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Abstract: Organic waste generation, collection, and management have become a crucial problem
in modern and developing societies. Among the technologies proposed in a circular economy and
sustainability framework, composting has reached a strong relevance in terms of clean technology
that permits reintroducing organic matter to the systems. However, composting has also negative
environmental impacts, some of them of social concern. This is the case of composting atmospheric
emissions, especially in the case of greenhouse gases (GHG) and certain families of volatile organic
compounds (VOC). They should be taken into account in any environmental assessment of com-
posting as organic waste management technology. This review presents the relationship between
composting operation and composting gaseous emissions, in addition to typical emission values for
the main organic wastes that are being composted. Some novel mitigation technologies to reduce
gaseous emissions from composting are also presented (use of biochar), although it is evident that a
unique solution does not exist, given the variability of exhaust gases from composting.

Keywords: organic wastes; composting; gaseous emissions; mitigation strategies

1. Introduction

As a result of increasing solid wastes’ generation, the implementation of a reliable
technology to deal with these wastes is considered as a pillar of sustainable development
of any nation [1]. However, the selection of any technology should be compatible with
the economic situation within the jurisdiction. Concurrently, the used technology has to
satisfy the laws and regulations that fundamentally aim to reduce any environmental and
health problems [2]. Among the different technologies used in this field is the composting
process, which has been used to deal with solid wastes and mainly for the organic fraction
of wastes [3,4]. This process is recognized as an environmentally friendly and cost-effective
method, as organic matter is biologically degraded under aerobic conditions [5]. This
biodegradation of organic matter contributes to reducing the volume of wastes and pro-
ducing a stabilized and nutrient-rich final end product, “compost”, that could be used
in agricultural activities due to its various positive impacts on the physical and chemical
properties of the soil, meanwhile reducing utilization of inorganic fertilizers [6–8]. Actu-
ally, when the process-controlling parameters are well adjusted, this will lead to different
advantages; thereby the process is viewed as a sustainable alternative for landfilling and
other treatment options [9]. However, even though composting is a natural biochemical
decomposition process, a successful composting operation that produces a valuable end
product is normally associated with releasing gaseous emissions including greenhouse
gases (GHGs) into the atmosphere (Figure 1). The released GHGs are attributed to energy
requirements for composting plants’ operation and to the biochemical reactions within the
organic waste itself, which produces CO2, methane (CH4), and nitrous oxide (N2O) due to
the mineralization and degradation of organic matters [10,11]. According to Hao et al. [12],
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the majority of organic carbon is converted to CO2, whereas the methane accounts for less
than 6%. Nevertheless, it should be noted that even though CO2 represents the major part
of the emissions, it does not add to global warming due to the biogenic origin of carbon.
On the contrary, the other emissions resulting from the process such as CH4 and N2O
have a direct impact on the global warming, while NH3, Sulphur compounds, and most
of the volatile organic compounds (VOCs) emissions cause undesirable and other odor
nuisances [9,13,14]. Indeed, these gases contribute to climate change, global warming,
acidification, and eutrophication of ecosystems as a result of NH3 deposition, which also
contributes to the formation of particulate matters in the air [9]. As a matter of fact, these
GHGs and ammonia (NH3) deteriorate the compost quality, besides being a secondary
environmental pollution, as mentioned before [15,16].
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Figure 1. Monitoring exhaust gases from a composting process. * H2S is only significantly ob-
served when anaerobic conditions prevail in the composting process. ** VOCs: Volatile Organic
Compounds, a wide group including families such as alcohols, aldehydes, alkanes, aromatic hydro-
carbons, carboxylic acids, ketones, nitrogen compounds, phenols, sulphur compounds, and terpenes,
among others.

Emissions are formed due to inadequate aerobic conditions of composting [9]. Gener-
ally, the creation of anaerobic zones in compost mixtures results in CH4 emissions, whereas
nitrogen transformation and loss (NH3 and N2O) are linked to ammonification, nitrifi-
cation, and denitrification during the composting process [17–19], but still they are less
than GHGs’ emissions generated from landfilling and waste-to-energy processes [20–22].
During the composting process, various forms of VOCs are formed, where the rates and
specific forms of these emissions highly depend on the feedstock materials and composting
phases, taking into account that aeration of the composting mixture has a major role in
releasing of these compounds [23,24]. The rate of gaseous emissions is differing based on
the applied composting method, whereas the initial content of the carbon and nitrogen is of
great importance in the produced amount of gaseous emissions such that low total carbon
(C) and nitrogen (N) content can simultaneously reduce CH4, CO2, and N2O emissions [25].
In this regard, it has been reported that manure composting may account for 46% and
67% of the initial N and C content of the original manure, respectively [26]. The losses in
nitrogen mass are normally in the form of NH3 emissions, whereas nitrous oxide emission,
which has 265 times the global warming potential of CO2 [27], accounts for about 0.1–5%
of total N losses [28–30]. Noteworthy is the amount of these emissions influenced by
the composting technology. In this context, silo composting reduced GHGs’ losses by



Processes 2021, 9, 1844 3 of 15

82.84% compared with turning composting, which resulted in larger carbon and nitrogen
losses [25].

Reducing the impact of the resulting emissions from composting has been investigated
and practiced using different approaches. For example, biofilters effectively reduced the
NH3 emission with mitigation efficiency (ME) of 97%, whereas adding sawdust or straw
reduced CH4 and N2O emissions by 66.3% and 44.0%, respectively, as such types of
materials enhance the absorption and microbial assimilation of NH4

+/NH3 [25]. Providing
an optimal initial mixture and maintaining aerobic conditions among other practices have
been used to mitigated both odors and GHGs [31]. This research presents a comprehensive
overview on the gaseous emissions from composting processes. Factors that influence the
production of emissions and the mitigation approaches are highlighted also.

2. Gas Emissions from Composting Process

As a result of microbial activities and putrefaction, gaseous emissions from organic
wastes are produced [10]. These emissions, which include CO2, CH4, N2O, Sulphur
compounds, and many other volatile organic compounds (VOCs), as shown in Table 1,
have been detected during the different phases of the waste management [9,31].

Table 1. Volatile organic compounds (VOCs) detected in the composting of different organic wastes.

Waste Main VOC Family Other VOCs Reference

Poultry litter Alkanes and alkylated benzenes Aldehydes, terpenes, and ketones [32]
Chicken manure and biochar Ketones, phenols, and organic acids Aliphatic, aromatic, and terpenes [33]

Municipal solid waste Alkylated benzenes, alcohols, and alkanes - [14]
Wastewater sludge Terpenes Furans and esters [34]

Digested wastewater sludge Terpenes Alcohols and Ketones [34]
Swine carcass Sulphur compounds - [35]

Municipal solid waste Terpenes Alcohols, volatile fatty acids, and
aromatic compounds [36]

Livestock and Poultry Manure Sulfur compounds, aliphatic
hydrocarbons, aromatic hydrocarbons Chlorinated organic compounds [37]

Municipal solid waste digestate Terpenes and oxygenated compounds Sulphur compounds and methanethiol [38]

Green waste Alcohols Alkenes, aliphatic alkanes, aromatic hydrocarbons,
ketones, aldehydes, furans, and esters [39]

Sewage sludge Isovaleraldehyde, butyric acid, sulphur
compounds, and pinene Indole, skatole, and phenol [40]

In the composting process, the amount of emitted gases is highly influenced by
the type of treated wastes, composting technology, and operational conditions, mainly
aeration, which would have a direct impact in reducing the rate of emissions, mainly
N2O and methane, when it is properly adjusted [9]. According to Goldstein [41], the
odors generated from composting plants are attributed to different compounds including
terpenes, alcohols, aldehydes, fatty acids, ammonia, and a range of Sulphur compounds.
Methane is normally formed during the composting process due to anaerobic condition
that could be established in some parts of the composted material such as middle zones of
a pile, which suffer from insufficient diffusion of oxygen [12,24]. However, nitrous oxides
are produced due to nitrification and denitrification [42], taking into account that other
conditions such as temperature, nitrate concentration, and aerobic conditions influence
these emissions [43].

For the determination of emissions’ rates and their subsequent global impact, emission
factor is usually used as a useful tool for VOCs, NH3, or GHGs. The emission factor is
usually expressed per ton of treated waste or per amount of obtained compost [44]. For
instance, GHGs’ emission factor, in terms of kg CO2eq.Mg−1 dry matter of sewage sludge
(DM–SS), was found to be 2.30 × 102. On the other hand, the sewage sludge composting
odor emission factor (OEF) was 2.68 × 107 ou.Mg−1 DM–SS [45]. Different emission factors
could be found in the literature, depending on the characteristics of the feedstock or the
composting technology [46–49].
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Compared with other treatments or management technologies for solid waste, differ-
ent studies demonstrated that the composting process has less impact on global warming,
as it produces lower amounts of GHGs. In this regard, Lou and Nair [50] showed that com-
posting of municipal solid waste produced about 1.29 t CO2-eq/t-of-waste, which is lower
than the amount produced from landfills. Actually, this was concluded and documented
by different studies, which emphasized that composting produces lower amounts of emis-
sions (g CO2-eq/t-of-waste) compared to landfilling and incineration based on emission
factor [21,49–51]. However, when composting and vermicomposting were compared, it
was found that the vermicomposting process caused 78.19% lesser GHGs’ emission as
compared to the composting process, which released 80.9 kg CO2-eq/t-of-waste [52].

3. Factors Affecting the Emissions’ Rates

During the initial stages of the composting process, both nitrogen and sulfur are in
the organic form [53]. As the process proceeds forward, the mineralization of the organic
nitrogen leads to the formation of ammonia (NH3), which could react with hydrogen
ions to form ammonium (NH4

+). The NH4
+-to-NH3 equilibrium is highly affected by

the dominant conditions within the composting mixture, mainly the pH value and tem-
perature [54–56]. Thermophilic temperatures and alkaline conditions enhance the loss of
nitrogen as ammonia. Additionally, ammonia-oxidizing bacteria or archaea and nitrite-
oxidizing bacteria convert part of the nitrogen to nitrate through the nitrification process.
This nitrate is used by the microbial community, but it would be converted to N2O under
certain conditions including denitrifications’ process, especially under insufficient oxygen
levels [54]. Furthermore, the low levels of oxygen lead to the formation of some anaer-
obic zones within the compositing mixture. These zones play a major role in the sulfur
transformation and the production of H2S through the action of Sulfate-reducing bacteria
(anaerobic) during the degradation of the organic matter [57]. Additionally, during the
formation of H2S, other reduced sulfur compounds will also be produced, such as MeSH,
Me2S, Me2SS, and others [54]. The following are some of the main factors that affect the
emissions’ rates during the composting process.

3.1. Composting Method

Composting of solid wastes can be carried out using different technologies [4]. As
reported in various studies, the used technology has a direct impact on the rate of gaseous
emissions [31]. In this regard, turned and windrow technologies showed higher values of
CH4, CO2, and N2O compared with other technologies [25,58–60]. Turning of composted
materials increases the chances of releasing trapped gasses within the composting materials
and exposing them to the air. The frequent turning helps in re-structuring the materials
and improving the porosity; thus, more air could be diffused that supports the microbial
activities and promotes the biodegradation of the organic matter, which ultimately increases
the amount of CO2 volatilization [25,61,62]. Additionally, N2O emissions are high in turned
piles compared with other technologies. This is attributed to the losses as a result of
nitrification near the surface and denitrification by mixing NO3 /NO2 accumulated on
the surface into the pile [63–65]. Amlinger et al. [44] suggested that high aeration and
effective stripping of NH3 during the early stages of composting can reduce N2O formation.
Additionally, the enzymatic activity is thought to be affected by turning and increases the
N2O emissions. Under anoxic conditions, denitrification enzymes are in an equilibrium
state; however, when the material is exposed to oxygen as a result of turning, nitrous oxide
reductases that can catalyze the transformation of N2O to N2 are clearly more severely
inhibited by O2 than the other reductases, resulting in a stronger N2O emission [66,67].
Between turned piles and static systems, lower emissions of N2O and CH4 were observed in
turned piles, attributed to the difference to the anaerobic zones in the static system [68–70].
In silo composting, the N2O and CH4 emissions were lower than other methods. This is
because a good aeration system resulted in reducing the chances for the denitrification
process. Moreover, more NH3 is emitted from this system, which reduced the substrates
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for N2O emissions [25,59,60]. Similar observations regarding the aeration effect on the
emissions were noticed by Ermolaev et al. [71], such that lower emissions of CH4 and NO2
were observed regardless of the amount of aeration.

3.2. Average Composting Temperature

The temperature evolution during the composting process has a direct impact on
the rate of gaseous emissions. It is well documented that a positive correlation is nor-
mally observed between temperature and emissions’ rate, where a higher rate of emissions
was recorded with high temperatures and, more specifically, in the thermophilic ranges
(45–70 ◦C) [9]. This could be attributed to the high rate of organic matter decomposition at
higher temperature [25,62,72]. In this regard, Fillingham et al. [59] demonstrated that the
highest NH3 emissions were recorded in silo composting (111.07 g [NH3-N] kg−1 [TN])
compared to windrow composting, and the difference was attributed to high temperatures,
which were about 65 ◦C in silo composting. These conditions enhance the equilibrium
between ammonium and NH3 towards gaseous NH3, whereas low temperature inhibits
microbial ammonization, thus reducing NH3 emissions [25,63]. Similarly, elevated tem-
peratures result in increasing CH4 emissions. This could be explained by the high rate
of microbial activities that result in increasing the temperatures, and these conditions are
associated with high oxygen consumption, which ultimately leads to forming anaerobic
conditions and the formation of CH4 [45,72–74]. The same trend was also observed regard-
ing CO2 and N2O emissions that exhibit an increase with increasing temperature [63,75].
In this context, the maximum concentrations measured during sewage sludge composting
were 2600 ppmv of NH3, 66 ppmv of H2S, and 1650 ppmv of tVOCs, which were observed
during the peak of maximum temperature of the reactor [76]. Accordingly, controlling this
parameter would help in controlling the emissions’ rates [9].

3.3. Initial Moisture Content

Providing an optimum moisture content is crucial for the composting process per-
formance, as it will promote the microbial activities [4]. However, increasing moisture
content above the recommended values (40–60%) would result in creating anaerobic zones
within the composted materials [25]. This was clear regarding CH4 emissions that were
positively correlated to the moisture content of the compost [28,77], meanwhile a negative
correlation with moisture content was recorded regarding the CO2 emissions [25]. How-
ever, for N2O emissions, the correlation with moisture content is not well established. For
instance, Hwang and Hanaki [78] demonstrated that N2O emissions decreased when the
material became very moist because of the inhibition of N2O nitrification, but Yan et al. [79]
showed that the N2O would increase with water content as aerobic and anaerobic zones
would simultaneously exist and also the nitrification and denitrification might be promoted
concurrently and N2O emission flux could become relatively high.

3.4. Initial Total Carbon (TC) and Initial Total Nitrogen (TN) Content

Carbon and nitrogen are essential for the microbial activities during the composting
process. Providing an adequate ratio of carbon and nitrogen (normally indicated as C/N
ratio, with recommended values between 25:1 to 30:1) is considered as one of the controlling
parameters in this process [25,31]. Importantly, these elements also have an impact on the
rate of emissions resulting from the process. When the microbial communities biodegrade
the organic matter under aerobic condition, most of the carbon is lost as CO2, such that a
linear relation between carbon content and CO2 emissions would be observed during the
process [76]. Furthermore, initial carbon content was found to have a positive correlation
with CH4 emissions [80], considering the nitrogen content, which is a primary source for
methanogenic bacteria [11,81]. Similarly, the rate of N2O emissions is positively correlated
with nitrogen content, as both nitrification and denitrification are enhanced by a high
content of nitrogen [65,82]. Usually, composting feedstocks with low C/N ratios and
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high moisture contents provides favorable conditions of producing more greenhouse gas
emissions [31]. Ammonia emissions are also affected by the C/N ratio [31,73,83,84].

3.5. Aeration Rate

As an aerobic process, supplying a sufficient amount of oxygen is recognized as an
important parameter for maintaining the microbial activity and reducing the gas emission
during the composting process [85]. Sufficient aeration through forced aeration or mechan-
ical turning would guarantee the non-formation of anaerobic zones within the composting
mixture, thereby reducing odor problems [9,86]. Importantly, and per statistical analysis,
it absolutely was clear that aeration rate was the foremost important factor that could
significantly affect the NH3, CH4, and N2O emissions [5,87]. Rosenfeld et al. [88] indicated
that aeration reduced the concentrations of NH3, CH2O2, and CH3COOH by 72%, 57%,
and 11%, respectively, compared to the windrow. Additionally, Quiros et al. [89] reported a
reduction in emissions’ rates by five times when frequent turning was employed compared
to non-turned treatments. However, it should be taken into account that an adequate
aeration rate has to be applied that would maintain the biological activity and reduce the
emissions’ rates at the same time [5,90–92]. Applying higher aeration rates would reduce
some emissions such as CH4, but others such as NH3 and N2O would be promoted. Addi-
tionally, higher aeration rates might render temperature evolution, thus decelerating the
degradation of the organic matter as a consequence [5]. Results obtained by Chowdhury
et al. [90] showed that low aeration rates were more practical in reducing GHGs’ emissions.
The same observation was reported by Zhang et al. [93] during composting of kitchen
waste, where aeration rates of 0.1, 0.2, and 0.3 L (kg DM min)−1 were studied and it was
found that the lower aeration was more significant than the other two treatments. Addi-
tionally, it was indicated that intermittent aeration was better than continuous aeration in
mitigating CO2 emissions [9]. Nevertheless, Ermolaev et al. [71] indicated that aeration
reduced the emissions of CH4 and NO2 regardless of the rate of aeration. Turning of the
composted mixtures has a positive impact on reducing the rate of emissions also. This
is because turning gives the chance for air exchange and releasing of different gases, as
indicated in different studies [11,17]. The efficiency of aeration and turning in reducing
emissions’ rates was evaluated by Friedrich and Trois [10] during composting of garden
waste. The study revealed that turning resulted in 8.14% higher GHGs than an aerated
treatment. These findings prove that aeration is better than other treatments in reducing
GHGs’ emissions [94,95]. Another important element for maintaining the aerobic condi-
tions is providing an optimal ratio of a bulking agent that provides proper structure and
porosity for the composting mixture [31], meanwhile maintaining the heat and biological
activity [96,97]. This will be deeply discussed in the following section.

3.6. pH Value

An optimum pH value between 6 and 8 (ideally 7) is recommended for microbial
population during successful composting process. However, this parameter fluctuates,
especially during the first stages of the process as organic acids are released due to organic
matter degradation and, thus, the pH decreases. After that, a gradual increase in alkalinity
occurs as a result of the phenolic and carboxyl groups’ decomposition [4]. The increase
in the pH level promotes ammonia release, by influencing the NH4

+ to NH3 equilibrium
in spite of its directs influence on biological activity, as indicated [54,55]. However, these
conditions are considered suitable for decreasing other emissions such as H2S, which
normally increases under low pH values [56]. These behaviors were documented by Gu
et al. [98], where reducing the pH of compost resulted in reducing the cumulative NH3
emissions and TN losses by 47.80% and 44.23%, while an increase in the emissions of
volatile sulfur compounds and total sulfur losses was observed. More information and
details about the effect of pH adjustment to mitigate the emission rates are provided in
Section 4.4.
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4. Mitigation Strategies
4.1. Providing Adequate Bulking Agent

The addition of some materials to organic wastes has proven its efficiency in im-
proving air convection within the composting mixture, thereby reducing the amount of
gases’ emissions such as CH4 and N2O from composting, since most of the degraded
carbon would be released as CO2 [11,28,90]. For instance, sawdust and straw for dairy
manure composting resulted in an effective mitigation for CH4 and NH3 with ME values
of 66.3% and 44.0%, but they may increase CO2 emission [12,99]. Additionally, Li et al. [94]
demonstrated that ammonia emission may well be mitigated by adding a mix of sucrose
and straw powder at the start stage of a composting process [95]. Indeed, these materials
facilitate the absorption and microbial assimilation of ammonium, which decreases NH3
emissions [9,25,95].

4.2. Introducing Microorganism for Promoting Nitrification Process and Reducing NH3 Emissions

This approach stands on the mineralization of organic nitrogen into ammonium ni-
trogen, which could be transformed into nitrate by nitrification and eventually to N2 by
denitrification, or the ammonium could even be also a fixed microbial protein under the
action of fungi [25,90,100–103]. It was found that the introduction of mature compost rich in
nitrifying microorganism to food wastes’ composting was able to reduce NH3 volatilization
by 36% [104]. Nevertheless, and despite the capability of this approach in reducing NH3
emission, regulating the denitrification process to reduce N2 and N2O still represents a
challenge for its successful application [5,103]. Additionally, the introduction of some ex-
ogenous microbial communities including CC-E (a complex bacterial community in which
Alcaligenes faecalis is the main advantageous strain) and EM (Effective Microorganisms,
a kind of commercial microbiological agent) for dairy manure composting reduced the
potential for NH3 emissions, with ME of 9.15% [104,105].

4.3. Vermicomposting

This composting approach demonstrated promising results in reducing the amounts
of gaseous emissions including nitrous oxide, CH4, NH3, and others [95,106]. The de-
crease in emissions’ rates is attributed to the reduction of anaerobic denitrification, due
to the burrowing action of the earthworms [107]. Furthermore, the large specific surface
area and loose texture in vermicomposting contribute to creating a strong adsorption
capacity and, at last, reducing production of different emissions, among them the NH3,
where vermicomposting was able to mitigate NH3 emission with a ME median value of
33.5% [15,25,108]. The loss of texture improves the aerobic conditions and„ therefore, the
biodegradation of the organic matter as a consequence. In this regard, it was noticed that
CO2 emissions were increased, whereas a decrease in ammonia emissions and nitrous oxide
was noticed as well as a sink of methane in treatments with earthworms [109,110]. Similar
results were obtained by Chan et al. [108] and Velasco-Velasco et al. [111]. Combining
pre-composting and vermicomposting with additions of reed straw and zeolite resulted
also in a significant reduction of ammonia, nitrous oxide, and methane during composting
of duck manure [95,111].

4.4. Using Different Additives

The addition of phosphogypsum results in decreasing the pH of the composting
mixture. The high sulphide concentrations and acidic conditions due to the use of phospho-
gypsum could inhibit methanogenesis and the action of N2O reductase, thus reducing CH4
and N2O emissions [12,25,112,113]. Additionally, adjustment of pH has been practiced
to reduce the emissions of NH3. About 55.7% of NH3 emissions was decreased due to
the reduction in volatilization when phosphogypsum was applied [114]. Additionally,
the addition of both K2HPO4/MgSO4 and KH2PO4/MgSO4 as a pH buffer agent’s ad-
ditive contributed to reducing NH3 emissions [100]. However, health risks due to high
hydrogen sulphide concentrations have to be considered when this mitigation method is



Processes 2021, 9, 1844 8 of 15

to be used [25,115]. Manure acidification significantly (up to 93%) decreased the emissions
during storage and composting processes [116,117]. Excessive acidification (pH = 5), on
the other hand, increased N2O emissions (18.6%) during composting. When manure was
acidified to pH of 6, N2O (17.6%) and CH4 (20%) emissions, as well as GHG emissions, rep-
resented as global warming potential (GWP) (9.6%) were reduced during composting [118].
The addition of calcium magnesium phosphate fertilizer (CaMgP) also demonstrated its
effectiveness in reducing emissions’ rates during the composting process [119]. In this
regard, Zhang et al. [93] reported that CaMgP could reduce H2S emissions by 65%. Similar
results were obtained when the effect of calcium magnesium phosphate fertilizer (CaMgP),
biochar, and spent mushroom substrate (SMS) additives was investigated on compost ma-
turity and gaseous emissions during pig manure composting. Ammonia (NH3), hydrogen
sulfide (H2S), dimethyl sulfide (Me2S), and dimethyl disulfide (Me2SS) emissions could all
be reduced using the three additives. However, when it came to reducing NH3 emissions,
the effect of adding CaMgP was the most noticeable (42.90%). CaMgP to H2S emission
reduction was similar to SMS, which was 34.91% and 32.88%, respectively. The three
additives had obvious emission reduction effects on Me2S and Me2SS, all of which were
greater than 50%. Adding SMS, on the other hand, reduced N2O emissions by 37.08% [120].

Struvite could also be used to reduce emissions as struvite crystallization enhances
nitrogen (ammonium) conservation during composting, which thereby reduces NH3 emis-
sions [47,121]. However, this approach increases the salinity of the produced compost [5,94],
but this limitation could be mitigated by using other additives like lime or zeolite [18,122].
In this regard, the addition of 10% of zeolite decreased the salinity to 2.8 mS cm−1 and
improved compost maturity; meanwhile, about 18% of NH3 loss was achieved [122].

4.5. Compressing and Covering

This approach depends on reducing the amount of O2 supplied to the mixture, thus
lowering the microbial activity and ammonization, which reduce CO2 and NH3 emissions
during the composting process [101,123]. Additionally, covering reduces gaseous diffusion
into the air and enhances the absorption of some gas emissions. Analysis revealed that this
approach could reach a mitigation efficiency of 10.1% for CO2 and 24.3% for NH3 emission.
However, it should be noted that this approach would increase the anaerobic conditions that
ultimately promote the production of CH4 [15,25,107,109]. Different materials are used as a
cover for composting mixture. These materials include sawdust, plastic, soil, paper waste,
woodchip, wheat straw, peat, and zeolite, among others. Sawdust or straw has a good
performance in absorption of CO2 and NH3, whereas plastic cover renders the gas exchange,
which reduces the dissipation of the emissions [15,25,109,124,125]. Different forms of
zeolite were used as a cover or even mixed with the composting mixture and proved higher
efficiency in reducing emission compared to other cover materials with almost no effect
on the microbial activity [5,93,104,126,127]. This material contributes to increasing the pH
and initial NH3/NH4

+ concentration, which reduces NH3 losses such that a reduction of
44–60% of the NH3 was obtained during poultry manure composting [128]. Similar results
were observed by Madrini et al. [126] in composting of leftover food. It should be noted
that the type of zeolite and its percentage within the mixture affects the reduction rate of
emissions [5,127].

4.6. Biofiltration

Biofilters, which depend on adsorption or biodegradation of pollutants, have proven
their relative efficiency in reducing emissions from the composting process, especially with
NH3, where almost about 90% of this gas was reduced [25,129]. Actually, ammonia emis-
sions in a composting process of organic fraction of municipal solid wastes varied between
18 to 150 g NH3·Mg−1 waste [130], while ammonia concentrations up to 700 mg NH3·m−3

have been reported in exhaust gases from sludge composting [4]. As documented by Pagans
et al. [131], the biofilter achieved a global ammonia removal efficiency of 95.9% at a loading
rate range of 846–67100 mg NH3·m−3 biofilter·h−1, whereas higher removal rates were
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seen when the waste gas had high NH3 concentrations (more than 2000 mg NH3·m−3).
However, this approach is more feasible compared to other technologies when it is used
in closed systems with collection equipment [15]. Furthermore, the complexity and un-
certainty measures in operating the system, as well as understanding the biodegradation
process, are critical for optimal performance. [9]. Concerning CH4, CO2, and N2O emis-
sions, the literature is lacking information about the efficiency of biofilter for treatment of
these emissions [25].

4.7. Addition of Biochar

Biochar as an additive has been used in different research to mitigate the emissions
resulting from composting processes [94,100,120,132,133]. This additive has been used as
a sole material or mixed with other additives [134]. Noteworthy, under almost all stud-
ied conditions, promising results were obtained, despite the lack of clarity regarding its
mechanism on promoting nitrogen assimilation and nitrification [5,90,102,135]. The change
in nitrogen functional groups on the biochar surface was evidence for adsorption and
microbial transformation of NH3/NH4

+ [136]. As indicated in several works, the biochar
promoted microbial activity during the composting process, as it increases the nitrogen
source and decreases toxicity of free NH3 on the microbial activity [137]; hence, a high res-
piration rate as well as a fast decomposition of organic matter were recorded [135,137,138].
Additionally, this was associated with an increase in the temperature and NO3 concen-
tration along with a decrease in the pH and NH4

+ concentrations [131,133]. Emissions of
NH3 and nitrogen losses were reduced by 64% and 52%, respectively, when biochar was
mixed with poultry litters [101]. Similar results were observed when cornstalk biochar was
used where cumulative NH3 emissions were reduced by 24.8% [139]. The presence of the
biochar boosted the activity of nitrifiers due to its high sorption capacity for gases and the
high cation exchange capacity. According to Zhou et al. [140], adding modified biochar
could significantly reduce NH3 emissions by increasing the number of ammonia-oxidizing
bacteria (AOB), inhibiting urease activity, and decreasing the abundance of nitrogen func-
tional genes such as narG and nirS, facilitating the conversion of NH+

4-N into NO−
3-N

and decreasing nitrogen loss. These conditions were responsible for promoting N2O re-
duction up to 59.8% [141]. The effects of bamboo charcoal (BC) and bamboo vinegar (BV)
on lowering NH3 and N2O emissions during aerobic composting (Wheat straw and pig
manure) revealed that both BC and BV enhanced nitrogen conversion and compost quality,
with the combination BC + BV treatment achieving the greatest results. The BC, BV, and
BC + BV treatments decreased NH3 emissions by 14.35%, 17.90%, and 29.83%, respectively,
and the N2O emissions by 44.83%, 55.96%, and 74.53%. BC and BV reduced the NH3 and
N2O emissions during composting [142]. Similarly, Biochar (BC) and bean dregs’ (BD)
effects on nitrifiers and denitrifiers, as well as contributions to NH3 and N2O emissions,
were investigated by Yang et al. [143]. When comparing the BD + BC treatment to the BD
treatment, the highest value of NH3 and N2O emission was reduced by 32.92% and 46.61%,
respectively. The number and structure of nitrogen functional genes were shown to be
closely related to the synthesis of NH3 and N2O in the study. In this case, it was discovered
that BD + BC enhanced the abundance of the AOB amoA gene, resulting in a reduction
in NH3 emission. The presence of nirS was more closely linked to the presence of N2O.
When compared to the BD treatment, the abundance of nirS in the BD + BC treatment
was reduced by 18.93%, lowering N2O emissions after composting. Furthermore, the
nosZ-type gene was the most functional denitrification bacterial community to influence
N2O emissions. [143]. Noteworthy, when biochar is to be used, it is important to keep in
mind that its characteristics have a major role on its efficiency.

5. Conclusions

Composting is a favorable technology to treat organic waste, but gaseous emissions
are an issue of major concern for its development. Among them, GHG emissions are
an important problem as they are responsible for the global warming effect. Carbon
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dioxide is not often considered, as it is considered biogenic. However, methane and nitrous
oxide, related to anaerobic and anoxic conditions, must be accounted for when analyzing
any composting process. Another important point is the release in the form of gaseous
emissions of a vast family of compounds such as VOCs. These gases can be harmful, possess
negative impacts, and, especially, are responsible for unpleasant odors. The origin of these
gases is double (they can come from the substrate or be biologically or even chemically
formed during the process) and they need the development of mitigation strategies based
on relatively consolidated technologies (such as biofiltration) or new approaches, such as
the use of materials as biochar. However, there is still a lack of reliable and full-scale data
from composting emissions to have consistent mitigation strategies.
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