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A B S T R A C T   

Climate policies can be applied either upstream, where fossil fuels are extracted, or downstream, where emis
sions are generated. Specific policy instruments can be defined for either level, and can take the form of a price 
signal such as through a tax, or a quantity limit such as through direct regulation or a permit market. In this 
study, we present an agent-based model to compare the performance of these different instruments and regu
lation levels. Since policy coverage is often limited, i.e. not all firms being under the regulator’s control, we also 
examine the impact of incomplete coverage on relative policy performance. Our analysis shows that only up
stream regulation leads to an increase in fossil fuel prices, which is benefitial under limited coverage as it also 
affects firms not directly affected by the policy instruments; that prices under quantity-based regulation can 
decline after an initial peak, stabilizing at a lower level than under the tax; and that direct regulation is more 
efficient when applied upstream.   

1. Introduction 

The combustion of fossil fuels is the primary cause of global carbon 
emissions. To meet the target of limiting global warming to 1.5∘◦C, the 
use of coal, oil, and gas needs to be largely phased out within the next 
three decades (Masson-Delmotte et al., 2018). Regulatory measures can 
be applied at different levels in the system: upstream, which is where 
carbon first enters the economy through either extraction or imports of 
fossil fuels; midstream, where these fuels are refined and transported; or 
downstream, where the actual emissions take place through the com
bustion of fossil fuels (Goulder and Schein, 2013). 

On both the upstream and downstream level, policy makers can either 
apply a market-based mechanism – e.g. through a carbon tax or a permit 
trading system – or regulate the production levels of firms directly – e.g. 
through a quota on the extraction, import, or use of fossil fuels. Applied to 
the downstream level, market-based mechanisms have the advantage 
that the regulator requires no perfect information about firms’ abatement 
costs to achieve an efficient outcome (Perman et al., 2003). Foramitti 

et al. (2021) further show that a tax could be preferable to a permit 
market, as the unstable price of permits may favor emission-intensive 
producers and create windfall profits. 

While climate policy has mostly been applied downstream, recent 
studies have called for more attention to the upstream level (Collins and 
Mendelevitch, 2015). According to Lazarus and van Asselt (2018), up
stream policies could reduce the overall costs of mitigation as they 
‘widen the mitigation cost curve’, prevent carbon lock-ins (Seto et al., 
2016), and increase the political pressure for climate action. Sinn (2012) 
suggests that upstream policy could prevent a ‘green paradox’, where 
the anticipation of downstream policies could lead to higher upstream 
production levels. And Piggot et al. (2018) argue that supply restrictions 
could be effective even if not all fuel-producing countries participate. 

Another important issue is the risk of ‘carbon leakage’, i.e. a situa
tion where the emission reduction in a covered sector causes a rise of 
emissions elsewhere. While the existence of such leakage is undisputed, 
its magnitude is debated (Collins and Mendelevitch, 2015). The study 
of Erickson and Lazarus (2018) suggests that upstream policies address 
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carbon leakage better as supply restrictions can lead to higher prices 
that will decrease demand outside the regulators jurisdiction. Fæhn 
et al. (2017), in contrast, find for the case of Norway that upstream 
regulation would lead to higher leakage as domestic fuels could easily 
be substituted. 

The models that are used for such comparisons of downstream and 
upstream regulation are mostly based on the assumptions of rational and 
representative agents with perfect knowledge. The real economy, in 
contrast, is a complex system characterized by unpredictable events, 
boundedly rational behavior, and heterogeneity (Arthur, 1999; Kirman, 
2006; Mullainathan and Thaler, 2000). Another limiting assumption in 
many models is that policies are evaluated upon a single measure of 
costs.1 The above-mentioned study of Fæhn et al. (2017) even combines 
welfare costs on the downstream with costs of foregone profits on the 
upstream into a single measure. 

Here we present an agent-based model (ABM) to compare the rela
tive performance of different policy instruments and regulation levels 
for the reduction of emissions. ABMs are increasingly applied to the 
analysis of climate policy (Castro et al., 2020), but have not yet been 
used for the comparative analysis of upstream and downstream regu
lation. The method allows for the exploration of economic dynamics 
based on the continuous interaction of individual agents that have to 
make decisions under limited information about future prices and de
mand (Farmer and Foley, 2009). Furthermore, ABMs can take into ac
count heterogeneous technological options and behavior among firms. 

We compare seven different scenarios, which include no policy, a 
carbon tax, a permit market, and direct regulation through a uniform 
quota, with each of the policy scenarios being applied for either 
extraction (upstream) or emissions (downstream). The aim is to under
stand how these scenarios compare under bounded rationality, hetero
geneity, and dynamic markets. In the second part of the paper, firms in 
the model are separated between covered and not covered, with only the 
former being under the regulators control. This distinction is imple
mented to explore the possibility of carbon leakage, i.e. to compare the 
performance of the instruments when a share of companies does not 
have to obey national climate regulations. 

Our model builds upon Foramitti et al. (2021). It consists of fossil fuel 
suppliers, manufacturers of final goods, and consumers. The firms in the 

model are heterogeneous in terms of their production factors and 
trading behavior. Over time, they change their production level based 
on expected demand and adapt their mark-up based on experienced 
success. They submit market orders for fuels and permits, and adapt 
their trading prices based on experience. Downstream manufacturers 
further adopt less emission-intensive technology based on the costs of 
regulation and fossil fuels. 

The approach of this study is exploratory. Our model is not calibrated 
to a particular country or period, and instead looks at general dynamics 
under a wide range of parameter values and evaluation criteria. In this 
way, we identify potential drawbacks of each policy and discuss the 
underlying causal mechanisms. This puts our study in line with the 
approach of ‘reflexive possibilistic modeling’ (Edmonds and Aodha, 
2019), which suggests to use ABMs for “identifying some of the possible 
ways a policy can go wrong (or indeed go right)”. 

The remainder of this article is organized as follows. Section 2 
provides a detailed description of the model. Section 3 introduces the 
numerical experiment and the evaluation criteria of our analysis. 
Section 4 presents and discusses simulation results. Section 5 provides 
concluding remarks. 

2. Model description 

An overview of the model structure is given in Fig. 1. The model is 
made up of two industry sectors. One consists of ‘suppliers’ (S) of fossil 
fuels, which can represent coal mines, oil wells, or distributors that 
import fossil fuels. The other consists of ‘manufacturers’ (M), which use 
fuels in order to create goods and emit carbon as a byproduct. Firms in 
both sectors are separated into regulated and unregulated firms, with the 
latter not being covered by the regulator’s policies and emission target. 
The following subsections provide a detailed description of the model. 

2.1. Policy scenarios 

The policy maker’s aim is to reduce overall emissions to the target 
level e∗. We test three policy instruments to reach this target: a carbon 
tax, permit trading, and direct regulation through a uniform quota. Each 
of these are applied either upstream, where the regulator will regard the 
emissions embodied in fuels, or downstream, where the regulator will 
regard the actual emissions caused by the use of fuels. We compare these 
policies against a baseline scenario without any policy intervention. The 
three distinct instruments work as follows:  

1. Under carbon taxation, an emission price pe
t is set directly by the 

policy maker at the beginning of each round. All covered firms in the 
target sector have to pay the same price. The quantity of emissions is 
not defined directly, but is an outcome of market dynamics.  

2. Under permit trading, the policy maker each round auctions a 
limited amount of permits u∗

t to the targeted sector, as described in 
Section 2.4. Firms have to submit a permit for each unit of (embodied 
or actual) emissions they cause. This regulates quantity directly, 
while the emission price is a result of trading dynamics.2  

3. Under direct regulation, the policy maker sets a uniform quota that 
imposes a maximum emission limit eσ

i,t on a covered firm i. Similar 
to permit trading, this creates a direct quantity limit, although with 
a different allocation, and without firms having to pay for their 
share. This particular quota affects all covered firms equally (see 
Appendix A.1), and thus does not favor more efficient firms. 

Fig. 1. Overview of agents (white) and markets (black).  

1 Common cost concepts include “change in GDP, change in consumption, 
change in welfare, energy system cost, and area under marginal abatement cost 
(MAC) curve” (Paltsev and Capros, 2013). 

2 Note that this model simplifies the permit trading to the interaction be
tween the regulator and the firms to keep the complexity of the model 
manageable. The auctioning mechanism still captures two central aspects of 
permit trading. First, that permit prices are a result of firms’ willingness to pay. 
And second, that firms with a higher willingness to pay receive a larger share of 
permits. 
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The stringency parameters of these policies (pe
t ,u∗

t ,eσ
i,t) are gradually 

increased until they reach the target e∗, as described in Appendix A.1. 
The coverage of the policies (i.e. the fraction of firms that are regulated) 
can further be limited, with the fraction of regulated firms given by the 
parameter φ. This can either represent a situation where only specific 
sectors are covered,3 or one where firms share the market with foreign 
competitors that are outside the regulator’s jurisdiction. 

2.2. Order of events 

The agents’ actions follow discrete time-steps t = 1,2,⋯,T, which are 
meant to roughly represent months. Each round is characterized by the 
following chain of events:  

1. The policy maker updates its climate policy.  
2. Consumption good firms form their production goals and order fuels.  
3. Fuel suppliers form their production goals.  
4. If a permit market is in place, covered firms trade permits.  
5. Suppliers produce fuels and sell them to manufacturers on the fuel 

market.  
6. Manufacturers produce goods and sell them to consumers on the 

goods market.  
7. Manufacturers decide whether to invest in abatement technology.  
8. Manufacturers change towards more competitive fuel suppliers. 

2.3. Production 

At the beginning of each round t, every firm i ∈ S ∪ M (denoting both 
fuel suppliers s ∈ S and manufacturers m ∈ M) sets their production goal 
qd

i,t. Similar to Dosi et al. (2010), firms are demand-driven and myopic. 

This means that they base their goal on expected demand D̃i,t. They 
further add a desired inventory rate I and subtract the remaining in
ventory from last round qi,t− 1. 

qd
i,t = D̃i,t ∗ (1+ I) − qi,t− 1 (1)  

Firms production qp
i,t can be restrained by multiple factors. In case of 

direct regulation, by the quota eσ
i,t. In case of permit trading, by their 

inventory of permits ui,t. And for manufacturers, by their inventory of 
fossil fuels fm,t. Manufacturers’ restrictions further depend on their fuel 
intensity Am,t, which describes the amount of fuel needed to produce one 
unit of output. Units are normalized so that the combustion of one unit 
of fuel leads to one unit of emissions, which means that Am,t also rep
resents firms’ emission intensity. Finally, firms also ration their use of 
permits and fuels over the following t∗ rounds to avoid sudden 
shortages. 

qp
i,t =

⎧
⎪⎪⎨

⎪⎪⎩

min
(

qd
s,t, e

σ
s,t,

us,t

t∗
)

Supplierss

min
(

qd
m,t,

eσ
m,t

Am,t
,

um,t

Am,t ∗ t∗
,

fm,t

Am,t ∗ t∗

)

Manufacturersm
(2)  

Firms produce and trade according to the order of events in Section 2.2. 
When they try to sell their goods at the respective market, they offer 
their current inventory qi,t, which consists of both their latest production 
qp

i,t and past inventory qi,t− 1. 

qi,t = qp
i,t + qi,t− 1 (3)  

Suppliers’ production costs Bs,t increase by a factor β with every unit of 
fossil fuel they extract. This reflects that fuel supplies become more 
scarce and difficult to extract as reservoirs deplete. 

Bs,t+1 = Bs,t +
(

qp
s,t ∗ β

)
(4)  

Firms set their sales price pi,t to cover their production costs Bi,t and their 
emission and fuel costs ce

i,t. They further add a mark-up rate αi,t to their 
costs per unit of production. 

pi,t =
(

Bi,t + ce
i,t

)
∗
(
1+ αi,t

)
(5)  

Firms emission and fuel costs ce
i,t are defined in Eq. (6), where pe

i,t relates 

to the price of emissions, pf
i,t refers to the price of fuels, and Am,t describes 

the manufacturers fuel and emission intensity. For suppliers, the price of 
emissions regards the embodied emissions of their fuels. 

ce
i,t =

{ pe
s,t Supplierss

Am,t ∗
(

pe
m,t + pm,t

f
)

Manufacturersm
(6)  

The mark-up rate αi,t reflects the dynamics of a ‘customer market’ where 
firms compete against each other over their market share ψ i,t. As 
described in Dosi et al. (2010), they set a higher profit margin when they 
are successful - meaning that their market share is growing - and reduce 
it when they are not. The magnitude of this adaptation is given by the 
factor ϑ. 

αi,t = αi,t− 1 ∗

(

1+ ϑ ∗
ψi,t− 1 − ψi,t− 2

ψi,t− 2

)

(7)  

2.4. Permit market and quotas 

There are two policy scenarios where the policy maker requires 
regulated firms j to submit permits for their production (see Section 2.1). 
One targets suppliers (j ∈ S), forcing them to submit an extraction 
permit for each unit of fossil fuel they introduce to the market. The other 
regulates manufacturers (j ∈ M), forcing them to submit an emission 
permit for each unit of fossil fuel they combust in their production 
process. 

Permits are distributed at the beginning of each round through a 
discriminatory auction.4 Every round, firms have to submit bids that are 
accepted by the regulator until u∗

t is reached or no more bids are left. 
Permits are then sold at the respective bid-price, and unsold permits are 
kept for next round’s auction. Firms bidding volume is based on their 
desired amount of permits ud

j,t , which depends on firms monthly pro
duction goal qd

j,t , their rationing time t∗, and their existing inventory of 
permits uj,t− 1. 

ud
j,t =

⎧
⎨

⎩

D̃s,t ∗ t∗ − us,t Supplierss
D̃m,t ∗ t∗ ∗ Am,t − um,t Manufacturersm

(8)  

Firms have an idiosyncratic emission price pe
j,t , which reflects how much 

they think a unit of emissions is worth and how much they are willing to 
pay for a permit at the auction. Depending on whether firms are able to 
trade their desired amount (success) or not (failure), they adapt their 
emission price based on the adaption rate μj for future rounds.5 

pe
j,t+1 =

{ pe
j,t − μj ∗

(
1 + pe

j,t

)
Success

pe
j,t + μj ∗

(
1 + pe

j,t

)
Failure

(9) 

3 The European emission trading system, for example, only covers around 
45% of European emissions (World Bank Group, 2019) 

4 A comparison of discriminatory pricing auctions with uniform pricing 
auctions and grandfathering (i.e. no auction) is presented in Foramitti et al. 
(2021).  

5 A factor 1 is added to Eq. (9) to avoid the permit price being locked-in if it is 
close to zero. 
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Hence, firms that want to buy permits increase their emission price until 
they receive their desired amount of permits. If their trades are suc
cessful (i.e. they received their desired amount of permits), they reduce 
the bidding price in the hope to spend less on future bids.6 

Under direct regulation, firms do not have to pay for permits, but still 
have an incentive to charge consumers an emission price if there is more 
demand than they are allowed to produce. In other words, if firms are 
not allowed to increase production in reaction to high demand, they 
raise prices instead. This represents a scarcity rent (Kalkuhl and Brecha, 
2013). They thus apply the same adaption as in Eq. 9, with their con
ditions of success being defined as follows: 

D̃i,t ≤

{
eσ

s,t Supplierss
eσ

m,t ∗ Am,t Manufacturersm
(10)  

2.5. Consumption good market 

The goods market follows the same evolutionary dynamic as in 
Foramitti et al. (2021), following Dosi et al. (2010), where demand 
gradually moves towards more competitive producers. Competitiveness 
km,t is given by a firm’s sales price pm,t and unfilled demand from last 
round lgm,t− 1 (Eq. (17)). The first term implies that a firm’s competi
tiveness falls with increasing sales prices. The second term ensures that 
firms lose customers when they are unable to fulfill their demand. 

km,t= − pm,t − lm,t− 1 (11)  

These factors of competitiveness define the evolution of firms’ market 
shares ψm, where χ denotes how fast consumers shift towards more 
competitive firms. 

ψm,t = ψm,t− 1 ∗

⎛

⎝1 − χM ∗
km,t − kt

kt

⎞

⎠ (12)  

The average competitiveness kt is given by the weighted competitive
ness of each firm, using the last rounds market shares ψm,t− 1 as weights. 

kt =
∑

m∈M
ψm,t− 1 ∗ km,t (13)  

The level of total demand follows a simple declining curve that depends 
on the average price pg

t . This means that consumers tend to buy less of 
the good if the overall price rises. The price sensitivity of demand is 
given by the factor γ. 

Dg
t = D0 ∗ e− γ∗pg

t (14)  

This total demand for goods is then allocated according to firms’ market 
shares: 

Dm,t = ψm,t ∗ Dg
t (15)  

Firms actual sales q∗
m,t are then either limited by their demand or their 

inventory: 

q∗
m,t = min

(
Dm,t, qm,t

)
(16)  

If firms have produced too little, they are left with a certain amount of 
unfilled demand lm,t that will translate into reduced competitiveness in 
the following round: 

lm,t = Dm,t − q∗
m,t (17)  

2.6. Fossil fuel market 

The fossil fuel market is organized through an order-based system. 
Manufacturers calculate their desired amount of fuels fd

m,t in the same 
way as their desired amount of permits in Eq. 8: 

f d
m,t = D̃m,t ∗ t∗ ∗ Am,t − fm,t (18)  

Each manufacturer m has a preference dm,s,t ∈ [0, 1] for each supplier s 
that defines what percentage of their desired fuels they will order from 
it. A supplier’s demand Ds,t thus becomes the sum of these orders: 

Ds,t =
∑

m∈M
f d
m,t ∗ dm,s,t (19)  

Suppliers try to produce enough to meet this demand, as described in 
Section 2.3. Their sales and unfilled demand are calculated like on the 
consumption good market (Eqs. (16) and (17)). If there is unfilled de
mand, it will be reduced from all orders in an equal share. Each firms’ 
market share ψ s,t is defined as their share in total sales: 

ψs,t =
q∗

s,t
∑

s∈Sq∗
s,t

(20)  

At the end of each round, manufacturers adapt their list of preferred 
suppliers. Similar to the change of demand on the consumption good 
market, each supplier’s competitiveness ks,t is calculated as in Eq. (11). 
The preferences dm,s,t of each manufacturer then change based on the 
replicator dynamics in Eq. (12) with the adaption speed χS. 

2.7. Abatement 
As in Foramitti et al. (2021), manufacturers can decide to adopt a 

new technology that will reduce their emission intensity and increase 
their production costs. These technological options could represent the 
installation of more emission-efficient machines, a shift from fossil fuels 
to renewables as an energy source (e.g., electricity), or new production 
routines that reduce fossil fuel dependency. 

Each firm has a different set of possible technological options x that 
allow for a particular reduction in emissions ax at an extra cost bx per 
unit of production. The marginal abatement costs of this technological 
step, i.e. the additional production costs of emitting one unit less, are 
defined as: 

cλ
m =

bx

ax
(21)  

Every round, firms examine the next possible technological option x 
with the lowest cλ

m. A technological improvement is implemented by 
comparing the marginal costs of abatement to the sum of the price of 
emissions pe

m,t and fuels pf
m,t, which can be seen as the marginal damage 

costs of causing one unit of emission.7 Since technological investment is 
a long-term decision involving uncertainty about future cost of abate
ment, firms add an idiosyncratic profitability target ηm to this condition 
to reflect their different risk attitude. 

cλ
m ∗ (1+ ηm) < pe

m,t + pm,t
f (22)  

Under permit trading, a manufacturer decides to invest in technological 
improvements once the sum of the price of emissions and fuels is higher 
than the cost of abatement. This reduces their emission intensity, which 
in turn affects their demand and trading price for permits in the next 
round. Manufacturer’s trading and abatement behavior thus reflects a 
balance between the cost of permits and the cost of abatement options. 

6 If firms have more permits then they want or if they manage to buy all 
available permits, they will treat that round as successful. 

7 The cost of fuels is covered here, which is not the case in textbook treat
ments of abatement costs. 
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3. Numerical experiment 

In our experiment, we simulate a setting of 30 upstream and 30 
downstream firms over the time-span of 200 rounds. The model initiates 
over 50 rounds, then a climate policy is linearly introduced over the 
following 100 rounds,8 followed by 50 more rounds where the policy is 
held at a constant level. The policies are compared under the same level 
of effectiveness, i.e. their stringency is set so that they all meet the 
emission target e∗. The permit markets reach this target automatically, 
while the emission tax and quota are calibrated. 

We repeat this experiment 64,000 times to look at a wide range of 
different parameter combinations, which are described in Appendix A.1. 
The code for the simulation is written in Python 3 and available on 
GitHub.9 The parameter variation is based on the sampling scheme of 
Saltelli et al. (2010) and operationalized through the Python package 
SALib (Herman and Usher, 2017). The same package is used to calculate 
Sobol sensitivity indices (Sobol, 2001), which are presented in 
Appendix A.3. 

The baseline and the six policy scenarios are compared between two 
distinct settings (see Section 2.1). In the first setting, all firms are 
regulated by the climate policy (full coverage, Section 4.1). In the sec
ond, only a fraction of firms is regulated and the rest is outside the 
regulator’s jurisdiction (limited coverage, Section 4.2). 

To analyze and compare the relative impact of each instrument, we 
consider five different evaluation criteria. Each criterion regards the 
state of the model at the last ten rounds of the simulation, and describes 
how well a given policy performs relative to the other six scenarios. 
Their mathematical definition can be found in Appendix A.2. The 
criteria are as follows:  

1. Technology adoption: The share of abatement10 that is achieved 
through the adoption of more emission-efficient technology (tech
nological abatement).  

2. Compositional change: The share of abatement that is achieved 
through a restructuring of the sector that gives emission-intensive 
firms a lower market-share.  

3. Production decline: The share of abatement that is achieved through a 
reduction of firms’ production levels.  

4. Sales price: The average sales price pt,m of downstream manufacturers.  
5. Consumer impact: The average financial burden on consumers, 

assuming that policy revenue is recycled and given back to con
sumers. Calculated as the average sales price minus the policy rev
enue per good. 

Since policies are compared with the same effectiveness, the first 
three criteria can be seen as different formulations of efficiency. High 
technology adoption and compositional change regard the emission- 
efficiency of the economy (i.e. average emissions per unit of produc
tion), while a low production decline represents an efficient economy in 
regard to economic output. The other two criteria - sales price and 
consumer impact - are desirable to be low in regard to the equity impacts 
and political feasibility of the policy. 

In addition, we control for the following six indicators in our model. 
These help us to identify the causal link between a certain policy and its 
performance along the evaluation criteria. Their exact definition is also 
given in Appendix A.2. The indicators are as follows:  

1. Emissions: The overall emissions of the downstream sector.  
2. Emission price: The average emission price pe

t,j of regulated firms. 
3-4 Profit shares: The amount of profits in the downstream and up

stream sector.  
5-6 Market concentrations: The distribution of market shares in the 

downstream and upstream sector. 

Fig. 2. Quantity and price dynamics for a single run under full coverage.  

8 This means that the policy is strengthened over time along a linear path 
over 100 rounds to avoid extreme changes in the economy from one round to 
another. This is in line with climate policy design in countries like Argentina, 
Canada, and South Africa (World Bank Group, 2019).  

9 Link to the repository: https://github.com/JoelForamitti/UvsD_ABM 
10 As derived in Appendix A.2, abatement is decomposed into three contrib

uting factors. This results in three shares which sum up to the total amount of 
abatement that is equal among the policy scenarios (as they reach the same 
emission target). 
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4. Results and discussion 

Results are presented in two parts. In Section 4.1, we explore the case 
of full coverage, meaning that all firms in the target sector are covered 
by the climate policy. This demonstrates the differences between the 
policies when no carbon leakage is possible, e.g. in a closed economy 
with full coverage, or under a global agreement between connected 
economies. In Section 4.2, we consider the contrasting case of limited 
coverage. In both parts, there is one sub-section that shows dynamic 
results over time for a single run of the model, and a second one that 
presents average results over multiple runs and varied parameters. A 
sensitivity analysis can be found in Appendix A.3. 

4.1. Full coverage 

4.1.1. Single run dynamics 
Fig. 2 shows the quantity and price dynamics over time for a single 

run, using mid-point parameter values from Table Appendix A.2 . We 
can see that all policies, while following different paths, end up leading 
to a similar reduction of fuels, emissions, and sales, as well as a similar 
increase in goods prices. The model thus demonstrates that, under full 
coverage, a reduction of emissions will lead to a similar change in prices 
independent of the policy instrument and whether it is applied upstream 
or downstream. 

One key difference between the two regulation levels is that upstream 
policies lead to an increase in fuel prices, while downstream regulation 
leads to a price close to or even below that under no policy. This is 
because when downstream regulation reduces the amount of emissions, it 
automatically also reduces the demand for fossil fuels. This is good for 
climate mitigation, in the sense that it reduces the profits that can be 
made from selling fossil fuels, but it is also problematic in the sense that 
firms who are not covered by the downstream policy could get easy ac
cess to cheap fuels, which can lead to carbon leakage (see Section 4.2). 

Fig. 2 further shows that quantity-based regulation (i.e. permit 
trading and direct regulation) displays a dynamic where prices stabilize 
at a lower level than the tax or even decline after an initial peak 
(henceforth referred to as ‘overshoot-decline dynamic’). This dynamic 
has been identified as a key difference between downstream tax and 
permit trading in Foramitti et al. (2021), and can be explained by the fact 
that successful abatement makes production more emission-efficient, 
which in turn leads to less demand for emissions and fuels, and thus 
lower emission and fuel prices. 

Finally, upstream regulation tends to reach the same abatement with 
a lower emission price, particularly in the case of taxation. This is 
because upstream regulation creates higher profit rates as firms set their 
mark-up as a percentage of their costs per unit of production. Down
stream firms then have to pay this additional mark-up for every unit of 
fuel, to which they than also apply their own mark-up rate. This means 
that an upstream policy can apply the same pressure as a downstream 
policy with a lower emission price. 

4.1.2. Average results over multiple runs 
In Fig. 3, the evaluation measures and additional indicators are 

presented as average results over all parameter combinations tested. As 
mentioned in Section 3, the six policy scenarios are compared under 
equal effectiveness, i.e. the levels of stringency are set so that all policies 
reach the same emission target. Like already observed for a single run, 
production decline and sales price increase are fairly similar (Fig. 3). 

Fig. 3 further shows that technology adoption tends to be slightly 
higher for quantity-based policies. This happens due to the unstable 
emission prices seen in Section 4.2.1, which leads to a temporary price 
levels above that of the carbon tax until enough technological im
provements have taken place to drive the price down again. This, in 
turn, results in lower scarcity of goods, and thus lower sales prices. 
Regarding compositional change on the goods market, both tax policies 
perform best. This is because the unstable prices of quantity-based 

regulation can create a competitive advantage for less emission- 
efficient producers. The consistent and usually higher price of the tax 
thus creates a stronger advantage for emission-efficient firms. 

As the uniform quota does not favor more emission-efficient pro
ducers, compositional change and market concentration are very small 
for direct regulation on the downstream level. However, the policy 
does not lead to a stronger production decline as the quota increases 
scarcity and stimulates more technology adoption, thus increasing 
emission-efficiency. 

While other types of quotas could increase the efficiency of quotas on 
the downstream level, our scenario demonstrates that the inefficient 
selection (i.e. low compositional change) of direct regulation is not a 
disadvantage when applied upstream. On the contrary, compositional 
change and market concentration are slightly higher than under up
stream permit trading. This is because the less efficient selection of 
upstream firms through the quota can lead to higher fuel prices and thus 
create a stronger selective effect (i.e. high compositional change) 
downstream. 

Since there is no policy revenue under direct regulation, the quota 
creates particularly high profit rates and consumer impacts. In that 
sense, direct regulation is very similar to a permit system where per
mits are allocated for free, only that firms have no influence on the 
distribution of permits. The tax, due to its higher price, causes higher 
mark-ups and thus more profits than the permit market in its target 
sector.11 Finally, consumer impacts are lower for both tax and permit 
trading if these are applied downstream, as the higher emission price 
(see Section 4.2.1) leads to more policy revenue which is then recycled 
back to the consumers. 

4.2. Limited coverage 

In the following subsections, we assume that only a fraction φ (see 
Table Appendix A.2 in Appendix A.1) of firms on the market are covered 
by the respective climate policy. This allows for the possibility of carbon 
leakage, i.e. that the climate regulation in the covered sector causes 
emissions to increase elsewhere. 

4.2.1. Single run dynamics 
In Fig. 4, we can see the emissions over time, separated between 

embodied (upstream) and caused emissions (downstream), as well as 
between covered and total (covered plus not covered) emissions. We see 
that regulation on one level affects outcomes on the other only weakly, i. 
e. reaching the local target downstream reduces upstream extraction 
only by a small amount, and vice versa. 

Emissions under quantity-based regulation fluctuate strongly as they 
mirror the fluctuation in emission prices. This is because the competition 
between firms that are covered and those who are not causes emission 
prices to change fast over time. Under the full coverage setting, emission 
price changes only affected firms’ demand because of differences in 
emission intensity and changes in overall demand. Under limited 
coverage, in contrast, there is an additional dynamic as covered firms 
can loose market shares to firms that are not regulated. 

Total emissions appear slightly lower for upstream regulation. This is 
because of the fuel price increase that only happens under upstream 
regulation, as discussed in Section 4.1.1. Under limited coverage, fuel 
price changes affect all firms (both covered and not covered), and thus 
also incentivizes emission reduction outside the reach of the regulator. 
Downstream regulation, in contrast, only creates such incentives for 
covered firms. 

11 In Foramitti et al. (2021), it has been shown that permit trading can create 
higher profit rates than a tax because firms could receive permits at a low price 
and make profit by selling them to competitors. This is not the case in current 
model because permit trading has been simplified so that permits are only 
auctioned and not traded between firms. 

J. Foramitti et al.                                                                                                                                                                                                                               



Technological Forecasting & Social Change 172 (2021) 121060

7

Fig. 3. Policy evaluation criteria (top panel) and additional indicators (bottom panel) under full coverage. Values indicate the performance of each scenario relative 
to the others (see Appendix A.2). Error bars report standard deviations. 

Fig. 4. Emissions over time under limited coverage. Note: The y-axis describes the percentage of emissions relative to the emission level before the introduction 
of the policy. 
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4.2.2. Average results over multiple runs 
Fig. 5 presents the same evaluation measures and additional in

dicators as in Section 4.1.2, but this time for the setting of limited 
coverage. Note that these measures regard all firms (covered and not 
covered). In line with the discussion above, we can observe that upstream 
regulation leads to slightly less emissions and more compositional 
change, as the increase in fuel prices affects all firms downstream (i.e. 
even those that are not within the regulator’s reach). 

We can further see that quantity-based regulation leads to more 
technology adoption when applied downstream. This is due to the same 
‘overshoot-decline’ dynamic introduced in Section 4.1.1. The reason 
that this dynamic does not appear here for upstream regulation is that 
fuel suppliers cannot innovate, while the policy impacts are diffused 
with the unregulated fuel supply sector (i.e. overall fuel prices fluctuate 
less because only part of the fuel suppliers are affected) before it reaches 
downstream firms. 

Market concentration is increased by policies only within their 
regulation level, i.e. upstream policies increase upstream market con
centration and downstream policies downstream market concentration. 
This can be understood through the competition between firms. As 
firms in the regulated sector become less competitive in comparison to 
unregulated firms, their market shares will shrink and the overall 
market concentration will increase; and succesful firms will apply 
higher profit rates. 

Due to this competitive effect, the emission price necessary to reach 
the target is very low. Essentially, under limited coverage, a policy 

mainly reduces emissions by driving covered firms out of the market. 
Small changes in the emission price can thus have a strong competitive 
effect, which can be seen in the high standard deviation for the emis
sion price in Fig. 5. 

5. Conclusions 

This study presented an agent-based model to compare the perfor
mance of upstream and downstream regulation for climate change 
mitigation, considering the instruments of taxation, permit trading, and 
direct regulation through a uniform quota. The model takes into account 
heterogeneous agents using heuristic decision rules on constantly 
changing markets, as well as the difference between full and limited 
coverage. Results were presented for multiple runs with a wide variation 
of parameter values, and evaluated upon multiple measures. 

In our analysis, we compare the performance of each policy and 
regulation level under an equal level of effectiveness. This suggests that 
none of the tested instruments can be ruled out as an adequate instru
ment to reduce emissions. However, we do identify several dynamics 
that lead to relevant differences between the policies. 

In line with Foramitti et al. (2021), we show that quantity-based 
regulation can lead to an overshoot in prices followed by a decline 
after successful abatement. In comparison to a tax, this dynamic can lead 
to a higher level of technological adoption and production costs, while 
compositional change towards emission-efficient firms is smaller as a 
low emission price can make such firms less competitive. 

Fig. 5. Policy evaluation criteria (top panel) and additional indicators (bottom panel) under limited coverage. Values indicate the performance of each scenario 
relative to the others (see Appendix A.2). Error bars report standard deviations. 
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A key difference that is found between the two regulation levels is that 
downstream policies reduce the demand for fuels, which means that only 
upstream policies lead to an increase in fuel prices. This can be both 
beneficial and detrimental for the success of climate policy. On the one 
hand, it can reduce the profits that can be made from selling fossil fuels, 
on the other it allows firms who are not covered by the downstream 
policy to buy fuels at a cheap price - increasing the risk of carbon leakage. 

We further demonstrate that the level of regulation matters partic
ularly for direct regulation. Applying a uniform quota downstream 
creates little abatement through compositional change as it does not 
advantage more emission-efficient firms. However, when applied up
stream, this inefficient selection leads to an increase in fuel prices, which 
can only strengthen the shift towards more emission-efficient firms 
further downstream. 

These insights complement the results from traditional models like 
Erickson and Lazarus (2018) and Fæhn et al. (2017) by identifying po
tential policy dynamics that are overlooked under the assumptions of 
rational and representative behavior and economic equilibrium. Further 
dynamics could be identified under additional assumptions, and cali
bration towards particular cases would be necessary to test their likeli
hood. The flexible structure and open-source nature of our model makes 
it very suitable for such extensions. 

Some suggestions for future research are to account for different fuel 
types and trading strategies, emissions from fossil fuel extraction, agent 
learning (Yu et al., 2020), and additional abatement options like 
end-of-the-pipe technologies. Further features like heterogeneous con
sumers, inter-sectoral interactions, finance, and labor markets, could 
allow for an assessment of impacts on additional criteria like economic 
stability and equity. 
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Appendix A 

A1. Parameter values 

This section presents the parameter values used in our numerical experiment. Table Appendix A.1 presents the fixed parameters, which are being 
held constant throughout the whole simulation. Table Appendix A.2 presents variable parameters, which are varied for each of the 64,000 simulation 
runs based on the sampling scheme of Saltelli et al. (2010). 

There are further three policy parameters pe
t , u∗

t , and σt, which are gradually changed over the policy implementation period T∗, with their final 
values calibrated to reach the emission target e∗. In the first round of permit trading, the amount of permits u∗

t is multiplied by t∗ to avoid extreme 
fluctuations in the initial rounds. Under direct regulation, the individual quotas of each firm are calculated based on their emissions before the start of 
the policy: 

eσ
i,t = σt ∗ ei,T0 − 1 (A.1)  

Firms technological abatement options are calculated as follows. Firms have i = 1,⋯,Nλ technological options, each with an abatement potential of a 
= λ/Nλ and a marginal abatement cost of cλ

i = bi/a = θ ∗ a ∗ i. This means that firms’ marginal abatement costs will linearly increase with every 
abatement step that they take. 

A2. Performance criteria 

The definition Yn,z of each measure n and scenario z is given in Table Appendix A.3. The policy evaluation criteria (n = 0 − 5) and additional 
indicators (n = 6 − 11) are described in Section 3). They are calculated as a sum of the upstream (j ∈ S) or downstream (j ∈ M) sectors activity in the 
last ten rounds of the simulation, as given by the function S: 

S
(
yj,t

)
=

∑T

t=T − 10

∑Nj

j=1
yx,t (A.2)  

The relative measures Cn,z that are shown in Section 4ww describe the results for each scenario z and measure n in relation to the other scenarios as 
given in Eq. Appendix A.3. This means that the eleven measures describe relative performance between the scenarios and sum up to 1. 

Cn,z =
Yn,z

∑6
z=1

⃒
⃒Yn,z

⃒
⃒

(A.3) 

The first three criteria critera are based on the decomposition of downstream abatement as put forward in Foramitti et al. (2021, Appendix 2). A 
manufacturers’ change in emissions from round 0 to round t can be decomposed into changes in production level and changes in emission-intensity, 
using the functions xt = (xt +x0)/2 and Δxt = xt − x0. 

Δem,t = em,t − em,0
= qm,t ∗ Am,t − qm,0 ∗ Am,0
= Δqj,t ∗ Am,0 + ΔAm,t ∗ qj,0 + Δqm,t ∗ ΔAm,t
= Δqm,t ∗ Am,t + ΔAm,t ∗ qm,t

(A.4)  
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The change in production Δqm,t can further be decomposed further into contributions from a shift of relative shares of production ρm = qm,t /Qt within 
the sector and a decline in total production Qt =

∑Nm
m=1qm,t . 

Δqm,t = ρm,t ∗ Qt − ρm,0 ∗ Q0
= Δρm,t ∗ Qt + ΔQt ∗ ρm,t + Δρm,tΔQt

= Δρm,t ∗ Qt + ΔQt ∗ ρm,t

(A.5)  

Consumer impact describes average sales price minus the regulators’ revenue per unit of goods sold. The revenue Ri,t from each firm is given by either 
the tax or permit payments of each round: 

Ri,t =

⎧
⎪⎪⎨

⎪⎪⎩

0 ⋯No policy or direct regulation
ei,t ∗ pe

t ⋯Tax
pu

i,t ∗ ut
i,t ⋯Permit trading

(A.6)  

Finally, the profit πi,t in criterion 10 and 11 describes the sum of revenue from sales minus the sum of expenses for production, fuels, and regulation. 

πi,t = q∗
i,t ∗ pi,t − qi,t ∗ Bi,t − Ri,t −

{
0 ⋯Suppliers
em,t ∗ Am,t ⋯Manufacturers (A.7)  

A3. Sensitivity analysis 

To understand the sensitivity of the results towards each parameter, we perform a Sobol sensitivity analysis (Saltelli et al., 2010; Sobol, 2001) for 
each measure and varied parameter. The calculated first-order Sobol Sensitivity Indices are presented in Fig. Appendix A.1 and Appendix A.2 for full 
and limited coverage. Extensive data on the average evaluation measures over different values for each parameter can further be found in the sup
plementary material. Here we provide a summary of some of the more pronounced sensitivities. 

Let us first regard full coverage. A higher heterogeneity of the production factors (ΔA0, ΔB0) makes the compositional change towards more 
emission-efficient firms less sensitive to price fluctuations, which reduces the difference between the tax scenarios and quantity-based regulation. 
Consumer impact is further increased in the tax and permit market scenarios, while it is decreased under direct regulation. 

Another relevant factor is the emission price adaption rate (μ), which decreases technology adoption for the tax scenarios, and increases it for 
downstream direct regulation. This regards the ‘overshoot-decline’ dynamic of quantity-based regulation, which explained the lower technology 
adoption of the tax scenarios in Section 4. The magnitude of this dynamics is reduced when firms adapt their prices more slowly, i.e. if the emission 
price adaption rate is low. 

Technology adoption is also affected by the profitability target (η), although the effect is small. A high value of this parameter leads to lower 
adoption under the tax scenarios and the upstream permit market. Downstream direct regulation, in contrast, shows an increase of adoption and a 
decrease of compositional change. Consumer impact is further decreased for all revenue-based instruments (i.e. tax and permit market). 

Downstream market adaption speed (χM), while having only a small effect, increases technology adoption and compositional change in all sce
narios except the downstream quota. Consumer impact is further increased for all revenue-based instruments. The upstream speed (χS) increases 
technology adoption for tax and permit market, while decreasing it for direct regulation. It also decreases production decline for tax and permit 
scenarios, while increasing it under upstream direct regulation. 

The mark-up adaption rate (ϑ) reduces technology adoption for downstream policies and increases it for upstream policies, while generally 
increasing compositional change in all policy scenarios and leading to less production decline for quantity-based regulation. The heterogeneity of the 
abatement cost factor (Δθ) increases compositional change for both tax scenarios as well as for downstream direct regulation. 

Many parameters are particularly sensitive under downstream direct regulation. Increased technology adoption and decreased compositional 
change with high abatement cost factor (θ) and demand sensitivity (γ). Lower sales price and production decline are found for low heterogeneity (ΔA0,

ΔB0) as well as high abatement potential (λ), permit price adaption rate (μ), and mark-up adaption rate (ϑ). 
Further sensitivities that are similar for all scenarios are found for the demand response to prices (γ), which decreases the sales prices, the pro

duction cost increase (β), which decreases sales price and production decline, and the abatement cost factor (θ), which reduces consumer impact 
(except for direct regulation). 

Regarding the limited coverage setting, the coverage factor (φ) is also shown to affect the results (see, e.g. pp. 63-64 in the supplementary ma
terial). This sensitivity appears in particular for upstream regulation and for the measures of consumer impact and sales price. However, no simple 
linear relationship is found between the parameter values and the evaluation measures. A more detailed analysis of this relationship is left for future 
research. 

Other sensitivities that do not appear under full coverage are found for the upstream production cost increase (β) and the mark-up adaption rate 
(ϑ), but also do not show a clear relationship. This is likely because the price increase of fuels from unregulated suppliers plays a key effect in the 
results discussed in Section 4.2, with different levels of upstream production cost and mark-up increases also affecting competitive dynamics. 
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Table Appendix A.1 
Values of fixed model parameters.  

Parameter Symbol Value 

Simulation length T  200 
Policy implementation period T∗ 100 
Initialization length T0  50 
Number of firms in each sector Nm,Ns  30 
Number of abatement options Nλ  20 
Initial production factors A0,B0  1 
Maximum demand D0  1 
Desired inventory rate I  1 
Emission target e∗ 0.1 
Initial mark-up m0  0.1 
Initial emission price pe

0  0.1  

Table Appendix A.2 
Value ranges of variable model parameters.  

Parameter Symbol Minimum value Maximum value 

Abatement cost factor θ  15 20 
Forecasting factor t∗ 3 10 
Abatement potential λ  0.5 0.9 
Fraction of covered firmsa  φ  0.3 0.7 
Profitability target η  0.1 0.5 
Price sensitivity of demand γ  0.4 0.5 
Mark-up adaptation rate ϑ  0.1 0.5 
Market share adaptation rates χM ,χS  0.1 0.5 

Emission price adaption rate μ  0.05 0.1 
Heterogeneity factors ΔA0,ΔB0,Δθ,Δμ,Δη  0.1 0.5 
Upstream production cost increase β  0.01 0.1 

Notes: a The fraction φ is set to 1 in Section 4.1 (full coverage) and only varied in Section 4.2 (limited coverage). 

Table Appendix A.3 
Definition of policy evaluation criteria and additional indicators.  

n  Criteria Yn,z  

1 Technology adoption S(ΔAm ∗ qm)

2 Compositional change S(Δρm ∗ Am,t)

3 Production decline S(ΔQt ∗ ρm,t ∗ Am,t)

4 Sales price S(qm,t − lgm,t)

5 Consumer impact S(sm,t ∗pg
m,t)/10 − S(R)/S(qm,t − lgm,t)

6 Emissions S(em,t)

7 Emission price S(ej,t ∗ pe
j,t)

8 Upstream profit rate S((πs,t))/S((q∗
s,t))

9 Downstream profit rate S((πm,t))/S((q∗
m,t))

10 Upstream Market concentration S((ψs,t)
2
)

11 Downstream Market concentration S((ψm,t)
2
)

Notes: S() and R are given in Eqs. Appendix A.2 and Appendix A.6. 
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Fig. Appendix A.1. Sobol sensitivity indices for full coverage.  
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