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Abstract

mir-33a and mir-33b are co-transcribed with the SREBF2 and SREBF1 transcription factors,

respectively. The main role of SREBF1 is the regulation of genes involved in fatty acid

metabolism, while SREBF2 regulates genes participating in cholesterol biosynthesis and

uptake. Our objective was to study the expression of both miR-33a and miR-33b, together

with their host SREBF genes, in liver, adipose tissue and muscle to better understand the

role of miR-33a/b in the lipid metabolism of pigs. In our study, the expression of miR-33a,

miR-33b and SREBF2 in liver, adipose tissue, and muscle was studied in 42 BC1_LD (25%

Iberian x 75% Landrace backcross) pigs by RT-qPCR. In addition, the expression of in-silico

predicted target genes and fatty acid composition traits were correlated with the miR-33a/b

expression. We observed different tissue expression patterns for both miRNAs. In adipose

tissue and muscle a high correlation between miR-33a and miR-33b expression was found,

whereas a lower correlation was observed in liver. The expression analysis of in-silico pre-

dicted target-lipid related genes showed negative correlations between miR-33b and

CPT1A expression in liver. Conversely, positive correlations between miR-33a and

PPARGC1A and USF1 gene expression in liver were observed. Lastly, positive and nega-

tive correlations between miR-33a/b expression and saturated fatty acid (SFA) and polyun-

saturated fatty acid (PUFA) content, respectively, were identified. Overall, our results

suggested that both miRNAs are differentially regulated and have distinct functions in liver,

in contrast to muscle and adipose tissue. Furthermore, the correlations between miR-33a/b

expression both with the expression of in-silico predicted target-lipid related genes and with

fatty acid composition, opens new avenues to explore the role of miR33a/b in the regulation

of lipid metabolism.
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Introduction

Pork is one of the most consumed meats in the world, being meat quality a relevant trait for

both the meat industry and consumers. Among meat quality characteristics, intramuscular fat

(IMF) content and fatty acid (FA) composition determine not only meat flavour, tenderness,

firmness and juiciness, but also the healthiness of the product [1, 2]. In addition, the pig is con-

sidered a good animal model for biomedical research because of its similarities with humans,

and has been used to identify drug targets against human diseases, such as obesity [3].

Liver, adipose tissue and skeletal muscle are the principal metabolic organs involved in the

regulation of lipid metabolism and, therefore, play an important role in the determination of

IMF content and FA composition. In pigs, liver participates in the synthesis and secretion of

very low-density proteins, de novo cholesterol synthesis and fatty acid β-oxidation. In addition,

liver and adipose tissue are involved in de novo fatty acid synthesis [4], with a higher contribu-

tion from adipose tissue. Furthermore, adipose tissue is an organ acting in lipid storage and

maintenance of metabolic homeostasis, being the major source of circulating free FAs [5, 6].

Muscle is an important site for glucose uptake and storage, and a reservoir of amino acids,

used for protein synthesis and energy production [7]. The lipid metabolism pathways are

cross-regulated among liver, adipose tissue and muscle, and have been extensively studied.

Besides the transcriptional gene expression regulation, microRNAs (miRNAs) have

emerged as important post-transcriptional regulators of the genes involved in lipid metabolism

in different porcine tissues [8]. miRNAs are small RNA molecules that prevent the production

of proteins or degrade the mRNA [9]. They play important roles in diverse regulatory path-

ways of many cellular processes and diseases. Members of the miR-33 family, which includes

mir-33a and mir-33b, are located in sterol regulatory element binding transcription factor 2
(SREBF2) intron 13 and SREBF1 intron 16, respectively, and were reported to be co-tran-

scribed with their host genes. SREBP transcription factors are well-known master regulators of

lipid homeostasis. SREBF1 regulates genes mainly involved in fatty acid metabolism, while

SREBF2 regulates genes involved in cholesterol biosynthesis and uptake [10, 11]. Pig miR-33a/

b sequences differ only in three nucleotides, have the same seed sequence, and are conserved

with the human homologous genes. In line with the regulatory functions of their host genes,

human miR-33b was reported to regulate the insulin signalling pathway and glucose synthesis,

which affected gluconeogenesis pathways [12, 13], and miR-33a was involved in the regulation

of genes of cholesterol synthesis [14, 15]. In pigs, only miR-33b has been reported to play an

important role in adipogenesis and lipogenesis in adipose tissue [16].

The aim of this work was to study the expression of miR-33a and miR-33b, together with

their host SREBF genes, in the three main metabolic tissues, liver, adipose tissue and muscle,

and the effect of both miR-33 genes on FA composition measured in muscle and adipose tis-

sue, to better understand their role in lipid metabolism in swine.

Methods

Ethics statement

Animal care and procedures were performed following national and institutional guidelines

for the Good Experimental Practices and approved by the Ethical Committee of the Institution

(IRTA- Institut de Recerca i Tecnologia Agroalimentàries).

Animal samples

The animal material used in this study comes from the IBMAP experimental cross population,

which was generated by crossing three Iberian (Guadyerbas line) boars with 31 Landrace sows.
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Five F1 males were backcrossed with 25 Landrace sows thereafter (BC1_LD) [17]. In the cur-

rent work, we randomly selected 42 pigs from the BC1_LD (25% Iberian x 75% Landrace) gen-

eration, being 6 males and 36 females. All animals were fed ad libitum with a cereal-based

commercial diet and maintained under intensive conditions. The average age at slaughter was

174.5 days and the average weight at slaughter was 96.7 kg. After slaughter, liver, adipose tissue

and Longissimus dorsi muscle samples were collected and immediately snap-frozen in liquid

nitrogen and stored at -80˚C until analysis.

Phenotypic data

Composition of FAs with 12–22 carbons was determined in muscle [18] and backfat adipose

tissue [19] using a protocol based on gas chromatography of methyl esters [17]. The percentage

of the content of each FA was calculated afterwards in addition to the overall percentage of sat-

urated FAs (SFA), monounsaturated FAs (MUFA) and polyunsaturated FAs (PUFA). Descrip-

tive statistics of intramuscular fat and backfat FA composition and FA indices are presented in

the S1 Table.

Reverse transcription quantitative PCR (RT-qPCR)

A total of 42 pigs were used for the gene expression studies. Total RNA was purified from 50

mg of liver or from 150 mg of adipose tissue directly homogenising the samples in 1 mL of

TRIzol Reagent with a polytron device. In the case of muscle (Longissimus dorsi) samples, 100

mg were submerged in liquid nitrogen and ground with a mortar and a pestle before adding 1

mL of TRIzol. For the miRNA expression assay, 200 μL of chloroform were added and samples

were centrifuged to separate the nucleic acids and proteins from the RNA. Supernatant was

collected to a new tube and total RNA was precipitated by adding 500 μL of isopropanol and

washed with 75% ethanol [20]. For the mRNA expression assay, total RNA was obtained using

the RiboPure kit (Ambion), following the producer’s recommendations. In both cases the

RNA was resuspended with 100 μL in liver samples and 50 μL in adipose tissue and muscle

samples with RNAse free water. RNA concentration and purity was measured using a Nano-

Drop ND-1000 spectrophotometer (NanoDrop products) and RNA integrity was checked by

using an Agilent Bioanalyzer-2100 (Agilent Technologies).

For the miRNA expression assay, total RNA was reverse transcribed into cDNA with the

Taqman Advanced miRNA cDNA synthesis kit (Applied Biosystems) by using 2 μL (5 ng/μL)

of total RNA in a final reaction volume of 30 μL. Then, 5 μL of the resulting RT reactions were

amplified in a final volume of 50 μL following manufacturer’s instructions, in order to increase

uniformly the amount of cDNA for all miRNAs. Finally, pre-amplified cDNA was diluted 1/10

for RT-qPCR. A negative control was made for each tissue with no reverse transcriptase

added. cDNA was stored at -20˚C until use. For the mRNA expression assay, 1 μg of total RNA

was reverse-transcribed into cDNA in 20 μL reactions using random hexamer primers and the

High-Capacity cDNA Reverse Transcription kit (Applied Biosystems), following the manufac-

turer’s instructions.

Pre-designed Taqman MicroRNA Assays (Applied Biosystems) were used for hsa-miR-

33a-5p (reference 478347), hsa-miR-33b-5p (reference 478479), hsa-miR-let7a-5p (reference

478575) and hsa-miR-26a-5p (reference 477995). Primers were designed for SREBF2 gene and

reported in S2 Table. Standard curves were made with serial dilutions from a pool of cDNA to

evaluate the performance of our RT-qPCR assays, and high PCR efficiencies were obtained.

Relative quantification of hsa-miR-33a, hsa-miR-33b and SREBF2 by RT-qPCR was performed

in a QuantStudioTM 12K Flex Real-Time PCR System (ThermoFisher Scientific) using a

384-well plate and all reactions were done per triplicate. To quantify the miRNAs, a final
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volume reaction of 15 μL containing 1x Taqman Fast Advanced master mix (Applied Biosys-

tems), 1x Taqman Advanced miRNA Assay (Applied Biosystems) and 3.75 μL of pre-amplified

cDNA diluted 1/10 was used. To quantify the SERBF2 expression, also a final volume reaction

of 15 μL containing 1x SybrSelect master mix (Applied Biosystems), 300nM primers and

3.75 μL of cDNA diluted ½ was used5. miR-let7a and miR-26a were used as porcine reference

miRNAs and were chosen according to the bibliography [21, 22], and ACTB and TBP were

used as porcine reference mRNAs (mRNA primers are reported in S2 Table) [23–25]. The

PCR thermal cycle was: 2 min at 50˚C, 10 min at 95˚C, 40 cycles of 15 sec at 95˚C and 1 min at

60˚C. Moreover, a melting profile (95˚C for 15 sec, 60˚C for 15 sec and a gradual increase in

temperature with a ramp rate of 1% up to 95˚C) was added following the thermal cycling pro-

tocol, to assess for the specificity of the reactions. Data was analysed with the ThermoFisher

Cloud software 1.0 (Applied Biosystems), PCR efficiencies were between 94.44 and 106.19%

and the 2-ΔCt [26] method was applied (S3 Table). SREBF1 mRNA expression data in liver, adi-

pose tissue, and muscle was previously generated by Ballester et al. 2017, Revilla et al. 2018 and

Puig-Oliveras et al. 2016, respectively.

miRNA target genes

Previously published studies of our group studied the expression of 84 lipid-related genes in

liver, adipose tissue and/or muscle [23–25]. In these works, gene expression was quantified by

qPCR in a set of animals which included the 42 animals of the present work [23–25]. The com-

plete list of genes and the tissue where each gene expression was analysed is summarized in S4

Table.

Porcine mRNA 3’UTRs sequences were downloaded from the Ensembl database and Seqkit

tool [27] was used to search by homology those mRNA 3’UTR sequences matching with 7mer

seed miRNA sequence. Afterwards, only genes with a miRNA-33a/b binding site in their

3’UTR were considered for gene expression correlation analysis. Additionally, we assessed the

conservation and confidence of the miR-33a/b putative target sites among other mammal spe-

cies by using the TargetScan webserver [28].

Statistical analysis

Normalization of data was checked using the Shapiro-Wilk test in R [29] and log2 transforma-

tion of the 2-ΔCt value was applied if necessary. Means were compared using Tukey Honest Sig-

nificant Difference (HSD) test [30]. Pearson’s correlations were performed among target gene

expression or FA composition and miR-33a/b quantification using R software. The FDR (False

Discovery Rate) method of Benjamini and Hochberg [31] was applied for the correction of

multiple tests using the p.adjust function of R software.

Results

miR-33a and miR-33b expression in liver, adipose tissue and muscle

In the current study, miR-33a and miR-33b expression quantification was performed in liver,

adipose tissue and muscle of 42 pigs (Fig 1).

The highest level of miR-33a expression was observed in adipose tissue (�x = 1.2×10−02 ±
1×10−03), followed by muscle (�x = 8×10−03 ± 1×10−03) and liver (�x = 6×10−03 ± 2×10−04). By

contrast, miR-33b showed a higher expression in muscle (�x = 9×10−02 ± 1×10−03) and adipose

tissue (�x = 9×10−02 ± 1×10−03) in comparison to liver (�x = 5×10−03 ± 1×10−04). Between the

two miR-33 genes, miR-33a presented a higher expression than miR-33b in adipose tissue (p-

value = 1.16×10−04). Correlations between miR-33a and miR-33b expression among tissues
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were calculated (Fig 2), showing a high correlation in muscle (r = 0.92, p-value = 2.76×10−16)

and adipose tissue (r = 0.83, p-value = 9.60×10−11). Conversely, a lower correlation between

miR-33a and miR-33b was observed in liver (r = 0.36, p-value = 2.25×10−02). Furthermore,

correlations among tissues were only significant for liver and adipose tissue miR-33b expres-

sions (r = 0.32, p-value = 4.51×10−02).

miR-33a/b expression correlations with SREBF2 and SREBF1 respectively

It is well-known that both miR-33a and miR-33b are located in intronic regions of SREBF2
and SREBF1 genes, respectively [11, 14, 16, 32]. In order to study if both miR-33a and miR-

Fig 1. miR-33a and miR-33b expression in liver, adipose tissue and muscle. Data represents 2-ΔCt mean ± standard

error of the mean (SEM). Different superscript letters (a, b, and c) indicate significant differences between values (p-

value< 0.05) according to the Tukey’s HSD test.

https://doi.org/10.1371/journal.pone.0245858.g001

Fig 2. Pearson correlations between miR-33a and miR-33b expression in three tissues. Correlations between miR-

33a/b expression in liver (L), adipose tissue (AT) and longissimus dorsi muscle (M) were calculated and only significant

correlations were represented.

https://doi.org/10.1371/journal.pone.0245858.g002
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33b are co-transcribed with their host genes, correlations among their expression levels in the

three tissues were calculated and reported in S5 Table. While no significant correlations were

found between miR-33b and SREBF1 expression in any tissue, a significant positive correlation

between the expression of miR-33a and SREBF2 in liver was found (r = 0.5, p-

value = 1.12×10–03).

Association among the expression levels of miR-33 and target genes

Considering the relevant role that miR-33 members play in lipid and cholesterol metabolism,

we wanted to study the association between expression levels of lipid-related genes and miR-

33a/b.

To this purpose, previously published mRNA expression levels of 84 lipid-related genes,

which were quantified in liver, adipose tissue and/or muscle by qPCR in a set of animals

including the 42 animals of the present work [23–25], were used to identify potential binding

sites for miR-33. These genes cover different biological functions related to lipid metabolism

such as lipolysis and lipogenesis, cholesterol, lipid storage, and transcriptional regulation and

control.

The porcine 3’UTRs sequences of the 84 lipid-related genes were downloaded from the

Ensembl database and searched for homology with the 7mer seed miR-33 sequence using the

Seqkit tool [27]. Fifteen genes containing the 7mer seed miRNA sequence in their 3’UTR were

found (Table 1).

In addition, the 3’UTR target sites conservation between human and pig was evaluated in
silico using the TargetScan algorithm. The CPT1A, CROT, LIPC, NCOA1, PRKAA1, and

SETD7 predicted miR-33 target sites were highly conserved across species and showed a con-

text++ score above the 70% percentile, indicating that they are considered cross-validated with

confidence and with a high probability of being biologically functional [28].

Low to moderate significant correlations were found among miR-33a and miR-33b and the

fifteen target genes containing the 7mer seed miRNA sequence (Table 1) in the three tissues

(S6 Table). It is relevant to highlight the negative correlation observed between miR-33b and

CPT1A expression in liver although it does not reach statistical significance (p-value = 0.086).

Furthermore, positive correlations were observed between the expression of most of the genes

Table 1. Genes with the 7mer seed miR-33 sequence in their 3’UTR and tissues.

Gene Tissues

ACSM5 Liver, adipose tissue and muscle

ADIPOQ Adipose tissue

CPT1A Liver

CROT Liver, adipose tissue and muscle

HNF4A Liver

LIPC Liver and adipose tissue

MGLL Muscle and adipose tissue

MLXIPL Liver, adipose tissue and muscle

NCOA1 Muscle

NR1H3 Liver and adipose tissue

PPARGC1A Liver and muscle

PRKAA1 Muscle

SETD7 Muscle

SCAP Adipose tissue

USF1 Liver and adipose tissue

https://doi.org/10.1371/journal.pone.0245858.t001
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and miR-33a/b, although statistically significant correlations were only obtained between

miR-33a and both PPARGC1A and USF1 expression values in liver (p-value < 0.05).

Association between miR-33a and miR-33b expression and fatty acid

composition

The association between miR-33a/b expression measured in the three tissues and FA composi-

tion measured in backfat adipose tissue and muscle was studied by Pearson’s correlation.

While no significant correlations were found between miR-33a/b expression and FA composi-

tion measured in muscle, significant and suggestive correlations were found between miR-

33a/b expression measured in liver and adipose tissue and FA composition measured in adi-

pose tissue (Table 2). Specifically, liver miR-33a expression was positively correlated with SFA

total content, and negatively correlated with linoleic (C18:2(n-6)) and eicosatrienoic (C20:3(n-

6)) FA abundances, as well as PUFA total content in adipose tissue. In addition, liver miR-33b

expression showed positive correlations with myristic (C14:0) and palmitic (C16:0) FA abun-

dances, and a negative correlation with eicosatrienoic (C20:3(n-6)) FA abundance in adipose

tissue. The expression of both miR-33a/b in adipose tissue was positively correlated with the

levels of stearic (C18:0) FA and SFA total content, while negative correlations were found with

the PUFA total content, along with linoleic (C18:2(n-6)) FA content. Adipose tissue miR-33a

expression was also negatively correlated with eicosatrienoic (C20:3(n-6)) FA levels.

Discussion

Since the miR-33 family has a relevant role in the regulation of genes involved in lipid metabo-

lism pathways, in the current work, the expression of miR-33a and miR-33b in liver, adipose

tissue and muscle, and its correlation with both in-silico predicted target lipid-related genes

and FA composition traits were studied.

Several studies in humans and mice have reported that miR-33a and miR-33b are co-tran-

scribed with their host genes, SREBF2 and SREBF1, respectively [11, 14, 32–34]. However, a

Table 2. Summary of correlation values between miR-33a/b and FA composition.

Liver

FA miR-33a miR-33b

C14:0 0.18 (2.60E-01) 0.38 (1.60E-02)

C16:0 0.25 (1.22E-01) 0.34 (3.70E-02)

SFA 0.36 (2.44E-02) 0.20 (2.34E-01)

C18:2(n-6) -0.40 (1.15E-02) -0.30 (6.65E-02)

C20:3(n-6) -0.35 (2.66E-02) -0.33 (3.91E-02)

PUFA -0.38 (1.63E-02) -0.29 (6.94E-02)

Adipose tissue

FA miR-33a miR-33b

C18:0 0.35 (2.82E-02) 0.35 (3.12E-02)

SFA 0.32 (4.41E-02) 0.42 (7.93E-03)�

C18:2(n-6) -0.41 (9.90E-03)�� -0.49 (2.03E-03)�

C20:3(n-6) -0.34 (3.42E-02) -0.29 (8.22E-02)

PUFA -0.40 (1.09E-02)�� -0.48 (2.16E-03)�

miRNAs were measured in liver and adipose tissue and FA composition was measured in backfat adipose tissue. P-

values are indicated in brackets and � and �� means statistically significant (FDR-based q-value < 0.05) or suggestive

(FDR-based q-value < 0.1), respectively.

https://doi.org/10.1371/journal.pone.0245858.t002
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low correlation between miR-33b and SREBF1 gene expression has been reported in adipose

tissue of pigs [16] and members of the miR-33 family are not co-regulated with their host

genes in most tissues of chickens [35]. Accordingly, in the present study, no significant correla-

tion was observed between miR-33b and SREBF1 gene expression in any tissue. On the con-

trary, miR-33a and SREBF2 gene expression in liver showed a positive correlation (r = 0.5).

Overall, these results suggest that both miRNAs are transcribed in different ways.

Additionally, the analysis of miR-33a and miR-33b expression in liver, adipose tissue and

muscle revealed different expression patterns among tissues for both miRNAs. Similar results

have been also reported in humans with different levels of miR-33a and miR33-b expression

depending on tissue [36], which suggests that different tissue-specific mechanisms are regulat-

ing the expression of miR-33a/b. Conversely, high correlations between miR-33a and miR-33b

expression levels (r> 0.8) were obtained within the muscle and the adipose tissues, suggesting a

similar regulation in the expression of both miRNAs in these tissues. In fact, taking into account

that both miR-33a/b have the same seed sequence, we cannot discard that both miR-33a/b play

a similar function in these tissues. However, different expression levels between miR-33a and

miR-33b in adipose tissue were found. To the best of our knowledge, there are no published

works regarding the role of miR-33a in the adipose tissue of pigs. A study published in humans

determined that miR-33a was constitutively expressed while miR-33b expression increased dur-

ing adipocyte differentiation [37]. Conversely, transfection of miR-33b in porcine subcutaneous

preadipocytes downregulates adipose differentiation and lipid accumulation [16]. Thus, further

studies are necessary to better understand the role of miR33a in pig adipose tissue and deter-

mine if both miR-33a/b have different regulatory functions in this tissue.

A different expression pattern was observed for both miR-33a/b in liver, where the lowest

expression levels and correlation values between miR-33a and miR-33b (r = 0.36) were

obtained. It has been reported that miR-33a and miR-33b work in collaboration with their

host genes regulating lipid metabolism in liver, and while miR-33a participates in the tran-

scriptional control of genes involved in cholesterol pathways [12, 14, 15, 32, 33], miR-33b was

related with fatty acid oxidation and insulin signalling pathway [11, 34]. In pigs, liver plays an

important role in de novo cholesterol synthesis, lipogenesis and fatty acid oxidation [4–6, 38,

39]. In line with the low correlation values observed between both miR-33a/b in liver, miR-

33b tended to be higher negatively correlated with CPT1A expression levels than miR-33a.

Therefore, we could hypothesize that both miR-33a/b plays a different regulatory role in liver,

with miR-33b being involved in FA β-oxidation. This is also supported by the positive correla-

tions between the expression of miR-33a and two genes (PPARGC1A and USF1) found in

liver, because these two genes are transcription factors involved in the regulation of several

genes of fatty acid metabolism [40–42].

In general, suggestive significant positive correlations between miR-33a/b expressions in

either liver and adipose tissue and SFAs, whereas suggestive negative correlations with PUFAs

were observed (Fig 3). It is well-known the role of PUFA in the expression regulation of genes

implicated in FA β-oxidation, adipogenesis, and lipogenesis de novo [43, 44]. Previous studies

of our group reported that BC1_LD animals with a higher intramuscular content of PUFA

increased the expression of genes involved in the fatty acid oxidation and cholesterol homeo-

stasis in liver and inhibited lipogenesis pathways in liver and adipose tissue [45, 46].

In the current study, liver miR-33a was negatively correlated with adipose tissue PUFA con-

tent (r = -0.38). Taking into account that liver is the main organ implicated in the cholesterol

metabolism and secretion of very low-density proteins, we can hypothesize that animals with

high expression levels of miR-33a increase the cholesterogenesis pathway, and therefore the

transport of different FAs, notably to the adipose tissue in order to accumulate triglycerides,

increasing the content of SFA which are used in the lipogenesis process.
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Supporting this hypothesis, in adipose tissue both miR-33a/b were negatively correlated

with the total PUFA content, although only miR-33b reached the threshold for significance.

Porcine miR-33b has been reported to play an important role in adipogenesis and lipogenesis

in adipose tissue, as well as in the control of triglyceride levels [16]. Hence, an interaction

between cholesterol and lipogenesis pathways may explain the correlation between the miR-33

expression in liver and adipose tissue and the FA composition measured in the adipose tissue.

Despite that, we cannot determine the cause-effect direction of the interaction between the

miR-33a/b and the PUFA content, and further functional analyses are needed to better under-

stand the role of miR33 members in the determination of FA composition in adipose tissue or

vice versa. This is of great interest because fatty acids in both muscle and adipose tissue are

determinant of meat quality and its nutritional values. In detail, SFA consumption has been

related to modern human diseases such as obesity, cancer and cardiovascular diseases, while

PUFAs are directly related with a decrease of meat quality and a reduction of total cholesterol

concentration [1, 47].

Conclusions

Our study manifested that miR-33a and miR-33b were transcribed in a different manner and the

miR-33a/b expression regulatory mechanisms were different according to tissue. miR-33a and

miR-33b expression levels presented high correlations in adipose tissue and muscle which may

indicate a similar regulation of their expression in these two tissues. Conversely, in liver, the dif-

ferent expression pattern and low expression correlation between miR-33a and miR-33b found,

together with the negative correlation between miR-33b and CPT1A expression and positive cor-

relations between miR-33a and PPARGC1A andUSF1 expression, indicates that both miRNAs

have different functions and miR-33b may be involved in FA-β-oxidation. However, further

functional validation studies are needed to demonstrate the miRNA regulation of in-silico target

genes involved in lipid metabolism. Finally, positive and negative correlations between miR-33a/

b expression and SFA and PUFA content, respectively, were identified which suggested a possible

role of miR-33 family in the determination of FA composition in adipose tissue.
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