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We show local and global scale invariant regularity estimates for subsolutions
and supersolutions to the equation —div(AVu + bu) + cVu + du = —divf + g,
assuming that A is elliptic and bounded. In the setting of Lorentz spaces, under the
assumptions b, f € L™, d, g € L3 and ¢ € L™ for g < 0o, we show that, with the
surprising exception of the reverse Moser estimate, scale invariant estimates with
“good” constants (that is, depending only on the norms of the coefficients) do not
hold in general. On the other hand, assuming a necessary smallness condition on
b,d or c¢,d, we show a maximum principle and Moser’s estimate for subsolutions
with “good” constants. We also show the reverse Moser estimate for nonnegative
supersolutions with “good” constants, under no smallness assumptions when ¢ < oo,
leading to the Harnack inequality for nonnegative solutions and local continuity of
solutions. Finally, we show that, in the setting of Lorentz spaces, our assumptions
are the sharp ones to guarantee these estimates.
© 2021 The Author. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

RESUME

Nous montrons des estimations de régularité invariante a 1’échelle locale et globale
pour les sous-solutions et les supersolutions de 1’équation — div(AVu + bu) + cVu +
du = —div f + g, en supposant que A est elliptique et borné. Dans le cadre des
espaces de Lorentz, sous les hypothéses b, f € L™, d,g € L= et ¢ € L™ pour
q < 00, nous montrons qu’a ’exception surprenante de ’estimation de Moser inverse,
les estimations invariantes d’échelle avec de “bonnes” constantes (c’est-a-dire ne
dépendant que des normes des coefficients) ne tiennent pas en général. D’autre part,
en supposant une condition de petitesse nécessaire sur b,d ou c,d, nous montrons
un principe du maximum et I’estimation de Moser pour les sous-solutions avec de
“bonnes” constantes. Nous montrons également 1’estimation inverse de Moser pour
les supersolutions non négatives avec de “bonnes” constantes, sous des hypotheéses de
non petitesse lorsque ¢ < oo, conduisant a ’inégalité de Harnack pour les solutions
non négatives et la continuité locale des solutions. Enfin, nous montrons que, dans
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le cadre des espaces de Lorentz, nos hypothéses sont les plus pointues pour garantir
ces estimations.
© 2021 The Author. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this article we are interested in local and global regularity for subsolutions and supersolutions to the
equation Lu = —div f 4 ¢, in domains 2 C R™, where L is of the form

Lu = —div(AVu + bu) + cVu + du.

In particular, we investigate the validity of the maximum principle, Moser’s estimate, the Harnack inequality
and continuity of solutions, in a scale invariant setting; that is, we want our estimates to not depend on the
size of ). We will also assume throughout this article that n > 3.

In this work A will be bounded and uniformly elliptic in Q: for some A > 0,

(A@)€, &) > N€]*, Vo eQ, VEeR™.

For the lower order coefficients and the terms on the right hand side, we consider Lorentz spaces that are
scale invariant under the natural scaling for the equation. That is, we assume that

b feL™(Q), ceL™(Q), dgeL>'(Q), ¢<oo.

In the case that ¢ = oo, it is also necessary to assume that the norm of ¢ is small for our results to hold.
As explained in Section 6, these assumptions are the optimal ones to imply our estimates in the setting of
Lorentz spaces. Note also that there will be no size assumption on €2 and no regularity assumption on 9f2.

The main inspiration for this work comes from the local and global pointwise estimates for subsolutions
to the fore mentioned operator in [1], where it is also assumed that d > div ¢ in the sense of distributions.
Focusing on the case when c,d = 0 for simplicity, and assuming that b € L™!, a maximum principle for
subsolutions to — div(AVu+bu) < —div f + g is shown in [1, Proposition 7.5], while a Moser type estimate
is the context of [1, Proposition 7.8]. The main feature of these estimates is their scale invariance, with
constants that depend only on the ellipticity of A and the L™! norm of b, as well as the L> norm of A for
the Moser estimate.

Following this line of thought, it could be expected that the consideration of all the lower order coefficients
in the definition of £ should yield the same type of scale invariant estimates, with constants being “good”;
that is, depending only on n, ¢, the ellipticity of A, and the norms of the coefficients involved (as well as
|A]|co in some cases). However, it turns out that this does not hold. In particular, if B; is the unit ball in R™,
in Proposition 6.3 we construct a bounded sequence (dy) in L=°'(B;) and a sequence (uy) of nonnegative
Wol’Z(Bl) solutions to the equation —Aupy + dyuy = 0 in By, such that

lunlg 2(py < € while [Junllz=(s, ) ——— oo.
We also show in Remark 6.4 that the equation —Awu — div(bu) + ¢Vu = 0 has the same feature, which
implies that the constants in Moser’s local boundedness estimate, as well as the Harnack inequality, cannot
be “good” without any further assumptions.

Since scale invariant estimates with “good” constants do not hold in such generality, we first prove
estimates where the constants are allowed to depend on the coefficients themselves. This is the context of
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the global bound in Proposition 3.2, where it is shown that, if O C R" is a domain and u € Y12(Q2) (see
(2.1)) is a subsolution to Lu < —div f + g, then, for any p > 0,

14

suput < Csuput +C" | [ ut? |+ Clfllaa+ Cllglgr (1)
Q [219]
Q

where C is a “good” constant, while C’ depends on the coefficients themselves and p. In the subcritical
setting, an analogous estimate is the context of [2, Theorem 8.15]; however, despite considering the optimal
scale invariant setting for such an estimate to hold, the constant C’ in (1.1) is not “good”. Note also the
appearance of a constant in front of the term supyq u™; such a constant can be greater than 1, and this
follows from the fact that constants are not necessarily subsolutions to our equation in the generality of our
assumptions.

Having proven the previous estimate, we then turn to show various scale invariant estimates with “good”
constants, assuming an extra condition on the lower order coefficients, which is necessary in view of the fore
mentioned discussion. Such a condition is some type of smallness: in particular, we either assume that the
norms of b, d are small, or that the norms of ¢, d are small. Under these smallness assumptions, we show in
Propositions 3.3 and 3.4 that we can take C’ = 0 in (1.1), leading to a maximum principle, and the Moser
estimate for subsolutions to Lu < —div f + g is shown in Propositions 4.4 and 4.6; that is, in the case when
b, d are small, or ¢, d are small, then for any p > 0,

P
SUp u <C ][ Wt Pl 4+ CN fllna(s,, + CHQHL%J(BW)’ (1.2)
" BQT

where the constant C' is “good”, and also depends on p. In addition, the analogous estimate close to the
boundary is deduced in Propositions 4.9 and 4.10.

On the other hand, somewhat surprisingly, we discover that even if the scale invariant Moser estimate with
“good” constants requires some type of smallness, it turns out that the scale invariant reverse Moser estimate
with “good” constants holds in the full generality of our initial assumptions. That is, in Proposition 5.3,
we show that if u € W12(Bs,) is a nonnegative supersolution to Lu > —div f + g, and under no smallness
assumptions (when ¢ < 00), then for some a = ay,,

@

Fur| <€ jnt wt Clfllmscan) + Cllll s, (13)
B,

where C is a “good” constant. Moreover, the analogue of this estimate close to the boundary is deduced in
Proposition 5.5. Then, the Harnack inequality (Theorems 5.6 and 5.7) and continuity of solutions (Theo-
rems 5.8 and 5.9) are shown combining (1.2) and (1.3); for those, in order to obtain estimates with “good”
constants, it is again necessary to assume a smallness condition. Finally, having shown the previous es-
timates, we also obtain their analogues in the generality of our initial assumptions, with constants that
depend on the coefficients themselves (Remarks 4.7, 4.11 and 5.10).

As a special case, we remark that all the scale invariant estimates above hold, with “good” constants, in
the case of the operators

Liu = — div(AVu) + cVu, Lou = — div(AVu + bu),

under no smallness assumptions when b € L™! and ¢ € L™9, g < oo.
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The techniques. The assumption that the coefficients b, d lie in scale invariant spaces is reflected in the
fact that the classical method of Moser iteration does not seem to work in this setting. More specifically,
an assumption of the form b € L™? for some ¢ > 1 does not necessarily guarantee pointwise upper bounds
(see Remark 6.1), and it is necessary to assume that b € L™! in order to deduce these bounds. However,
Moser’s method does not seem to be “sensitive” enough to distinguish between the cases b € L™! and
b € L™ for ¢ > 1. Thus, a procedure more closely related to Lorentz spaces has to be followed, and the
first results in this article (Section 3) are based on a symmetrization technique, leading to estimates for
decreasing rearrangements. This technique involves a specific choice of test functions and has been used in
the past by many authors, going back to Talenti’s article [3]; here we use a slightly different choice, utilized
by Cianchi and Mazya in [4]. However, since all the lower order coefficients are present, our estimates are
more complicated, and we have to rely on an argument using Gronwall’s inequality (as in [5], for example)
to give a bound on the decreasing rearrangement of our subsolution.

On the other hand, the main drawback of the symmetrization technique is that it does not seem to work
well when we combine it with cutoff functions; thus, we are not able to suitably modify it in order to directly
show local estimates like (1.2). The idea to overcome this obstacle is to pass from small to large norms using
a two-step procedure (in Section 4), utilizing the maximum principle. Thus, relying on Moser’s estimate
for the operator Lou = —div(AVu) + ¢Vu when the norm of ¢ is small, the first step is a perturbation
argument based on the maximum principle that allows us to pass to the operator £ when all the lower order
terms have small norms. Then, the second step is an induction argument relying on the maximum principle
(similar to the proofs of [1, Propositions 3.4 and 7.8], inspired by the argument of the proof of [6, Theorem
2.5’]), which allows us to pass to arbitrary norms for b or ¢. To the best of our knowledge, the combination
of the symmetrization technique with the fore mentioned argument in order to obtain local estimates has
not appeared in the literature before (with the exception of [1, Proposition 7.8], which used estimates on
Green’s function), and it is one of the novelties of this article.

Since we do not obtain Moser’s estimate (1.2) using test functions and Moser’s iteration, in order to
deduce the reverse Moser estimate (1.3) we transform supersolutions to subsolutions via exponentiation (in
Section 5). The advantage of this procedure is that, if the exponent is negative and close to 0, we obtain a
subsolution to an equation with the coefficients b, d being small, thus we can apply (1.2) to obtain a scale
invariant estimate with “good” constants, without any smallness assumptions (when ¢ < oo). This estimate
has negative exponents appearing on the left hand side, and we show (1.3) passing to positive exponents
using an estimate for supersolutions and the John-Nirenberg inequality (as in [7]). One drawback of this
technique is that we do not obtain the full range o € (0, -"5) for the left hand side, as in [2, Theorem 8.18],
but this does not affect the proof of the Harnack inequality. Then, the Harnack inequality and continuity
of solutions are deduced combining (1.2) and (1.3).

Finally, the optimality of our assumptions is shown in Section 6. In particular, the sharpness of our spaces
to guarantee some type of estimates (either having “good” constants, or not) is shown, and the failure of
scale invariant estimates with “good” constants is exhibited by the construction in Proposition 6.3.

Past works. The first fundamental contribution to regularity for equations with rough coefficients was made
by De Giorgi [8] and Nash [9] and concerned Holder continuity of solutions to the operator — div(AVu) = 0;
a different proof, based on the Harnack inequality, was later given by Moser in [7]. The literature concerning
this subject is vast, and we refer to the books by Ladyzhenskaya and Ural’tseva [10] and Gilbarg and
Trudinger [2], as well as the references therein, for equations that also have lower order coefficients in L?.
However, in these results, the norms of those spaces are not scale invariant under the natural scaling of
the equation, so it is not possible to obtain scale invariant estimates without extra assumptions on the
coefficients (like smallness, for example). One instance of a scale invariant setting where b,d, f,g = 0 and
¢ € L™ was later treated by Nazarov and Ural’tseva in [6].
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Another well studied case of coefficients is the class of Kato spaces. The first work on estimates for
Schrédinger operators with the Laplacian and potentials in a suitable Kato class was by Aizenman and
Simon in [11] using probabilistic techniques, which was later generalized (with nonprobabilistic techniques)
by Chiarenza, Fabes and Garofalo in [12], allowing a second order part in divergence form. The case in [11]
was also later treated using nonprobabilistic techniques by Simader [13] and Hinz and Kalf [14]. In these
works, b,c = 0, while d is assumed to belong to K!°¢(2), which is comprised of all functions d in © such
that 1o, a(r) — 0 as r — 0, for all 4 compactly supported in €, where

No,qa(r) = sup / MA dy

zeR™ T — y|n72
QNB,.(x)

(or, in some works, the supremum is considered over z € §2). Moreover, adding the drift term ¢Vu, regularity
estimates for ¢ in a suitable Kato class were shown by Kurata in [15].

Finally, considering all the lower order terms, Mourgoglou in [16] shows regularity estimates when the
coefficients b, d belong to the scale invariant Dini type Kato-Stummel classes (see [16, Section 2.2]), and also
constructs Green’s functions. However, the framework we consider in this article for the Moser estimate and
Harnack’s inequality, as well as our techniques, are different from the ones in [16]. For example, focusing on
the case when ¢, d = 0, the coefficient b in [16, Theorems 4.4, 4.5 and 4.12] is assumed to be such that |b|?> €
Kpini 2, which does not cover the case b € L™!, since for any a > 1, the function b(x) = z|z|~2 (= In|z|)~*
is a member of L™!(By /), while [b*> & Kpini2(Bi/e)-

We conclude with a brief discussion on symmetrization techniques. Such a technique was used by Wein-
berger in [17] in order to show boundedness of solutions with vanishing trace to — div(AVu) = —div f and
—div(AVu) = g, where f € LP and g € L%, p > n. Another well known technique consists of a use of test
functions that leads to bounds for the derivative of the integral of |Vu|? over superlevel sets of u, where
u is a subsolution to Lu < —div f + ¢. This bound, combined with Talenti’s inequality [3, estimate (40)],
gives an estimate for the derivative of the decreasing rearrangement of u, leading to bounds for « in various
spaces and comparison results. This technique has been used by many authors in order to study regularity
properties of solutions to second order pdes, some works being [18], [19], [5], [20], [21], [22], [23], [24], [25].
However, as we mentioned above, to the best of our knowledge, no local boundedness results have been
deduced using this method so far.

We also mention that, in order to treat lower order coefficients, pseudo-rearrangements of functions are
also considered the literature, which are derivatives of integrals over suitable sets (s) C Q (see, for example,
[1, page 11]). On the contrary, in this work we avoid this procedure, and as we mentioned above we rely
instead on a slightly different approach, inspired by [4].
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2. Preliminaries
2.1. Definitions

If Q C R" is a domain, W,"?(Q2) will be the closure of C2°(Q) under the W2 norm, where

[ullwrz) = llullzz@) + [[VullL2()-
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When € has infinite measure, the space W12(Q) is not well suited to the problems we consider. For this
reason, we let Y "?(Q) be the closure of C2°(92) under the Y12 norm, where

lullyrz@) = llull L2+ o) + VUl L2 @), (2.1)

and 2* = % is the Sobolev conjugate to 2. From the Sobolev inequality

191l 2" (@) < CullVollL2(a),
for all ¢ € C2°(£2), we have that Yy () = W, *(Q) in the case |Q] < co. We also set Y12(Q) to be the
space of weakly differentiable u € L?" (), such that Vu € L?(Q), with the Y2 norm.
If u is a measurable function in €2, we define the distribution function

pu(t) = {z € Q:ju(z)] > t}, t>0. (2.2)

If u € LP(Q) for some p > 1, then p,,(t) < oo for any ¢t > 0. Moreover, we define the decreasing rearrangement
of u by

u* (1) =inf{t > 0: p,(t) <7}, (2.3)
as in [26, (1.4.2), page 45]. Then, u* is equimeasurable to w: that is,
Hz € Q:ju(z)| >t} =|{s>0:u"(s) >t} forall ¢>0. (2.4)

Given a function f € LP(2), we consider its maximal function

M;(r) = %/f*(a) do, >0, (2.5)
0

Let p € (0,00) and g € (0,00]. If f is a function defined in €2, we define the Lorentz seminorm

1

i 1 q dr !
Tgf*(T) —_ , @ <00
I fll ey = / () 7 (2.6
supTv f*(7), q = o0,
>0

as in [26, Definition 1.4.6]. We say that f € LP9(Q) if || f[|zr.a(q) < oo. Then || - ||, 4 is indeed a seminorm,
since

/]

1f + 9llp.g < Cpall fllp.g + Cpallglp,a (2.7)

from [26, (1.4.9), page 50]. In addition, from [26, Proposition 1.4.10], Lorentz spaces increase if we increase
the second index, with

| fllzrr < Cpgrllfllzre forall 0 <p<oo, 0<g<r<oo. (2.8)

Holder’s inequality for Lorentz functions states that

”fg“L”’q < OZJ1,Q17P27<12||f||L”1’q1 ”g”Lm,qQ, (29)
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whenever 0 < p,p1,p2 < 0o and 0 < ¢,q1,q2 < oo satisfy the relations % = p% + 5 % = q% + q% (see [26,
Exercise 1.4.19]).
If p € (1,00] and ¢ € [1,00), then [27, Theorem 3.21, page 204] implies that

||Mf||p,q < Cp”f”p,qa (2-10)

where M is the maximal function defined in (2.5).

For a function u € Y2, we will say that u < s on dQ if (u — s)* = max{u — s,0} € Y;"*(€). Moreover,
supgq v will be defined as the infimum of all s € R such that v < s on 0f2.

We now turn to the definitions of subsolutions, supersolutions and solutions. For this, let Q@ C R"™ be a
domain, and let A be bounded in , b, ¢, f € L™>(), d,g € L%>°(Q). If Lu = — div(AVu+bu)+cVu+du,
we say that u € Y12(Q) is a solution to the equation Lu = —div f + ¢ in Q, if

/AVuV¢+ bVo-u+cVu- ¢+ dup = /ngzS + g0, Vo e CF(Q).

Q Q

Moreover, we say that u € Y12(2) is a subsolution to Lu < —div f + ¢ in Q, if
/Avuv¢+ BV u+cVu- ¢+ dup < /fws +gb, Ve CT(Q), é>0. (2.11)
Q Q

We also say that u is a supersolution to Lu > —div f + g, if —u is a subsolution to £L(—u) < div f — g.
2.2. Main lemmas

We now discuss some lemmas that we will use in the sequel. We begin with the following estimate, in
which we show that a function in L™9 for ¢ > 1 fails to be in L™! by a logarithm, with constant as small
as we want. This fact will be useful in the proof of Lemma 3.1.

Lemma 2.1. Let f € L™9(Q) for some q € (1,00). Then, for any 0 < 01 < 02 < o0 and € > 0,

o2

/T%—lf*(T) dr < el ? + CllfNI5q
1

o1

where C' depends on q and €.

Proof. Let p € (1,00) be the conjugate exponent to q. Then, from Holder’s inequality and (2.6),

02 o2

q
)
q
)
|

IN
—
ﬂ

L
U
ﬁ

/T%_lf*(’l')q dr
o1 g1

q
P

1
o2 \? _1 o pe
(peln—?) P g < el 2+ T g
01 g1 q

IA

q
n,q’

where we also used Young’s inequality for the last step. O
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The following describes the behavior of the Lorentz seminorm on disjoint sets.

Lemma 2.2. Let Q& C R™ be a set, and let X,Y be nonempty and disjoint subsets of Q. If f € LP9(Q) for
some p,q € [1,00), then

Hf”zp,q(ﬂ) > ”fHTLWl(X) + Hf”TLWI(Y)’ r = max{p, q}.

Proof. Let p, px, py be the distribution functions of f, f|x and f|y, respectively. As in [1, Lemma 2.4],
we have that p > pux + py. Also, if p > ¢, then % < 1, hence the reverse Minkowski inequality shows that

P

oo q oo o0 q
Josx +m@tsrras) = | [uxisras) o | [avistas
0 0 0

On the other hand, if ¢ > p, then % > 1, hence a» + br < (a+ b)% for all a,b > 0. Therefore,

/ ) + py (8)r 7 ds Z/MX psq_lds—f—/uy(t)%sq_lds.
0 0 0

Then, the proof follows from the expression for the LP*? seminorm in [26, Proposition 1.4.9]. O
The next lemma will be useful in order to reduce to the case d = 0.

Lemma 2.3. Let  C R" be a domain, and d € L=1()). Then there exists a weakly differentiable vector
valued function e € L™ (), with dive = d in Q and ||e||pn1(q) < Cn||d||L%,1(Q)-

Proof. Extend d by 0 outside €2, and consider the Newtonian potential v of d; that is, we set

d(y)
z) = Cn/id .
) o=y
R’!‘L

From [2, Theorem 9.9] we have that w is twice weakly differentiable in 2, and Aw = d. Setting e = Vw,
we have that dive = d. Moreover, |e(z)| = [Vw(z)| < Cy [gn ‘zld;‘i’zl  dy, and the estimate follows from the
first part of [26, Exercise 1.4.19]. O

The next lemma shows that u* is locally absolutely continuous, when u € Y12,

Lemma 2.4. Let Q be a domain and u € Y, *(Q). Then u* is absolutely continuous in (a,b), for any
0<a<b<oo.

Proof. Extending u by 0 outside €2, we may assume that u € Y12(R").

Consider the function u* defined in [28, (2), page 153] (this u* is not the same as the one in (2.3)!), and
the function @(|x|) = u*(x) (as in [28, page 154]). Then, from the argument for the proof of [1, Lemma 2.6],
it is enough to show that @ is locally absolutely continuous in (0, c0).

To show this, note that the proof of [28, Lemma 2.4] shows that u* € Y2(R") whenever u € Y1:2(R"™)
(since Y12(R™) is reflexive, bounded sequences have subsequences that converge weakly, and the rest of the
argument runs unchanged). Hence, u* € W10C (R™), and combining with [28, Proposition 2.5], we obtain
that @ is locally absolutely continuous in (0, 00), as in [28, Corollary 2.6], which completes the proof. O
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We now turn to the following decomposition, which is similar to [1, Lemma 2.8]. This will be useful in a
change of variables that we will perform in Lemma 2.6, as well as in the proof of the estimate in Lemma 3.1.

Lemma 2.5. Let Q2 C R" be a domain, and let u € Yol’Q(Q). Then we can write
where the union is disjoint, such that the following hold.

i) If ¢ € Gy, then u* is differentiable at x, w, is differentiable at u*(z), and (u*) (x) # 0. Moreover,

* =z an ' (u*(z)) = 1 or all x
p (U (2)) = d p,(u(x)) () forall z € G,. (2.12)

i) If x € D, then u* is differentiable at x, with (u*)'(z) = 0.
iii) N, s a null set.

Proof. The proof is the same as the proof of [1, Lemma 2.8, where we use continuity of u* shown in
Lemma 2.4, instead of [1, Lemma 2.6]. O

We now turn to the following lemma, which is based on [4, Lemma 3.1]. As we mentioned in the intro-
duction, the properties of the function ¥ defined below will be crucial in the proof of Lemma 3.1 and, using
this lemma, we avoid the construction of pseudo-rearrangements (as in [1, pages 11 and 12]).

Lemma 2.6. Let Q C R"™ be a domain and u € Yy >(Q) with u > 0. For any f € L'(Q), the function

Rpa(r) = [ 1

[u>u*(7)]

is absolutely continuous in (0,00), and if ¥y, = R’ﬁu > 0 is its derivative, then for any p > 1 and q¢ > 1,

190

|Lra(0,00) < Cp.all fllLrace)- (2.13)

Moreover, for almost every T > 0,

(—u*) (1) < Cpr 71 g (7). (2.14)

Proof. Let u® be the function defined in [4, page 660]; that is, we define

u®(7) = sup{t’ : p,(t') > 7},

where p, coincides with our definition of the distribution function (2.2), since u > 0. We will show that

u*

= u°, so that Ry, coincides with the function in [4, Lemma 3.1]. Then, the proof of the same lemma
(where for absolute continuity of u*, we will use Lemma 2.4) will show absolute continuity of R ,,. Moreover,
(2.13) for ¢ > 1 will follow from [4, (3.12), page 661] and (2.10), while the case ¢ < 1 will follow from [26,
Theorem 1.4.19] (note that, in the terminology of the aforementioned theorem, the operator M in (2.5) is
quasilinear, from [4, (3.2), page 660].

Note first that, from the definitions, v*(7) < u°(7) for all 7. If now u*(7) < u°(7), then we can find ¢t < ¢/

with g, (t) < 7 and p,(t') > 7. Since p,, is decreasing, this will imply that g, (¢') < p,(t), hence u,, is equal
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to 7 in [¢,t'], which is a contradiction with continuity of «* from Lemma 2.4. This shows that u® = u*, and
completes the proof of the first part.

To show estimate (2.14), set T, (t) = / |Vu|?, and note that, from [3, estimate (40)],

[u>t]

2 d

Co < ) 2=, (0) |~ / Vul | = Copta(0)F (=4, (1) (~T)' (1), (2.15)

[u>t]

for every t € F, where F C (0,supg u) has full measure (this estimate is shown for u € W,"?(€2), but the
same proof as in [3, pages 711-712] gives the result for u € Yy *(£2)).

Consider now the splitting (0,00) = G, U D,, U N,, in Lemma 2.5. We claim that v*(7) € F for almost
every 7 € (G,: if this is not the case, then there exists G C G, with positive measure, such that if 7 € G,
then u*(7) ¢ F. Then, the set u*(G) has measure zero and u* is differentiable at every point 7 € G, hence
[29, Theorem 1] shows that (u*)’(7) = 0 for almost every T € G. However, u*(7) # 0 for every 7 € G,, from
Lemma 2.5, which is a contradiction with the fact that G has positive measure. So, u*(7) € F for almost
every T € G, and for those 7, plugging v*(7) in (2.15), we obtain that

Cn < (™ (1) % 72 (=gt (u* (7)) (=T (w (7)),

and using (2.12), we obtain that

2

(—u*)(7) < Cor v 72 (=T0)' (u* (7)),

for almost every 7 € G. Moreover, Rjyy2,, = T, o u*, and since T, is differentiable at u*(7) for almost
every T € G,, multiplying the last estimate with (—u*)’(7) implies that

(—u*) (1) < Corn 72(=T) (w' (7)) - (—u*) (7) = CuT 5 2 Rg 2. (7),

which shows that (2.14) holds for almost every 7 € G,.. On the other hand, (u*)'(7) = 0 when 7 € D,,, so
(2.14) also holds for almost every 7 € D,,. Since N, has measure zero, (2.14) holds almost everywhere in
(0, 00), which completes the proof. O

Finally, the following is a Gronwall type lemma, which we prove in the setting that will appear in
Lemma 3.1. The reason for this is that the function gags will not necessarily be integrable close to 0, which
turns out to be inconsequential.

Lemma 2.7. Let M > 0, and suppose that f,g1,92,93 are functions defined in (0, M), with g2,93 > 0.
Assume that gogs is locally integrable in (0, M), gsf € L*(0, M) and

7 70 £
o _/9293 g(7)gs(r) € L'(0, M), exp /9293 /93fm>0’
To o 0

T

for some 19 € (0, M). If f(7) < g1(7) —|—gz(7')/g3f in (0, M), then, for every T € (0, M),
0

T

£(7) < g1(7) + g (7) / 01(0)gs(0) exp / 02(0)g3(p) dp | do.

o
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Proof. Define G(7) = [ g3f and H(t) = f:o 9293, then G is absolutely continuous in [0, M] and H is
locally absolutely continuous in (0, M). Then, we have that (e 7G) = e #(G' — H'G) < e fg193, and
since e~ G is absolutely continuous in (g,7) for 0 < e < 7 < M, we integrate to obtain

T

e HOG(r) — e HEG(e) < /e_Hglgg.

S

The proof is complete after letting ¢ — 0 and plugging the last estimate in the original estimate for f. O
3. Global estimates
3.1. The main estimate

The following lemma is the main estimate that will lead to global boundedness for subsolutions. The
test function we use comes from [4, page 663, proof of Theorem 2.1] and it is a slight modification of test
functions that have been used in the literature before (see, for example, the references for the decreasing
rearrangements technique in the introduction).

Lemma 3.1. Let Q@ C R™ be a domain. Let A be uniformly elliptic and bounded in ), with ellipticity X.
Let also b, f € L™Y(Q) and g € L%Y(Q). There exists v = vy, » such that, if c = ¢1 + cg € L™®(Q) with
c1 € L™I(Q) for some ¢ < 00 and ||calln,00 < v, then for any subsolution u € Yol’z(Q) to

—div(AVu+bu) + cVu < —divf + ¢

in Q, and any 7 € (0,1),

—'(1) < 017'%71\/\1/“0|2(T) + C1T%71Mg(7')

T
1 3
it [
0

3=

2 \I’|f|2(0)\If‘c‘2(J) do

-
1 3 2
+ CreC2llelngrn—3 /Jz*
0

[N

My(0)1/ ¥ g2(0) do

3

+clu(7)7%*1,/xp‘blz(7)+cleczl\61”%m%*§/a%*%v(g) U ppi2(0) W2 (0)o7 2 do, (3.1)
0

where Cy depends on n,\, Cy depends on n,\,q, and where v = (u™)* is the decreasing rearrangement of
ut, My is as in (2.5), and Wjp2 = W i, Yo = Yiep2 ut, Vg2 = Y g2+ are defined in Lemma 2.06.

Proof. Fix 7 > 0 such that v(7) > 0. From right continuity of v (see [26, Proposition 1.4.5, (10)], for h > 0
small, we have that v(7 4+ h) > 0. Consider now the function

0, 0<ut <w(r+h)
Y=Cu—v(r+h), v(r+h)<ut <uv(r)
(1) —v(t+h) ut >v(r).
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Since ¥ € VVO1 ’Z(Q), 1) > 0 and 1 is supported on a set of finite measure, an approximation argument using
[1, Lemma 2.2] and Hélder’s inequality (2.9) shows that we can use it as a test function in (2.11). Then,
from ellipticity of A,

A / Vul? < o) / 5V + (0(r) — v(r + h)) / eV

[v(r+h)<u<v(7)] [o(r+h)<u<v(7)] [u>v(r+h)]
I G R A0 I "
[v(t+h)<u<v(T)] [u>v(T+h)]

Letting W(7) = V¥|gy2,u+ (as in Lemma 2.6), dividing by &, using the Cauchy-Schwartz inequality and
letting h — 0, we obtain that

W(r) < Cyv(r)y /W (1) /I + Ca(—0')(7) / B

[u>v(T)]
OOV + o) [l (3.2)
[u>v(T)]

where we also used continuity of the functions Rjcvy) .+ and Ry .+, from Lemma 2.6. Moreover, from
absolute continuity of R|.v,| .+ and the Cauchy-Schwartz inequality, we obtain

T

/ |cVu|:/\Il|cvu‘7u+ g/ U2 VO (3.3)
0

[u>v(7)] 0

Let now u be the distribution function of ™, and consider the decomposition (0,00) = G+ U Dy+ U N+
from Lemma 2.5. Then, for 7 € G+, the Hardy-Littlewood inequality (see, for example, [30, page 44,
Theorem 2.2]) and (2.12) show that

wu(v(T)) r
(=v/(7)) / 9] < (—v'(7) / g" = (~'(r) / g = 7(=v/ (7)) My (7).

[u>v(7)] 0

On the other hand, if 7 € N,+, then —v'(7) = 0, and since N,+ has measure 0, the last estimate holds
almost everywhere. Hence, plugging the last estimate and (3.3) in (3.2), we obtain that

T

\I/(T) < CAU(T)Q/\I/|5‘2(T)\/\I/(T)+C’)\(—’U/)(T)/Q/\If‘c|2\/§

0

+ OV 12 (M) V(7)) + Oar (=0 (7)) My (7).

Let 7 such that ¥(7) > 0. Then, dividing the last estimate by /¥ (7) and using (2.14),

CA(—U/)

(r) [
Vo | Ve

- Car(=v'(7))My(7)
+ Cy \If|f|2(7’)—|— \II(T)

U(r) < Cho(r) \I/‘b|z(7') +
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< O\ 2 () + CT7 My () + Co(r) /Oy (1)
“FCT%_l/ \IJ|C|2\/E7
0

where C' = C), x. On the other hand, the last estimate holds also when ¥(7) = 0, hence it holds for almost
every 7 > 0.
Note now that, from subadditivity of ¥ and Lemma 2.1 (since we can assume that ¢ > 1) for any € > 0,

/Tpil\/mdpgjpil\/mdp—F/‘rpil\/mdp
\V Ylea|? '
+\/p771L71H1/\PIC2|2

g

gglnz—i—C,E
o

n,q

1
noop " dp

T T
<eln—+ Cn,gellerll? g + Chllez]ln,co In p

We choose € = €, » and vy, ) such that C'e, x +CChvp, x < % — %; then, we will have that

P 1_ 1
exp C/p%—l /\IJ|C|2(P) dp | < eCallenlld o (g) oo , (34)

where Cy depends on n, ¢ and A. Then, using that v € L2 (0,00), (3.4) and Lemma 2.6, it is straightforward
to check that the hypotheses of Gronwall’s lemma (Lemma 2.7) are satisfied, hence we obtain that

VU(T) < OV U (1) + Crn My (1) + Co(7) /W 2 (1)
*CT%A/\/‘I’\fIQ(U)\/‘I’IcP(U) exp C/p%’lx/‘?m?(p) dp | do
0 o

T

+Cr%*1/G%Mg(a)\/\lqcp(a)eXp C/p%’lx/%\z(p)dp do

0

+CT%’1/U(O)\/‘I’|b|2(0)\/‘1’\c|2(0) exp C/p%’lx/‘lﬂcw(p) dp | do,
0 o

where C' = C,, 5. Finally, using (2.14) to bound v/¥ from below, and (3.4), the proof is complete. O

3.2. The maximum principle

Using Lemma 3.1, we now show global boundedness of subsolutions.

Proposition 3.2. Let Q C R™ be a domain. Let A be uniformly elliptic and bounded in ), with ellipticity X.
Let also b, f € L™1(Q2), d,g € L>1(), and suppose that ¢ = c; + cog € L™(Q) with ¢; € L™9(Q) for some
g < o0 and ||e2]|n,c0 < v, where v = vy, x appears in Lemma 5.1.
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There exists 19 € (0,00), depending on b,c1,co and d such that, for any subsolution u € Y12(2) to

—div(AVu+bu) + cVu+du < —div f + ¢
we have that

suput < Csuput + Cv(m) + C||f]
Q o9

wt +Clallz 1, (3.5)
where C' depends on n,q, A, [|b||n,1, [|c1lln.q and ||d||= 1. In particular, for any p > 0,

P

suput < Csuput + €77 [ 1a* ]+ Clfla + Clal g
Q o0
Q

Proof. If s = supyq u™ € (0,00), then for every s’ > s,

—div(AV(u — §') + blu — ")) +cV(u— &) +d(u—s') < —div(f — s'b) + g — §'d,

and (u— )t € YOI’Q(Q); hence, we can assume that s =0, so ut € YOI’Q(Q).

Consider the function e from Lemma 2.3 that solves the equation dive = d in R™. Then, if we define
b =b—ecand ¢ =c— e, uis a subsolution to

—div(AVu + b'u) + /Vu < —div f + g.

Set ¢j = ¢; —e, then ¢/ = ¢} + ¢3. Let C1,Cy be the constants in Lemma 3.1, and denote CleCQHCIIHq
Co. Moreover, set

na by
H(r)= 01T71L711/\I/‘f|2(7') + C’lT%*lMg(T)
—|—C’o7'%7%/0%7% U 412(0) W2 (0) do
\/ /] e’ (3.7)
0
1 3 r 2 1
+ Corrn 2 /UW 2My(0)1/ ¥ 2(0) do.
0
From Lemma 2.6, we have that
|Vose|  <callflaa ||y @], _ < Calldlne: (3.8)
Then, since % — 2 < —1, changing the order of integration and using (2.9) and (3.8), we have
/T%_% /0%_%\/‘I’|f|2(0’)‘1’|c’|2(0) dodr < Cn/T%_l\/‘I’|f\2(0)‘1’|c/|2(0) do
0 0 0

< Coll ool flln.1
and also, using (2.10), we obtain that
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/T%*%/a%*%/\/lg(a) U)p2(0) dcrécn/U%ng(U) Vjerj2(0) do dr
0 0 0

< Gl lnoollgllz 1

The last two estimates and the definition of H in (3.7) imply that

/ H < O lmoe +1) (1fllns + llgll2.1) (3.9)
0

where C' depends on n, ¢, A and ||c}||n.q-

Set now
R(T) = 017'%711 / \I/‘b/‘2(7'), G(U) = 010'%71\/\I’|b’\2(0)\1’|6’|2(0)'

Then, if ||c}|| = ||} ]n,qg, (3.1) shows that

—'(1) < H(1) + R(7)v(T) + eCallenll” 73 =35 /v(a)a%_%G(a) do,
0

as long as ||ca||n,co < Vn,x. Since also fooo R < Cp2||b||n,1 from Lemma 2.6, we obtain that
T ! T
- (ejﬂ Rv) = elo B (= — Ro)

<elo B | H(r) + eClleill? 7 =3 /U(J)U%*%G(U) do
/ (3.10)

r
S ecn,kllbl”n,lH(T)+ecn,)\‘lb,‘ln‘1+c2‘|cllllq7%7%/fu(o')o'%iiG(o') do’
0

Set B = exp (Cp 2 ||V ||n,1) and C" = exp (Cp x|V ||n,1 + C2||¢1]]9), and let 7o > 71 > 0. Then v is absolutely
continuous in (71, 73), from Lemma 2.4; hence, integrating (3.10) in (71, 72), we obtain that

3=

T2 T2 T
els! By(ry) < elo® By(ry) —|—B/H+C’//T%_%v(0)o%_ -G(0) dodr
T1 71 0

(3.11)

T2 T
< B (v(r2) + | H]1) +c’//7%*%u(a)a%*%c:(a) dodr.
T1 0
Using Fubini’s theorem, the last integral is equal to

T1 T2 T2 T2

//T%—%U%— G<g>d7da+//T%—%U<U)a%—%g(a)d7da
0 71 e

3=
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therefore, plugging the last estimate in (3.11), and using that v is decreasing, we obtain

o(r1) < B (u(m) + |H|)1) + C'Cprit / v(0)ot~HG(o) do + C'Cru(my) / G(0) do. (3.12)
0 T1
Consider now 75 > 0 such that
/TOG <1 . (3.13)
- 20'C,’ ’

0

note that such 7y always exists, since G € L'(0, 00) from Lemma 2.6. Then, if 0 < 71 < 79, setting 75 = 79
and plugging (3.13) in (3.12) we obtain that

T1

v(r1) < 2B (v(r0) + || H 1) + 2C"Cpry /v(a)o%*%G(a) do.
0

|~
[N

Then, for 71 € (0,79), the hypotheses of Lemma 2.7 are satisfied, and we obtain that

/ i f 1_1 2C'C, [T1 G
v(11) < 2B (v(m) + | H|l1) +2C°Cpr> 2 | 2B (v(m0) + ||H||1) 02 " G(o)e rlo” Y do
0
T1

< 9B (0(ry) + ||H|11) + AC"C B (v(r0) + || H||1) 2 C1G 11 /G(a) do.
0

This estimate holds for every 0 < 71 < 79, as long as (3.13) holds. Then, letting 71 — 07, and using the
definition of B and Lemma 2.3, we obtain that

lim v(r) < 2B (v(r0) + || H|l1)

7'1—}0Jr

< exp (Cox ([Ibllna + lldll3.1)) (v(70) + [ H]]1)

as long as ||c2]ln,co < Vn,x and (3.13) hold. Combining with (3.9) then shows (3.5), and (3.6) follows from
the fact that v is decreasing and (2.4). O

As a corollary, we obtain the following maximum principle, which generalizes [1, Proposition 7.5]. From
Remark 6.4, to have such an estimate with constants depending only on the norms of the coefficients for
arbitrary b € L™! requires that ¢ should have small norm; hence, we will assume that ¢ belongs to L™
and has small norm.

Proposition 3.3. Let Q C R™ be a domain. Let A be uniformly elliptic and bounded in ), with ellipticity X,
and let b, f € L™ (Q), g € LzY(Q), with ||b]|,1 < M.

There exists 8 = Bpam > 0 such that, if c € L™>®(Q) and d € Lz"1(Q) with ||c|ln,co < B and ||d||2 1 < 5,
then for every subsolution u € Y12(Q) to

—div(AVu+bu) + cVu+du < —div f + ¢

in ), we have that
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supu < C'supu’ + C||fln1 + Cllgllz.1,
Q a0

where C' depends on n, A and M.

Proof. Assume that ||c|/n,00 < S and ||d
and take ¢; = 0 and ¢ = 1 in Proposition 3.2. We will take 8 < v, , so it is enough to show that we can
take 19 = oo in (3.5), since lim,_, o v(7) = 0. Hence, from (3.13), and the definitions of C’ and e from the
proof of Proposition 3.2, it will be enough to have that

21 < f3, for 8 to be chosen later. Consider the v, x from Lemma 3.1,

o0

/o%—l\/\plb_ep(a)wlc_e‘z(a) do < Cexp (—=Clb— ellns — Cllellna), (3.14)
0

where C depends on n and A only.
We first bound the left hand side from above using Lemmas 2.6 and 2.3, to obtain

o0

/0%_1\/\If|b_e‘2(0)\ll|c_e‘2(0) do = H. [Ocp e,
1,
0
W W N
< Clb—ellnallc —ellno < C(M + B)B,

while

—C||b— e

n1 = Cllefln1 2 =Clblln1 = Clleflny = =CM = CB.
From the last two estimates, (3.14) will be satisfied as long as
C(M + B)geCM+C8 < 1,

So, choosing 8 > 0 depending on n, A and M, such that the last estimate is satisfied and also 3 < v,
completes the proof. O

In addition, we also obtain the following maximum principle, which concerns perturbations of the operator
—div(AVu) + ¢Vu.

Proposition 3.4. Let Q C R"™ be a domain. Let A be uniformly elliptic and bounded in ), with ellipticity A,
and let ¢ < 00, ¢ = ¢1 + ¢ € L™®(Q), with ||c2|jn,cc < v and |c1]ln,g < M, where v = v, x appears in
Lemma 3.1. Assume also that f € L™ (), g € L71(Q).
There exists ¥ = Yn g > 0 such that, if b€ L™ (Q) and d € L=-1(Q) with ||b]ln1 <~ and ||d] 21 <7,
then for any subsolution u € Y12(Q) to
—div(AVu+bu) + cVu+du < —div f+ ¢

in €, we have

supu < Csuput + C||f|
Q o0

n1+Cllgllz 1,

where C' depends on n,q, X and M.
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Proof. As in the proof of Corollary 3.3, we will take v < v, 5, and it will be enough to have that

oo

/0%71\/\I/‘b_ep(cr)‘ll‘c_ep(cr) do < Cexp (—C’Hb — el
0

n1—Cller—ellf ),

whenever ||b][, 1 <7 and [|d|z 1 < v, and where C = C,, 4 x. Then, a similar argument as in the proof of
Proposition 3.3 completes the proof. 0O

4. Local boundedness
4.1. The first step: all coefficients are small

The first step to obtain the Moser estimate is via a coercivity assumption, which we now turn to. The
2n_

following lemma is standard, and we only give a sketch of its proof. We will set 2, = =f5.

Lemma 4.1. Let Q C R" be a domain, and A be uniformly elliptic and bounded in Q, with ellipticity A\. There
exists 0 = 0, > 0 such that, if b € L™ (Q), c € L™>®(Q) and d € L= 1 (Q) with ||b]ln1 < 0, |lc|lnoe < 0

and ||d||» 1 < 0, then the operator
Lu = —div(AVu + bu) + cVu + du

is coercive, and every solution v € W (Q) to the equation Lu = — div F+G for F € L*() and G € L**()
satisfies the estimate

Vollz2(Bsy < CrallFllL2(@) + CrallGllL2- ()- (4.1)

Also, if = Ba, and w € WY2(Ba,.) is a subsolution to — div(AVw + bw) + cVw + dw < 0, then

C
[iver <5 [ e, (42)
Br,« 327‘
where C' depends on n, \ and || A|co-

Moreover, for any subsolution u € W12(Ba,.) to —div(AVu) + ¢Vu < 0 in Ba, and a € (1,2), we have
that

1

2

¢ +)2

s ) 4
B

where C' depends on n, \ and || Al -
Proof. We first show (4.3), following the lines of the proof of [2, Theorem 8.17]: if ¢ is a smooth cutoff

function, then an approximation argument using [1, Lemma 2.2] and Holder’s inequality (2.9) shows that
we can use u @2 as a test function, and we obtain

/AVu+vu+-¢2 §—2/AVu+V¢-u+q§— cVuT - uT ¢
Ba, Ba,- B

< ClloVuT|l 2oy UVl L2(B,,)

lewt ol oo, 10V llL2820)-

2r

(4.4)
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Then, assuming that ||c||, 00 < 8, for 6 to be chosen later, using Hélder’s estimate (2.9) we have

"CU+¢|‘L2(B2T) < Cn”C”mooHu+¢HL2*a2(Bgr) < Cn6‘|u+¢||L2*’2(327~)7

and combining with [1, Lemma 2.2], we have

"CU+¢|‘L2(BQ7‘) < Cn9||v(u+¢)“L2(32r)
< CLb|6VUT 2 + Cubl VO 21, -

So, choosing 6 such that C,0 < %, and plugging in (4.4), we obtain that

/|¢Vu+|2s0/ VP2,
Ba, B,

where C' depends on n, A and ||A||o. This estimate corresponds to [2, (8.53), page 196], and following the
lines of the argument on [2, pages 196 and 197] we obtain that

2
supu < C ][ )|
B,

Bar

where C' depends on n, A and ||Al|c. To complete the proof of (4.3) note that, for all z € B,, the last
estimate shows that

: 3
< C +12 < L +12
sup U= [u™| = (o — 1)n/2m/2 lu™| )
Bar

Ba71 (CE)
7 " B(a-1)r()

since B(a—1)r(z) € Bar, and considering the supremum for x € B, shows (4.3).
Finally, coercivity of £, (4.1) and (4.2) follow via a combination of the procedure as in (4.4) and (4.5),
where for (4.1) we use v as a test function, and for (4.2) we use wt¢? as a test function. O

We now turn to local boundedness when all the lower order coefficients have small norms.
Lemma 4.2. Let A be uniformly elliptic and bounded in Ba,., with ellipticity X\. There exists 0 = H;IA >0

such that, ifb € L™'(Ba,), ¢ € L™ (Ba,) and d € L% (Ba,.) with ||blln1 < 0, ||¢]ln.c0 < 0" and ||d a1 <0,
then for any subsolution u € W12(Bsy,.) to — div(AVu + bu) + cVu + du < 0,

2

suput < C ][ )|
B,
Bz,

where C' depends on n, A and || A co-

Proof. Counsider the 6, » that appears in Lemma 4.1. We will take 8" < 6,, 5, so that the operator is coercive.
Then, if u is a subsolution to Lu < 0, the proof of [31, Theorem 3.5] implies that u™ is a subsolution to
Lut < 0; therefore, we can assume that u > 0.
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Assume first that b, ¢, d are bounded in By, then [2, Theorem 8.17] shows that

sup u < 0o. (4.6)
B,
Let 1 <n <n' < 3. From coercivity of the operator Lou = — div(AVu) + ¢Vu, and since div(bu) — du €

W=L2(B,,) = W()I’Q(Bn/r)) , the Lax-Milgram theorem shows that there exists v € W(}’Q(Bn/r) such that
—div(AVv) + ¢V = div(bu) — du.
If 3 is as in Proposition 3.3, taking 6" < 3, x 0, , the same proposition shows that

sup v < C’n,)\Hbu”L"vl(Bn/T) + C’,L7>\||du||L%,1(BW) < Cpab sup u, (4.7)

n'r n'r

since v > 0. In addition, from the Sobolev inequality, estimate (4.1) and the Holder inequality,

lollzz s,y < CallVollz2(a, ) s
< Conlbullzzs,,) + Conlldullie. s,,,) < Conllullze s,

Moreover, the function w = u — v is a subsolution to — div(AVw) 4+ ¢Vw < 0, so (4.3) implies that

1
2

C
supw < VAR ][ |w+|2
By (? — ].)

B,
2 2
C 9 C 2
P — - -
= (n —n)n/? ][ [l * (' —n)n/? ][ ol
Bn/,r, BT]’T
C . C .
< — 2 < - 2
S CEDRE A CEDRE fou]
Bn/r B.,,/z

where we also used (4.8) for the penultimate estimate, and C' depends on n, A and ||A|«. Hence, the
definition of w, the last estimate and (4.7) show that

a1
S
’ c 2*
supu < supv +supw < Cp 0 supu—i—ﬁ |u
By By By (" —n)

n'r

BT/Z

where C' depends on n, A and ||A||co-
We now set ny = % — 4~ and apply the previous estimate for n = nx and 7’ = 1. Then,

1
oF

o*

sup u < Cp\0' sup u+2"NC ][ lu

By Biniyr

B2

Inductively, this shows that, for any N € N,
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L
*
N 2

sup u < (Cp @)Y sup u+ CZ(CH,AQ')Z'_QM : ][|u|2
1 A

Buyr Bunjar i=

We will consider ¢’ such that Cy, \6’ < 1. Then, letting N — oo and using (4.6), we obtain that
1
=

o0
sup u < CZ (2"C’n,>\9')l_1 : ][ Jul* ,
Brya i=1 B

/2

and choosing 6’ that also satisfies 2"C), »0’ < 5 shows that

1
2

1
2%

supu < C ][ ul> <C ][W , (4.9)

Br/4

=

Bi./2 By,

where we used (4.2) and the Sobolev inequality for the last estimate, and where C' depends on n, A and
| Aloo- |

In the case that b, c,d are not necessarily bounded, let &’ be the coordinate functions of b, and define
by having coordinate functions bg\, =b X[jpi|<n] for N € Nj define also similar approximations cy and dy
for ¢, d respectively. We then have that ||by||n1 < [|b]ln,1, and similarly for ¢y and dy. Since 8" < 6, »,

from coercivity in Lemma 4.1 and the Lax-Milgram theorem there exists vy € WO1 ’2(B7, /2) that solves the
equation

—div(AVuyn + byvy) + enVoy + dyvy = —div(AVu + byu) + ey Vu + dyu

in B, /5. Then, from (4.1),

IVon|l2s,,,) < CllAVu + byullr2(s, ) + CllenVu + dyull 2. (5

r/2 r/2)

c (4.10)
< 7IIUHL2<BQ,V)7

where we also used (4.2) and Holder’s inequality for the last estimate. So, (vy) is bounded in VVO1 (B, /2)5
hence from Rellich’s theorem there exists a subsequence (vy-) such that

vns — vg weakly in W(}’Q(BT/Q) and strongly in Lﬁ(BT/Q), (4.11)
v (z) = vo(z) Yo € F, .

where F' C B, /5 is a set with full measure.

Note now that wy = u — vy is a solution to —div(AVwy + bywy) + cxVwy +dywy = 0 in B, s,
and by, ¢y and dy are bounded, so (4.9) (where By, is replaced by B, /») is applicable to w; therefore, for
x € Fiy, where Fiy C B, /16 has full measure,

2 2 2

wi(z) < sup wi <C ][ lwi?| <C ][ w | +C ][ v |,

B./16
By/2 B,z B,./2

where C' depends on n, A and ||Al|s. Therefore, for all x € Fy,
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[N

1
2

u(@) = v (@) + wx (2) < vx (@) + C ][u e ][N
BT/2 BT/2

2

<won(z)+C ][ug ,

B2r

where we used the Sobolev inequality and (4.10) for the last estimate.
Let now Fy = FN(N\3_, F, then Fy C B, /16 has full measure, and if z € Fp, then letting N’ — oo in
the previous estimate, (4.11) implies that

u(z) < limsupoys(x) + C ][ u? | =w(x) +C ][ u? |, (4.12)

N’'—00
BZT BZr

for all x € Fy. Finally, note that vy is a subsolution to
—diV(AV'UN + bN'UN) + cnyVoy +dyoy < — le((bN — b)u) + (CN — C)VU + (dN — d)’LL

in B, /5, and since by — by and cyv — ¢ strongly in LQ(BT/Q), while dy+ — dy strongly in L= (By/2), using
(4.11) and the variational formulation of subsolutions (2.11) we obtain that vy is a Wj?(Ba,.) subsolution
to

— diV(AVUQ + b”l)()) + CV’UO + d’UO < 0.

Hence, since 8" < 8,10 Proposition 3.3 implies that vy <0 in B, 2, and plugging in (4.12) and covering

n,\)

B, with balls of radius /16 completes the proof. O
4.2. The second step: b or ¢ have large norms

We now turn to scale invariant estimates with “good” constants when d is small, and either b or c are
small as well. We first consider the case of small ¢ and assume that the right hand side is identically 0, for
simplicity; the terms on the right hand side will be added in Proposition 4.4.

Lemma 4.3. Let A be uniformly elliptic and bounded in Bs,., with ellipticity \, and b € L™'(Bsy,.) with
”an,l S M. _ _ _

There exists 0 = 0, > 0 such that, if ¢ € L™®(By,) and d € L% (Ba,) with ||c|ne < 0 and
ldlln 1 < 0, then for any subsolution u € W2(Bs,) to —div(AVu + bu) + cVu + du < 0, we have

2

supu < C ][ lut)? |, (4.13)
b By

where C' depends on n, \, || Al and M.

Proof. We will proceed by induction on M. Consider the 9;’/\ and the constant Cy = C), » 4|, = 1 that
appear in Lemma 4.2. In addition, for any integer N > 0, set C}, \ y = Cy, xan/ngr | > 1, where the last
constant appears in Proposition 3.3.
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We claim that, if [|b]pn1(p,,) < ZN/"G;L’A, then there exists 0,y > 0 such that, if we have that
||C||Ln.oo(32r) < H,M,N and ”dHL%’l(Bgr) < 9717)\’1\[, then

1
2

supu <8 C’OH i ][ lut 2| . (4.14)

For N =0, letting EM,O = 9;,/\, the previous estimate holds from Lemma 4.2.

Assume now that this estimate holds for some integer N > 0, for some constant Em A,N. From Propo-
sition 3.3 there exists 3], \ y = Bnx2v/ner | > 0 such that, if @ C R" is a domain, A’ is elliptic in O
with ellipticity A, [|b[|zn1(0) < QN/”Q;L)\, [ [Lnoe@)y < Bran and [|d']]; 2. 1) < By A then for any
subsolution v € Y12(Q) to — div(A’'Vv + b'v) + ¢/ Vo + d'v < 0 in €2, we have that

supv < Cl, \ ysupv™.
Q R To)

We then set 0, x n+1 = min{f, x n, 3, \ y11}> and assume that

6] < 2WVED/gL oL el

L1 (Ba,) Lm0 (By,) < gn,)\,N+1» and HdHL%J(BW) < gn,A,N+1~ (4.15)

We will show that, in this case, (4.14) holds for N + 1. To show this, we distinguish between two cases:
1ol 135, 0) < QN/"(% s and bl i, ,,) > 2870,
In the first case, let € B,.. Then, since 0, x n+1 < Gn AN and B, js(x) € Bsy/z, we have that

||bHL"71(BT/2(x)) S 2N/n9;,>\’ ||C||Ln,oo(Br/2(x)) < an,)\,N; and ||d||Ln 1 (B /2(:1:)) < gn,)\,N'

Therefore, from (4.14) for N (in the ball B, /5(x) instead of By, ), we have

N[=

sup u <82 C’OH ][ lut|?

By.ja() 0
= B2 ()
1 1
N 2 v N+1 2
nN ’ 42 n(N+1) ’ 2
<872 Co[[Crri2 ][ lut| <8 2 Co [ Chn u? |
=0 Bs =0 Bs

where we used that C}, , y,; > 1 for the last step. So, (4.14) holds for N + 1 in this case.
In the second case, let y € 0Bz, /4. Then B, /4(y) € Ba, \ Bs, /2, therefore, from Lemma 2.2,

1603 s, 0y < BN

< 2N+1(92,,\)n - 2N(9Z,,\>" = (2N/n9;,,\)"~

L™1(Ba,) ||b||7L1"’1(B37~/2)

Moreover, from (4.15), we have |[c[ L. (B, () < O 2.~ and ||d||Lg,1(BT/4(y)) < 0n.aN, hence (4.14) for N
(in the ball B, /4(y) instead of Bs,) implies that

N
sup u <82 COH i ][ |2 < 8"(1\;+1)00HC;’)"i ][uQ

T/S(y) 0 =
= B.ya(y) Bo.
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Then, the last estimate, (4.15) and Proposition 3.3 show that

2

n(N+1) L2
supu < C), AN+l Sup u<Cn/\N+1 8 C’oll N |u | ,
B 0B7r /4

which shows that (4.14) for N + 1 in this case as well.
Therefore, (4.14) holds for any N € N, which completes the proof. O

Finally, we show Moser’s estimate allowing right hand sides to the equation, and considering also different
LP norms on the right hand side of the estimate.

Proposition 4.4. Let A be uniformly elliptic and bounded in Bs,, with ellipticity \. Let also b € L™ (By,)
with ||blln1 < M, and p > 0, f € L™ (Bs,), g € L?"}(Ba,).

There exists € = e, am > 0 such that, if ¢ € L™*(Ba,) and d € L2Y(Ba,) with |c|lnc < € and
|d||= 1 <€, then for any subsolution u € W'?(Bg,) to — div(AVu +bu) + cVu+du < — div f + g, we have
that

%
supu<C (£ [t |+ Cllflma iy + Clall s, (4.16)
" B27*

where C' depends on n,p, A\, ||A|lecc and M.

Proof. Consider the 3, x a from Proposition 3.3. If [|c|lnco < Bnan and ||d||z 1 < Bna s, any solution
u € W&’Z(Bgr) to the equation —div(AVu + bu) + c¢Vu + du = 0 in Ba, should be identically 0, from
Proposition 3.3. Hence, adding a term of the form +Lu to the operator, for some large L > 0 depending
only on n, A\, M, the operator becomes coercive, and a combination of the Lax-Milgram theorem and the
Fredholm alternative (as in [32, Theorem 4, pages 303-305], for example) shows that there exists a unique
v E W01’2(BQT) such that

—div(AVv + bv) + cVo+dv = —div f + g,
in Bg,. Then, Proposition 3.3 implies that

sup [o] < Cllfllzns gy + Cllgll 35, - (4.17)

2r

where C depends on n, A and M.

Consider now the 5,17)\,1\/1 from Lemma 4.3 and set ¢ = min{ﬁn,,\M,gn,)\,M}. Then, assuming that
[cllnoe < € and [|d[|z1 < €, since w = u — v is a subsolution to —div(AVw + bw) + cVw + dw < 0,
(4.13) implies that

supw < C lwt? |, (4.18)
Br Bz,
where C depends on n, A, ||A]| and M. Then, (4.16) for p = 2 follows adding (4.17) and (4.18).
Finally, in the case p > 2, (4.16) follows from Holder’s inequality, while in the case p € (0,2), the proof
follows from the argument on [33, pages 80-82]. O
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We now turn to the case when ¢ € L™? with ¢ < oo is allowed to have large norm.

Lemma 4.5. Let A be uniformly elliptic and bounded in Ba,, with ellipticity A. Let also ¢ < oo and ¢1 €
L™9(By,) with ||c1|n,qg < M.

There exist & = &, x > 0 and ¢ = Cugam > 0 such that, if b € L™Y(By,), co € L™*(By,) and
d € L2Y(Byy) with [|blln1 < ¢, [le2llnee < € and ||d||z1 < ¢, then for any subsolution u € W2(By,) to
—div(AVu + bu) + (e1 + c2)Vu + du < 0, we have that

supu<C’ ][|u+\ ,

7/4
where C' depends on n,q, A, || Allce and M.
Proof. Let C,, > 1 be such that ||h1 + h2lln,co < CnllP1lln.c0 + Cnllh2 for all hy, he € L™ (from (2.7)),

and Cj, o > 1 be such that ||Aln,00 < Cp gl|h|ln,q for all h € L™9 (from (2.8)).
Set

gn,)\

20 mln{Vn)\, n)\}>0

where v, » and 9;,/\ appear in Proposition 3.3 and Lemma 4.2, respectively. For N > 0, set also 07/717(1;)\71\[ =
C’n’q7>\72N/qu§n N 1, where the last constant appears in Proposition 3.4, and consider the constant
Co = Cpa,) Al = 1 that appears in Lemma 4.2.

We claim that, for any integer N > 0, if ||c1]|n,q < 2N/qC’TZé§n,)\, then there exists (, 4.1~ such that, if

n,1 n,q,\,N» ||C2]|n,co n,\ all 21 n,q,A\,N» en
[blln,1 < G [e2lln,c0 < & dldllg.<¢ th

(M

s.upu<82COHC%M ][u2 : (4.19)

7/4 i=0 Bo.
For N =0 we can take (, 4,1,0 = &n 2, since we then have that
lelln,c0 < CnCrglicillng + Crllezlln,co < 2Cn&na < an Ao

and also [|blln,1 <0, 5, |||z 1 < 8], 5, therefore (4.19) for N = 0 holds from Lemma 4.2.

Assume now that (4.19) holds for some N > 0, and set (ngx,n+1 = min{Cng N %, 41 N1}, Where
7;7%)\71\, = Vnag A 2N/aC Lm0 and the ~y appears in Proposition 3.4. We then continue as in the proof of the
Lemma 4.3, using Lemma 2.2 for ¢ > n and Proposition 3.4 instead of Proposition 3.3; this shows that
(4.19) holds for N + 1 if ||ci|ln,q < 2(N+1)/q0;}1§n7>\, as long as [|bl[n,1 < Cnga,N+1, [1C2]ln,00 < &n,x and
lldlln 1 < Cngx,N+1, and this completes the proof. O

Finally, we add right hand sides and allow different LP norms.

Proposition 4.6. Let A be uniformly elliptic and bounded in Ba,, with ellipticity A\, and ¢ < 0o, ¢; € L™(Ba,)
with ||c1]ln.q < M. Let also p >0 and f € L™ (Ba,), g € L?(Ba).

There exist & = &, x > 0 and 6 = Spgam > 0 such that, if b € L™Y(By,), co € L™*(By,) and
d € L3 (By,) s leallnoe < € and ||d||21 < 6, then for any subsolution u € W'?(Ba,) to
—div(AVu + bu) + (c1 + c2)Vu + du < —div f + g, we have that
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1
P
supu <C (£ [t |+l + Clall s,
" BQT

where C' depends on n,p, q, A, ||Allcc and M.

Proof. The proof is similar to the proof of Proposition 4.4, using Proposition 3.4 instead of Proposition 3.3
and Lemma 4.5 instead of Lemma 4.3. 0O

Remark 4.7. Note that the analogue of Propositions 4.4 and 4.6 will hold under no smallness assumptions
for b,d or ¢,d (when ¢ € L™9, g < 00), but then the constants depend on b,d or ¢,d and not just on their
norms. This can be achieved considering ’ > 0 small enough, so that the norms of b,d or c,d are small
enough in all balls of radius 2r’ that are subsets of Bs,., and after covering B, with balls of radius 7’.

4.3. Estimates on the boundary

We now turn to local boundedness close to the boundary. We will follow the same process as in the case
of local boundedness in the interior.

The following are the analogues of (4.2) and (4.3) close to the boundary; the proof is similar to the one
of Lemma 4.1 (as in [2, proof of Theorem 8.25]) and it is omitted.

Lemma 4.8. Let Q C R"™ be a domain and Bo, CR"™ be a ball. Let also A be uniformly elliptic and bounded
in QN Bay,., with ellipticity .

There exists 0 = 0,, x > 0 such that, if b € L™ (2N By,.), c € L™*°(QN By,) and d € L2°1(QN Ba,) with
[0ln1 <0, llcllnoo < 0 and ||d||= 1 <6, then, if w € WH(QN By,) is a subsolution to — div(AVw + bw) +
cVw + dw < 0 with w < 0 on 02N By, we have that

vl < S [ e,
7«2

QNB, QN B2,

where C' depends on n, A and || A|co-
Moreover, for any subsolution u € W12(QN By,.) to — div(AVu)+cVu < 0 in QN By, and any o € (1,2),
we have that

2

C )
Ssu u < v
onp = (a—1)n? f ’
Bar

where v = uT xqnB,,, and C depends on n, A and || Al -

To show local boundedness close to the boundary, we will need the following definition from [2, Theorem
8.25]: if w is a function in Q and 0Q N By, # 0, we define

ySufs €B r Q
Sy, = sup u", a(x) = supfu(e), su}, @ ? (4.20)
QN Ba, Su, x € Ba, \ Q

where the supremum over 92 N By, is defined as on [2, page 202].
The following proposition concerns the case of large b.
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Proposition 4.9. Let Q C R" be a domain, and Ba, be a ball of radius 2r. Let also A be uniformly elliptic
and bounded in QN Ba,., with ellipticity X\, b € L™ (QN Ba,.) with ||b]|,1 < M, andp > 0, f € L™ (QN By,),
g € L3 (QN By,).

There exists € = e, . > 0 such that, if ¢ € L™ (QN Ba,.) and d € Lz (Q2N Ba,.) with ||c|ln.00 < & and
|d||= 1 <€, then for any subsolution w € W?(QN Ba,) to —div(AVu + bu) + cVu + du < —div f + g, we
have that

1

sup @ < C ][W el

QNB,.
B27‘

L1 (QNBa,) T CHg||L%’1(QﬁBzr)7

where @ is defined in (4.20), and where C' depends on n,p, A, ||Allss and M.

Proof. Subtracting a constant from w, and since @ > s, in Bs,., we can reduce to the case when u < 0
on 9Q N By, (that is, s, = 0). Then, based on Lemma 4.8 and [2, Theorem 8.25] instead of Lemma 4.1
and [2, Theorem 8.17], respectively, we can show the analogue of Lemma 4.2, replacing all the balls by
their intersections with €2, for subsolutions v € W2(Q N By,.) with v < 0 on 9Q N Bay,.. We then continue
with a similar argument as in the proofs of Lemma 4.3 and Proposition 4.4, replacing all the balls by their
intersections with 2. O

Finally, using a similar argument to the above, and going through the arguments of the proofs of
Lemma 4.5 and Proposition 4.6, we obtain the following estimate close to the boundary, in the case that c
is large.

Proposition 4.10. Let Q@ C R™ be a domain, and Bs, be a ball of radius 2r. Let also A be uniformly elliptic
and bounded in QN Ba,., with ellipticity \, and consider ¢ < oo and ¢y € L™1(Q N By,) with ||c1|ln,g < M.
Let alsop > 0, f € L™ (2N By,.), and g € L=1(QN By,).

There exist £ = &, x > 0 and § = 6p g a0 > 0 such that, if b € L™ (Q N Ba,), ca € L™*°(QN By,) and
d € LY QN Ba,) with |[blln1 < 8, [[c2ln.co < & and ldlln 1 <0, then for any subsolution u € W12(QN By,)
to —div(AVu + bu) + (¢1 + c2)Vu + du < —div f + g, we have that

1

sup @ < C ][|a|P +clf]

QNB,.
Ba,

L™1(QNBa,) + CHg||L%’1(QﬁB2r)7

where @ is defined in (4.20), and where C' depends on n,p, q, A, ||Allcc and M.
Remark 4.11. As in Remark 4.7, the analogues of Propositions 4.9 and 4.10 will hold under no smallness

assumptions for b,d or ¢,d (when ¢ € L™?, g < 00), with constants depending on b,d or ¢,d and not just
on their norms.

5. The reverse Moser estimate and the Harnack inequality
5.1. The lower bound
In order to deduce the Harnack inequality, we will consider negative powers of positive supersolutions to

transform them to subsolutions of suitable operators, where the coefficients b, d will be small. This is the
context of the following lemma.
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Lemma 5.1. Let Q C R"™ be a domain, b,c, f € L"™>*(Q) and d,g € L=2>°(2). Let also u € W12() be a
supersolution to —div(AVu + bu) + cVu + du > —div f + g with infqu > 0, and consider the function
v=u+|fllrr1Q) + ||gHL%,1(Q). Then, for any k <0, v* is a WH2(2) subsolution to

—div (AV(vk) + ka) + (WJM + c) V() + ka <0. (5.1)

v v

Proof. We compute
—div(AV(v*)) = —k div(AVv)0* ™t — k(k — 1) AVuVy - P2

From ellipticity of A we have that AVoVwv > 0. Since also k < 0, the last identity shows that
—div(AV(v*)) < —div(AVu) - kv*~L. Since k < 0, v*~1 > 0 and u is a supersolution, we have

—div(AV(v*)) < (div(bu) — cVu — du — div f + g)kv*~1,
and the proof is complete after a straightforward computation. O
The next lemma bridges the gap between LP averages for positive and negative p.

Lemma 5.2. Let A be uniformly elliptic and bounded in Ba,., with ellipticity A\, and b,c € L™*(Ba,),
d € L>°°(By,). Let also u € W12(By,.) be a supersolution to — div(AVu +bu) 4 cVu+du > 0 in By,., with
infp, © > 0. Then there exists a constant a = a,, such that

][ua][u_“<0
B, B.

where C' depends on n, A, ||Allco, ||blln.cos ||

Proof. We use the test function from [7, page 586] (see also [2, page 195]): let Bz, be a ball of radius 2s,
contained in Bs,. If ¢ > 0 be a smooth cutoff supported in Bas, with ¢ =1 in B, and |[V¢| < %, then the
function ¢?u~! is nonnegative and belongs to VVO1 ’2(325). Hence, using it as a test function, we obtain that

2 2 2
/ AVa2OV g OV 20V oV, +/ Vu¢—+du¢— >0,
U u? U u2 U
BQS B2s

hence

/Av Vi < /( Mmbw é— b ¢2+cw¢ +d¢52)

2s By,

Using ellipticity of A, the Cauchy-Schwartz inequality, and Cauchy’s inequality with e, we obtain
[Vul? , <C 20 b|2 2 L 1dDNe?
—z 0" <C [ (IVel’ + [pVele + (b + |el* + |d])¢7)
Bas
< Cs"7% 4 Os™H|b||n,00 1]

_n_ g
Ln=1""(Bas)

+ OB+ el + 1l I, azsn i,

< C«Sn—Z7
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where C' depends on 1, A, [[Allso; [[0]ln,00, [€lln,c0 and [|d||2 «, and where we used (2.9) for the second
estimate. The proof is complete using the Poincaré inequality and the John-Nirenberg inequality, as on [7,
page 586]. O

The next bound is a reverse Moser estimate for supersolutions. Surprisingly, if we assume that the
coefficient ¢ belongs to L™? for some ¢ < oo, then we obtain a scale invariant estimate with “good”
constants under no smallness assumption on the coefficients. As mentioned before, for the Moser estimate
in Propositions 4.4 and 4.6, such a bound cannot hold with “good” constants under these assumptions.

Proposition 5.3. Let A be uniformly elliptic and bounded in Ba,., with ellipticity . Let also b, f € L™ (Ba,),
c1 € L™(By,) for some q¢ < oo, and d,g € L% (Ba,), with ||b]|,1 < My, le1lln,g < Me and ||d[|z 1 < My.

There exist a = a, > 0 and & = &, » > 0 such that, if co € L™(By,) with ||c2|ln,c0 < &, then for any
nonnegative supersolution u € W42(Ba,.) to —div(AVu + bu) + (c1 + c2)Vu + du > —div f + g, we have
that

][ua < C inf u+ C||f]
B2

BT

L1 (Bay) T C||gHL%'1(B27‘)’

where C' depends on n,q, \, ||Allco, My, M. and M.

Proof. Adding a constant § > 0 to u, we may assume that infp, u > 0; the general case will follow by
letting 0 — 0. Set v = u + || f||zn.1(B,,) + Hg||L%,1(B2 » then v is a supersolution to

du—g

—div (AVerbu_fv)JrchJr v >0,
v v

with

bu— f du—g
v v

5,1 +Cn-

Then, since infp, v > 0, Lemma 5.2 implies that there exists a = a,, such that

][va][v_a <C, (5.2)
B, B,

where C' depends on n, q, A, || Al|co, Mp, M. and M.
For k € (—1,0) to be chosen later, v* is a W12(Bsy,) subsolution to (5.1) for ¢ = ¢; + cg, and

S CngHn,l +Cn7 ‘

< Cylld
1

n
n,l b

k—1)(bu — b
Hw T < Chg(l—k) ou
v n,q v n,q
C k ! C
+ n,q(1* ) " + n,q”ClHn,q
n,q

<M,

where M depends on n,q, M, and M.. Then, for the &, » and the 6, 41 3 > 0 from Proposition 4.6 and
(5.1), if
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k(du — g)

H k(bu — f) 3 S 5

(

< 6n,q,A,M; HCQ”LTL,OO(BT) < £n’>\, H

LmiB,) L5,

then v* satisfies the estimate

sup vF SC’][vk,

Br/? B

where C' depends on n, ¢, A, ||A]|ec and M. It is true that (5.3) holds for some k € (—a,0), depending on
n, q, A, My, M, and My; hence, for this k,

%
ka < C(sup vk)% = C inf v, (5.4)

i
B, /2 Bra
B,

where C depends on n, q, A, [|Al|so, My, M. and M. Since —% > 1, Holder’s inequality implies that

_k 1 _1 1
a a

k a

][vkg ][v_a = ][vk > ][U_“ >C ][va ,

B, B, B, B, B,

where we used (5.2) for the last step. Then, plugging the last estimate in (5.4), and using the definition of
v, the proof is complete. O

5.2. Estimates on the boundary

We now consider the analogue of Proposition 5.3 close to the boundary. We will need the analogue of the
definition of @ in (4.20), from [2, Theorem 8.26]: if u > 0 is a function in Q and 9Q N By, # (), we define

my, = inf

_ inf{u(z),my,}, x € By N
penf (z) = { 2 (5.5)

My, x € By \ '
The following is the analogue of Lemma 5.2 close to the boundary.

Lemma 5.4. Let A be uniformly elliptic and bounded in QN Ba,., with ellipticity A, and b,c € L™ (2N Ba,.),
d € L=>>°(QNBa,). Let alsou € W12(By,.) be a nonnegative supersolution to — div(AVu+bu)+cVu+du > 0
in Bay, and consider the function @ from (5.5). If infonp,, u > 0 and m,, > 0, then there exists a constant

a = a, such that
][fﬂ ][ i<,

B, B,

where C depends on n, A, ||Alls, ||blln,c0; ||¢]

n,oo and ||d

n
5,00

Proof. As in the proof of [2, Theorem 8.26], set v =4~ —m;! € W12(Q N By,), which is nonnegative in
QN By, and vanishes on 9Q N By,.. Then, considering the test function v¢?, where ¢ is a suitable cutoff
function, and using that v > 0 if and only if © = u, the proof follows by an argument as in the proof of
Lemma 5.2. O

Using the previous lemma, we can show the following estimate.
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Proposition 5.5. Let @ € R"™ be a domain, Ba, be a ball of radius 2r, and let A be uniformly elliptic and
bounded in Q N Ba,., with ellipticity . Let also b, f € L™*(Q N Bay,.), c1 € L™(Q N Ba,.) for some q < oo,
and d,g € L2 (N By,.), with [|blln1 < My, ||c1llng < M. and [|d]| 2 1 < M.

There exist a = a, > 0 and € = &, » > 0 such that, if co € L™*(Q N By,) with ||c2|ln,c0 < &, then for
any nonnegative supersolution u € W12(QN Bo,.) to — div(AVu + bu) + (c1 + co)Vu +du > —div f + g, we
have that

Q=

far | <C it @+ Cllfllinsanmn +Clall s nm,

where w is defined in (5.5), and where C' depends on n,q, \, || A||co, My, M. and M.

Proof. As in the proof of Proposition 5.3, we can assume that infgnp, v > 0, m, > 0, and f,g = 0. Let
a = a, be as in Lemma 5.4. Then, Lemma 5.1 and Proposition 4.10 show that, for suitable k € (—a,0), if
wy, = u¥ and Wy, is as in (4.20), we have that

sup wkgcfwkgc ][u?kf%

QNB, /3
B, B,
Since W, = u*, the proof is complete using also Lemma 5.4. O
5.8. The Harnack inequality, and local continuity

We now show the Harnack inequality in the cases when b, d are small, or when ¢, d are small.

Theorem 5.6. Let A be uniformly elliptic and bounded in Ba,, with ellipticity \. Let also b, f € L™1(Ba,)
with ||blln1 < M, and g € L?(Ba,).

There exists ey x p > 0 such that, if ¢ € L™ (By,) and d € L2 (Ba,) with ||c|ne0 <& and ||d|[z 1 <e,
then for any nonnegative solution u € W12 (By,) to —div(AVu + bu) + ¢Vu + du = —div f + g, we have
that

supu < Cinfu+ Ol fllpna(py,) + Cllgll 5.1,

By

where C' depends on n, \, || A||c and M.

Proof. The proof is a combination of Proposition 4.4 (choosing p = a,, in (4.16), as in Proposition 5.3), and
Proposition 5.3, (considering ¢ = n and ¢; = 0), after also covering B, with balls of radius /4. O

Theorem 5.7. Let A be uniformly elliptic and bounded in Bs,., with ellipticity A, and q¢ < oo, ¢; € L™(Ba;)
with ||c1]ln.g < M. Let also f € L™ (Ba,.), g € L2Y(Ba,).

There exist € = &nx > 0 and § = Gpgam > 0 such that, if b € L™ (Ba,), c2 € L™*(Ba,) and d €
LY (Bay) with ||blln,1 <8, [lc2llneo <& and ||d||z 1 < &, then for any nonnegative solution u € W'?(By,)
to —div(AVu + bu) + ¢Vu + du = — div f + g, we have that

supu < Cinfu+ C|fllpna(s,,) +Cllgll 3.

1 )
B, (B2r)

where C' depends on n,q, A, || Allce and M.
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Proof. The proof follows by a combination of Propositions 4.6 and 5.3. O

We now turn to local continuity of solutions. For the following theorem, for p < 2r, we set
Qpalp) = sup{\|b||Ln,1(B,p) + Nl 52, : By BQT} , (5.6)

where B; runs over all the balls of radius p that are subsets of Bs,.. Also, we will follow the argument on
[2, pages 200-202].

Theorem 5.8. Let A be uniformly elliptic and bounded in Ba,, with ellipticity \. Let also b, f € L™ (Ba,)
with ||blln1 < M, g € L3Y(By,), and p € (0,1).
For every p € (0,1), there exists € = epam > 0 and o = oz jja0,mp € (0,1) such that, if ¢ €

n

L™>®(Byy) and d € L2 (By,) with ||c|lnee < € and ||d||z 1 < e, then for any solution u € W?(Ba,) to
—div(AVu + bu) + cVu + du = — div f + g, we have that

ute) —uln] < & (F220 4 Quatie =yt | lul+ Qua(2n) | + CQpylln = e ),
B

2r

for any x,y € B,., where Q is defined in (5.6) and C depends on n, A, ||Al|cc and M.

Proof. Let p € (0,7], and set M(p) = supp, u, m(p) = infp, u. Then vy = M(p) — u is nonnegative in B,
and solves the equation

—div(AVvy + bvy) + Vo +dvg = —div(M(p)b — f) + (M(p)d — g)

in B,. Hence, from Theorem 5.6, (2.7) and (5.6), we obtain that

M(p) —m (B) = sup v
2 B2

< C Inf v + C[M(p)b = fllra(s,) + ClIM(p)d = g

p/2

L%Y(B,) (5.7)

=0 (Mlp) =M (5)) + Cswplul- Qualp) + CQua o)

where C depends on n, A, ||A|loc and M. Moreover, v = u — m(p) is nonnegative in B,, and solves the
equation

—div(AVvy + bug) + Vg + dvy = —div(f — m(p)b) + (9 — m(p)d)
in B,. Hence, from Theorem 5.6, as in (5.7),

M (§) —m(p) <C (m (g) - m(p)) + CSEP [ul - Qb,a(p) + CQyr4(p). (5.8)

Adding (5.7) and (5.8) and defining w(p) = M (p) — m(p), we obtain that

& (2) < 8uw0) + Csup u - Qo) + Q1 0),
B,

where 0y = g—; € (0,1). Then, [2, Lemma 8.23] shows that, for p <r,
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feY
“(p) < Ci_aw(r) +Csuplul- Qu,a(p'r' ) + CQy g (pHr' ™M),

where C' depends on n, A, [| Ao, M, and & = v, x|, M- We then bound supyg |u| using Proposition 4.4
(applied to u and —u, for p = 1), which completes the proof. O

Finally, based on Proposition 4.6 and Theorem 5.7, we obtain the following theorem when b, d are small.

Theorem 5.9. Let A be uniformly elliptic and bounded in Ba,., with ellipticity A, and q¢ < oo, ¢; € L™(Ba,.)
with ||c1|ln,g < M. Let also f € L™ (Ba,), g € L= (Ba,).

For every p € (0,1), there exist £ = §ux > 0, 6 = dpgam > 0 and o = oy 4|, m,u SUch that, if
b e L™ (Bay), ¢z € L™ (By,) and d € L2'(By,) with ||blln,1 < 3, [[c2lln,co < & and ||d||z 1 < 6, then for
any solution u € W12(Ba,) to — div(AVu + bu) + cVu + du = — div f + g, we have that

ute) —ul] < & (22 4 Quatle =y )) - [ f 1l @) | +CQpg e =it

Ba,

for any x,y € B,, where Q is defined in (5.6) and C' depends on n,q, A, ||Allcc and M.

Remark 5.10. As in Remarks 4.7 and 4.11, the analogues of Theorems 5.6 - 5.9 will hold under no smallness
assumptions for b,d and ¢,d (when ¢ € L™9, ¢ < 00), but then the constants depend on b, d or ¢, d and not
just on their norms.

6. Optimality of the assumptions

We now turn to showing that our assumptions are optimal in order to deduce the estimates we have
shown so far, in the setting of Lorentz spaces. We first show optimality for b and d.

Remark 6.1. Considering the operators £iu = —Au — div(bu) and Lou = —Awu + du, an assumption of the
form b € L™9, d € L3+ for some q > 1, with ||b],. 4, [d||= 1 being as small as we want, is not enough to
guarantee the pointwise bounds in the maximum principle and Moser’s estimate. Indeed, as in Lemma [34,
Lemma 7.4], set us(z) = (—In|z|)° and bs(z) = _Im’\flﬁ‘ Then, for § € (-1,1), b € L™(B,.) for all

q>1,us € Wl’z(Bl/e), and ugs solves the equation
—Au — div(bsus) =0

in By /.. However, vs = 1 on 0By ., and vs — oo as |z| — 0 for 0 > 0, so the assumption b € L™ is optimal
for the maximum principle and the Moser estimate. Note that us also solves the equation

5(6-1) | d(n—2)
—Aus + dsus = 0, d(s(x) = |$|2]n2 |x‘ |q;|21n|13|7

and ds € L2'9(By.) for every q > 1; hence, the assumption d € L' is again optimal.

The same functions bs; and ds serve as counterexamples to show optimality for the spaces of b,d in
the reverse Moser estimate. In particular, considering § < 0, we have that us(0) = 0, while us does not
identically vanish close to 0, therefore the reverse Moser estimate cannot hold.

We now turn to optimality for smallness of ¢, when ¢ € L™,
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Remark 6.2. In the case of the operator Lou = —Au+ cVu with ¢ € L™, smallness in norm is a necessary
condition, in order to obtain all the estimates we have considered. Indeed, if u(z) = —In|z| — 1, then
u€ Wol’Q(Bl/e), and u solves the equation

9 _
—Au+ cVu =0, c= % € L™™(By/e).

However, u is not bounded in By /., so the maximum principle, as well as Moser’s and Harnack’s estimates
fail. On the other hand, the function v(z) = (—In|z|)~! € Wol’Q(Bl/e) solves the equation

- 2)x 2z
—A / — / — (TL _ L’moo B
v+ c'Vu =0, c BE w2 7] € (Bi/e),

with v(0) = 0 and v not identically vanishing close to 0, therefore smallness for ¢ € L™ in the reverse
Harnack estimate is necessary.

Finally, we show the optimality of the assumption that either b, d should be small, or ¢, d should be small,
so that in the maximum principle, as well as Moser’s and Harnack’s estimates, the constants depend only
on the norms of the coefficients. The fact that d should be small is based on the following construction.

Proposition 6.3. There exists a bounded sequence (dy) in L3'(By) and a sequence (uy) of nonnegative
Wol’Z(Bl) NC(B) functions such that, for all N € N, uy is a solution to the equation —Auy + dyuy = 0
in By, and

luwllwy 2z, < O, while uy(0) ——— oo.

Proof. We define

E+(-%)r? 0<r<i
U(T)i 2
re "y r> 1.

Set u(x) = v(|x]), then it is straightforward to check that u is radially decreasing, u > 1 in B, u < § in
R", and u € YH2(R™) N CY(R™). Then, the function d = n(2 — n)u~lyp, is bounded and supported in By,
and wu is a solution to the equation —Au + du = 0 in R™.

We now let N € N with N > 2, and set By to be the ball of radius N, centered at 0. We will modify u
to be a Wol’2 (Bn) solution to a slightly different equation: for this, set wy = u — v(N), and also

du
dy = ———.
N - v(N)
Since d is supported in By, dy is well defined. Note also that wy € VVOI’2 (Bn), and wy is a solution to the
equation —Awy +dywy = 0 in By. Moreover, since d is supported in By, v > 1 in By and v is decreasing,
we have that

d|| L= -
1]l Lo By llull L~ (B1) <c,.

||dNHL%'1(BN) SCYn”d]V”LOC(Bl) SC" 1—’0(N)

Let now dy (x) = N2dy(Nz) and @y (z) = wy(Nz), for € By. Then wy € Wy ?(By), (dy) is bounded in
L31(By), and Wy is a solution to the equation —Awy + dywy = 0 in By. Moreover, wn(0) > Cy, while
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[ v =52 [ [gu =52 [9up o,
—00

B4 BN BN

since Vu € L?(R™). Hence, considering the function I completes the proof. O

wWN
IVONIL2 (B,

Remark 6.4. If dy,un are as in Proposition 6.3, then using the functions ey from Lemma 2.3 that solve
the equation divey = dy in By, we have that

—div(Vuy — enu) —exyVuy = 0.

So, for the operator Lu = — div(AVu + bu) 4+ ¢Vu, if both b, ¢ are allowed to be large, then the conclusion
of Proposition 6.3 shows that the constants in the maximum principle, as well as Moser’s and Harnack’s
estimates, cannot depend only on the norms of the coefficients.
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