemma 5.2. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ, and b, c ∈ Ln,∞(B2r), 
d ∈ L

n
2 ,∞(B2r). Let also u ∈ W 1,2(B2r) be a supersolution to − div(A∇u + bu) + c∇u +du ≥ 0 in B2r, with 

infB2r u > 0. Then there exists a constant a = an such that
 

Br

ua

 

Br

u−a ≤ C,

where C depends on n, λ, ‖A‖∞, ‖b‖n,∞, ‖c‖n,∞ and ‖d‖n
2 ,∞.

Proof. We use the test function from [7, page 586] (see also [2, page 195]): let B2s be a ball of radius 2s, 
contained in B2r. If φ ≥ 0 be a smooth cutoff supported in B2s, with φ ≡ 1 in Bs and |∇φ| ≤ C

s , then the 
function φ2u−1 is nonnegative and belongs to W 1,2

0 (B2s). Hence, using it as a test function, we obtain that
ˆ

B2s

(
A∇u

2φ∇φ

u
−A∇u

φ2∇u

u2 + b
2φ∇φ

u
u− b

φ2∇u

u2 u

)
+

ˆ

B2s

(
c∇u

φ2

u
+ du

φ2

u

)
≥ 0,

hence
ˆ

B2s

A∇u
∇u

u2 φ2 ≤
ˆ

B2r

(
A∇u

2φ∇φ

u
+ 2b∇φ · φ− b

∇u

u
φ2 + c∇u

φ2

u
+ dφ2

)
.

Using ellipticity of A, the Cauchy-Schwartz inequality, and Cauchy’s inequality with ε, we obtain
ˆ

B2s

|∇u|2
u2 φ2 ≤ C

ˆ

B2s

(
|∇φ|2 + |b∇φ|φ + (|b|2 + |c|2 + |d|)φ2)

≤ Csn−2 + Cs−1‖b‖n,∞‖1‖
L

n
n−1 ,1(B2s)

+ C
∥∥|b|2 + |c|2 + |d|

∥∥
n
2 ,∞ ‖1‖

L
n

n−2 ,1(B2s)

≤ Csn−2,
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where C depends on n, λ, ‖A‖∞, ‖b‖n,∞, ‖c‖n,∞ and ‖d‖n
2 ,∞, and where we used (2.9) for the second 

estimate. The proof is complete using the Poincaré inequality and the John-Nirenberg inequality, as on [7, 
page 586]. �

The next bound is a reverse Moser estimate for supersolutions. Surprisingly, if we assume that the 
coefficient c belongs to Ln,q for some q < ∞, then we obtain a scale invariant estimate with “good” 
constants under no smallness assumption on the coefficients. As mentioned before, for the Moser estimate 
in Propositions 4.4 and 4.6, such a bound cannot hold with “good” constants under these assumptions.

Proposition 5.3. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ. Let also b, f ∈ Ln,1(B2r), 
c1 ∈ Ln,q(B2r) for some q < ∞, and d, g ∈ L

n
2 ,1(B2r), with ‖b‖n,1 ≤ Mb, ‖c1‖n,q ≤ Mc and ‖d‖n

2 ,1 ≤ Md.
There exist a = an > 0 and ξ = ξn,λ > 0 such that, if c2 ∈ Ln,∞(B2r) with ‖c2‖n,∞ < ξ, then for any 

nonnegative supersolution u ∈ W 1,2(B2r) to − div(A∇u + bu) + (c1 + c2)∇u + du ≥ − div f + g, we have 
that

⎛
⎝  

Br

ua

⎞
⎠

1
a

≤ C inf
Br/2

u + C‖f‖Ln,1(B2r) + C‖g‖
L

n
2 ,1(B2r),

where C depends on n, q, λ, ‖A‖∞, Mb, Mc and Md.

Proof. Adding a constant δ > 0 to u, we may assume that infB2r u > 0; the general case will follow by 
letting δ → 0. Set v = u + ‖f‖Ln,1(B2r) + ‖g‖

L
n
2 ,1(B2r), then v is a supersolution to

− div
(
A∇v + bu− f

v
v

)
+ c∇v + du− g

v
v ≥ 0,

with
∥∥∥∥bu− f

v

∥∥∥∥
n,1

≤ Cn‖b‖n,1 + Cn,

∥∥∥∥du− g

v

∥∥∥∥
n
2 ,1

≤ Cn‖d‖n
2 ,1 + Cn.

Then, since infB2r v > 0, Lemma 5.2 implies that there exists a = an such that

 

Br

va
 

Br

v−a ≤ C, (5.2)

where C depends on n, q, λ, ‖A‖∞, Mb, Mc and Md.
For k ∈ (−1, 0) to be chosen later, vk is a W 1,2(B2r) subsolution to (5.1) for c = c1 + c2, and

∥∥∥∥ (k − 1)(bu− f)
v

+ c1

∥∥∥∥
n,q

≤ Cn,q(1 − k)
∥∥∥∥buv

∥∥∥∥
n,q

+ Cn,q(1 − k)
∥∥∥∥fv

∥∥∥∥
n,q

+ Cn,q‖c1‖n,q

≤ M,

where M depends on n, q, Mb and Mc. Then, for the ξn,λ and the δn,q,λ,M > 0 from Proposition 4.6 and 
(5.1), if
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∥∥∥∥k(bu− f)
v

∥∥∥∥
Ln,1(Br)

< δn,q,λ,M , ‖c2‖Ln,∞(Br) < ξn,λ,

∥∥∥∥k(du− g)
v

∥∥∥∥
L

n
2 ,1(Br)

< δn,q,λ,M , (5.3)

then vk satisfies the estimate

sup
Br/2

vk ≤ C

 

Br

vk,

where C depends on n, q, λ, ‖A‖∞ and M . It is true that (5.3) holds for some k ∈ (−a, 0), depending on 
n, q, λ, Mb, Mc and Md; hence, for this k,

⎛
⎝  

Br

vk

⎞
⎠

1
k

≤ C(sup
Br/2

vk) 1
k = C inf

Br/2
v, (5.4)

where C depends on n, q, λ, ‖A‖∞, Mb, Mc and Md. Since −a
k > 1, Hölder’s inequality implies that

 

Br

vk ≤

⎛
⎝  

Br

v−a

⎞
⎠

− k
a

⇒

⎛
⎝  

Br

vk

⎞
⎠

1
k

≥

⎛
⎝  

Br

v−a

⎞
⎠

− 1
a

≥ C

⎛
⎝  

Br

va

⎞
⎠

1
a

,

where we used (5.2) for the last step. Then, plugging the last estimate in (5.4), and using the definition of 
v, the proof is complete. �
5.2. Estimates on the boundary

We now consider the analogue of Proposition 5.3 close to the boundary. We will need the analogue of the 
definition of ũ in (4.20), from [2, Theorem 8.26]: if u ≥ 0 is a function in Ω and ∂Ω ∩B2r �= ∅, we define

mu = inf
∂Ω∩B2r

u, ū(x) =
{

inf{u(x),mu}, x ∈ B2r ∩ Ω
mu, x ∈ B2r \ Ω

. (5.5)

The following is the analogue of Lemma 5.2 close to the boundary.

Lemma 5.4. Let A be uniformly elliptic and bounded in Ω ∩B2r, with ellipticity λ, and b, c ∈ Ln,∞(Ω ∩B2r), 
d ∈ L

n
2 ,∞(Ω ∩B2r). Let also u ∈ W 1,2(B2r) be a nonnegative supersolution to − div(A∇u +bu) +c∇u +du ≥ 0

in B2r, and consider the function ū from (5.5). If infΩ∩B2r u > 0 and mu > 0, then there exists a constant 
a = an such that

 

Br

ūa

 

Br

ū−a ≤ C,

where C depends on n, λ, ‖A‖∞, ‖b‖n,∞, ‖c‖n,∞ and ‖d‖n
2 ,∞.

Proof. As in the proof of [2, Theorem 8.26], set v = ū−1 −m−1
u ∈ W 1,2(Ω ∩ B2r), which is nonnegative in 

Ω ∩ B2r and vanishes on ∂Ω ∩ B2r. Then, considering the test function vφ2, where φ is a suitable cutoff 
function, and using that v > 0 if and only if ū = u, the proof follows by an argument as in the proof of 
Lemma 5.2. �

Using the previous lemma, we can show the following estimate.
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Proposition 5.5. Let Ω ⊆ Rn be a domain, B2r be a ball of radius 2r, and let A be uniformly elliptic and 
bounded in Ω ∩ B2r, with ellipticity λ. Let also b, f ∈ Ln,1(Ω ∩ B2r), c1 ∈ Ln,q(Ω ∩ B2r) for some q < ∞, 
and d, g ∈ L

n
2 ,1(Ω ∩B2r), with ‖b‖n,1 ≤ Mb, ‖c1‖n,q ≤ Mc and ‖d‖n

2 ,1 ≤ Md.
There exist a = an > 0 and ξ = ξn,λ > 0 such that, if c2 ∈ Ln,∞(Ω ∩ B2r) with ‖c2‖n,∞ < ξ, then for 

any nonnegative supersolution u ∈ W 1,2(Ω ∩B2r) to − div(A∇u + bu) + (c1 + c2)∇u + du ≥ − div f + g, we 
have that

⎛
⎝  

Br

ūa

⎞
⎠

1
a

≤ C inf
Br/2

ū + C‖f‖Ln,1(Ω∩B2r) + C‖g‖
L

n
2 ,1(Ω∩B2r),

where ū is defined in (5.5), and where C depends on n, q, λ, ‖A‖∞, Mb, Mc and Md.

Proof. As in the proof of Proposition 5.3, we can assume that infΩ∩B2r u > 0, mu > 0, and f, g ≡ 0. Let 
a = an be as in Lemma 5.4. Then, Lemma 5.1 and Proposition 4.10 show that, for suitable k ∈ (−a, 0), if 
wk = uk and w̃k is as in (4.20), we have that

sup
Ω∩Br/2

w̃k ≤ C

 

Br

w̃k ≤ C

⎛
⎝  

Br

w̃k
− a

k

⎞
⎠

− k
a

.

Since w̃k = ūk, the proof is complete using also Lemma 5.4. �
5.3. The Harnack inequality, and local continuity

We now show the Harnack inequality in the cases when b, d are small, or when c, d are small.

Theorem 5.6. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ. Let also b, f ∈ Ln,1(B2r)
with ‖b‖n,1 ≤ M , and g ∈ L

n
2 ,1(B2r).

There exists εn,λ,M > 0 such that, if c ∈ Ln,∞(B2r) and d ∈ L
n
2 ,1(B2r) with ‖c‖n,∞ < ε and ‖d‖n

2 ,1 < ε, 
then for any nonnegative solution u ∈ W 1,2(B2r) to − div(A∇u + bu) + c∇u + du = − div f + g, we have 
that

sup
Br

u ≤ C inf
Br

u + C‖f‖Ln,1(B2r) + C‖g‖
L

n
2 ,1(B2r),

where C depends on n, λ, ‖A‖∞ and M .

Proof. The proof is a combination of Proposition 4.4 (choosing p = an in (4.16), as in Proposition 5.3), and 
Proposition 5.3, (considering q = n and c1 ≡ 0), after also covering Br with balls of radius r/4. �
Theorem 5.7. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ, and q < ∞, c1 ∈ Ln,q(B2r)
with ‖c1‖n,q ≤ M . Let also f ∈ Ln,1(B2r), g ∈ L

n
2 ,1(B2r).

There exist ξ = ξn,λ > 0 and δ = δn,q,λ,M > 0 such that, if b ∈ Ln,1(B2r), c2 ∈ Ln,∞(B2r) and d ∈
L

n
2 ,1(B2r) with ‖b‖n,1 < δ, ‖c2‖n,∞ < ξ and ‖d‖n

2 ,1 < δ, then for any nonnegative solution u ∈ W 1,2(B2r)
to − div(A∇u + bu) + c∇u + du = − div f + g, we have that

sup
Br

u ≤ C inf
Br

u + C‖f‖Ln,1(B2r) + C‖g‖
L

n
2 ,1(B2r),

where C depends on n, q, λ, ‖A‖∞ and M .
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Proof. The proof follows by a combination of Propositions 4.6 and 5.3. �
We now turn to local continuity of solutions. For the following theorem, for ρ ≤ 2r, we set

Qb,d(ρ) = sup
{
‖b‖Ln,1(B′

ρ) + ‖d‖
L

n
2 ,1(B′

ρ) : B′
ρ ⊆ B2r

}
, (5.6)

where B′
ρ runs over all the balls of radius ρ that are subsets of B2r. Also, we will follow the argument on 

[2, pages 200-202].

Theorem 5.8. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ. Let also b, f ∈ Ln,1(B2r)
with ‖b‖n,1 ≤ M , g ∈ L

n
2 ,1(B2r), and μ ∈ (0, 1).

For every μ ∈ (0, 1), there exists ε = εn,λ,M > 0 and α = αn,λ,‖A‖∞,M,μ ∈ (0, 1) such that, if c ∈
Ln,∞(B2r) and d ∈ L

n
2 ,1(B2r) with ‖c‖n,∞ < ε and ‖d‖n

2 ,1 < ε, then for any solution u ∈ W 1,2(B2r) to 
− div(A∇u + bu) + c∇u + du = − div f + g, we have that

|u(x) − u(y)| ≤ C

(
|x− y|α

rα
+ Qb,d(|x− y|μr1−μ)

)⎛
⎝  

B2r

|u| + Qf,g(2r)

⎞
⎠ + CQf,g(|x− y|μr1−μ),

for any x, y ∈ Br, where Q is defined in (5.6) and C depends on n, λ, ‖A‖∞ and M .

Proof. Let ρ ∈ (0, r], and set M(ρ) = supBρ
u, m(ρ) = infBρ

u. Then v1 = M(ρ) − u is nonnegative in Bρ, 
and solves the equation

− div(A∇v1 + bv1) + c∇v1 + dv1 = − div(M(ρ)b− f) + (M(ρ)d− g)

in Bρ. Hence, from Theorem 5.6, (2.7) and (5.6), we obtain that

M(ρ) −m
(ρ

2

)
= sup

Bρ/2

v1

≤ C inf
Bρ/2

v1 + C‖M(ρ)b− f‖Ln,1(Bρ) + C‖M(ρ)d− g‖
L

n
2 ,1(Bρ)

= C
(
M(ρ) −M

(ρ
2

))
+ C sup

Br

|u| ·Qb,d(ρ) + CQf,g(ρ),

(5.7)

where C depends on n, λ, ‖A‖∞ and M . Moreover, v2 = u − m(ρ) is nonnegative in Bρ, and solves the 
equation

− div(A∇v2 + bv2) + c∇v2 + dv2 = − div(f −m(ρ)b) + (g −m(ρ)d)

in Bρ. Hence, from Theorem 5.6, as in (5.7),

M
(ρ

2

)
−m(ρ) ≤ C

(
m

(ρ
2

)
−m(ρ)

)
+ C sup

Br

|u| ·Qb,d(ρ) + CQf,g(ρ). (5.8)

Adding (5.7) and (5.8) and defining ω(ρ) = M(ρ) −m(ρ), we obtain that

ω
(ρ

2

)
≤ θ0ω(ρ) + C sup

Br

|u| ·Qb,d(ρ) + CQf,g(ρ),

where θ0 = C−1 ∈ (0, 1). Then, [2, Lemma 8.23] shows that, for ρ ≤ r,
C+1
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ω(ρ) ≤ C
ρα

rα
ω(r) + C sup

Br

|u| ·Qb,d(ρμr1−μ) + CQf,g(ρμr1−μ),

where C depends on n, λ, ‖A‖∞, M , and α = αn,λ,‖A‖∞,M,μ. We then bound supBr
|u| using Proposition 4.4

(applied to u and −u, for p = 1), which completes the proof. �
Finally, based on Proposition 4.6 and Theorem 5.7, we obtain the following theorem when b, d are small.

Theorem 5.9. Let A be uniformly elliptic and bounded in B2r, with ellipticity λ, and q < ∞, c1 ∈ Ln,q(B2r)
with ‖c1‖n,q ≤ M . Let also f ∈ Ln,1(B2r), g ∈ L

n
2 ,1(B2r).

For every μ ∈ (0, 1), there exist ξ = ξn,λ > 0, δ = δn,q,λ,M > 0 and α = αn,λ,‖A‖∞,M,μ such that, if 
b ∈ Ln,1(B2r), c2 ∈ Ln,∞(B2r) and d ∈ L

n
2 ,1(B2r) with ‖b‖n,1 < δ, ‖c2‖n,∞ < ξ and ‖d‖n

2 ,1 < δ, then for 
any solution u ∈ W 1,2(B2r) to − div(A∇u + bu) + c∇u + du = − div f + g, we have that

|u(x) − u(y)| ≤ C

(
|x− y|α

rα
+ Qb,d(|x− y|μr1−μ)

)
·

⎛
⎝  

B2r

|u| + Qf,g(2r)

⎞
⎠ + CQf,g(|x− y|μr1−μ),

for any x, y ∈ Br, where Q is defined in (5.6) and C depends on n, q, λ, ‖A‖∞ and M .

Remark 5.10. As in Remarks 4.7 and 4.11, the analogues of Theorems 5.6 - 5.9 will hold under no smallness 
assumptions for b, d and c, d (when c ∈ Ln,q, q < ∞), but then the constants depend on b, d or c, d and not 
just on their norms.

6. Optimality of the assumptions

We now turn to showing that our assumptions are optimal in order to deduce the estimates we have 
shown so far, in the setting of Lorentz spaces. We first show optimality for b and d.

Remark 6.1. Considering the operators L1u = −Δu − div(bu) and L2u = −Δu + du, an assumption of the 
form b ∈ Ln,q, d ∈ L

n
2 ,q for some q > 1, with ‖b‖n,q, ‖d‖n

2 ,1 being as small as we want, is not enough to 
guarantee the pointwise bounds in the maximum principle and Moser’s estimate. Indeed, as in Lemma [34, 
Lemma 7.4], set uδ(x) = (− ln |x|)δ and bδ(x) = − δx

|x|2 ln |x| . Then, for δ ∈ (−1, 1), b ∈ Ln,q(B1/e) for all 
q > 1, uδ ∈ W 1,2(B1/e), and uδ solves the equation

−Δu− div(bδuδ) = 0

in B1/e. However, vδ ≡ 1 on ∂B1/e, and vδ → ∞ as |x| → 0 for δ > 0, so the assumption b ∈ Ln,1 is optimal 
for the maximum principle and the Moser estimate. Note that uδ also solves the equation

−Δuδ + dδuδ = 0, dδ(x) = δ(δ − 1)
|x|2 ln2 |x|

+ δ(n− 2)
|x|2 ln |x| ,

and dδ ∈ L
n
2 ,q(B1/e) for every q > 1; hence, the assumption d ∈ L

n
2 ,1 is again optimal.

The same functions bδ and dδ serve as counterexamples to show optimality for the spaces of b, d in 
the reverse Moser estimate. In particular, considering δ < 0, we have that uδ(0) = 0, while uδ does not 
identically vanish close to 0, therefore the reverse Moser estimate cannot hold.

We now turn to optimality for smallness of c, when c ∈ Ln,∞.
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Remark 6.2. In the case of the operator L0u = −Δu + c∇u with c ∈ Ln,∞, smallness in norm is a necessary 
condition, in order to obtain all the estimates we have considered. Indeed, if u(x) = − ln |x| − 1, then 
u ∈ W 1,2

0 (B1/e), and u solves the equation

−Δu + c∇u = 0, c = (2 − n)x
|x|2 ∈ Ln,∞(B1/e).

However, u is not bounded in B1/e, so the maximum principle, as well as Moser’s and Harnack’s estimates 
fail. On the other hand, the function v(x) = (− ln |x|)−1 ∈ W 1,2

0 (B1/e) solves the equation

−Δv + c′∇v = 0, c′ = (n− 2)x
|x|2 − 2x

|x|2 ln |x| ∈ Ln,∞(B1/e),

with v(0) = 0 and v not identically vanishing close to 0, therefore smallness for c ∈ Ln,∞ in the reverse 
Harnack estimate is necessary.

Finally, we show the optimality of the assumption that either b, d should be small, or c, d should be small, 
so that in the maximum principle, as well as Moser’s and Harnack’s estimates, the constants depend only 
on the norms of the coefficients. The fact that d should be small is based on the following construction.

Proposition 6.3. There exists a bounded sequence (dN ) in L
n
2 ,1(B1) and a sequence (uN ) of nonnegative 

W 1,2
0 (B1) ∩C(B1) functions such that, for all N ∈ N, uN is a solution to the equation −ΔuN + dNuN = 0

in B1, and

‖uN‖W 1,2
0 (B1) ≤ C, while uN (0) −−−−→

N→∞
∞.

Proof. We define

v(r) =
{

n
2 +

(
1 − n

2
)
r2, 0 < r ≤ 1

r2−n, r > 1.

Set u(x) = v(|x|), then it is straightforward to check that u is radially decreasing, u ≥ 1 in B1, u ≤ n
2 in 

Rn, and u ∈ Y 1,2(Rn) ∩C1(Rn). Then, the function d = n(2 − n)u−1χB1 is bounded and supported in B1, 
and u is a solution to the equation −Δu + du = 0 in Rn.

We now let N ∈ N with N ≥ 2, and set BN to be the ball of radius N , centered at 0. We will modify u
to be a W 1,2

0 (BN ) solution to a slightly different equation: for this, set wN = u − v(N), and also

dN = du

u− v(N) .

Since d is supported in B1, dN is well defined. Note also that wN ∈ W 1,2
0 (BN ), and wN is a solution to the 

equation −ΔwN + dNwN = 0 in BN . Moreover, since d is supported in B1, u ≥ 1 in B1 and v is decreasing, 
we have that

‖dN‖
L

n
2 ,1(BN ) ≤ Cn‖dN‖L∞(B1) ≤ Cn

‖d‖L∞(B1)‖u‖L∞(B1)

1 − v(N) ≤ Cn.

Let now d̃N (x) = N2dN (Nx) and w̃N (x) = wN (Nx), for x ∈ B1. Then w̃N ∈ W 1,2
0 (B1), (d̃N ) is bounded in 

L
n
2 ,1(B1), and w̃N is a solution to the equation −Δw̃N + d̃N w̃N = 0 in B1. Moreover, w̃N (0) ≥ Cn, while
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ˆ

B1

|∇w̃N |2 = N2−n

ˆ

BN

|∇wN |2 = N2−n

ˆ

BN

|∇u|2 −−−−→
N→∞

0,

since ∇u ∈ L2(Rn). Hence, considering the function w̃N

‖∇w̃N‖L2(B1)
completes the proof. �

Remark 6.4. If dN , uN are as in Proposition 6.3, then using the functions eN from Lemma 2.3 that solve 
the equation div eN = dN in B1, we have that

− div(∇uN − eNu) − eN∇uN = 0.

So, for the operator Lu = − div(A∇u + bu) + c∇u, if both b, c are allowed to be large, then the conclusion 
of Proposition 6.3 shows that the constants in the maximum principle, as well as Moser’s and Harnack’s 
estimates, cannot depend only on the norms of the coefficients.
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