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INTRODUCTION

It is well-documented that neural control of stepping and standing can be generated in mammals
within the spinal neuronal networks. Having a high level of automaticity, these locomotor-
related neuronal circuits can produce a “stepping” movement pattern in the absence of input
from the brain and/or peripheral afferent inputs. Recent observations have provided important
insight into the properties of the spinal and supraspinal circuitry that are involved in movement
control. We have shown that the spinal circuitry in mice, rats, cats, and humans can be
neuromodulated to regain sensorimotor function after complete paralysis (Gerasimenko et al.,
2008). We have also shown that with epidural spinal cord stimulation at the lumbar level,
full weight-bearing standing, and voluntary movements of the lower limb can be recovered in
humans with complete paralysis (Angeli et al., 2014). Altering spinal cord excitability enables
voluntary movements after chronic complete paralysis in humans. Recent breakthrough studies
reported that chronically paralyzed individuals regained the over-ground walking with balance
assistance through interleaved continous lumbosacral (L1-S1) epidural stimulation and task
specific locomotor training (Angeli et al., 2018; Gill et al., 2018).

We have developed a novel method of non-invasive transcutaneous spinal cord stimulation
(scTS) which can modulate the excitability of spinal circuitry via electrodes placed on the skin
overlying the cervical, lower thoracic, lumbosacral, and coccygeal vertebrae using a special form
of electrical pulses delivered at a high frequency (Gerasimenko et al., 2015a). This methodology
was able to neuromodulate the spinal locomotor networks such that involuntary stepping-like
movements were induced in non-injured subjects when their legs were placed in a “gravity-neutral”
apparatus (Gerasimenko et al., 2015b). In addition, our initial results with scTS show that this
strategy can facilitate individuals having motor complete paralysis to generate rhythmic stepping
patterns and non-repetitive voluntary movements (Gerasimenko Y. P. et al., 2015). The novel
finding in this and ongoing studies is that specifically configured multisite stimulation can produce
a more robust response when compared to the single site stimulation. Based on these findings,
we developed a three-by-three multielectrode transcutaneous array that allows multiple sites to
be modulated, thus, providing subject-specific options for controlling posture and locomotor
behavior (Gerasimenko et al., 2015a). We observed that the effectiveness of inducing of involuntary
steppingmovements in a non-injured subject with legs placed in a “gravity-neutral” position during
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spinal cord stimulation at one level (T11) with 3 interconnected
electrodes (A,B,C) located at midline (B) and laterally (A and C)
to the spinal cord vs. stimulation at 2 levels (T11 + L1) with
electrodes (T11-ABC) + (L1-ABC) was different. The amplitude
of knee displacement and surface electromyographic (sEMG)
activity of leg muscles were significantly higher with multi-site
stimulation at 2 levels than at one level (Gerasimenko et al.,
2015b). Our preliminary data reveal that use of themultielectrode
surface array can fine-tune the control of the locomotor behavior.
Here we introduce a new strategy of spinal neuromodulation
using the continuous stimulation of locomotor circuitry and the
rhythmic stimulation of motor pools.

COMBINED ACTIVATION OF LOCOMOTOR
CIRCUITRY AND MOTOR POOLS

This study is based on the concept of differential modulation
of neuronal networks projecting to specific interneurons that
coordinate the levels of recruitment of different combinations
of motor pools throughout a step cycle. A novel approach
of spatiotemporal spinal stimulation through rhythmic scTS
coupled with continuous scTS to promote locomotor neural
plasticity by activating regional spinal networks in a manner
similar to that observed during normal gait has been suggested.
The general idea is the use of continuous spinal stimulation
to activate the locomotor networks in combination with
rhythmic targeted activation of flexor and extensor motor pools
of leg muscles in different phases of step cycle to further
enable a stepping-like behavior. Recently it was shown that
spatiotemporal epidural stimulation of flexor and extensor motor
pools of left and right legs can facilitate swing or stance phases
during the stepping cycle in chronic motor incomplete. Severely
paralyzed (unable to walk over-ground) individuals recovered
over-ground walking with balance assist (Wagner et al., 2018).

Our experimental paradigm included rhythmic scTS with
two cathodes at each T11 and L1 delivered 2.5 cm lateral to
the midline of the spine, and continuous scTS at T11 or
L1 applied along the midline between the spinous processes
(Figure 1A). ScTS was carried out with the electrical stimulator
BioStim-5 (Cosyma INC). Stimulation was delivered using 2.5-
cm-diameter round gel adhesive electrodes (Syrtenty Premium
TENS) as cathodes, and two interconnected 5 × 9 cm2 self-
adhesive electrodes (Axelgaard, ValuTrode Cloth) placed over
the iliac crests as anodes. The stimulation waveform consisted of
monophasic rectangular 1.0-ms pulses at a frequency of 15 and
30Hz, each pulse filled with a carrier frequency of 5 kHz.

In non-injured subjects (N = 6, 23.7 ± 2.3 years), stance and
swing phases were detected by sensors-gyroscopes. Initiation of
hip extension was the trigger for activation of extensor pools
(L1) during stance phase, whereas the initiation of hip flexion
was triggered for activation of flexor motor pools (T11) during
swing phase (Grishin et al., 2020). During walking on treadmill,
stimulation applied unilaterally at L1 during the stance phase
with a frequency of 15Hz increased the amplitude of movements
in the hip joint, and significantly increased sEMG activity of the
extensor muscles of the thigh and flexor muscles of the shank.

Meanwhile, unilateral stimulation at T11 with a frequency of
30Hz applied during the swing phase increased walking speed
due to reduction of the stance phase duration. Additionally, the
stimulation induced an increase in the amplitude of movements
in the hip joint and the lifting of the knee as well as foot
elevation. This was accompanied by an increase of sEMG activity
in BF and TA muscles (Figure 1B). Combined spatiotemporal
stimulation at L1 and T11 applied to stance and swing phases,
correspondingly did not cause a change in the duration of the
stepping cycle and the phases of the step, however, it changed
the kinematic characteristics of movements. In the stance phase,
the amplitude of movements in the hip joint increased. The
amplitude of movements in the hip joint increased in the swing
phase as well, but it also increased the lifting of the knee and
foot elevation (Figure 1B). Additional continuous stimulation
applied along the midline at T11 with frequency of 30Hz
facilitated the effect of rhythmic spatiotemporal stimulation.
Thus, the data obtained shows that specifically configured multi-
site scTS is able to selectively facilitate the activation of the
motor pools of the lower extremities and control their activity
to regulate the phases of the stepping cycle.

DISCUSSION

Our experience with multi-electrode epidural stimulation in
mice, rats, and humans (Gerasimenko et al., 2008; Harkema
et al., 2011; Angeli et al., 2014) indicate the potential to regain
overground load-bearing stepping, as well as voluntary control
of lower limb movements, using non-invasive neuromodulatory
strategies. The main issue is to determine the potential
of scTS applied to different sites of the spinal cord can
provide spatiotemporal specificity of the locomotor network
in a way that facilitates phase-specific flexor-extensor motor
pool populations. Early, we demonstrated that transcutaneous
electrical stimulation of rostral and caudal areas of lumbosacral
enlargement resulted in a selective topographical recruitment
of proximal and distal leg muscles based on their threshold
intensity, maximal slope of the recruitment curves, and
plateau point intensity and magnitude (Sayenko et al., 2018).
Our data are generally consistent with previous reports and
myotomal maps of the spinal cord and lumbosacral roots
(Stewart, 1992; Ivanenko et al., 2006). It is well-known that
the lumbosacral enlargement not only contains motor neuron
pools projecting to proximal and distal leg muscles, but
also encompasses neuronal networks controlling locomotion
and standing. We demonstrated that epidural stimulation
of the spinal rostral segments (L2) is more effective for
inducing rhythmic movements, whereas stimulation of more
caudal segments (S1–S2) allows for greater postural control
(Angeli et al., 2014). During combined locomotor-specific
scTS over the T11 at 30Hz, with the postural-specific scTS
over the L1 at 15Hz, we observed the interplay of various
stimulation characteristics in generation of continuous and
alternating weight-bearing, and facilitation of body-weight
transitions allowing effective stepping motions to be performed
(Sayenko et al., 2018). These results suggest that stimulation
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FIGURE 1 | Rhythmic and continues spinal cord transcutaneous stimulation paradigm. (A) Schematic localization of stimulation electrodes. Midline electrodes at T11

and L1 generate continuous stimulation at 30Hz. Lateral electrode at T11 generate rhythmic stimulation at 30Hz during swing phase and lateral electrode at L1

generate rhythmic stimulation at 15Hz during stance phase. (B) Surface EMG activity of distal [tibialis ant. (TA) and medial gastrocnemius (MG)] and proximal [vastus

lat. (VL) and biceps femoris (BF)] muscles as well as displacement of terminal poit (Fing) during walking on the treadmill without stimulation, with rhythmic stimulation of

L1 at stance phase, with rhythmic stimulation of T11 at swing phase, and combined L1 and T11 stimulation applied to stance and swing phase, correspondingly.

of multiple spinal sites related to postural and locomotor
circuitries activation might be complementary and thus can be
a viable strategy to facilitate more effective stepping-like and
postural movements.

Given the numerous observations of the different sources and
techniques to gain access to the neurons that generate locomotor
rhythms, it is not surprising that modulation of these neurons,
commonly referred to as the locomotor central pattern generator,
can be modulated electrically to different physiological states
from multiple spinal segments, as well as multiple supraspinal
sites. Although the rostral lumbar segments generate more robust
pattern generation, neuromodulatory effects of stimulating at
S1 was not expected to give the enhancement of the locomotor
rhythms derived from the fictive locomotor patterns observed
in the rodent neonatal preparation as reported in series of
experiments by Lev-Tov and colleagues (Lev-Tov et al., 2000).
For example, changes in the endogenous levels of cholinergic
components in the sacral area with ascending projections via the
ventral funiculus (Finkel et al., 2014) and Alpha-1 adrenoceptor
agonists in this region have been observed to modulate the fictive
locomotor output (Gabbay and Lev-Tov, 2004).

We have also shown that the rostral lumbar segments
are the key controllers of hindlimb locomotor rhythmicity
in the adult spinal rat (Gerasimenko et al., 2019). We
observed that the rats with spinal cord transections at T8
and S1 remained capable of generating coordinated hindlimb
locomotion when receiving epidural stimulation at L2. In
contrast, minimal locomotion was observed when S1 stimulation
was delivered after spinal cord transections at T8 and L2. These

findings are compatible with work of others demonstrating the
critical role of commissural neurons located in rostral lumbar
segments supporting locomotor rhythm generation in response
to bulbospinal activation of locomotion in vitro neonatal rat
spinal cord (Cowley et al., 2009).

Shik hypothesized the role of propriospinal system in
initiation of locomotion (Shik, 1997). It has been demonstrated
that microstimulation of stepping strip in the dorsolateral
funiculus (DLF) elicited stepping movements in mesencephalic
cats (Kazennikov et al., 1983). According to these authors,
neurons responding to stimulation of the stepping strip send
their axons into the ventrolateral funiculus (VLF) near the
gray matter. It has been suggested that excited fibers of DLF
can activate hindlimb stepping indirectly through DLF -VLF
propriospinal loops (Shik, 1997). Our data are consistent with
suggestion about activation the locomotor-related neuronal
network through DLF. We have demonstrated that after chronic
local lesion of the dorsolateral column it was impossible to induce
the locomotor activity in the cat by epidural stimulation of the
spinal cord (Gerasimenko et al., 2002).Recently, neurotechnology
that targets specific motor pools for restoration of walking
in humans with spinal cord injury (SCI) was demonstrated.
The authors delivered spatiotemporal epidural stimulation to
specific flexor/extensor motor pools during specific phases of the
locomotor cycle. Using this targeted neurotechnology, paralyzed
chronic motor incomplete individuals were able to walk over-
ground with balance assist (Wagner et al., 2018). The technology
we describe here is able to target these motor pools similarly to
restore walking without the need of surgical implantation.
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Here we demonstrated that non-invasive preferential
activation of spinal structures at specific segments is possible.
According to the results presented on the Figure 1B, it
is clear that lateral stimulation at T11 engaged the neural
circuits controlling flexion, whereas lateral stimulation at L1
primarily recruited the circuits controlling extension during
stepping. Spatiotemporal T11+L1 stimulation enhanced
generation of motor patterns and enabled control of leg
movements. We suggest that this non-invasive technology
could be effective for neuromuscular control of postural and
locomotor function in post-stroke subjects and in individuals
with SCI.
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