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Abstract: Human aldo-keto reductase 1B10 (AKR1B10) is overexpressed in many cancer types
and is involved in chemoresistance. This makes AKR1B10 to be an interesting drug target and
thus many enzyme inhibitors have been investigated. High-resolution crystallographic structures
of AKR1B10 with various reversible inhibitors were deeply analyzed and compared to those of
analogous complexes with aldose reductase (AR). In both enzymes, the active site included an anion-
binding pocket and, in some cases, inhibitor binding caused the opening of a transient specificity
pocket. Different structural conformers were revealed upon inhibitor binding, emphasizing the
importance of the highly variable loops, which participate in the transient opening of additional
binding subpockets. Two key differences between AKR1B10 and AR were observed regarding the
role of external loops in inhibitor binding. The first corresponded to the alternative conformation of
Trp112 (Trp111 in AR). The second difference dealt with loop A mobility, which defined a larger and
more loosely packed subpocket in AKR1B10. From this analysis, the general features that a selective
AKR1B10 inhibitor should comply with are the following: an anchoring moiety to the anion-binding
pocket, keeping Trp112 in its native conformation (AKR1B10-like), and not opening the specificity
pocket in AR.

Keywords: aldo-keto reductase; aldose reductase; cancer; enzyme inhibitor; structure-based
drug design

1. Introduction

Aldo-keto reductases (AKRs) constitute a superfamily of NADP(H)-dependent,
monomeric oxidoreductases, mostly cytosolic, catalyzing the reduction of carbonyl-containing
compounds to their corresponding alcohols. In this case, 15 human AKRs have been de-
scribed belonging to six different subfamilies: AKR1A, AKR1B, AKR1C, AKR1E, AKR6A,
and AKR7A. There are three members of the human AKR1B subfamily, namely AKR1B1
(aldose reductase, AR), AKR1B10 (aldose reductase-like protein-1), and AKR1B15, which
share 71% amino acid sequence identity and overlapping substrate specificities for aliphatic
and aromatic aldehydes. AR is a ubiquitous enzyme and has been thoroughly investigated
because it participates in glucose reduction under hyperglycaemia, being involved in
the secondary complications of diabetes. This has elicited a long-lasting search for AR
inhibitors (ARIs) as antidiabetic drugs. AKR1B10 has a very high catalytic efficiency for
all-trans-retinaldehyde and a more specific tissue expression (mostly in the gastrointestinal,
GI, tract), although it is overexpressed in several cancer types and skin diseases. AKR1B15
is likely a mitochondrial protein and its mRNA has been found in placenta, testis, skeletal
muscle, and adipose tissue [1–3].

Luckily enough, an elevated number of high-quality crystallographic AKR structures
(AKR1B1, 156; AKR1B10, 20) are available from the Protein Data Bank (PDB), some with a
resolution higher than 1 Å, and many including ternary complexes with inhibitors. This
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makes AKR superfamily to be one of the best-known enzyme systems at atomic level with a
well-established catalytic mechanism. AKRs share an (α/β)8 barrel core motif, also named
TIM barrel after triose phosphate isomerase, a conserved metabolic enzyme. The (α/β)8
barrel is the most common fold among protein catalysts, appearing in approximately 10%
of all known enzyme structures [4]. The active site of AKRs includes a conserved catalytic
tetrad consisting of residues Asp43, Tyr48, Lys77, and His110 (AKR1B1 numbering). Tyr48,
His110, Trp111 and the nicotinamide moiety of NADP+ define a geometrically rigid “anion-
binding pocket” (ABP). The existence of this pocket was originally established from the
structures of the complexes of AKR1B1 with citrate, cacodylate and glucose-6-phosphate.
Inhibitors occupy this pocket with a negatively charged group, e.g., by using a carboxylate,
hydantoin, or succinimide function. Three external and otherwise highly variable loops
(named A, B and C) connecting residues 112–136, 216–227, and 298–310, respectively,
contribute to protein plasticity, substrate specificity and inhibitor selectivity. Loop B acts
as a safety belt upon cofactor binding and it is stabilized by a salt bridge between Lys21
and Asp216.

Adjacent to the AKR1B1 active site, a transient subpocket may exist which can be
opened by induced fit, the so-called “specificity pocket” (SP), enabling a significantly
enlarged active site. The SP is lined by Trp111, Thr113, and Phe122 from loop A, and
Cys298, Ala299, Leu300, Leu301, Ser302, and Tyr309 from loop C. Its opening is generally
driven by a second, usually hydrophobic, inhibitor moiety. To accomplish this opening,
loop C, especially next to Leu300, shows high flexibility [5]. Trp111 occupies a privileged
position as a hinge region between the ABP and the SP. In other AKRs, such as AKR1A1
(aldehyde reductase) and AKR1B15, the establishment of a similar pocket upon ligand
binding appears rather unfavorable [5–7].

Here we carefully analyze the structural properties of AKR1B10-NADP+-inhibitor
complexes comparing them with those of analogous AR structures. We emphasize the
distinct structural conformers revealed upon inhibitor binding, which define additional
binding subpockets. Finally, we provide some hints for structure-based drug design of
more selective AKR1B10 inhibitors.

2. AKR1B10 Inhibition Strategies

Since the 1980s, AR has been deeply studied as a drug target [8,9] because it trans-
forms cytosolic glucose into sorbitol (a reaction that AKR1B10 and AKR1B15 cannot
perform [7,10]), though only under hyperglycemia. Despite many positive pre-clinical
studies on ARIs, most clinical trial outcomes have been disappointing. The failure of ARIs
as therapeutic agents has been mainly attributed to poor pharmacokinetic properties, lack
of clinical efficacy, and/or unacceptable side effects. Most ARIs contain either a cyclic
imide group, such as a spirohydantoin group or a spirosuccinimide group, or an acetic
acid moiety. The carboxylic acid-containing inhibitors have lower in vivo efficacy, which
has been attributed to the relatively low pKa value of the carboxyl group, thus causing
ionization at physiological pH and an inability to cross cell membranes. Conversely, cyclic
imides have higher pKa values and are only partially ionized at physiological pH, thus
allowing to pass through cell membranes and therefore having better pharmacokinetic
properties [6,11,12].

Recently, a novel approach using intra-site differential inhibitors against AR has been
proposed. These inhibitors may act differentially on AR activity depending on the nature of
the substrate, in such a way that they could interfere specifically with the transformation of
some substrates while leaving the conversion of other substrates free to occur. This means
that the damaging activity of AR (e.g., glucose reduction) could be diminished without
compromising the detoxifying role of the enzyme. A few natural AR differential inhibitors
from plant extracts have been reported [13–15].

Regarding the effect of ARIs against other enzymes (especially from the AKR super-
family), initially the only cross-inhibition target thoroughly analyzed had been human
aldehyde reductase (or AKR1A1) [6]. Nevertheless, AKR1A1 presents notable differences
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in respect to AKR1Bs: (i) it lacks the hyper-reactive active site cysteine (Cys298 in AR)
and the Nε of the imidazole ring of the active site histidine interacts with the amide side
chain of the nicotinamide ring of NADPH; (ii) the size of loop C is nine residues longer
than that of AKR1Bs, determining a rather distinct substrate specificity and inhibitor selec-
tivity [1,5,6]. As explained above, AKR1B10 is in fact the closest enzyme to AR (sharing
71% amino acid identity), and we and others surmised that the lack of selectivity of ARIs
could be a relevant factor contributing to their failure as pharmacological drugs [10–12].
Furthermore, AKR1B10 is now established as a promising cancer target (except for gas-
tric cancers, where it is downregulated) [12,16], and the ubiquitously expressed AR can
represent a problematic off-target, given its overall similarity with AKR1B10. Next, we
will provide an overview of the different AKR1B10 inhibitor types in the context of the
available three-dimensional structures of AKR1B10 deposited in the PDB (Table A1). To
note that an exhaustive listing and description of AKR1B10 inhibitors is beyond the scope
of this review. We refer the reader to the revisions of Huang et al. [17] and, more recently,
Endo et al. [16,18] for further details.

2.1. AKR1B10 Reversible Inhibitors

The first AKR1B10 inhibitors described were in fact non-selective ARIs, e.g., tolrestat
(Figure 1, [10,19,20]). In general, most of these ARIs belonged to the carboxylic acid
type, while most cyclic imide ARIs tested (e.g., fidarestat, Figure 1) were poor AKR1B10
inhibitors [21,22], except for minalrestat ([23], Figure 1). Like ARIs, AKR1B10 inhibitors
exploit the hydrophilic nature of the enzyme active site, containing the ABP. This pocket
involves catalytic residues Tyr49 and His111, key residue Trp112 (AKR1B10 numbering)
and the positively charged nicotinamide moiety of the cofactor NADP+ ([10,11], Figure 2).
Therefore, all AKR1B10 inhibitors present a negatively charged or electronegative moiety
that anchors them to the ABP and display an uncompetitive inhibition pattern despite
binding to the same pocket than substrates [11,22,24]. This behavior is related to the
conserved AKR kinetic mechanism, strictly ordered, with the cofactor binding first and
leaving last: substrates are binding with higher affinity to the AKR-NADPH complex while
inhibitors interact better with the AKR-NADP+ complex [1,25,26].

Hence, considering this anchoring moiety, we can broadly divide AKR1B10 inhibitors
into two types: carboxylic acid- and non-carboxylic acid-containing inhibitors (hereinafter,
CAIs and NCAIs, respectively). Section 3.2. will provide relevant examples and bind-
ing insights of each class whose structure in complex with the AKR1B10 holoenzyme
(AKR1B10-NADP+) has been solved.
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Figure 2. Overview of the AKR1B10 three-dimensional structure. (A) Crystal structure of AKR1B10 complexed with NADP+

(orange) and tolrestat (violet, PDB ID 1ZUA), with side view of the (α/β)8 barrel, with α helices in red, β sheets in yellow
and loops in green. (B) Surface representation of the structure, indicating location of the anion-binding pocket (ABP) and
specificity pocket (SP). (C) Atomic model describing interactions of the tolrestat molecule in the AKR1B10–NADP+–tolrestat
complex. (D) 2D representation of the previous. Created with PyMoL 2.3.0. and in biorender.com.

2.2. AKR1B10 Covalent Inhibitors

Despite its wide use in medicine (e.g., aspirin, penicillin, acetaminophen), there has
been some reluctance in pursuing covalent inhibition in drug discovery until recently,
because of off-target binding and potential toxicity. This tendency has reversed upon FDA-
approval of several covalent drugs [27]. Accordingly, covalent inhibition of AR or other
human AKR1s such as AKR1B10 is an unexploited strategy. Both AR and AKR1B10 possess
a reactive cysteine (Cys298/Cys299, respectively) in their active site [22,28]. Nevertheless,
there is a lack of thorough understanding of its in vivo role if any.

Indeed, Cys298 in AR is highly nucleophilic and can be reversibly or irreversibly
modified by different reactive species such as nitric oxide (NO), 4-hydroxynonenal (HNE,
Figure 1), or oxidized glutathione (GSH, Figure 1) in both recombinant protein and ex
vivo models [29]. These modifications can reduce or increase the catalytic activity of AR,
depending on the modifying moiety, and reduce its susceptibility to some non-covalent
inhibitors, while increasing concentrations of the reduced cofactor NADPH protect Cys298
from modification [29,30]. This oxidated form of AR is called “activated AR” versus the
“native AR” (with reduced Cys298). Balendiran and colleagues [29] generated the C298S
AR mutant, a good surrogate of activated AR, and studied it biophysically. They solved
the C298S AR holoenzyme structure (PDB ID 3Q67) and identified that Ser298 makes a
hydrogen bond contact with Tyr209, restricting the flexibility of the mutant in comparison
to the native holoenzyme, with Cys298 and lacking this interaction. We and collaborators
have recently generated another useful surrogate of the activated AR by means of X-ray
irradiation [31]. Its structure (PDB ID 6F8O) displays a similar interaction with Tyr209, and
comparison to structures containing ARIs shows that the “locked” residue 298 in activated
AR may cause steric hindrance, explaining the reduced inhibition of some ARIs against
activated AR.

Likewise, Balendiran and colleagues [22,29] observed similar trends of activity af-
fection and inhibitor reduced potency with C299S AKR1B10, while Shen and colleagues
probed “native” AKR1B10 with reactive oxygen species (ROS), GSH and free cysteine
accounting for similar effects as for AR. Considering that Tyr210 (Tyr209 in AR) is con-
served, it seems that AKR1B10 in vivo may also be regulated by the redox state. Last, the
crystal structure of the AKR1B10 holoenzyme with epalrestat (PDB ID 4JIH, [32]) presents
a sulfenylated Cys299, probably due to the crystallization conditions, further supporting
the redox regulation of this residue.

biorender.com
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This long prelude is necessary to understand the potential and the limitations of
such approach for AKR1B10 (and AR) covalent inhibition. The first covalent inhibitor of
AKR1B10 was found by Pérez-Sala’s laboratory in 2011 [28]. Using a proteomics approach,
they found in mice fibroblasts that AKR1B3 (a mouse ortholog of AR) and AKR1B8 (a close
AKR1B10 mouse homolog), sharing some key features but diverging in others [33,34]),
were covalently bound to PGA1-biotin (PGA1-B, Figure 1). Furthermore, they showed
that AKR1B10 is forming adducts with PGA1-B through Cys299, and that PGA1 inhibited
its activity on antitumoral drug doxorubicin in human lung adenocarcinoma A549 cells,
preventing chemoresistance [28]. A follow-up study by the same research group [35]
proved that AR is also reacting covalently via Cys298 with PGA1 (Figure 1) and showed
that, for both AKR1B10 and AR, the adduct could be reversed by high concentrations of
GSH. Inhibition assays with recombinant proteins showed IC50 values of 38 and 16 µM
against PGA1, respectively [35,36].

More recently, the Cravatt laboratory has found an additional couple of covalent
leads, VC59 and VC63, with IC50 ~1 µM in AKR1B10-transfected cell lysates (Figure 1).
They have developed powerful chemical proteomics approaches to map Cys ligandability
in mammalian cancer cell lines [37]. In the first work [37], they used a broadly reactive
iodoacetamide alkyne (IA-alkyne, Figure 1) in lung cancer cell lines and identified three
liganded proteins exclusive to KEAP1-mutant cells (KEAP1 is a negative regulator of the
transcription factor NRF2, which in cancer cells induces expression of metabolic enzymes
such as AKR1B10 to restore redox homeostasis). In the second study [38], they have devel-
oped a second type of broadly reactive (but less unspecific) electrophilic fragment (“scout”
fragments, Figure 1) with the same purpose of mapping Cys ligandability. AKR1B10 is
used as a proof-of-concept, and again Cys299 has been identified as a highly reactive Cys
with the scout fragments. Next, they screened a panel of ~140 evolved analogues based on
the scout fragments, obtaining the mentioned two leads.

A common feature of both types of covalent inhibitors is that their discovery involved
screening with cell lysates, not living cells [28,38]. Surprisingly, the most potent lead, VC59,
did not bind to AKR1B10 in living lung cancer cells [38]. The researchers found out that,
in cell lysates, increasing concentrations of NADPH prevented reactivity of Cys299. They
argued that in living cells AKR1B10 is fully saturated with NADPH, which is expected
according to the literature [12,39]. Balendiran and colleagues [29] observed that C298S
AR binding to NADPH was diminished in comparison to wild-type AR, while NADP+

was unaffected. Thus, the polarity of the mutated and “locked” Ser298 side chain is
likely to be less compatible with the NADPH complex compared with that with NADP+.
Thus, the unfavourability of such a complex may prevent the reactivity of Cys298 (or
Cys299 in AKR1B10). Hence, this warrants further research and consideration of both
“native” and “activated” forms for drug discovery campaigns against both enzymes, and
screening of compounds in living cells in different possible physiological and pathological
redox scenarios.

2.3. Potential for AKR1B10 Catalytic Activators

AKR1B10 has a key role in protecting the GI tract from lipid peroxides and reactive
aldehydes, and its expression is decreased in GI cancers [2,16]. Thus, finding small molecule
activators of its activity could potentially be beneficial in both precancerous and cancerous
lesions of the GI tract in which AKR1B10 downregulation has been observed. Indeed, some
inroads into small molecule enzyme activators have been made through activity-based
protein profiling or high throughput screening, including aldehyde dehydrogenase 2 [40],
glucose-6-phosphate dehydrogenase [41] and serine hydrolase LYPLAL1 [42].

In this regard, Endo and colleagues reported that various bile acids (Figure 1) activated
rat AKR1B14 catalytic activity [43]. Through a combination of kinetics, mutagenesis, and
structural analyses, they identified that the likely mechanism of activation is acceleration
of NADP+ dissociation, i.e., the rate-limiting step of the reaction catalyzed by AKR1Bs.
This was surprising because most AKR1B and AKR1C enzymes are inhibited by bile
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acids [44,45]. However, His269 in AKR1B14 (a lysine in AKR1B10 and in most AKR1Bs
apart from AKR1B15, [7]) was identified as a key residue for activation. Since the molecular
basis for activation in AKR1B14 is well defined, and the differences with AKR1B10 are
minimal, it is possible to envisage that a focused library of bile acid derivatives could help
find the specific AKR1B10 activators.

3. What We Have Learnt from 3D Structures

The long-standing interest in AR is also reflected in the impressive number of three-
dimensional structures of the holoenzyme by itself and in complex with many inhibitors
(https://www.rcsb.org/uniprot/P15121, accessed on 8 December 2021), starting from
the crystal structure of pig aldose reductase solved in 1994 [8]. Of note it is also the
availability of over 30 structures with a resolution of 1 Å or higher, including the record
resolution (0.66 Å) for a structure of a macromolecular entity over 25 kDa, the complex of
AR holoenzyme with carboxylic ARI IDD594 (PDB ID 1US0 and [46]). Such detail level
allowed identification of the protonation states of the residues involved in inhibition and
catalysis, and it was later complemented by a joint X-ray/neutron crystallography structure
that elucidated the catalysis and inhibition mechanisms of AR in extraordinary detail [47].

As explained for AKR1B10 inhibitors, the determination of structures of the AKR1B10
holoenzyme by itself and in complex with many inhibitors (20 structures, please see
https://www.rcsb.org/uniprot/O60218, accessed on 8 December 2021, Table A1) had to
wait a bit more than a decade (PDB ID 1ZUA and [10]) and provides a fair number of
complexes containing CAIs and NCAIs, which will be addressed below.

3.1. AKR1B10 Structure: Overview and Specific Features

The first three-dimensional structure solved for AKR1B10, the ternary complex of
AKR1B10/NADP+/tolrestat (PDB ID 1ZUA, Figure 2), was elucidated in a joint work
by the groups of Parés/Farrés and Fita, and is yet the one with the highest resolution
(1.25 Å). It illustrates the paradigm of a non-specific ARI binding to AKR1B10, with only
positions 301 and 303 differing between AR and AKR1B10 for residues interacting with
the compound [10]. The structure showed the (α/β)8 TIM barrel topology characteristic of
the AKR superfamily, with the NADP+ cofactor bound in the interior of the barrel in an
extended conformation (Figure 2A,B). Protruding from the barrel core, loops A (residues
112–136), B (residues 216–227) and C (residues 299–310), the most divergent in AKRs
and conferring substrate specificity (Figure 2B), are forming the “lid” of the active site.
Tolrestat interacts—through its carboxylic acid (CA) moiety—with the anion-binding site
residues Tyr49, His111 (both along with Asp44 and Lys78 form the catalytic tetrad), and
Trp112, near the positively charged nicotinamide ring of the cofactor (Figure 2C,D). The
methoxy-trifluoromethyl-naphthalen moiety of tolrestat is lined by residues at the base of
loops A and B (Trp112, Phe116, Phe123, Trp220) and by loop C (Cys299, Val301, Gln303).
By comparison to AR, the latter pocket has also been named as “specificity pocket” (SP,
Figure 2C).

The determination of the structures of the AKR1B10 holoenzyme, alone and in com-
plex with other ARIs and with specific AKR1B10 inhibitors, has allowed to identify two
key differences between AR and AKR1B10 (see Table A1 for detailed information). The
first corresponds to the different conformation of Trp112, in comparison to Trp111 in
AR, in the holoenzyme by itself and with specific AKR1B10 inhibitors such as UVI2008
(Figure 3E). This conformation, which has been named as “native” or “1B10-like conforma-
tion”, is perpendicular to the “flipped” or “AR-like conformation”, observed in the case
of AKR1B10/NADP+/tolrestat and complexes with other ARIs. As reported by us and
the Hu’s laboratory [32,48,49], AKR1B10 adopts the native Trp112 conformation through a
hydrogen bond network involving Gln114 and loop C residue Ser304 (Figure 2D). In AR,
with Thr113 and Cys303, respectively, this network cannot be established. In addition, AR
Trp111 conformation is always locked through a hydrophobic interaction with Leu300 (or
an ARI opening the SP) [50].

https://www.rcsb.org/uniprot/P15121
https://www.rcsb.org/uniprot/O60218
https://www.rcsb.org/uniprot/O60218
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of the structure (red: high B-factor to blue: low B-factor). (B) The zoom of part of the loop A region is an atomic model
with color coding as follows: AR:NADP+:tolrestat (PDB ID 2FZD) in orange, AR:NADP+:fidarestat (PDB ID 1PWM) in
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(or in red if they represent a short contact), water molecules in magenta for AR and in deep teal for the V301L AKR1B10
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size; (C) AR:NADP+:fidarestat complex and (D) V301L AKR1B10:NADP+:fidarestat complex represented in cartoon tube,
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to pan-RAR agonist TTNPB enables AKR1B10 selectivity, facilitated by AKR1B10 Trp112 native conformation. Inhibition
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residues 112, 114 and 304 stabilizing the native conformation. Panels (A–D) were adapted from Ref. [18]. Panel E was
adapted from Ref. [48]. Created with PyMoL 2.3.0. and in biorender.com.

The second main difference between AKR1B10 and AR is again involving one of the
external loops. When comparing any of the AKR1B10 and AR structures, it is consistently
observed, as derived from the thermal B factors, that loop A in AKR1B10 is much more
mobile than in AR (Figure 3A). Furthermore, AKR1B10 presents a larger and more loosely
packed loop A subpocket (LAS) than AR, with consistently observed crystallographic water
molecule(s) trapped within (in 10 out of the 20 structures, Table A1, and Figure 3B–D). This
subpocket in AR is normally absent and flanked on the sides by loop C Ser302 and loop
A Phe122. In the case of AKR1B10, the flanking residues cannot come as close as in AR,
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due to the presence of the bulkier Gln303 side chain, resulting in an additional opening
of ~2 Å of Phe123 side chain. In addition, in AR, Phe115 (Phe116 in AKR1B10), Leu124
(Lys125 in AKR1B10) and Val130 (Ala131 in AKR1B10) stack and make the pocket more
hydrophobic, locked, and compact, being unable to allocate any water molecule without
clashes (Figure 3B). On the contrary, in AKR1B10, the occupation of this subpocket and
the capability of displacing the buried water(s) (see Table A1) are important for inhibitor
binding and selectivity (discussed below) [21,50,51].

3.2. Structural Bases for AKR1B10 Selectivity

Aside from the difference in the active site region due to Trp112 unique conforma-
tion and the specific and imperfectly hydrated LAS, our biophysical and computational
studies [21,50–52] have shown that AKR1B10 has different conformational landscape, hy-
dration, and electrostatic properties than AR. In the previous sections, we have introduced
the inhibitor types and the specific structural features of AKRB10. In this section, we
will elaborate on what are the requirements for potent and selective AKR1B10 inhibitors,
through a careful look to the different conformations of the holoenzyme upon their binding.

Regarding CAIs solved in complex to AKR1B10 holoenzyme (Table A1), several of
them are also ARIs and bind AKR1B10 very similarly to AR, although with some exceptions.
Tolrestat binding has already been considered in the previous section. Zopolrestat is also
opening the SP in AKR1B10 analogously to in AR, through a π-π stacking interaction with
Trp112 (Figure 4A). Sulindac, a non-steroidal anti-inflammatory drug (NSAID) previously
reported to inhibit cyclooxygenase-2 (COX-2), AR and AKR1C3 [52,53], displays a mode of
binding essentially equivalent in the two enzymes, stacking towards the base of loop A.
However, the stacking interaction is different given by Phe122/Phe123, and two buried
and ordered water molecules are present in the LAS in AKR1B10 but not in AR (Figure 4B).
Regarding the mentioned exceptions, IDD388 and MK181 are known to open the SP in
AR similarly to zopolrestat [54], but in AKR1B10, instead, they occupy the LAS bound in
an extended conformation (Figure 4C). Lastly, epalrestat, in both structures with AR and
AKR1B10 (PDB ID 4JIR and 4JIH, respectively), has not precise coordinates for the phenyl
moiety and part of the linker to the CA moiety. Despite this, in AR, with no open LAS in the
structure, it is expected that epalrestat may bind in a similar way as sulindac. Meanwhile,
in AKR1B10, we can manually model epalrestat with its phenyl moiety occupying the LAS
(Figure 4D).
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There are several CAIs, that are selective AKR1B10 inhibitors, for which the enzyme-
NADP+-inhibitor structure has been solved (Table A1). Flufenamic acid is a NSAID
and specific AKR1B10 inhibitor vs. AR but also inhibiting COX-2 and AKR1C3 [53].
Interestingly, in AKR1B10, it binds the holoenzyme with the aryl moiety stacking against
Trp21 (Trp20 in AR), in a small loop near the active site. The selectivity is due to the steric
clash that Trp111 in AR (always in flipped position) would have with the benzoic acid
moiety of the inhibitor, and that the native Trp112 position avoids in AKR1B10 (Figure 5A).
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The other two selective CAIs solved in complex with AKR1B10 holoenzyme, JF0049
and MK204 (Figure 5B,C), have in common polybrominated aryl moieties that are too bulky
to fit within the SP of AR [50,51]. Nevertheless, they interact differently with AKR1B10.
The aryl moiety of JF0049 is having a tight fit with the LAS, and we also observed an
enthalpic signature by isothermal titration calorimetry upon its binding, consistent with
the displacement of the water molecule trapped in the LAS in the holoenzyme structure.
Indeed, the LAS presents just one or two ordered water molecules, but it is likely that
other disordered and mobile water molecules are present. While their release should not
contribute significantly to a large entropy gain, the new hydrogen bonds they will form
with other water molecules in the bulk phase may add a significant enthalpic benefit [50].

On the other hand, MK204, with one additional bromine (Br) substituent in the
aryl moiety and a three-atom linker between the CA and aryl moieties, was studied in the
context of a series with increasing number of Br atoms in the aryl moiety of compounds with
identical CA moiety and linker [51]. We observed that the three bulkier ligands can fit nicely
into a novel AKR1B10 binding site conformer, mainly through a stacking interaction with
the Trp112 native (but not the flipped) conformation (Figure 5B). Computational studies
paired with the structures allowed us to surmise that ligand binding in this novel pocket
requires a very hydrophobic aryl moiety able to displace unfavorable water molecules
(accounting for a high desolvation penalty) observed in structures with less Br substituents
than MK204 [51]. Furthermore, the latter (but not the other congeners) establishes a strong
halogen bond with the main chain carbonyl of Cys299.
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Regarding NCAIs solved in complex to AKR1B10 holoenzyme (Table A1), fidarestat
and sorbinil (Figure 1), both cyclic imide ARIs, display an almost identical binding to the
two enzymes (Figure 3A), not opening the SP but with a flipped Trp112. Next, we screened
a library of synthetic polyhalogenated compounds lacking the usual CA or cyclic imide
moieties (in collaboration with Biomar Microbial Technologies) and discovered JF0064,
a pan-inhibitor against human AKR1B (in order of potency, inhibiting AKR1B15 > AR >
AKR1B10 [7,11]) with a new anchoring moiety. We determined Ki values and complexes
with AR and AKR1B10 holoenzymes, identifying it as a non-competitive inhibitor where
the acidic hydroxyl group is binding the ABP, again not opening the SP but with a flipped
Trp112. Of note is that JF0064 binding triggers a slight opening of loop B (loop B sub-
pocket, or LBS), the only instance in which this has been observed in AKR1B10 structures
(Figure 5D and Table A1). Chatzopoulou and colleagues [55], in an unrelated manner, de-
veloped a 2-fluoro-4-(1H-pyrrol-1-yl) phenol scaffold inhibiting AR, that showed improved
membrane permeation, in line with our in vitro data predicting better pharmacokinetic
properties for JF0064 and potential congeners [11].

A great number of selective CAIs and NCAIs was developed in the period from
2010 to 2015 [17,18]. Most of them are: (i) long aliphatic unsaturated compounds with
terminal aryl moieties (caffeic acid derivatives, retinoids, etc.), or (ii) steroids. All these
large inhibitors fit better the larger and more malleable (plastic) AKR1B10 active site and
“lid” region (constituted by the three external loops A, B, and C), opposite to the snugger
AR counterpart. We will address three of these compounds solved in complex with the
AKR1B10 holoenzyme that illustrate the mechanistic bases of selectivity.

Regarding the first group, the Hu’s laboratory determined the structure for the NCAI
lead caffeic acid phenethyl ester (CAPE) [49]. As we observed with JF0064, an acidic
hydroxyl of the ligand is hydrogen-bonded to Tyr49 and His111 (Figure 5E) and Trp112
adopts the native conformation. CAPE would be compatible with the flipped conformation,
but not CAPE derivatives with a 2-methoxy group in the catechol moiety (Figure 5E),
which would clash with that conformation of Trp112 and have extraordinary selectivity for
AKR1B10. This is similar to what we observed with UVI2008 (Figure 2D). Both compounds
have aryl moieties that occupy the LAS (Figures 2D and 5E).

Regarding triterpenoid inhibitors, such as oleanolic acid (Figure 1), molecular docking
suggested that they would interact in a similar fashion as CAPE or UVI2008. The last
AKR1B10 structure determined so far (PDB ID 5Y7N) is the first and only that contains
a steroid inhibitor (an NCAI derivative from 5β-cholanic acid, androst-4-ene-3β,6α-diol
(3a), [56]). While inhibition studies have been reported, the structure has not been published
in a peer-reviewed journal. Complex with compound 3a shows a surprising feature: Phe123
is displaced inwards blocking the entry of the LAS and stacking against the side chain
of Leu302, opening a novel subpocket that we name base of loop A subpocket (BLAS),
delimited by Phe123, Leu122 and Val48 (Figure 5F). It should be of interest determining a
structure of the AKR1B10 holoenzyme with oleanolic acid to see whether the latter binds
similarly to 3a, in the BLAS, or it can open the LAS.

4. Conclusions

Different protein conformers may contribute to inhibitor selectivity against AKR1B10
versus AR. Due to the flexibility of the AKR1B10 active site and the existence of transient
opening subpockets, the exact inhibitor-AKR1B10 interactions might need to be determined
on a case-by-case basis using crystallographic methods. Upon close examination of the
crystallographic structures of AKR1B10 with various inhibitors, distinct structural con-
formers were revealed. Here we summarize the general features that a selective AKR1B10
inhibitor should comply with:

(i) An anchoring moiety: Common to ARIs, an AKR1B10 inhibitor must have an anchor-
ing moiety, with a carboxylic acid or an acidic hydroxyl as best choices. Cyclic imides,
without the addition of an aryl moiety for binding to either the SP or the LAS (as it
may be with minalrestat), are poor AKR1B10 inhibitors.
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(ii) Keeping Trp112 in its native conformation (AKR1B10-like): Substituents or ligand con-
formations that are not compatible with the Trp112 flipped (AR-like) conformation—
e.g., flufenamic acid, UVI2008−, and/or aryl moieties that provide an “optimal filling”
of the LAS are required for specificity. That is to displace the buried water molecule(s)
in the LAS, an adequate shape complementarity, and to have interactions that are
more favorable that those in the bulk water [50,51].

(iii) Not opening the SP in AR: Another recurrent feature of selectivity for AKR1B10 over
AR, is the inability of an inhibitor to induce the opening of the SP of AR, which
normally occurs in ligands with a bulky aryl moiety as in JF0049 or MK204. This can
be observed in Table A1, as, in the solved structures of AKR1B10 holoenzyme with
inhibitors, no specific AKR1B10 inhibitor is able to open the SP in AR.
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# Selectivity fold of enzyme B versus enzyme A is defined as the ratio IC50 A/IC50 B, where A is the enzyme with high-er IC50 value (weaker
inhibition) and B with lower IC50 value (more potent inhibition); * V301L mutant; ** methylated K125L/V301L mutant (AKME2MU);
“-” not applicable.
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