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1. Introduction

We consider the quadratic planar differential system

ẋ = p(x, y), ẏ = q(x, y), (1)

where p(x, y) and q(x, y) are real coprime polynomials of degree two. Let f ∈ R[x, y]. 
We say that f = f(x, y) = 0 is an invariant algebraic curve of system (1) if it satisfies

p(x, y)∂f
∂x

(x, y) + q(x, y)∂f
∂y

(x, y) = k(x, y)f(x, y), (2)

for some k(x, y) polynomial of degree at most 1 called the cofactor of f(x, y) = 0. If 
f ∈ R[x, y] has degree n, it is irreducible in R[x, y] and f = 0 is an invariant algebraic 
curve, then we say that f = 0 is an irreducible invariant algebraic curve of degree n.

A limit cycle of system (1) is an isolated periodic solution in the set of all periodic 
solutions of the system. If a limit cycle is contained into the set of points of an invariant 
algebraic curve, then it is called an algebraic limit cycle. We say that an algebraic limit 
cycle has degree n if it is contained into the set of points of an irreducible invariant 
algebraic curve of degree n.

One of the most interesting questions on limit cycles was proposed by Hilbert [17] in 
1900 in the second part of 16th Hilbert’s Problem: Compute H(m) such that the number 
of limit cycles of any polynomial differential system of degree m is less than or equal to 
H(m).

Hilbert’s Problem remains unsolved even for m = 2. It is known that a quadratic 
system with an invariant straight line has at most one limit cycle (see [9] or [10]).

The paper is structured as follows. In section 2 we provide the known families of 
planar quadratic differential systems having an algebraic limit cycle. We also provide 
their phase portrait in the Poincaré disk, which was never done before. In section 3 we 
first introduce the plane Cremona maps, in particular the quadratic ones. Afterwards 
in section 4 we state and prove some results connecting local and global behavior that 
allow us to know a priori whether a Cremona transformation can be applied to obtain 
a new quadratic system, according to the local behavior of the base points. The degree 
of the transformed algebraic curve of the limit cycle is also computed. To finish this 
section we study the particular case of quadratic Cremona maps applied to quadratic 
differential systems, which is the main aim of this work, and we give different geometrical 
characterizations of when the degree of a quadratic foliation remains invariant under the 
action of plane quadratic Cremona maps. The rest of main results are presented in 
section 5. Theorem 21 shows under which conditions we can obtain a quadratic system 
after applying a quadratic Cremona map to a quadratic differential system. Afterwards, 
Theorem 22 provides a new quadratic differential system having an algebraic limit cycle 
of degree 5. These results are proved in sections 6 and 8, respectively. Finally section 7
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provides the classification of the known quadratic systems with algebraic limit cycles by 
the action of quadratic plane Cremona maps.

2. The known families of planar quadratic differential systems having an algebraic 
limit cycle

There is exactly one family having an algebraic limit cycle of degree 2, found by Qin 
in 1958 (see [20]). Evdokimenco from 1970 to 1979 proved that there are no quadratic 
systems having an algebraic limit cycle of degree 3 (see [13–15]), see Theorem 11 of 
[6] for a short proof. There are four families having an algebraic limit cycle of degree 
4: the first one was found by Yablonskii in 1966 (see [21]); the second one was found 
by Filipstov in 1973 (see [16]); Chavarriga found the third one and Chavarriga, Llibre 
and Sorolla found the fourth one, they both were published in 2004 in [7]. It was also 
proved in [7] that there are no other families having algebraic limit cycles of degree 4. 
Finally, up to now there were only one known family having an algebraic limit cycle of 
degree 5 and one known family having an algebraic limit cycle of degree 6, both of them 
found in 2005 (see [8]). Both families are found after a birational transformation of the 
family due to Chavarriga, Llibre and Sorolla of [7]. Moreover, in that paper a birational 
transformation relates Yablonskii’s family and Qin’s family. Since that paper no other 
families of quadratic systems having an algebraic limit cycle have been found.

Qin Yuan-Shün summarizes in 1958 (see [20]) the quadratic systems having an alge-
braic limit cycle of degree 2 and he proves the uniqueness of this limit cycle:

Proposition 1 (Qin limit cycle). If a quadratic system has an algebraic limit cycle of 
degree 2, then after an affine change of variables and time, the limit cycle becomes the 
circle x2 + y2 − 1 = 0. Moreover, it is the unique limit cycle of the quadratic differential 
system, which can be written as

ẋ = −y(ax + by + c) − (x2 + y2 − 1) ,

ẏ = x(ax + by + c) ,
(3)

with a �= 0, c2 + 4(b + 1) > 0 and a2 + b2 < c2.

The case of the limit cycles of degree 3 was studied later on. Using three papers 
Evdokimenco proved from 1970 to 1979 that there are no quadratic systems having limit 
cycles of degree 3 (see [13–15]). A simpler proof can be found in [6].

Yablonskii [21] found the first family of quadratic differential systems having an alge-
braic limit cycle of degree 4 in 1966:



4 M. Alberich-Carramiñana et al. / Advances in Mathematics 389 (2021) 107924
Proposition 2 (Yablonskii limit cycle). The quadratic differential system

ẋ = −4abcx− (a + b)y + 3(a + b)cx2 + 4xy ,

ẏ = (a + b)abx− 4abcy + (4abc2 − 3
2(a + b)2 + 4ab)x2 + 8(a + b)cxy + 8y2 ,

(4)

with abc �= 0, a �= b, ab > 0 and 4c2(a − b)2 + (3a − b)(a − 3b) < 0, has the irreducible 
invariant algebraic curve

(y + cx2)2 + x2(x− a)(x− b) = 0

of degree 4 having two components: an oval (the algebraic limit cycle) and an isolated 
singular point.

In 1973 a new family of algebraic limit cycles of degree 4 was found by Filipstov [16]:

Proposition 3 (Filipstov limit cycle). The quadratic differential system

ẋ = 6(1 + a)x + 2y − 6(2 + a)x2 + 12xy,

ẏ = 15(1 + a)y + 3a(1 + a)x2 − 2(9 + 5a)xy + 16y2,
(5)

with 0 < a < 3/13, has the irreducible invariant algebraic curve

3(1 + a)(ax2 + y)2 + 2y2(2y − 3(1 + a)x) = 0

of degree 4 having two components: one is an oval and the other one is homeomorphic 
to a straight line. This second component contains three singular points of the system.

The third algebraic limit cycle of degree four was found by Chavarriga in 1999, al-
though the result was first published in 2004 in [7]:

Proposition 4 (Chavarriga limit cycle). The quadratic differential system

ẋ = 5x + 6x2 + 4(1 + a)xy + ay2,

ẏ = x + 2y + 4xy + (2 + 3a)y2,
(6)

with (−71 + 17
√

17)/32 < a < 0, has the irreducible invariant algebraic curve

x2 + x3 + x2y + 2axy2 + 2axy3 + a2y4 = 0

of degree 4. It has three components; one of them is an oval and each one of the others 
is homeomorphic to a straight line. Each one of these last two components contains one 
singular point of the system.
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Finally, Chavarriga, Llibre and Sorolla [7] in 2004 found the fourth one:

Proposition 5 (Chavarriga, Llibre and Sorolla limit cycle). The quadratic differential 
system

ẋ = 2(1 + 2x− 2ax2 + 6xy),

ẏ = 8 − 3a− 14ax− 2axy − 8y2,
(7)

with 0 < a < 1/4, possesses the irreducible invariant algebraic curve

1
4 + x− x2 + ax3 + xy + x2y2 = 0

of degree 4 having three components; one of them is an oval and each of the others is 
homeomorphic to a straight line. One of these last two components contains two singular 
points of the system, the other does not contain any singular point.

In what follows we denote this system by CLS. We have corrected a mistake in [5]
concerning the singular points on the components of the algebraic curve of (7).

It was proved in [7] that there are no other families of quadratic systems having 
algebraic limit cycles of degree 4. That is, after an affine change of variables and time, 
the unique quadratic systems having an algebraic limit cycles of degree 4 are the previous 
ones.

Concerning families of quadratic systems having algebraic limit cycles of degree greater 
than 4, up to now there were only one known family having an algebraic limit cycle of 
degree 5 and one known family having an algebraic limit cycle of degree 6. Both on them 
were presented by Christopher, Llibre and Świrszcz in 2005 (see [8]):

Proposition 6 (Christopher, Llibre and Świrszcz limit cycle of degree 5). The quadratic 
differential system

ẋ = 28x + 2(16 − α2)(α + 12)x2 + 6(3α− 4)xy − 12
α + 4y

2,

ẏ = 2(16 − α2)x + 8y + (16 − α2)(α + 12)xy + 2(5α− 12)y2,

(8)

where α ∈ (3
√

7/2, 4), has an algebraic limit cycle contained into the algebraic curve of 
degree 5

f(x, y) =x2 + (16 − α2)x3 + (α− 2)x2y − 2
α + 4xy

2 − 1
4(4 − α)(α + 12)x2y2

+ 8 − α

α + 4xy
3 + 1

(α + 4)2 y
4 + α + 12

α + 4 xy4 − 6
(α + 4)2 y

5.

The cofactor of this curve is
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k(x, y) = 56 + 6(16 − α2)(α + 12)x + 4(13α− 24)y.

The curve has two components; one of them is an oval and the other is homeomorphic 
to a straight line. This last component contains two singular points of the system.

We shall denote system (8) by CLS5.

Proposition 7 (Christopher, Llibre and Świrszcz limit cycle of degree 6). The quadratic 
differential system

ẋ = 28β(β − 30)x + y + 168β2x2 + 3xy,

ẏ = 224β2(β − 30)2x + 516β(β − 30)y + 1344β3(β − 30)x2 + 24β(17β − 6)xy + 6y2,

(9)

where β ∈ (3/2, 2), has an algebraic limit cycle contained into the algebraic curve of 
degree 6

f(x, y) =48β3(β − 30)4x2 + 24β2(β − 30)3xy + 3β(β − 30)2y2

+ 64β3(β − 30)3(9β − 4)x3 + 24β2(β − 30)2(9β − 4)x2y

+ 18β(β − 30)(β − 2)xy2 − 7y3 + 576β3(β − 30)2(β − 2)2x4

+ 144β2(β − 30)(β − 2)2x3y + 27β(β − 2)2x2y2

− 3456β3(β − 30)(β − 2)2(2β + 3)x5 − 432β2(β − 2)2(2β + 3)x4y

+ 3456β3(β − 2)2(β + 12)(2β + 3)x6.

The cofactor of this curve is

k(x, y) = 168β(β − 30) + 1008β2x + 18y.

The curve has two components; one of them is an oval and the other is homeomorphic 
to a straight line. This last component contains three singular points of the system.

We shall denote this system by CLS6.
Fig. 1 shows the phase portraits of all these seven families of quadratic systems in 

the Poincaré disk. We note that Qin’s system has two topologically non-equivalent phase 
portraits depending on the parameters.

3. Plane Cremona maps

3.1. Projective vector fields

We shall use projective coordinates for our purposes, so we introduce in this section 
some basic notions on projective vector fields.
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Fig. 1. Phase portraits of the known quadratic differential systems having an algebraic limit cycle in the 
Poincaré disk. The red lines correspond to the invariant algebraic curves. The dashed lines correspond to 
the cofactors. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Let A, B and C be homogeneous polynomials of degree m + 1 in the variables X, Y
and Z. The homogeneous 1-form

ω = AdX + B dY + C dZ

is said to be projective if XA +Y B+ZC = 0, that is, if there exist L, M, N homogeneous 
polynomials of degree m such that

A = MZ −NY, B = NX − LZ, C = LY −MX. (10)

The triple L, M, N can be thought as a homogeneous polynomial vector field in C3 \{0}
of degree m, which passing to CP 2 provides the projective foliation of degree m defined 
by ω, which we denote by F . Equivalently, we will say that (L, M, N) is a polynomial 
vector field in CP 2 of degree m.

The following result is well known, see [11].
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Lemma 8. If we take L̄ = L + XW , M̄ = M + YW and N̄ = N + ZW , with W a 
homogeneous polynomial of degree m − 1, then the 1-form ω remains invariant.

Lemma 8 tells us that (L̄, M̄, N̄) defines also ω, i.e., A = M̄Z − N̄Y , B = N̄X − L̄Z, 
C = L̄Y − M̄X.

The singular points p of ω (or of F) are those satisfying the system of equations 
A(p) = B(p) = C(p) = 0. The following result gives un upper bound for the number of 
singular points, see [11] again.

Proposition 9. The number of singular points of any homogeneous polynomial vector 
field (L, M, N) in CP 2, with L, M, N coprime of degree m, having finitely many singular 
points is at most m2 + m + 1.

Let F be a homogeneous polynomial of degree n in CP 2. We say that F = 0 is an 
invariant algebraic curve of ω = 0 if

L
∂F

∂X
+ M

∂F

∂Y
+ N

∂F

∂Z
= KF, (11)

where K is a polynomial of degree m − 1, called the cofactor of F . Euler’s theorem for 
any homogeneous polynomial of degree n gives the relation

X
∂F

∂X
+ Y

∂F

∂Y
+ Z

∂F

∂Z
= nF.

From the above relation and from (11) we have

∂F

∂X

(
L− KX

n

)
+ ∂F

∂Y

(
M − KY

n

)
+ ∂F

∂Z

(
N − KZ

n

)
= 0. (12)

Remark 1. Taking L̄ = L −KX/n, M̄ = M −KY/n and N̄ = N −KZ/n we have that 
the cofactor of an invariant algebraic curve is zero for ω = L̄(Y dZ −ZdY ) + M̄(ZdX −
XdZ) + N̄(XdY − Y dX).

The affine quadratic vector field (1) can be thought in CP 2 as the projective 1-form

Z4
[
−q

(
X

Z
,
Y

Z

)
ZdX −XdZ

Z2 + p

(
X

Z
,
Y

Z

)
ZdY − Y dZ

Z2

]
= 0

of degree 3, where we have taken (x, y) = (X/Z, Y/Z). Indeed, taking P (X, Y, Z) =
Z2p(X/Z, Y/Z) and Q(X, Y, Z) = Z2q(X/Z, Y/Z), this 1-form writes as

ω = −ZQdX + ZPdY + (XQ− Y P )dZ. (13)
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The affine differential system (1) is equivalent to the projective one defined by the 1-form 
(13) of CP 2. This is called the projectivization of (1). Observe that the degree of the 
affine system (1) and the degree of its projectivization coincide.

I will be convenient for our purpose to work with the projective extension of an initial 
affine differential system, since we will apply to it a projective birational transformation, 
also known as Cremona map. At the end we will need to derive a new affine differen-
tial system from the transformed projective one. Hence we will study next the reverse 
operation of the projectivization.

From a foliation complex projective F of degree m defined by the projective 1-form ω =
A dX + B dY + C dZ in some suitable projective coordinate system, one easily restricts 
in the affine chart Z �= 0 to the affine 1-form A(x, y, 1) dx + B(x, y, 1) dy and hence 
to the affine differential system ẋ = B(x, y, 1), ẏ = −A(x, y, 1). The affine restriction 
of a projective differential system is the reverse operation of the projectivization, and 
reciprocally. However, notice that the degree of the affine restriction of a given projective 
differential system may have increased in one unit. Since the scope of this paper is dealing 
with quadratic differential systems, the invariance of the degree through this operation 
is an important issue to handle with.

Proposition 10. A complex projective foliation F of degree m which is defined by a pro-
jective 1-form ω = A dX + B dY + C dZ restricts to an affine differential system of the 
same degree m if and only if F has an invariant line L, that is, there is a subpencil of 
the net {aA + bB + cC = 0 : a, b, c ∈ C} having L as a common factor.

Observe that in the case of the foliation defined by the form (13), which is the pro-
jectivization of (1), the invariant line is Z = 0.

Proof. Suppose first that F has an invariant line L, which can be written as L = {Z = 0}
by changing the projective coordinate system to a suitable one. From (11) we infer 
N = KZ, with K homogeneous of degree m −1. Substituting in (10) we obtain A = ZA1, 
B = ZB1 with A1, B1 homogeneous of degree m, that is, the subpencil {aA + bB =
0 : a, b ∈ C} is the one having L as common factor. Now, when taking the affine chart 
Z �= 0, ω restricts to the affine 1-form A1(x, y, 1) dx + B1(x, y, 1) dy of degree m.

Conversely, suppose ω = A dX + B dY + C dZ, with A, B, C homogeneous of degree 
m + 1 restricts to A(x, y, 1) dx +B(x, y, 1) dy with A(x, y, 1) and B(x, y, 1) of degree m. 
Writing

A(X,Y, Z) = ZA1(X,Y, Z) + A2(X,Y ) ,

B(X,Y, Z) = ZB1(X,Y, Z) + B2(X,Y ) ,

where A1, B1 are homogeneous in X, Y, Z of degree m, and A2, B2 are homogeneous in 
X, Y of degree m + 1, the hypothesis implies that A2, B2 vanish identically. Therefore, 
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the subpencil {aA + bB = 0 : a, b ∈ C} has Z = 0 as common factor and we see from 
(11) and (10) that L = {Z = 0} is an invariant line of F . �

If we have a foliation F with an invariant line L and we want to obtain the corre-
sponding affine differential system, we proceed as follows: first we compute L, M, N from 
A, B, C using (10) and use Lemma 8 to obtain L̄, M̄, N̄ . W is a homogeneous polynomial 
of degree m − 1 to be fixed.

Remark 2. In the case of quadratic foliations invariant lines are easy to find. From 
Remark 1 an invariant line L := a1X + a2Y + a3Z = 0 can be seen as an invariant 
algebraic curve with null cofactor. So we have the equation

a1L̄ + a2M̄ + a3N̄ = 0. (14)

Solving this equation, which can be written as a system of equations with unknowns 
a1, a2, a3 and the coefficients of W , we can obtain all the invariant lines of F .

3.2. Local invariants

In a local setting, let ω be a holomorphic 1-form generating a holomorphic foliation F
on a smooth surface S on a neighborhood of a point p ∈ S, and let πp : S′ := BlpS → S

be the blow-up at p with exceptional divisor Ep = π−1
p (p). The points of Ep are called 

points in the first (infinitesimal) neighborhood of p. Taking local coordinates x, y centered 
at p, the local ring OS,p of germs of holomorphic functions in a neighborhood of p is 
identified with C{x, y} (the ring of convergent power series in x and y), and we write 
mp = (x, y) for the maximal ideal of OS,p. Suppose the foliation F is given by

ω = a(x, y)dx + b(x, y)dy = 0, (15)

with a, b ∈ C{x, y}, that is, F is defined locally by the vector field −b(x, y) ∂
∂x +a(x, y) ∂

∂y . 
The point p is singular if a(p) = b(p) = 0. Attached to each singular point p ∈ Sing(F)
we consider two local invariants of F : the algebraic multiplicity m(p, F) and the vanishing 
order l(p, F) of the pullback π∗

pω over the exceptional divisor Ep. Namely,

• m(p, F) = min{ordp(a), ordp(b)}, where ordp(f) is the degree of the initial term of 
f ∈ C{x, y}. In other words, ordp is the mp-adic order. Note that this definition can 
be extended to any p /∈ Sing(F) as m(p, F) = 0;

• l(p, F) = l satisfies that π∗
pF is defined locally at any q ∈ Ep by the 1-form z−lπ∗

pω, 
where z is any equation for the exceptional divisor Ep near q. Namely, either l(p, F) =
m(p, F) + 1 when the exceptional divisor Ep is not invariant by π∗

pF (in which case 
it is said that p is dicritical), or l(p, F) = m(p, F) otherwise.
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We recall that a star-node is a singular point of a differential system whose Jacobian 
matrix is, up to a multiplicative constant, the identity. This is actually the simplest 
example of a dicritical singular point.

We introduce well-known analogous notions for a holomorphic germ of curve C : f = 0
at the point p ∈ S with f ∈ C{x, y}: the multiplicity of C (or of f) at p is m(p, C) =
m(p, f) := ordp(f), and the value l(p, C) = l(p, f) of C (or of f) at p is the vanishing 
order of the pullback π∗

pf over the exceptional divisor Ep, which equals the multiplicity 

m = m(p, C) (see for instance [3, 3.2.1]). The strict transform C̃ of C by πp is then 
defined locally at any q ∈ Ep by z−mπ∗

pf , where z is any equation for the exceptional 
divisor Ep near q. The interest in distinguishing between these two concepts, multiplicity 
and value, will become apparent when extending them to further blow-ups.

Let p be an infinitely near point in S, that is, a point lying on a surface p ∈ S′

obtained from S after a sequence π : S′ −→ S of blow-ups at σ points belonging to 
a set K. A point q ∈ K is said to precede p if p belongs to the pullback on S′ of 
the exceptional divisor Eq of the blow-up of q, that is, the blow-up of q is needed in 
order to obtain p. The set K is called cluster of (infinitely near) points and satisfies 
that for any p ∈ K K contains all the points preceding p. Sometimes the points lying 
on a surface S will be called proper points of S in order to stress their difference to 
the infinitely near ones. If p belongs to the total exceptional divisor π−1(O) of some 
proper point O ∈ S, we say that p is infinitely near to O; if σ is the minimal number 
of blow-ups that are needed to obtain p from O, then we say that p lies in the σ−th 
(infinitesimal) neighborhood of O. We extend at p the notions of algebraic multiplicity
m(p, F) := m(p, π∗F) and vanishing order l(p, F) := l(p, π∗F) of a foliation F on S, 
and of multiplicity m(p, C) = m(p, f) := m(p, C̃) and value l(p, C) = l(p, f) := l(p, π∗f)
of a curve C : f = 0 on S. We say that the point p is singular (respectively, simple) for 
F if m(p, F) > 0 (respectively, m(p, F) = 1). It holds that the vanishing order of the 
pullback (π ◦πp)∗f over the exceptional divisor Ep equals l(p, C). We say that the point 
p lies on C if m(p, C) �= 0.

Remark 3. Notice that these notions being invariant by local isomorphism and by using 
the universal property of blowing-up ([3, 3.3]), m(p, F), l(p, F), m(p, C) and l(p, C) are 
independent on the number σ of blowing-ups that are performed to reach p from O.

The set K of points (which is a union of clusters) which have been blown up to obtain 
π : S′ −→ S gives a parameterization of the set of (irreducible) exceptional components 
{Epi

}pi∈K on S′. By a slight abuse of notation, we keep denoting by Ep the strict 
transforms (on all intermediate surfaces) of the exceptional divisor of the blow-up at 
p ∈ K. We may establish a proximity relation between the points in K. Namely, we say 
that a point q ∈ K is proximate to p ∈ K if and only if q belongs (as proper or infinitely 
near point) to the exceptional divisor Ep. We will denote this relation as q → p. Since 
the total exceptional divisor of π, Ep1 + · · · + Epσ

, is a normal crossings divisor on S′

(i.e. any pair of non-disjoint components intersect transversally and there are no more 
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than two components meeting at a point), any non-proper point p ∈ K is proximate to 
at most two other points in K: if it is proximate to just one point, p is called free, and 
it is called satellite otherwise.

A cluster K of infinitely near points to some proper point O ∈ S is described by means 
of an Enriques diagram, the proper points are represented by black-filled circles and the 
infinitely near ones are represented by grey-filled circles. These conventions will be used 
throughout this work for all the pictures depicting clusters. An Enriques diagram is a 
tree, rooted on the proper point O, whose vertices are identified with the points in K, 
and there is an edge between p and q if and only if p lies on the first neighborhood of q
or vice-versa. Moreover, the edges are drawn (as dotted arcs by convention in this work) 
according to the following rules:

• If q is proximate to just one point p, the edge joining p and q is curved and, if p �= O, 
it is tangent to the edge ending at p.

• If p and q (q in the first neighborhood of p) have been represented, the rest of points 
proximate to p arising in successive blow ups are proximate to exactly two points, 
and they are represented on a straight half-line starting at q and orthogonal to the 
edge ending at q.

The multiplicities of a curve C on S satisfy the so called proximity equalities at any 
proper or infinitely near point p ([3, 3.5.3]):

m(p, C) =
∑
q→p

m(q, C), (16)

and they are related to the values by means of the formulae ([3, 4.5.1]):

l(p, C) = m(p, C) +
∑
p→q

l(q, C). (17)

Remark 4. Notice that from (16) it follows that the multiplicities of a curve do not in-
crease on further blowing-ups. By a result of Seidenberg [19] the same holds for foliations: 
if q → p then m(p, F) ≥ m(q, F).

Now, returning to our setting of a projective foliation F on the plane CP 2, CP 2

will play the role of the aforementioned surface S: by taking suitable affine charts the 
algebraic projective 1-form (13) can be written locally as an holomorphic 1-form as in 
(15).

3.3. Plane Cremona maps

A plane Cremona map is a birational map between two complex projective planes 
Φ : CP 2

1 ��� CP 2
2 . There is a largest (Zariski-open) subset U ⊆ CP 2

1 where the map Φ
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is defined. It satisfies that FΦ = CP 2
1 − U is a finite set of points, called fundamental 

points of Φ. Once projective coordinates are fixed in both planes, Φ is defined by three 
homogeneous polynomials H1, H2, H3 of degree n in the variables X, Y , Z, with no 
common factor. The linear system H = {a1H1 +a2H2 +a3H3 = 0 : ai ∈ C} defining Φ is 
called homaloidal net, its members are called homaloidal curves, and d(H) = n is called 
the degree of the map Φ. It is worth noticing that this notion of degree of the homaloidal 
net differs from the degree of Φ as a rational map, this latter being always one, since 
it is generically one-to-one. Next we shall present some basic notions and results about 
plane Cremona maps relevant to this work and we refer the interested reader to [1] for 
a deeper insight.

Any plane Cremona map Φ factorizes as the blow up of a sequence of σ points

π : S = Sσ −→ Sσ−1 −→ · · · −→ S0 = CP 2
1

with Si+1 = Blpi+1Si for a point pi+1 ∈ Si, followed by the blow downs of a sequence of 
σ (-1)-curves (curves with autointersection equal to −1)

π′ : S = S′
σ −→ S′

σ−1 −→ · · · −→ S′
0 = CP 2

2

with S′
i+1 = BlqiS′

i for a point qi+1 ∈ S′
i, that is, the contraction of the (-1)-curve E′

qi+1
, 

which is also the exceptional divisor of the blow up at qi+1 (see [1, Section 2.1]). Thus 
we have the equality of birational maps Φ = π′ ◦ π−1, where π and π′ are morphisms 
and hence they are denoted by an arrow, whereas birational maps, as Φ, are denoted 
by a broken arrow (meaning that it is not defined everywhere). Whenever σ is minimal, 
the set K = {p1, . . . pσ} of points which have been blown up is called the cluster base 
points of Φ. Then the set K ′ = {q1, . . . qσ} is the cluster of base points of Φ−1. Observe 
that the fundamental points of Φ, being proper planar points, are included into the base 
points. Namely, the proper points in K are those of FΦ. Notice that some coincidences 
between the exceptional curves of π and π′ may occur, namely, Epi

= E′
qj for some 

pairs of indexes (i, j). In this case, the base point pi of Φ is called non-expansive, and 
accordingly qj is a non-expansive base point of Φ−1. The rest of base points lacking this 
property are called expansive.

Whenever σ is minimal, the proper or infinitely near points of S are in bijection 
through π to the proper or infinitely near points of CP 2

1 which are not base points of Φ, 
and this correspondence will be denoted by π∗ or (π−1)∗. Consider a proper or infinitely 
near point p of CP 2

1 , and suppose (π−1)∗(p) is equal or infinitely near to the proper 
point p′ of S, then its image by Φ is a well defined proper point Φ(p) = π′(p′) in CP 2

2 . 
Likewise we also state a finer notion, Φ∗(p) = π′

∗(π−1)∗(p), which is the point (π−1)∗(p)
in S regarded as a proper or infinitely near point of CP 2

2 through π′. Observe that Φ∗(p)
is equal or infinitely near to the point Φ(p).

Now, we will weight each base point p ∈ K of Φ by a non-negative integral value 
m(p, H) deeply related to the homaloidal net H as follows. If p is a proper point of S :=
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CP 2
1 , without loss of generality we may assume that p lies on the affine chart given by Z �=

0 (otherwise perform a projective coordinate change), and write x = X
Z , y = Y

Z . Define 
the multiplicity of the net H at p as m = m(p, H) = min{ordp(h1), ordp(h2), ordp(h3)}
with hi(x, y) = Hi(x, y, 1). If q is any point in the first neighborhood of p, consider 
πp : S′ := BlpS → S the blow-up at p with exceptional divisor Ep = π−1

p (p). Since the 
pull-back of functions induces an injective homomorphism of rings π∗

p : OS,p −→ OS′,q, 
we may consider on S′ the net defined locally at q as Hp = z−mπ∗

p(H) (where z is 
any equation for the exceptional divisor E near q), that is, generated by z−mπ∗

p(hi), 
i ∈ {1, 2, 3}. Define m(q, H) := m(q, Hp). Recursively this definition may be extended to 
any q infinitely near to p.

Still associated to the homaloidal net H, we may define at whatever (proper or in-
finitely near) point p in CP 2

1 the value of H at p as l(p, H) = min{l(p, h1), l(p, h2), l(p, h3)}.
It is worth to notice that values of H are straightforward computed from the individual 
values of its three generators, whereas the computation of the multiplicities requires the 
common setting of the multiplicities of the generators and subsequent decision at each 
step of the blowing-up.

Theorem 11.

(1) The multiplicities of a homaloidal net H satisfy the proximity equalities at any proper 
or infinitely near base point p:

m(p,H) =
∑
q→p

m(q,H). (18)

(2) The values of a homaloidal net H satisfy

l(p,H) = m(p,H) +
∑
p→q

l(q,H). (19)

Furthermore, the base points of a homaloidal net H are characterized as those proper 
or infinitely near points p for which l(p, H) −

∑
p→q l(q, H) > 0.

(3) Homaloidal nets H are linear systems which have the property of being complete: 
any curve C of degree n and having values l(p, C) ≥ l(p, H) at all base points p of 
H is a homaloidal curve.

Proof. By [1, 2.1.3], generic homaloidal curves C : a1H1 + a2H2 + a3H3 = 0 with 
(a1, a2, a3) ∈ V , V a (Zariski) open subset of C3), satisfy m(p, C) = m(p, H). Hence, 
claim (1) follows, and, applying (17), the first assertion of claim (2) follows as well. The 
rest of claim (2) comes from the recent characterization in [2] of the base points of an 
ideal. Notice that the base points of the homaloidal net H, weighted by the multiplicities 
or the values, equals the union of weighted clusters of base points of the ideals of the 
stalks of the ideal sheaf generated by the homaloidal net. From this and using [1, 2.5.2], 
claim (3) is inferred. �
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Given a curve C in CP 2
1 its image Φ(C) is the closure of Φ(C − FΦ) in CP 2

2 . If Φ(C)
is a union of points, C is called Φ-contractile. There is a maximal Φ-contractile curve, 
which equals CΦ =

⋃
π(E′

qi), the union running over the indexes 1 ≤ i ≤ σ for which qi
is expansive.

Lemma 12. Restricted to CP 2
1 − CΦ the map Φ is an isomorphism onto CP 2

2 − CΦ−1 .

Proof. Since Φ = π′ ◦ π−1, Φ restricted to CP 2
1 − (FΦ ∪ CΦ) is an isomorphism (see [1, 

2.1.9]). We shall prove the sharper result of the statement by showing FΦ ⊂ CΦ. Let 
pi ∈ FΦ. Since the base points infinitely near to pi constitute a cluster, Epi

is connected 
on S to any Ep with p infinitely near to pi through a chain of exceptional divisors 
Er1 = Epi

, . . . , Era = Ep where two consecutive elements intersect on S. According to 
[1, 2.2.6], the maximal base points (by the ordering of being infinitely near) of a plane 
Cremona map are all expansive. Hence among the former points there exists an expansive 
p, for which r2, . . . , ra−1 are non-expansive. Now, applying [1, 2.6.6], the irreducible 
curve π′(Ep) on CP 2

2 must go at least through one base point qk of Φ−1. Then, again, 
Ep is connected on S to any E′

q with q equal or infinitely near to qk through a chain 
of exceptional divisors Ep, E′

s1 , . . . , E
′
sb

= E′
q where two consecutive elements intersect 

on S. Again by [1, 2.2.6], among the former points we may take an expansive q which 
is minimal in the sense that all s1, . . . , sb−1 are non-expansive. Notice that E′

si = Eti

for suitable non-expansive ti ∈ K, 1 ≤ i ≤ b − 1. Summing up, there is a chain of 
exceptional divisors of π, Epi

, Er2 , . . . , Era−1 , Ep, Et1 , . . . , Etb−1 , E
′
q, connecting Epi

to 
E′

q on S, where two consecutive elements intersect. Thus the irreducible component 
π(E′

q) of CΦ on CP 2
1 goes through the point pi, as desired. �

Suppose the inverse map Φ−1 is defined by homaloidal net H′ spanned by the three 
homogeneous polynomials H ′

1, H ′
2, H ′

3 in the variables U , V , W , with no common 
factor. If C : G(X, Y, Z) = 0 is not contractile, then its direct image Φ∗(C) is the 
curve in CP 2

2 defined from the equation G(H ′
1, H

′
2, H

′
3) = 0 after deleting all the Φ−1-

contractile curves. If F is a projective foliation defined by the projective homogeneous 
1-form ω(X, Y, Z) = A dX + B dY + C dZ, then its direct image Φ∗F is the foliation in 
CP 2

2 defined from the 1-form (Φ−1)∗(ω): ω(H ′
1, H

′
2, H

′
3) = AdU + B dV + C dW after 

deleting all common factors from A, B and C. These common factors happen to be all 
Φ−1-contractile curves, since Φ is isomorphism outside CΦ (Lemma 12).

Remark 5. Notice that for whatever factorization of Φ = π′ ◦ π−1, where π and π′ are 
compositions of blowing-ups we have the equality of foliations π∗F = (π′)∗Φ∗F on S.

The action of a general plane Cremona map on curves is completely known (see [1, 
Lemma 2.9.3]). We highlight the most relevant results for our purpose in the following
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Lemma 13. If C is a curve of degree d(C), then the degree of its direct image Φ∗(C) is

d(C)d(H) −
σ∑

i=1
m(pi, C)m(pi,H).

If moreover C has no contractile components, the multiplicities of Φ∗(C) can also be 
predicted:

m(qk,Φ∗(C)) = d(C)m(qk,H′) −
σ∑

i=1
m(pi, C)eqk(pi,H),

where the eqk(pi, H) are natural numbers algorithmically determined from the vector 
encoding the numerical features of Φ, (d(H);m(p1,H), . . . ,m(pσ,H)).

Forthcoming Section 4 is devoted to the study of the action of plane Cremona maps 
on foliations.

3.4. Quadratic plane Cremona maps

In this work we shall focus on plane Cremona maps of degree 2, called quadratic. 
Notice that any plane Cremona map may be expressed as the composition of quadratic 
transformations (see [1, Theorem 8.4.3]).

In virtue of [1, Section 2.8] any quadratic plane Cremona map with homaloidal net 
H has three base points, say them p1, p2, p3, and they all are simple, that is, they have 
multiplicity μ(pi, H) = 1 for all i ∈ {1, 2, 3}. As a consequence of Theorem 11, according 
to the proximity relations between these base points, quadratic maps can be classified 
into three types:

(C1) An ordinary quadratic plane Cremona map: all three base points are proper pla-
nar points and hence there is no proximity relation between them. Any ordinary 
quadratic Cremona map factorizes as the blow-up at K = {p1, p2, p3}, followed by 
the blow-downs of the strict transforms L̃i = E′

qi of the three lines Li := pjpk, 
with {i, j, k} = {1, 2, 3}. Then {q1, q2, q3} are the base points of the inverse. See 
Fig. 2.

(C2) A quadratic plane Cremona map with exactly two proper planar base points, p1
and p2. The third base point p3 lies on the first neighborhood of one of them, 
suppose of p2 (i.e. p3 lies on the exceptional component Ep2 of blowing up p2) and 
there is only one proximity relation, namely p3 → p2. Any quadratic Cremona 
map of type (C2) factorizes as the blow-up at K = {p1, p2, p3}, followed by the 
blow-downs of the strict transforms L̃i = E′

qi of the lines Li := p2pi, for i ∈ {1, 3}
(where p2p3 is the unique line going through p2 such that its multiplicity at p3 is 
one) and of the exceptional divisor Ep2 = E′

q . Then {q1, q2, q3} are the base points 

2
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Fig. 2. The ordinary plane Cremona map.

Fig. 3. A quadratic plane Cremona map with exactly two proper planar base points (I).

Fig. 4. A quadratic plane Cremona map with exactly two proper planar base points (II).

of the inverse, they satisfy q1 → q2 and Epi
are the strict transforms L̃′

i of the lines 
L′
i := q2qi, for i ∈ {1, 3} (where q2q1 is the unique line going through q2 such that 

its multiplicity at q1 is one). See Figs. 3 and 4.
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Fig. 5. A quadratic plane Cremona map with a unique proper planar base point (I).

Fig. 6. A quadratic plane Cremona map with a unique proper planar base point (II).

(C3) A quadratic plane Cremona map with a unique proper planar base point, p1. A 
second base point, p2, lies on the first neighborhood of p1, and the third base point 
p3 lies on the first neighborhood of p1 and it is only proximate to p2. That is, 
p2 → p1 and p3 → p2 are all the proximity relations. Any quadratic Cremona 
map of type (C3) factorizes as the blow-up at K = {p1, p2, p3}, followed by the 
blow-downs of the strict transform L̃ = E′

q3 of the line L := p1p2 (where p1p1 is 
the unique line going through p1 such that its multiplicity at p2 is one) and of the 
exceptional divisors Ep2 = E′

q2 and Ep1 = E′
q1 . Then {q1, q2, q3} are the base points 

of the inverse, they satisfy q2 → q1 and q3 → q2, and Ep3 is the strict transform L̃′

of the line L′ := q1q2 (where q1q2 is the unique line going through q1 such that its 
multiplicity at q2 is one). See Figs. 5 and 6.

Notice that no projectivity of the plane can transform a quadratic plane Cremona 
map of one type into another of a different type: indeed, a projectivity sends proper 
points to proper points, and each of the three types of quadratic maps has a different 
number of proper base points. Next result classifies quadratic plane Cremona maps under 
projective equivalence, that is, two maps are equivalent if you obtain one from the other 
by composing with suitable planar projectivities, in both the departure CP 2

1 and target 
CP 2

2 planes. We will prove that any quadratic Cremona map is projectively equivalent 
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to a unique distinguished representative belonging to one of the three types listed above 
(Fig. 7).

Proposition 14. The quadratic plane Cremona maps can be classified under projective 
equivalence into type (C1), (C2) or (C3), and each type has a distinguished normal 
form:

(C1) An ordinary quadratic Cremona transformation can be written, up to projective 
equivalence, as

(U, V,W ) = (Y Z,XZ,XY ). (20)

Its inverse is

(X,Y, Z) = (VW,UW,UV ). (21)

Notice that both transformations coincide, so the representative of the class (C1) 
is an involution.

(C2) A quadratic Cremona transformation with only two proper base points can be writ-
ten, up to projective equivalence, as

(U, V,W ) = (XZ, Y Z,X2). (22)

Its inverse is

(X,Y, Z) = (UW,VW,U2). (23)

Again the representative of the class (C2) is an involution.
(C3) A quadratic Cremona transformation with a unique proper base point can be writ-

ten, up to projective equivalence, as

(U, V,W ) = (XZ, Y Z + cX2, Z2). (24)

for some convenient c �= 0. Its inverse is

(X,Y, Z) = (UW,VW − cU2,W 2). (25)

Notice that any c �= 0 gives a representative of the class (C3).

Proof. First of all, notice that any quadratic plane Cremona Φ map must fall into one 
of the three types (C1), (C2) or (C3) which have been described above. Indeed, these 
types comprise all the possibilities of proximity relations between the three simple base 
points of Φ, according to the proximity equalities (1) in Theorem 11.
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By taking a projective coordinate system in CP 2
1 with p1 = (0 : 0 : 1), p2 = (1 : 0 : 0), 

p3 = (0 : 1 : 0) and whatever unit point A := (1 : 0 : 0), and the projective coordinate 
system in CP 2

2 satisfying q1 = (0 : 0 : 1), q2 = (1 : 0 : 0), q3 = (0 : 1 : 0) with unit point 
Φ(A) = (1 : 1 : 1), and by applying [1, 2.8.2], it follows that any quadratic Cremona map 
of type (C1) is projectively equivalent to the ordinary quadratic map in (20).

Start now with a quadratic Cremona map Φ of type (C2) with homaloidal net H. Fix 
in CP 2

1 the projective coordinate system p1 = (0 : 0 : 1), p2 = (0 : 1 : 0), A := (1 : 0 : 0)
being any point on the line L3 := p2p3 different from p2, and take whatever suitable unit 
point B := (1 : 1 : 1). In CP 2

2 , fix the coordinate system q2 = (0 : 1 : 0), q3 = (0 : 0 : 1), 
and, for the moment, A′ := (1 : 0 : 0) is any proper point on the line L′

1 := q2q1, and 
take B′ := (1 : 1 : 1) = Φ(B) as the unit point. We will refine throughout the proof the 
election of the third coordinate point in CP 2

2 .
All the conics C : a1XZ + a2Y Z + a3X

2 = 0 satisfy l(p, C) ≥ l(p, H) at any base 
point p of Φ. Hence they all are homaloidal curves, according to Theorem 11(3), and 
hence the homaloidal net H of Φ is H = {a1XZ + a2Y Z + a3X

2 = 0 : ai ∈ C}. Hence 
Φ is defined by equations

(U, V,W ) =
(
a1XZ + a2Y Z + a3X

2, b1XZ + b2Y Z + b3X
2, c1XZ + c2Y Z + c3X

2)
for some ai, bi, ci ∈ C. Now, from the description of the (C2) type, we must impose the 
conditions Φ(p2p1) = q2 and Φ(p2p3) = q3: Φ({X = 0}) = (a2 : b2 : c2) = (0 : 1 : 0) and 
Φ({Z = 0}) = (a3 : b3 : c3) = (0 : 0 : 1), that is, a2 = c2 = 0 and a3 = b3 = 0. Notice 
that those equations for Φ also give Φ({c3X + c1Z = 0}) ⊆ {w = 0}, which is impossible 
unless c1 = 0.

At this point, we have already proved that Φ has equations

(U, V,W ) =
(
a1XZ, b1XZ + b2Y Z, c3X

2)
for some a1, b1, b2, c3 ∈ C. We can still refine the choice of A′ in order to infer the 
desired normal form of (22). Observe that the image by Φ of the line y = 0 is the 
line a1V − b1U = 0. Hence choosing A′ in the intersection between the lines q2q1 and 
Φ({Y = 0}) is equivalent to saying that Φ({Y = 0}) = {a1V − b1U = 0} = {V = 0}, 
that is, b1 = 0. Finally we impose the last condition Φ(B) = B′, giving Φ(1 : 1 : 1) =
(a1 : b2 : c3) = (1 : 1 : 1), from which we infer the desired normal form of (22).

Consider a quadratic Cremona map Φ of type (C3) with homaloidal net H. Fix in 
CP 2

1 the projective coordinate system p1 = (0 : 1 : 0), A := (1 : 0 : 0) any proper point 
on the line L = p1p2, and whatever suitable third coordinate point B1 := (0 : 0 : 1)
and unit point B2 := (1 : 1 : 1). In CP 2

2 , fix the coordinate system q1 = (0 : 1 : 0), 
B′

1 = (0 : 0 : 1) = Φ(B1) and, for the moment, A′ := (1 : 0 : 0) is any proper point on 
the line L′ := q1q2, and take as unit point B′

2 := (1 : 1 : 1) any suitable point on the line 
q1Φ(B2). We will refine throughout the proof the election of the unit point in CP 2

1 and 
of the third coordinate and unit points in CP 2

2 .
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Choose a suitable c ∈ C with c �= 0 so that the conic C : Y Z + cX2 = 0 goes 
through the infinitely near point p3, that is, m(p3, C) = 1. Then, all the conics C :
a1XZ + a2(Y Z + cX2) + a3Z

2 = 0 satisfy l(p, C) ≥ l(p, H) at any base point p of 
Φ. Hence they all are homaloidal curves, according to Theorem 11(3), and hence the 
homaloidal net H of Φ is H = {a1XZ + a2(Y Z + cX2) + a3Z

2 = 0 : ai ∈ C}. Hence Φ
is defined by equations

U = a1XZ + a2(Y Z + cX2) + a3Z
2

V = b1XZ + b2(Y Z + cX2) + b3Z
2

W = c1XZ + c2(Y Z + cX2) + c3Z
2

for some ai, bi, ci ∈ C. Now, from the description of the (C3) type, we must impose the 
condition Φ(p1p2) = q1: Φ({Z = 0}) = (a2 : b2 : c2) = (0 : 1 : 0), that is, a2 = c2 = 0. 
Notice that those equations for Φ give Φ({a1X + a3Z = 0}) ⊆ {U = 0}, which is 
impossible unless a3 = 0, and Φ({c1X + c3Z = 0}) ⊆ {W = 0}, which is impossible 
unless c1 = 0. Now, owing to the way we have chosen B′, we may impose Φ(B) = B′

and this gives Φ(0 : 0 : 1) = (0 : b3 : c3) = (0 : 0 : 1), that is, b3 = 0.
At this point, we have already proved that Φ has equations

(U, V,W ) =
(
a1XZ, b1XZ + b2(Y Z + cX2), c3Z2)

for some a1, b1, b2, c3 ∈ C, and a suitable non-zero c. We can still refine some choices in 
order to infer the desired normal form of (24). Observe that the image by Φ of the conic 
C : Y Z + cX2 = 0 is the line a1v− b1u = 0. Hence choosing A′ in the intersection of the 
lines L′ and Φ(C) is equivalent to saying that Φ(C) = {a1V − b1U = 0} = {V = 0}, that 
is, b1 = 0. Now, we can also refine the choice of the unit point B′

2 in CP 2
2 and we take as 

B′
2 := (1 : 1 : 1) the unique point on the line q1Φ(B2) which makes that the coordinates 

of Φ(B2) are exactly (1 : 1 + c : 1). Then, imposing Φ(1 : 1 : 1) = (a1 : b2(1 + c) : c3) =
(1 : 1 + c : 1) gives the desired normal form of (24), in which c is determined by the 
relative position of p3 in the third infinitesimal neighborhood of p1.

Finally we will show that we can still refine the choice of the unit point B2 in CP 2
1 to 

achieve that any two quadratic plane Cremona maps in normal form (24) with different 
parameter c are projectively equivalent. Indeed, taking B2 := (1 : 1 : 1) on the conic 
C : Y Z + cX2 = 0, we get c = −1. �

Still more interestingly the proof of Proposition 14 gives the following existential result 
on quadratic plane Cremona maps.

Proposition 15. Let {p1, p2, p3} be a cluster of (infinitely near) points in the plane. There 
exists a quadratic plane Cremona map with base points p1, p2, p3 if and only if p1, p2 and 
p3 are not aligned.
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Fig. 7. The three base points of the different types of Cremona maps (C1), (C2) and (C3) listed in Proposi-
tion 14, from left to right, drawn in the Poincaré disk. Black dots are proper points, while white dots are 
infinitely near singular points.

Proof. If p1, p2 and p3 are not aligned, then the construction of the proof of 14 can be 
carried out and gives the desired quadratic plane Cremona map. Otherwise, if p1, p2 and 
p3 lie on a line L and such a quadratic map would exist, then L would cut its homaloidal 
net of conics in 3 points, resulting in contradiction with Bezout’s Theorem. �
4. Transforming differential systems by plane Cremona maps

In this section we will describe the effect of applying quadratic plane transformations 
on foliations and on curves. The effect of an ordinary quadratic Cremona map is already 
known (see [18]). Since the base points of the ordinary map are all proper points in the 
plane and they are all expansive, the case of a quadratic map of type (C1) is easier 
to handle. In fact, the motivation for introducing in subsection 3.2 the generalized (to 
infinitely near points) notions of algebraic multiplicity and vanishing order on exceptional 
divisors was to provide the suitable tools for describing the effect of a general quadratic 
Cremona map acting on any foliation.

Consider a plane Cremona map between two complex projective planes Φ : CP 2
1 ���

CP 2
2 , and suppose F and C a are a projective foliation and a curve in CP 2

1 , respectively. 
The following lemma is a version of [18, Lemma 1, pg. 278], where the action of the 
plane Cremona map on curves is formulated in more precise terms (see our previous 
Lemma 13).

Lemma 16. Let Φ be an ordinary quadratic plane Cremona map, and suppose p1, p2, and 
p3 are its proper base points, and q1, q2, and q3 are the proper base points of its inverse 
Φ−1, named according to Fig. 2. If C is a curve of degree d(C), then the degree of its 
direct image Φ∗(C) is

2d(C) −
3∑

i=1
m(pi, C).

If moreover C has no contractile components, the multiplicities of Φ∗(C) can also be 
predicted:
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m(qk,Φ∗(C)) = d(C) −m(pi, C) −m(pj , C), i �= j �= k ∈ {1, 2, 3}.

If F is a foliation of degree d(F), then the degree of the foliation Φ∗F (with isolated 
singularities) is equal to

2(d(F) + 1) −
3∑

i=1
�(pi,F).

Furthermore

�(qk,Φ∗F) = d(F) + 2 − �(pi,F) − �(pj ,F), i �= j �= k ∈ {1, 2, 3}.

We shall use this result to prove its generalization to whatever quadratic plane Cre-
mona map, no matter its type. As a previous step we will need a technical result which 
describes the local behavior of the action of plane Cremona maps on foliations at any 
non-base (proper or infinitely near) point, including at points on its maximal contractile 
curve CΦ.

Lemma 17. Let F be a projective planar foliation and suppose p is a (proper or infinitely 
near) point in the plane, not being a base point of the plane Cremona map Φ. Then it 
holds

�(p,F) = �(Φ∗(p),Φ∗F).

Proof. Since p is not a base point of Φ, (π−1)∗(p) is a proper or infinitely near point 
on S, and by Remark 3 we have �(p, F) = �((π−1)∗(p), π∗F). Similarly and using the 
equalities π∗F = (π′)∗Φ∗F (Remark 5) and Φ∗(p) = π′

∗(π−1)∗(p), it holds

�(Φ∗(p),Φ∗F) = �((π′ −1)∗(Φ∗(p)), (π′)∗Φ∗F)) = �((π−1)∗(p), π∗F) = �(p,F). �
Notice that the hypothesis of the previous Lemma 17 includes non-base point lying 

on the maximal contractile curve CΦ (cf. Lemma 12).

Theorem 18. Let Φ be any quadratic plane Cremona map, and suppose p1, p2, and p3
are its base points, and q1, q2, and q3 are the base points of the inverse Φ−1, named 
according a suitable ordering. If C is a curve of degree d(C), then the degree of its direct 
image Φ∗(C) is

2d(C) −
3∑

i=1
m(pi, C).

If moreover C has no contractile components, then
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m(qk,Φ∗(C)) = d(C) −m(pi, C) −m(pj , C), i �= j �= k ∈ {1, 2, 3}.

If F is a foliation of degree d(F), then the degree of the foliation Φ∗F (with isolated 
singularities) is equal to

2(d(F) + 1) −
3∑

i=1
�(pi,F).

Furthermore

�(qk,Φ∗F) = d(F) + 2 − �(pi,F) − �(pj ,F), i �= j �= k ∈ {1, 2, 3}.

Proof. The assertion on curves comes from applying together [1, 2.9.3], [1, 2.8.7] and [1, 
2.8.8]. We shall prove the claim on foliations by factorizing the quadratic plane Cremona 
map Φ as the composition of ordinary ones, and then applying previous Lemma 16 to 
each of them.

If Φ is of type (C1) we are done by Lemma 16. So, assume first Φ is of type (C2). 
We name the base points such that p1 and p3 are the proper base points of Φ and p2

is infinitely near to p1, and that q1 and q3 are the proper base points of Φ−1 and q2 is 
infinitely near to q1. According to [1, 8.5.1], the map Φ factorizes as the composition of 
two ordinary ones, Φ = Φ2 ◦ Φ1, where Φ1 is a map of type (C1) whose ordinary base 
points are p1, p3 and whatever proper point q not on CΦ, and Φ−1

2 is a map of type (C1) 
whose ordinary base points are q1, q3 and Φ(q) = Φ∗(q). Denote by a1, a2 and a3 the 
proper base points of Φ−1

1 , with Φ−1
1 (a2a3) = p1, Φ−1

1 (a1a3) = q and Φ−1
1 (a1a2) = p3. 

The infinitely near point p2 is mapped to a4 := Φ1∗(p2), which is a proper point lying 
on the line a2a3, and it is different from a2 and a3. This point a4 must be a base point 
of Φ2, since the line q1q3 is contracted to p2 by Φ−1 and hence to a4 by Φ−1

2 = Φ1 ◦Φ−1. 
On the other side, since Φ2(a1a3) = (Φ ◦Φ−1

1 )(a1a3) = Φ(q), it follows invoking [1, 4.2.5]
that the common base points of Φ2 and Φ−1

1 are a1 and a3. Thus, the base points of 
Φ2 are a1, a3 and a4, with Φ2(a1a3) = Φ(q), Φ2(a1a4) = q3, Φ2(a3a4) = q1. Moreover 
a2a3 = a3a4 and a2 = Φ−1

2 ∗(q2).
Applying Lemma 16 to the Cremona map Φ1 we obtain

d(Φ1∗(F)) = 2(d(F) + 1) − �(p1,F) − �(p3,F) − �(q,F),

�(a1,Φ1∗F) = d(F) + 2 − �(q,F) − �(p3,F),

�(a2,Φ1∗F) = d(F) + 2 − �(p1,F) − �(p3,F),

�(a3,Φ1∗F) = d(F) + 2 − �(p1,F) − �(q,F).

From this and applying Lemma 16 again, now to the Cremona map Φ2, we infer that 
Φ∗F = Φ2∗(Φ1∗F) has degree
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2 (2(d(F) + 1) − �(p1,F) − �(p3,F) − �(q,F)) + 2 − �(a1,Φ1∗F) − �(a3,Φ1∗F)

−�(a4,Φ1∗F) = 2(d(F) + 1) − �(p1,F) − �(p2,F) − �(p3,F),

since �(a4, Φ1∗F) = �(Φ1∗(p2), Φ1∗F) = �(p2, F) by applying Lemma 17. Furthermore, 
from Lemma 17 again we have �(q2, Φ∗F) = �(a2, Φ1∗F) and hence

�(q1,Φ∗F) = d(Φ1∗F) + 2 − �(a3,Φ1∗F) − �(a4,Φ1∗F)

= d(F) + 2 − �(p2,F) − �(p3,F),

�(q2,Φ∗F) = �(a2,Φ1∗F) = d(F) + 2 − �(p1,F) − �(p3,F),

�(q3,Φ∗F) = d(Φ1∗F) + 2 − �(a1,Φ1∗F) − �(a4,Φ1∗F)

= d(F) + 2 − �(p1,F) − �(p2,F).

Assume now Φ is of type (C3). We name the base points such that p1 is the proper 
base point of Φ, p2 is infinitely near to p1 and p3 is infinitely near to p2, and q1 is 
the proper base point of Φ−1, q2 is infinitely near to q1 and q3 is infinitely near to q2. 
According to [1, 8.5.2], the map Φ factorizes as Φ = Φ2 ◦ Φ1, where Φ1 is a map of 
type (C2) whose base points are p1, p3 and whatever proper point q not aligned with 
p1 and p3 (that is, q is not on CΦ), and Φ−1

2 is a map of type (C2) whose base points 
are q1, q3 and Φ(q) = Φ∗(q). Denote by a1, a2 and a3 the base points of Φ−1

1 ; a1, a3 are 
proper points and a2 is infinitely near to a1. The infinitely near point p3 is mapped to 
a4 := Φ1∗(p3), which is a proper point lying on the line a1a3, and it is different from a1
and a3. This point a4 must be a base point of Φ2, since the line q1q2 is contracted to p3
by Φ−1 and hence to a4 by Φ−1

2 = Φ1 ◦Φ−1. On the other side, since a1a3 and a1a2 are 
contractile lines by Φ−1

1 mapping to p2 and q respectively, they are also contractile lines 
by Φ2 = Φ ◦Φ−1

1 mapping to q2 and Φ(q) respectively. Invoking [1, 4.2.5] it follows that 
the common base points of Φ2 and Φ−1

1 are a1 and a2. Thus, the base points of Φ2 are 
a1, a2 and a4 = Φ1∗(p3). Moreover a3 = Φ−1

2 ∗(q3).
Applying twice the result we have just proved for quadratic Cremona maps of 

type (C2), and using from Lemma 17 that �(a4, Φ1∗F) = �(p3, F) and �(q3, Φ∗F) =
�(a3, Φ1∗F), we infer that

d(Φ∗F) = 2 (2(d(F) + 1) − �(p1,F) − �(p2,F) − �(q,F)) + 2

− �(a1,Φ1∗F) − �(a2,Φ1∗F)

− �(a4,Φ1∗F) = 2(d(F) + 1) − �(p1,F) − �(p2,F) − �(p3,F),

�(q1,Φ∗F) = d(Φ1∗F) + 2 − �(a2,Φ1∗F) − �(a4,Φ1∗F)

= d(F) + 2 − �(p2,F) − �(p3,F),

�(q2,Φ∗F) = d(Φ1∗F) + 2 − �(a1,Φ1∗F) − �(a4,Φ1∗F)

= d(F) + 2 − �(p1,F) − �(p3,F),

�(q3,Φ∗F) = �(a3,Φ1∗F) = d(F) + 2 − �(p1,F) − �(p2,F). �
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4.1. Transforming quadratic foliations by quadratic plane Cremona maps

In this work we focus on foliations F of degree d(F) = 2 or, equivalently, on quadratic 
polynomial differential systems. From Theorem 18, we infer a geometric characterization 
of the invariance of the degree of quadratic foliations by the action of the quadratic plane 
Cremona maps.

This problem was already tackled in [4]: a projective foliation F is called numerically 
invariant under the action a plane Cremona map Φ if the degree of Φ∗F equals the degree 
of the original F . In [4] they prove that any quadratic foliation numerically invariant 
under the action of an ordinary quadratic Cremona map is transversely projective, and 
they give normal forms in case of numerically invariant pairs (Φ, F) where the map Φ is 
quadratic and the foliation F is projective quadratic.

In this setting we provide sharper results: we geometrically characterize numerically 
invariant quadratic pairs, and in forthcoming sections we will be interested in normal 
forms of numerically invariant pairs (Φ, F) where the map Φ is quadratic and the folia-
tion F is affine quadratic. Recall from Proposition 10 that a general projective quadratic 
foliation does not restrict to any affine quadratic foliation. It is worth to notice that, al-
though the degree of a foliation is a global feature, the characterization of this paper will 
be given in terms of local features of the initial foliation: a direct inspection at the multi-
plicities and eigenvalues of the singular points suffices to elucidate the existence of some 
quadratic plane Cremona map capable to transform a quadratic foliation maintaining 
the degree invariant.

Corollary 19. Let F be a complex projective foliation of degree d(F) = 2. Then any 
quadratic plane Cremona map Φ transforms the foliation into a foliation Φ∗F of degree 
lower than or equal to 6. Moreover, the transformed projective foliation Φ∗F is quadratic 
if and only if the three base points p1, p2 and p3 of Φ satisfy one of the following con-
ditions, in which we assume that {i, j, k} = {1, 2, 3} and that the point is not dicritical 
unless it is explicitly mentioned:

(1) m(pi, F) = 3, m(pj , F) = m(pk, F) = 0 and pi is dicritical;
(2) m(pi, F) = 3, m(pj , F) = 1 and m(pk, F) = 0;
(3) m(pi, F) = 2, m(pj , F) = 1, m(pk, F) = 0 and pi is dicritical;
(4) m(pi, F) = 1, m(pj , F) = 2, m(pk, F) = 0 and pi is dicritical;
(5) m(pi, F) = m(pj , F) = 1, m(pk, F) = 0 and pi and pj are dicritical;
(6) m(pi, F) = 2 and m(pj , F) = m(pk, F) = 1;
(7) m(pi, F) = m(pj , F) = m(pk, F) = 1 and pi is dicritical.

Proof. The different cases follow by direct application of Theorem 18, knowing that 
both multiplicities and vanishing order are non-negative integers. We distinguish the 
different cases according to the possibilities that the vanishing order coincides with the 
multiplicity at some proper or infinitely near point (see Section 3.2). �
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The result of Corollary 19 shows that the invariance of the degree is due to local 
properties of the foliation on the base points of the Cremona map. We remark that the 
base points do not need to be singular points of the system. Indeed they can be either 
regular points or infinitely near singular points. Next example shows that complex non-
real singular points cannot be neglected when searching for Cremona transformations 
which provide new differential systems of a specific degree.

Example 1. Consider the Yablonski differential system (4). Recall that it has two complex 
non-real finite singular points. An affine complex transformation moves one of these two 
points to the origin. At infinity, we have the singular point (0 : 1 : 0) and two complex 
non-real infinite singular points. The quotient of the eigenvalues at this infinite singular 
point is 2. We apply the Cremona transformation (C2), see Proposition 14, to obtain a 
cubic projective 1-form that can be brought to the quadratic complex differential system

ẋ =3c(a + b)x + 4y + (c(4c2 + 1)(a + b) − (2c2 − 1)Δ)(a + b)
4(c2 + 1) x2 + c2(a + b) − cΔ

c2 + 1 xy,

ẏ =3a2 − 8abc2 − 2ab + 3b2

2 x− 2(a + b)cy + γ

4(c2 + 1)x
2

+ c(12a2c2 + 7a2 − 10ab + 12b2c2 + 7b2) − (a + b)(6c2 + 1)Δ
2(c2 + 1) xy

+ 2c2(a + b) − 2cΔ
c2 + 1 y2,

where Δ =
√

4c2(a− b)2 + (3a− b)(a− 3b) and

γ = (4c2 + 1)(a + b)(4a2c2 + 3a2 − 4abc2 − 6ab + 4b2c2 + 3b2)

− cΔ(8a2c2 + 5a2 + 8abc2 + 2ab + 8b2c2 + 5b2).

From the invariant algebraic curve of (4) we obtain a (complex) invariant algebraic curve 
of degree 4.

This illustrates that the Cremona transformation can be applied also on complex 
singular points. Here the eigenvalues of the singular points (0 : 0 : 1) and (0 : 1 : 0) allow 
to apply a Cremona quadratic transformation of type (C2) to obtain a new quadratic 
differential system. Since 4c2(a − b)2 + (3a − b)(a − 3b) < 0, the new differential system 
is complex, non-real. �

Quadratic foliations whose singular points are all simple are in the cases (5) and (7)
of Corollary 19. For such foliations the following sharper characterization holds.

Theorem 20. Let F be a complex projective foliation of degree d(F) = 2 whose singular 
points are all simple. There exists a quadratic plane Cremona map Φ transforming F
into a quadratic foliation Φ∗(F) if and only if among the proper singular points of F
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there is a node with integer eigenvalues (a, 1), with 0 < a ≤ 3, such that any line through 
it is either transversal to the foliation or a first order tangent.

Proof. Under the hypothesis of the statement and according to Corollary 19, the trans-
formed projective foliation Φ∗(F) is quadratic if and only if the three base points of Φ
are in the cases (5) or (7) of Corollary 19. As noticed in Remark 4 the multiplicities 
of a foliation do not increase on further blowing-ups. Hence there can be no singular 
point of the foliation infinitely near to a regular one. As regards the dicritical singular 
points, since they are simple by hypothesis, they can have no other dicritical singular 
point infinitely near to any of them.

This limits the possibilities for the base points of a quadratic plane Cremona map 
Φ to be one of those listed in Fig. 8. Observe that in any case there is some proper or 
infinitely near base point of Φ which is a star-node of the foliation F . This gives the 
existence of the proper singular node with the restrictions of the statement.

Conversely, if the foliation F has a proper singular node satisfying the conditions 
of the statement, then after at most three blowing-ups we come to a star-node of the 
foliation. Then Proposition 15 assures that there exists a plane Cremona map Φ by 
fixing its three base points as follows: take the infinitely near star-node and any point 
(proper or infinitely near) preceding it (which gives altogether at most three points), and 
complete to a trio by taking any other singular point of the foliation F (whose existence 
is guaranteed by Bézout’s Theorem). Since we have constructed a Cremona map Φ which 
satisfies the conditions of case (7) of Corollary 19, we are done. �
Remark 6. Fig. 8 shows the different coincidences that can occur, according to Theo-
rem 20, between the base points of the quadratic plane Cremona map Φ and the singular 
points of the quadratic foliation F when the degree of Φ∗F remains invariant. Each figure 
represents the features of a class of pairs (F , Φ) modulus projectivity.

None of the known families of quadratic differential systems having an algebraic limit 
cycle has a multiple singular point, hence we shall only be concerned with cases (5) and
(7) of Corollary 19 and the result of Theorem 20 will apply.

Remark 7. We note that none of the known families of quadratic differential systems 
having an algebraic limit cycle has a dicritical singular point, neither finite nor infinite. 
Hence first, second, third and fifth cases in Fig. 8 are discarded. We have checked the 
remaining fourth and sixth configurations shown Fig. 8 and we have found out that the 
sixth case do not apply for the known families of quadratic differential systems having an 
algebraic limit cycle. Only the fourth case of Fig. 8 (which corresponds to the Cremona 
transformation (C2)) applies. Indeed it applies to Qin, Yablonski, CLS, CLS5 and CLS6 
families.

We provide in the next section the quadratic differential system that is obtained after 
applying the Cremona transformation (C2) to a quadratic differential system satisfying 
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Fig. 8. The list of all possibilities for the base points of a quadratic plane Cremona map under the hypothesis 
of Theorem 20. Proper points are represented black filled while infinitely near points are represented white 
filled (joined with an edge to the point which they are proximate to). The shapes relate the points to the 
foliation: square is a regular point, triangle is a non-dicritical singular point, star is a dicritical singular 
point.

the hypothesis corresponding to the fourth case of Fig. 8. From Remarks 6 and 7, this 
is the only case in which we can apply Cremona transformations to the known families 
of quadratic differential systems having an algebraic limit cycle and obtain quadratic 
differential systems.

5. Main results on limit cycles

Consider the quadratic differential system (1), that we write as

ẋ = p(x, y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2,

ẏ = q(x, y) = b00 + b10x + b01y + b20x
2 + b11xy + b02y

2.
(26)

As we have seen in the previous section, only the situation described in the fourth 
case of Fig. 8 is useful for our purposes. In order to have the three base points of the 
Cremona transformation as in the fourth case of 8, we must take into account that:

(1) The point (0 : 0 : 1) is a singular point of system (26) if and only if a00 = b00 = 0.
(2) The point (0 : 1 : 0) is a singular point of system (26) if and only if a02 = 0.
(3) In the previous case, the singular point infinitely near (0 : 1 : 0) and on the direction 

of infinity is dicritical if and only if b02 = 2a11.

Now we can state our first main theorem.



30 M. Alberich-Carramiñana et al. / Advances in Mathematics 389 (2021) 107924
Theorem 21. Consider the differential system (26). If a00 = b00 = 0, a02 = 0 and 
b02 = 2a11, then system (26) is transformed, after the quadratic Cremona transformation
(C2), into the quadratic differential system

ẋ = x3p

(
1
x
,
y

x2

)
, ẏ = 2x2y p

(
1
x
,
y

x2

)
− x3q

(
1
x
,
y

x2

)
. (27)

Theorem 21 is proved in section 6.

Remark 8. The Yablonskii system (4) satisfies the hypotheses of Theorem 21. Applying 
this theorem, we obtain Qin system (3) after the transformation. This was already shown 
in [8].

The CLS system (7), after interchanging the variables x and y and moving any of 
the three singular points different from the focus to the origin, satisfies the conditions 
of Theorem 21. So three different systems of type (27) may be obtained, one for each of 
the three finite singular points that were moved to the origin. Indeed, two of the new 
differential systems are the CLS5 system (8) and the CLS6 system (9), which arise in 
this way from CLS in [8]. The third one is new and is presented in the following theorem.

Applying the plane Cremona map (C2) to these systems above, we obtain different 
classes of birationally equivalent differential systems. Section 7 explains the transforma-
tions among these systems with further detail.

Theorem 22. The quadratic differential system

ẋ = −8x + γ

2 (γ − 16)y − (5γ − 64)x2 + γ

8 (γ2 − 256)xy,

ẏ = −28y + 24
γ
x2 − 3(3γ − 32)xy + γ

4 (γ2 − 256)y2,
(28)

has an irreducible invariant algebraic curve of degree five given by

f(x, y) = γy2 − 4x2y + γ

2 (γ − 12)xy2 − γ2

4 (γ − 16)y3 + 4
γ
x4

− (γ − 24)x3y + γ

16(γ2 − 256)x2y2 − 24
γ
x5 + (γ + 16)x4y.

(29)

Its cofactor is

k(x, y) = −56 − 2(13γ − 152)x + 3γ
4 (γ2 − 256)y.

When γ ∈ (0, 8 −3
√

7), this algebraic curve contains an algebraic limit cycle of degree 
five. Indeed it has two components; one of them is an oval and the other is homeomorphic 
to a straight line. This last component contains two singular points of the system.
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Fig. 9. Phase portrait of the quadratic differential system (28) having an algebraic limit cycle of degree 5 on 
the Poincaré disk. The red lines correspond to the invariant algebraic curve that contains the limit cycle. 
The dashed line corresponds to its cofactor.

Fig. 10. Phase portraits of all the known families of quadratic differential systems having an algebraic limit 
cycle. The differential systems corresponding to the phase portraits inside circles are related by the Cremona 
transformation (22). We note that we consider the different phase portraits of the Qin family depending on 
the value of b.

The phase portrait of system (28) is not topologically equivalent to the phase portrait 
of system CLS5.

We call system (28) AFL5. Theorem 22 is proved in section 8. Fig. 9 shows the phase 
portrait of system (28) on the Poincaré disk.

After Remark 8 and Theorems 20 and 22, Fig. 10 shows all the non-equivalent phase 
portraits of all the known families of quadratic differential systems which have an al-
gebraic limit cycle. The circled phase portraits correspond to those differential systems 
related by a quadratic Cremona transformation.
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6. Proof of Theorem 21

We know from section 3.1 that the quadratic differential system (26) can be thought 
in CP 2 as a projective 1-form taking P (X, Y, Z) = Z2p(X/Z, Y/Z) and Q(X, Y, Z) =
Z2q(X/Z, Y/Z). This 1-form writes as

Ω = AdX + BdY + CdZ, (30)

where we have defined A = −ZQ, B = ZP and C = XQ − Y P . The differential system 
(26) is equivalent to the 1-form (30) of CP 2. Clearly it satisfies the Euler condition 
XA + Y B + ZC = 0.

Next lemma provides the expression of (30) after the application of the Cremona 
transformation (23).

Lemma 23. After applying the Cremona transformation (23), the 1-form (30) becomes

φ∗Ω = W (Q̂− 2V P̂ )dU + UWP̂dV + U(V P̂ − Q̂)dW, (31)

where P̂ and Q̂ are such that P̄ = UWP̂ and Q̄ = WQ̂.

Proof. Let Ā = −U2Q̄, B̄ = U2P̄ and C̄ = W (UQ̄ − V P̄ ) are the transformations of 
A, B, C, respectively, with (P̄ , Q̄)(U, V, W ) = (P, Q)(UW, VW, U2) the transformation 
of (P, Q) by the Cremona map. After applying (23) to Ω and using the corresponding 
Euler condition, we obtain

φ∗Ω = Ā(WdU + UdW ) + B̄(V dW + WdV ) + C̄(2UdU)

= (WĀ + 2UC̄)dU + WB̄dV + (UĀ + V B̄)dW

= (−U2WQ̄ + 2UW (UQ̄− V P̄ )dU + U2WP̄dV + (U2V P̄ − U3Q̄)dW

= UW (UQ̄− 2V P̄ )dU + U2WP̄dV + U2(V P̄ − UQ̄)dW.

Notice that, since a00 = 0, b00 = 0 and a02 = 0, we have W |P̄ , W |Q̄ and U |P̄ , re-
spectively. So there exist homogeneous polynomials P̂ and Q̂ such that P̄ = UWP̂ and 
Q̄ = WQ̂. We can now simplify the expression of φ∗Ω:

φ∗Ω = U2W 2(Q̂− 2V P̂ )dU + U3W 2P̂ dV + U3W (V P̂ − Q̂)dW.

The lemma follows after removing the common factor U2W from the expression of 
φ∗Ω. �
Proof of Theorem 21. The 1-form (31) has degree four, which may correspond to a cubic 
affine differential system. Since we want to obtain a quadratic affine differential system, 
the elements in the 1-form (31) must have a common factor. From the coefficient of dV , 
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we note that this common factor might be either U , or W , or a linear factor dividing P̂ . 
In this last case, this linear factor would also divide Q̂, and thus system (26) would have 
a common factor, which is a contradiction. Therefore the common factor may be only 
either U or W . We distinguish these two cases next.

Equation (31) has U as common factor if and only if U |(Q̂ − 2V P̂ ). We notice that 
P̂ |U=0 = a11VW and Q̂|U=0 = b02V

2W , hence U is a common factor if and only if 
b02 = 2a11. Since this condition is satisfied by the hypothesis of the theorem, the 1-form 
(31) has degree 3. Indeed, we have

φ∗Ω = WRdU + WP̂dV − (Q̂− V P̂ )dW,

where R is such that UR = Q̂− 2V P̂ .
We can obtain all the possible invariant straight lines to place at infinity from (14). 

Direct computations provide only W = 0. So taking W = 0 as the line at infinity, the 
1-form (31) provides the quadratic affine differential system U ′ = P̂ , V ′ = −R in the 
variables (U, V ).

We recall that

Z2(p, q)(X/Z, Y/Z) = U4(p, q)
(
W

U
,
VW

U2

)
= (P,Q)(UW,VW,U2) = (P̄ , Q̄)(U, V,W ) = (UWP̂ (U, V,W ),WQ̂(U, V,W )).

So in order to obtain the differential system (27), we set W = 1 and undo from the 
differential system U ′ = P̂ , V ′ = −R the previous transformations to obtain:

U ′ = P̂ = P̄

U
= U4p

U
= U3p

(
1
U
,
V

U2

)
,

V ′ = −R = 2V P̂ − Q̂

U
= 1

U

(
2V P̄

U
− Q̄

)
= 2U2V p

(
1
U
,
V

U2

)
− U3q

(
1
U
,
V

U2

)
.

Changing (U, V ) to the usual notation (x, y) we have (27) and thus the theorem fol-
lows. �
7. Cremona transformations among the known quadratic systems with algebraic limit 
cycles

In virtue of Theorem 20 the classes displayed in Fig. 10 are different equivalent classes 
under the action of quadratic plane Cremona maps. Now we are going the describe the 
classes comprising two or more families.
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7.1. From Qin to Yablonskii and back

We apply the Cremona transformation to obtain Yablonskii family from Qin family. 
We have the following proposition.

Proposition 24. If Qin system is transformed into Yablonskii’s system after the Cremona 
transformation (23), then 2a2 + (b + 1)(2b + 1) = 0 and Qin’s system has a finite saddle.

Proof. We note that Qin family has always a focus, which is surrounded by the limit 
cycle. It also has another singular point, which can be either a saddle, or a node, or a 
focus. Moreover the singular point surrounded by the limit cycle may change depending 
on the value of the parameters. At infinity, we have a unique real singular point, whose 
eigenvalues are −(a2 + (b + 1)2)/a), −(b + 1)/a.

We apply Theorem 21 to Qin family. First we need to assure that the hypotheses of 
the theorem are satisfied:

ẋ =
(
3c− (4b + 1)

√
4(b + 1) + c2

)
x− (b + 1)

(
3c +

√
4(b + 1) + c2

)
y

+ 4bx2 + 2(b + 1)xy,

ẏ =
(
x− (b + 1)y

)(2((b + 2)c− b
√

4(b + 1) + c2)
b + 1 + 4x− 4y

)
.

The hypothesis (H8) writes 2a2+(b +1)(2b +1) = 0. So only if this condition holds we can 
obtain a quadratic system after the transformation (23), which is of course Yablonskii’s.

The equality 2a2 + (b + 1)(2b + 1) = 0 provides the eigenvalues −(b + 1)/(2a) and 
−(b + 1)/a for the singular point at infinity. This means that it is to be a node. Hence 
the finite singular point not surrounded by the limit cycle must be a saddle because 
the sum of the indices of the singular points in the Poincaré disk must be one by the 
Poincaré-Hopf Theorem, see [12] for more details. �

A transformation from Yablonskii’s family into Qin’s family was already provided in 
[7], although without mentioning the Cremona transformation. We note that for Yablon-
skii system the hypothesis (H8) holds and then Theorem 21 applies. After the Cremona 
transformation, we obtain the differential system

ẋ = 3(a + b)cx + 4y − 4abcx2 − (a + b)xy,

ẏ = 1
2(3(a2 + b2) − 2ab− 8abc2)x− 2(a + b)cy − ab(a + b)x2 − 4abcxy − 2(a + b)y2.

The algebraic curve of the Yablonskii system becomes the oval

ab

(
x− a + b

)2

+ (c + y)2 − (a− b)2 = 0.
2ab 4ab



M. Alberich-Carramiñana et al. / Advances in Mathematics 389 (2021) 107924 35
Its cofactor is −8abcx − 4(a + b)y.
Since Qin’s system is the only one having an algebraic limit cycle of degree two, this 

family coming from Yablonskii’s family is a subfamily of Qin’s. Indeed the above system 
has a saddle at the origin, as we proved in Proposition 24. This means in particular that 
Qin’s family having a focus and an antisaddle cannot be brought to Yablonskii family.

7.2. From CLS to CLS5

The quadratic Cremona transformation (22) is also used in [7] to bring the fourth 
family of quadratic differential systems having an algebraic limit cycle of degree four 
into the first known family having an algebraic limit cycle of degree five. Before applying 
the transformation (22), the singular point (−1/(α+4), (α−2)/2) is moved to the origin 
and afterwards the variables x and y are interchanged in order to bring the infinite 
singular point in the direction y = 0 to the direction x = 0.

The affine quadratic differential system that we obtain from (31) is

ẋ = −8x + 2(α2 − 16)y − 2(5α− 12)x2 + (α2 − 16)(α + 12)xy,

ẏ = −28y + 12
α + 4x

2 − 6(3α− 4)xy + 2(α2 − 16)(α + 12)y2.

Notice that this system is CLS5 after swapping x and y and changing the sign of the 
time. We also get the algebraic curve of degree 5

4
α + 4x

4 − 24
α + 4x

5 − (8x2 + 4(α− 8)x3 − 4(α + 12)x4)y

+ (4(α + 4) + 4(α− 2)(α + 4)x + (α2 − 16)(α + 12)x2)y2 − 4(α2 − 16)(α + 4)y3 = 0.

Its cofactor is −56 − 4(13α− 24)x + 6(α2 − 16)(α + 12)y.

7.3. From CLS to CLS6

The family CLS is also brought in [7], after the Cremona transformation (22), into 
the first known family of quadratic systems having an algebraic limit cycle of degree six. 
In this case, first the singular point (1/(β+2), −(3β +8)/14) is moved to the origin and 
again the variables are interchanged in order to bring the infinite singular point in the 
direction y = 0 to the direction x = 0. The affine quadratic differential system that we 
obtain from (31) is

ẋ = −8x + 2
7(β2 − 4)y + 2

7(13β + 30)x2 − 3
49(β − 30)(β2 − 4)xy,

ẏ = −28y − 12
x2 + 2(31β + 78)xy − 6 (β − 30)(β2 − 4)y2.
β + 2 7 49
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Notice that this system becomes CLS6 after the affine change of variables and time

(x, y) =
(
− 1

14(β − 30)x, β

49(β − 30)2(14x + 3(β2 − 4)y)
)
,

dt

ds
= −3β(β − 30).

Moreover the algebraic curve of degree 6

196x4 + 56(2β + 3)x5 + 8(β + 12)(2β + 3)x6

+ (392(β + 2)x2 + 28(β2 − 4)x3 − 12(β2 − 4)(2β + 3)x4)y

+ (196(β + 2)2 − 28(β + 2)2(3β + 8)x + 9(β2 − 4)2x2)y2 − 28(β2 − 4)(β + 2)2y3

= 0.

is obtained. Its cofactor is −56 + 12(13β + 30)x/7 − 18(β − 30)(β2 − 4)y/49.

7.4. From CLS5 to CLS6

We see in this subsection that the quadratic Cremona transformation (22) can also be 
used to bring the family CLS5 having an algebraic limit cycle of degree five into the family 
CLS6 having an algebraic limit cycle of degree six. Before applying the transformation, 
the singular point

(
2(35α2 − 54α− 288) − 2(13α− 24)β

(α− 6)(α2 − 16)(α + 12)2 ,
14

6 − 7α− 3β

)

is moved to the origin and the variables are interchanged. Recall that β =
√

7α2 − 108. 
The affine quadratic differential system that we obtain from (31) is

ẋ =−24
√

7 + 10
√

108 + β2
√

7
x− 1

49(β2 − 4)(84 +
√

7
√

108 + β2)y

+ 7704 − 156
√

7
√

108 + β2 + 2β(348 + 39β − 17
√

7
√

108 + β2)
(β − 30)(β + 12) x2

+ 6(β − 30)(β2 − 4)
7(6 − 3β −

√
7
√

108 + β2)
xy,

ẏ = 84
28 +

√
7
√

108 + β2
x + −24

√
7 + 2

√
108 + β2

√
7

y

− 1684956 − 186
√

7
√

108 + β2 + β(−196 + 35β + 9
√

7
√

108 + β2)
(β2 − 4)(6 − 3β −

√
7
√

108 + β2)2
x2

+ 22968 − 492
√

7
√

108 + β2 + 2β(1032 + 141β − 59
√

7
√

108 + β2)
xy
(β − 30)(β + 12)
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+ 12(β − 30)(β2 − 4)
7(6 − 3β −

√
7
√

108 + β2)
y2.

This system becomes CLS6 after an affine change of variables and time.

8. Proof of Theorem 22

System (7) has three finite singular points different from the focus. Two of them were 
already used in [7] (see also sections 7.2 and 7.3) to obtain new families having algebraic 
limit cycles of degree 5 and 6. So we move the third singular point 

(
1/(α−4), −1 −α/2

)
to the origin and swap the variables x and y. The system writes:

ẋ = − 8x2 − (α− 12)(α2 − 4)y + 2(5α + 12)x + 2(α2 − 4)xy,

ẏ = 12
α− 4x + 2(α + 12)y + 12xy + 4(α2 − 4)y2.

Now the hypotheses of Theorem 21 are satisfied. Hence the Cremona transformation 
(C2) provides the quadratic differential system (28) with invariant infinity, and the al-
gebraic curve (29) of degree 5, where we have set γ = 2(4 −

√
16 − a) for simplicity of 

the results.
The phase portrait of system (28) is non-topologically equivalent to that of system 

CLS5 because there is no affine change of variables and scaling of the time that sends 
one to the other. The irreducibility of (29) follows from the irreducibility of (7).

Since the curve (29) contains an algebraic limit cycle for a ∈ (0, 1/4), one may easily 
check that the oval of (29) does not intersect the straight lines of the Cremona transfor-
mation (C2), so the theorem follows. �
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