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Abstract. In this paper we aim to find the highest number of critical periods in a class
of planar systems of polynomial differential equations for fixed degree having a center.
We fix our attention to lower bounds of local criticality for low degree planar polynomial
centers. The main technique is the study of perturbations of reversible holomorphic
(isochronous) centers, inside the reversible centers class. More concretely, we study the
Taylor developments of the period constants with respect to the perturbation parameters.
First, we see that there are systems of degree 3 ≤ n ≤ 16 for which up to first order at
least (n2 + n− 4)/2 critical periods bifurcate from the center. Second, we improve this
number for centers with degree from 3 to 9. In particular, we obtain 6 and 10 critical
periods for cubic and quartic degree systems, respectively.

1. Introduction

Huygens, with his work on the cycloidal pendulum in the 17th century, was the fore-
runner of isochronicity studies and aroused the interest of this line of research, see [2]. In
the last 30 years many authors have studied the existence of differential equations with
equilibrium points of center type that satisfy this isochronicity property, see for exam-
ple [10, 21] and the interesting survey of Chavarriga and Sabatini [3]. There are other
two very related problems, the monotonicity of the period and the bifurcation of critical
periods. In this paper we deal with the second one. Before knowing with more detail
such problems we need some preliminary concepts definitions and classical results in this
research line.

Let us consider a real analytical system of differential equations in the plane with a
center at the origin and nonzero linear part. It is a well known fact that, by a suitable
change of coordinates and time rescaling, it can be written in the form

(ẋ, ẏ) = (−y +X(x, y), x+ Y (x, y)), (1)

where X and Y are convergent real series which start at least with quadratic monomials.
We define the period annulus of a center as the largest neighborhood Ω of the origin with
the property that the orbit of every point in Ω \ {(0, 0)} is a simple closed curve that
encloses the origin, so the trajectory of every point in Ω \ {(0, 0)} is a periodic function.
Suppose the origin is a center for system (1) and that the number ρ∗ > 0 is so small that
the segment Σ = {(x, y) : 0 < x < ρ∗, y = 0} of the x-axis lies wholly within the period
annulus. For ρ satisfying 0 < ρ < ρ∗, let T (ρ) denote the least period of the trajectory
through (x, y) = (ρ, 0) ∈ Σ. The function T (ρ) is the period function of the center, which
by the Implicit Function Theorem is real analytic. Moreover, we say that the center of
system (1) is isochronous if its period function T (ρ) is constant, which means that every
periodic orbit in a neighborhood of the origin has the same period.
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2 IVÁN SÁNCHEZ-SÁNCHEZ AND JOAN TORREGROSA

By performing a change to polar coordinates, one can deduce that the period function
takes the form

T (ρ) = 2π

(
1 +

∞∑

k=1

Tkρk
)
, (2)

where the Tk are known as the period constants of the center, see for example [25]. In
the next section we will see how to compute these period constants. In the case that
(1) depends on some parameters, the period constants are polynomials on them ([9]). A
direct consequence of (2) is that, in the considered situation, system (1) has an isochronous
center at the origin if and only if Tk = 0 for all k ∈ N. This result is also justified by
Shafer and Romanovski in [25]. This shows that the period constants play the same role
when studying isochronicity as Lyapunov constants when characterizing centers. In fact,
every value ρ > 0 for which T ′(ρ) = 0 is called a critical period. In addition, if it is a
simple zero of T ′, i.e. T ′′(ρ) 6= 0, we call it a simple or hyperbolic critical period. Critical
periods are actually the oscillations of the period function.

The first of the aforementioned problems, the monotonicity of the period function (2),
is usually studied in polynomial center families. See for example [5, 28, 30]. About the
second problem there are many works when the center family is fixed to be in a class
of polynomials of low degree. The uniqueness of critical periods is studied for example
in [12] for a class of polynomial complex centers. Recently, this uniqueness problem has
also been considered for some Hamiltonian and quadratic Loud families in [24, 30]. For
the quadratic family we recommend the nice work done by Chicone and Jacobs in [6].
The study of critical periods for classical quadratic Loud family was extended to some
generalized Loud’s centers, see [22]. For cubics, in particular for homogenenous cubics
nonlinearities, we refer the reader to [15, 26]. For more information on the period function
and the criticality problem we suggest the reading of [19] and [25].

The problem of bifurcations of critical periods or criticality problem is addressed to find
the maximum number of zeros of T ′ which can bifurcate. We will focus on the bifurcation
of local critical periods near the origin in the class of time-reversible, or simply reversible,
planar polynomial vector fields of degree n. Without loss of generality, we can consider
only differential systems which are invariant under the change (x, y, t) 7→ (x,−y,−t). This
classic reversibility makes the system have a symmetry with respect to the straight line y =
0. Let us denote by C`(n) the maximum number of local critical periods that can bifurcate
from an n-th degree reversible system; our aim is to find the highest possible lower bounds
of this number for different values of the degree n. This question is considered in analogy
to the cyclicity problem, whose purpose is to find the maximum number of limit cycles
–these are zeros of the Poincaré map– that bifurcate from a system. Observe that the
concept of hyperbolic critical period is also defined in analogy to a hyperbolic limit cycle,
following the idea of having multiplicity one.

The main objective of this paper is to find the highest possible lower bound for C`(n).
The problem of finding the maximum number of local critical periods which can bifurcate
from a plane vector field is completely solved only for the quadratic case n = 2. This is
done by Chicone and Jacobs in [6]: their result states that C`(2) = 2. To the best of our
knowledge, for cubic reversible systems the highest number of critical periods achieved
so far is 6, a result given in [33] by Yu and Han. In the case of Hamiltonian systems,
[34] shows that such bound increases to 7. There are also a few works dealing with lower
bounds for general families of degree n. One is given by Cima, Gasull, and da Silva in [8]
proving that C`(n) ≥ 2 [(n− 2)/2] , where [·] denotes the integer part. Another one is the
bound that Gasull, Liu, and Yang propose in [13], which grows as n2/4. In our work we
have improved some of these bounds up to n = 16. Our main result is as follows.
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Theorem 1. The number of local critical periods in the family of polynomial time-
reversible centers of degree n is

C`(n) ≥





6, for n = 3,

10, for n = 4,

(n2 + n− 2)/2, for 5 ≤ n ≤ 9,

(n2 + n− 4)/2, for 10 ≤ n ≤ 16.

The essential tool for proving the above result is the local bifurcation of zeros of the
first derivative of the period function (2). That is, for each degree n, finding the highest
value for the multiplicity of a zero of T ′ and its unfolding in the corresponding reversible
polynomial centers family. More concretely, by perturbing some special isochronous cen-
ters. This is as the usual mechanism for limit cycles of small amplitude in polynomial
vector fields known as degenerate Hopf bifurcation, see also [25]. Regarding the number of
parameters and using this bifurcation technique, the maximum number of critical periods
we expect to find in the class of n-th degree time-reversible systems is

C`(n) =
n2 + 3n− 6

2
. (3)

This is the value obtained in Theorem 1 for n = 3, and it is only one more than our
lower bound for n = 4. In later sections, we will discuss more about this explicit value
and why we expect that it will be the value for the maximum number of local critical
periods. Observe that also for n = 2 this value C`(2) = 2 coincides with the one provided
by [6] that we already mentioned. Finally, we notice that the reversible center family is
one with a high amount of free parameters.

This work is devoted to prove Theorem 1 and has the following structure. Section 2
presents how to compute the period constants. In Section 3 we present a technique that
can be used to increase the number of critical periods with respect to the bounds obtained
by linear developments. Section 4 explains the choice of the family of isochronous centers
that will be perturbed to obtain as many local critical periods as possible. All this is
used in Section 5 to increase the number of local critical periods to 5 in the cubic case.
Nevertheless, the complete proof of Theorem 1 for n = 3 is done in Section 8, where it
is shown that actually 6 critical periods can unfold in cubic reversible centers family, but
perturbing from an isochronous center only having linear terms. Despite being a previous
result (see [33]), we present an alternative proof for the existence of 6 critical periods
in cubic reversible systems. With the same technique from previous sections, we also
increase the number of local critical periods up to 10 for n = 4 and the ones stated in
Theorem 1 for 5 ≤ n ≤ 9, respectively in Sections 6 and 7. The last bounds of C`(n) for
10 ≤ n ≤ 16 are also obtained in Section 7, studying only first order developments. We
finish with a last short section, Section 9, where we discuss about these increment values.
We notice that all the computations have been done using the computer algebra system
Maple ([20]).

Finally, we would like to say a few words about the computational difficulties and what
about going further in the degree n to improve Theorem 1. As we will see during the
paper, some of the results have been obtained thanks to developing particular algorithms
using parallelized computations. The main difficulty is related to the fact that there are
no general classifications of reversible isochronous centers. Consequently, nobody knows
the best one to be perturbed getting better results than Theorem 1, but using only first
order developments. We have used holomorphic centers because they provide isochronous
reversible centers for every degree n. But as they have many free parameters, the necessary
computations to improve our main result would involve the explicit resolution of nonlinear
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systems of equations with several variables, concretely n−1 for families of degree n. This
is actually the hardest point to go further in the degree.

2. Computation of the period constants

We start this section by presenting the classical mechanism to find period constants.
This method can be found in [25]. We perform a change to polar coordinates x = r cosϕ,
y = r sinϕ on system (1) to obtain





ṙ =
∞∑
k=1

ξk(ϕ)rk+1,

ϕ̇ = 1 +
∞∑
k=1

ζk(ϕ)rk,
(4)

where ξk(ϕ) and ζk(ϕ) are homogeneous polynomials in sinϕ and cosϕ of degree k + 2.
Elimination of time in (4) yields to

dr

dϕ
=
∞∑

k=2

Rk(ϕ)rk, (5)

where Rk(ϕ) are 2π-periodic functions of ϕ and the series is convergent for all ϕ and
for all sufficiently small r. The initial value problem for (5) with the initial condition
(r, ϕ) = (ρ, 0) has a unique solution

r = ρ+
∞∑

k=2

uk(ϕ)ρk, (6)

which is convergent for all 0 ≤ ϕ ≤ 2π and all ρ < r∗, for some sufficiently small r∗ > 0.
The coefficients uk(ϕ) can be determined by simple quadratures. Substituting (6) into
the second equation of (4) yields an equation of the form

ϕ̇ =
dϕ

dt
= 1 +

∞∑

k=1

Fk(ϕ)ρk.

Rewriting this equation as

dt =
dϕ

1 +
∞∑
k=1

Fk(ϕ)ρk
=

(
1 +

∞∑

k=1

Ψk(ϕ)ρk

)
dϕ

and integrating, we get

t− ϕ =
∞∑

k=1

θk(ϕ)ρk, (7)

where θk(ϕ) =
∫ ϕ
0

Ψk(ψ) dψ and the series in (7) converges for 0 ≤ ϕ ≤ 2π and sufficiently
small ρ ≥ 0. From (7) it follows that the least period of the trajectory of (1) passing
through (x, y) = (ρ, 0) for ρ 6= 0 is given by (2), which is the period function. Now we
can directly see that the period constants Tk are given by the expression

Tk =
1

2π
θk(2π) =

1

2π

∫ 2π

0

Ψk(ψ) dψ. (8)

As we have mentioned above, this is the classical method to compute period constants.
However, the integrals in (8) easily become too difficult to be explicitly obtained, so this
technique is not useful in many cases for high degree polynomial vector fields. Here we
present an equivalent approach which avoids integrals and reduces the problem to solving
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linear systems of equations. Our method is based on the ideas given in [1] and uses the
Lie bracket and normal form theory.

We will consider a system in complex coordinates z = x+ i y and w = z = x− i y which
is written as {

ż = i z + Z(z, w) =: Z(z, w),

ẇ = − iw + Z(z, w) =: Z(z, w),
(9)

where Z and Z are convergent series which start at least with quadratic terms and Z is
a function that depends on X and Y. For the sake of simplicity, we will deal with

ż = i z + Z(z, w) = Z(z, w) (10)

instead of (9), taking into account that the second component is the complex conjugate
of the first one. By applying near the identity changes of variables, as the spirit of normal
form transformations, system (10) can be simplified to

ż = i z +
N∑

j=1

(α2j+1 + i β2j+1)z(zw)j +O2N+3,

where N ∈ N is arbitrary and α2j+1, β2j+1 ∈ R. The above normal form can be expressed
in polar coordinates as follows,





ṙ =
N∑
j=1

α2j+1r
2j+1 +O2N+3,

ϕ̇ = 1 +
N∑
j=1

β2j+1r
2j +O2N+2.

(11)

As we are considering system (1), which has a center at the origin, the normal form of
system (11) becomes

{
ṙ = r2N+3R(r, ϕ),

ϕ̇ = 1 + β3r
2 + β5r

4 + · · ·+ β2N+1r
2N + r2NΘ(r, ϕ),

(12)

for any N ∈ N, where β3, β5, . . . , β2N+1 ∈ R.
The following theorems are proved in [1]. The first one establishes a relationship be-

tween these coefficients β2j+1 and the period constants defined in (2). The second one
provides a condition to determine whether an equilibrium point having a pair of pure
imaginary eigenvalues is of isochronous center type. From these results it becomes clear
that coefficients β2j+1 play the same role as the period constants, in the sense that a
center is isochronous if and only if β2j+1 = 0 for all j ≥ 1.

Theorem 2 ([1]). For all m ≥ 1, the period constants defined in (2) satisfy

(i) T2m−1 = 0,
(ii) T2m = 2π

∑
n1+···+nl=2m
nj even, l≥1

(−1)lβn1+1 · · · βnl+1.

Before stating the isochronicity equivalence we recall the Lie bracket notion. We define
the Lie bracket of two complex planar vector fields Z,U , corresponding to two real vector
fields, as

[Z,U ] =
∂Z
∂z
U +

∂Z
∂w
U − ∂U

∂z
Z − ∂U

∂w
Z. (13)

This definition appears also in [12]. We notice that, as we have mentioned above, both
vector fields Z and U are described only from their first components, because the second
ones are obtained by conjugation. The first proof of the next geometrical equivalence was
done by Sabatini in [27].
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Theorem 3 ([1]). Equation (10) has an isochronous center at the origin if and only if
there exists ż = U(z, w) = z +O(|z, w|2) such that [Z,U ] = 0.

From Theorem 2, only the even period constants play a role, so we will define the m-th
period constant as Tm := T2m.

Now we can bring all these results together to propose a constructive method to find
the first N period constants of a system. We define

U = z +
2N+1∑

m=2

m∑

l=0

ul,m−lz
lwm−l, U = w +

2N+1∑

m=2

m∑

l=0

ul,m−lw
lzm−l,

and use it together with Z and Z in (10) to compute the Lie bracket [Z,U ] from (13).
Observing the structure of the normal form of a center (12) and considering Theorems 2
and 3, it is straightforward to see that we can also write the Lie bracket as

[Z,U ] = T̃1 z(zw) + T̃2 z(zw)2 + · · ·+ T̃N z(zw)N +O2N+3.

We have now two expressions for the Lie bracket of Z and U , and equating the coeffi-
cients with the same degree from both expressions, we can constructively determine the

coefficients ul,m−l, ul,m−l, and T̃m for m = 1, . . . , N, simply by solving linear systems of
equations. Then we have that the first nonvanishing period constants obtained above and
the one provided by (8) differ only in a nonzero multiplicative constant. As both methods
are equivalent for our purposes and as in this work we will use the later, for the sake of

simplicity we will denote Tm instead of T̃m.
The algorithm presented here has been computationally implemented with Maple ([20])

and used to calculate all the necessary period constants to prove the results of this paper.
To end this section, we will prove the following result inspired by [17] which provides

a useful method to compute the linear parts of the period constants by means of paral-
lelization.

Proposition 4. Consider a system, as in (10), with a center at the origin

ż = i z + Z(z, w, λ), (14)

where λ = (λ1, . . . , λd) ∈ Rd are parameters such that for λ = 0 the origin is an
isochronous center and Z ∈ C1(λ). Assume that for every j = 1, . . . , d, the k-th period
constant of system (14) with λr = 0 for every r = 1, . . . , d such that r 6= j takes the form

T
(j)
k = τ

(j)
k λj +O2(λj),

for some coefficient τ
(j)
k ∈ R, where O2(λj) denotes a sum of monomials of degree at least

2 in λj. Then the k-th period constant of system (14) takes the form

Tk =
d∑

j=1

τ
(j)
k λj +O2(λ1, . . . , λd),

where O2(λ) denotes a sum of monomials of degree at least 2 in the parameters.

Proof. The proof is straightforward by using the linearity property in the first order terms
of the period constants. The k-th period constant of system (14) must have the form

Tk =
d∑

j=1

η
(j)
k λj +O2(λ1, . . . , λd),

for some coefficients η
(1)
k , . . . , η

(d)
k ∈ R and O2(λ1, . . . , λd) being a sum of monomials of

degree at least 2 on the parameters. Now if for some j = 1, . . . , d we impose λr = 0
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for every r = 1, . . . , d such that r 6= j, we obtain that the k-th period constant of the
corresponding system has the form

T
(j)
k = η

(j)
k λj +O2(λj),

which shows that η
(j)
k = τ

(j)
k , where τ

(j)
k is as defined in the statement of the proposition.

Repeating this process for every j = 1, . . . , d, the statement is proved. �
Remark 5. The structure outlined in Proposition 4 can be used together with paralleliza-
tion to find the linear part of the period constants of a given center in a way which is more
efficient, in computational terms, than directly applying the Lie bracket method. The idea
is to consider each perturbative monomial instead of all of them together. One can sepa-
rately use this method up to first order Taylor development to obtain the linear part of the
corresponding k-th period constant, and then add all of them to find the linear part of Tk.
It is relevant to observe that the computed linear parts are not obtained by calculating each
complete period constant and then finding its power series expansion up to first order, but
by directly computing its first order terms at each step.

The advantage of this approach is that it is much easier in computational terms to find
the first order part of the period constants of a number of systems with only one parameter
than computing them for only one system with many parameters. As a matter of fact,
what we are doing is to apply the same Lie bracket method to these simpler systems
instead of directly to the initial one. Furthermore, this technique allows to parallelize the
computation for each family, which allows to highly decrease the total execution time.

3. A result on the criticality of isochronous centers

Let us consider a family of isochronous centers with some parameters, and add a per-
turbation which keeps the center property. In this section we will prove a theorem which
outlines how the criticality of such a family can increase under some conditions on the
isochronicity parameters. The idea behind this result is inspired by [16] but better de-
veloped in [14], a recent work about cyclicity in families of centers. First we present
a technical result which shows the structure of the first order terms of the period con-
stants for a perturbed family of isochronous centers. This is essentially an extension of
Proposition 4 adapted to the case where the unperturbed system is a parametric family
of isochronous centers instead of a fixed one.

Proposition 6. Let us consider a polynomial family of isochronous centers parametrized
by A ∈ RP for some P ∈ N and add a polynomial perturbation with coefficients λ ∈ RN

for some N ∈ N which does not break the center property.

(i) The k-th period constant Tk of the perturbed system is a polynomial on the pertur-
bative parameters λ whose coefficients are polynomials in A and takes the form

Tk =
N∑

j=1

g
(j)
k (A)λj +O2(λ), (15)

for some polynomials g
(j)
k (A) in A which are the coefficients of the linear part of Tk

with respect to λ.

(ii) Let us consider the m×m matrix Gm(A) whose element in position (i, j) is g
(j)
i (A)

from expression (15). This is the matrix of coefficients of linear parts of the first m
period constants. Then if detGN(A) = 0 and detGN−1(A) 6= 0 there exists a linear
change of variables such that the first N − 1 first period constants take the form

Tk = uk +O2(u1, . . . , uN) (16)
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for k = 1, . . . , N −1, where the linear part of Tk is uk, uN := λN and O2(u1, . . . , uN)
denotes the higher order terms.

(iii) Under the same assumptions of (ii), the first N + M period constants for some
M ∈ N can be written as

Tk =




vk, if k = 1, . . . , N − 1,
N−1∑
j=1

g̃
(j)
k (A)vj + fk−N(A)uN +O2(v, uN), if k = N, . . . , N +M,

(17)

where v = (v1, . . . , vN−1) are new variables, fk−N(A) and g̃
(j)
k (A) are the correspond-

ing coefficients of v1, . . . , vN−1, uN which are rational functions in A ∈ RP , and
O2(v, uN) are analytical functions of order two in v1, . . . , vN−1, uN .

Proof. Recall that the period constants are polynomials in the parameters of the sys-
tem. As parameters A do not break the isochronicity of the system they cannot appear
isolated, so when considering the power series expansion of the period constant Tk, it is
straightforward to see that its linear part must be a linear combination of the perturbative
parameters λ with the coefficients being polynomials in A, and (i) follows.

To see (ii), as detGN−1(A) 6= 0, we can apply Cramer’s rule to the system of N − 1

equations
N∑
j=1

g
(j)
k (A)λj = uk or equivalently

N−1∑
j=1

g
(j)
k (A)λj = uk − g

(N)
k (A)λN =: uk −

g
(N)
k (A)uN for k = 1, . . . , N − 1, with unknowns λ1, . . . , λN−1. Then we can explicitly find

the linear change of variables that proves (16). By using this method it is clear that the
coefficients which define the change of variables are rational functions in A.

Now let us consider new variables v1, . . . , vN−1 to perform the following change, using
(16), in RN :

vk = Tk = uk +O2(u1, . . . , uN), for k = 1, . . . , N − 1.

As u1, . . . , uN−1 are independent and have rank N − 1, the Implicit Function Theorem
can be applied to write u1, . . . , uN−1 as functions of v1, . . . , vN−1, uN . This is

uk = Fk(v1, . . . , vN−1, uN), for k = 1, . . . , N − 1, (18)

for some real functions Fk. Then by applying (15) from part (i) of the statement together

with the change (18), the period constants take the form (17) where g̃
(j)
N+d(A) and fd(A) for

d = 0, . . . ,M and j = 1, . . . , N − 1 are the corresponding coefficients of v1, . . . , vN−1, uN
respectively, and are functions in A ∈ RM , and each O2(v, uN) is an analytical function
of order two in v1, . . . , vN−1, uN due to the application of the Implicit Function Theorem.
Then the statement follows. �

Now we can present the aforementioned theorem.

Theorem 7. Let us consider a polynomial family of isochronous centers parametrized by
A ∈ RP for some P ∈ N and a polynomial perturbation with coefficients λ ∈ RN for some
N ∈ N which does not break the center property. Let us denote by Gm(A) the m × m
matrix as defined in Proposition 6.

(i) If there exists A∗ ∈ RP such that detGN(A∗) 6= 0, then the linear parts of the first
period constants have rank N and at least N−1 simple critical periods can bifurcate.

(ii) If there exists A∗ ∈ RP such that detGN(A∗) = 0, detGN−1(A∗) 6= 0, fi(A
∗) = 0

for i = 0, . . . ,M − 1, fM(A∗) 6= 0 (where f0, . . . , fM are those defined in (17)) and
the Jacobian determinant satisfies J(A∗) := det Jac(f0,...,fM−1)(A

∗) 6= 0, then M extra
critical periods can bifurcate, which leads to a total of N +M − 1 critical periods.



NEW LOWER BOUNDS OF THE NUMBER OF CRITICAL PERIODS 9

Proof. If there exists A∗ ∈ RP such that detGN(A∗) 6= 0, we can apply the same technique
as in Proposition 6.(ii) to obtain a change of variables to N new independent variables
u1, . . . , uN . By applying Weierstrass Preparation Theorem (see [32]), this implies that
N − 1 critical periods can bifurcate and the first statement follows.

Now let us prove statement (ii). First, as we are under the assumption detGN−1(A∗) 6= 0
for some A∗ ∈ RP , we can apply Proposition 6 and write the first N+M period constants
as (17). If we set the problem in the manifold {v1 = · · · = vN−1 = 0} –this means
vanishing the first N − 1 period constants–, the structure becomes

Tk =

{
0, for k = 1, . . . , N − 1,

uN

(
fk−N(A) +

∑∞
l=1 f

(l)
k−N(A)ulN

)
, for k = N, . . . , N +M,

for some functions f
(l)
d (A) with d = 0, . . . ,M. As by assumption there exists A∗ ∈ RP

such that the Jacobian determinant J(A∗) 6= 0, the Implicit Function Theorem guarantees
that in a neighbourhood of A = A∗ and uN = 0 the following change of variables can be
performed in TN , . . . , TN+M−1:

vN+k = fk(A) +
∞∑

l=1

f
(l)
k (A)ulN , for k = 0, . . . ,M − 1.

As we suppose that fi(A
∗) = 0 for i = 0, . . . ,M − 1 but fM(A∗) 6= 0, we can rewrite

TN+k =

{
uNvN+k, for k = 0, . . . ,M − 1,

uN

(
fM(A∗) +

∑∞
l=1 f

(l)
M (A∗)ulN

)
=: uNvN+M , for k = M.

Finally, by again the Implicit Function Theorem, as we have obtained M new independent
variables we get the existence of M extra critical periods. �

A natural consequence of the last result is the following corollary.

Corollary 8. With the notation from Theorem 7, if detGN(A) is not identically zero
then generically at least N − 1 simple critical periods bifurcate from the origin. The same
conclusion is valid also when the number of parameters is bigger than or equal to N.
Clearly, in this second case the corresponding matrix Gm would be a nonsquare matrix
having rank N.

Proof. The proof is straightforward by following the ideas in the proof of the previous
theorem. If detGN(A) is not identically zero, then as it is a polynomial we have that
detGN(A) 6= 0 except for a set of zero Lebesgue measure, which implies that the rank of
GN(A) is N and therefore N − 1 critical periods unfold. �

This last property is equivalent to the one for bifurcation of limit cycles from [7]. The
idea of using just linear parts appeared previously in [6]. It is important to notice that
in some cases the above determinant is identically zero, then the generic condition is
never satisfied. This is the case for the analogous case of limit cycles bifurcation from
holomorphic polynomial centers of degree 3, see [17].

4. The main reversible families

As we have previously mentioned, to get the bounds outlined in Theorem 1 we have
considered n-th degree polynomial differential systems which are time-reversible with
respect to straight lines. We can assume without loss of generality that the equilibrium
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is at the origin and that the symmetry line with respect to which the reversibility is
considered is the horizontal axis. These differential systems take the form{

ẋ = −y + yf(x, y2),

ẏ = x+ g(x, y2),
(19)

where f(x, y2) and g(x, y2) are polynomials in x and y of degrees n−1 and n, respectively.
Clearly, system (19) is invariant under the classical reversibility change of coordinates
(x, y, t) 7→ (x,−y,−t).

The next proposition shows that the condition of a system being reversible with respect
to the horizontal axis in complex coordinates z = x + i y and w = z = x − i y is that its
coefficients are purely imaginary.

Proposition 9. A system (19), which is reversible with respect to the horizontal axis,
takes in complex coordinates the form

ż = i z + i
n∑

l+m≥2
clmz

lwm, (20)

where clm ∈ R.
Proof. A change to complex coordinates shows that system (19) is written as




ż = i z +
n∑

l+m≥2
blmz

lwm,

ẇ = − iw +
n∑

l+m≥2
blmw

lzm,
(21)

for certain parameters blm ∈ C and their conjugate values blm ∈ C. Observe that the
reversibility change (x, y, t) 7→ (x,−y,−t) takes the form (z, w, t) = (x+ i y, x− i y, t) 7→
(x− i y, x+ i y,−t) = (w, z,−t) in complex coordinates. Thus, when applied to (21), one
obtains 




−ẇ = iw +
n∑

l+m≥2
blmw

lzm,

−ż = − i z +
n∑

l+m≥2
blmz

lwm.
(22)

Now imposing that the system must remain invariant under this change, we have that
systems (21) and (22) must be equal, so we see that blm = −blm. The proof follows
from this condition. The reversibility property in complex coordinates is given by the
parameters being purely imaginary, this is blm = i clm with clm ∈ R. Notice that in (20)
there is no need to write the equation in ẇ because it is the complex conjugate of the
equation in ż. �

Let us consider an n-th degree polynomial system of the form{
ż = iF (z, w),

ẇ = − iF (z, w),
(23)

having an isochronous center at the origin, where F (z, w) = z + F̃ (z, w) being F̃ (z, w) a
sum of monomials of degree at least 2. As the ẇ equation in (23) is the complex conjugate
of the ż equation, from now on we will simply write the equation in ż to describe the
system. We will also consider adding a reversible n-th degree polynomial perturbation as
follows

ż = iF (z, w) + i
n∑

l+m≥2
rlmz

lwm, (24)
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where rlm are real perturbative parameters so that the perturbation is reversible and thus
the center property is kept.

A well-known fact is that holomorphic systems are isochronous (see [11]). We are
interested in perturbing holomorphic isochronous centers by adding nonholomorphic per-
turbations, in which case equation (24) can be rewritten as

ż = i

(
z +

n∑

j=2

Ajz
j

)
+ i

n∑

l+m≥2
m≥1

rlmz
lwm, (25)

for certain holomorphy parameters Aj ∈ R, and rlm ∈ R are perturbative parameters of
the isochronous center

ż = i

(
z +

n∑

j=2

Ajz
j

)
, (26)

which keep the center property due to being real.
In our work we have considered perturbations of the family of isochronous centers

ż = i z
n−1∏

j=1

(1− ajz) , (27)

where n > 1 and aj ∈ R \ {0} are real parameters such that aj 6= ai for every i, j ∈
{1, . . . , n−1}, i 6= j. Observe that this family takes the form (26), so it is isochronous due
to the holomorphy property. These systems also are Darboux linearizable, see [21, 25].

Our study will focus on reversible families of the form (27) being perturbed also inside
the reversible polynomial class. The choice of these holomorphic systems is due to the
fact that it is the easiest family that can be considered for any degree n. Moreover, as we
will see, these particular systems are the most suitable for our study, in the sense that
they provide quite a high number of oscillations of the period function without being too
demanding computationally. Additionally, in the following section we also perturb some
other cubic isochronous centers obtained from [4], where a complete classification of all
reversible cubic isochronous centers is done.

The next result is a direct consequence of applying Theorem 7 to (25).

Theorem 10. Consider the polynomial differential system of degree n defined in (25) with
n ≥ 3 and A2 = 1. Let us denote by Gm(A) the m×m matrix as defined in Proposition 6
and N := (n2 + n− 2)/2 the number of perturbative parameters.

(i) If there exists A∗ = (A∗3, . . . , A
∗
n) ∈ Rn−2 such that detGN(A∗) 6= 0, then the linear

parts of the first period constants have rank N and at least N − 1 simple critical
periods bifurcate from the origin.

(ii) If there exists A∗ = (A∗3, . . . , A
∗
n) ∈ Rn−2 such that detGN(A∗) = 0, detGN−1(A∗) 6=

0, fi(A
∗) = 0 for i = 0, . . . ,M − 1, fM(A∗) 6= 0 (where f0, . . . , fM are those defined

in (17)) and the Jacobian determinant satisfies J(A∗) := det Jac(f0,...,fM−1)(A
∗) 6= 0,

then M extra critical periods bifurcate from the origin, which leads to a total of
N +M − 1 critical periods.

Experimentally, we have observed that we get more criticality when all the parameters
Aj are nonvanishing. Then, after a variables rescaling and without loss of generality, we
can fix A2 = 1, when A2 6= 0. Section 7 uses the first statement fixing specific values for A.
The second statement, choosing M = n− 2, is used in Sections 5 and 6 for perturbations
of holomorphic polynomial vector fields of degree 3 and 4, respectively. In these last
cases we have achieved the maximum value for the corresponding criticality when A2 = 1.
This statement is also used in Section 7 but only with M = 1 for some small values of
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the degree n. Finally, in the above result we have not considered quadratic vector fields
because this case was completely solved in [6].

5. Perturbing cubic isochronous systems

The first part of this section is focused on the cubic systems of the form (27), this is
for n = 3. In the second part we study lower bounds for the criticality of some reversible
isochronous centers appearing in [4]. We will see that at least 5 critical periods can unfold
in the reversible cubic polynomial class. Actually, in Section 8 we will show that 6 critical
periods can unfold in cubic systems, but not bifurcating from centers having nonlinear
terms.

The first 4 critical periods appear by studying specific isochronous centers such that,
after reversible perturbation, the rank of the linear parts of their period constants is 5.
In all the studied cases this is the maximum found rank. Then, by Proposition 6, we can
write the first 5 period constants in the form

Tk = uk +O2, for k = 1, . . . , 5,

where O2 denotes the terms of degree at least 2, or directly Tk = uk for k = 1, . . . , 5 if we
use the Implicit Function Theorem. We have checked that the next three linear parts are
a linear combination of these 5 variables. Consequently, in all the studied cases, no more
critical periods can be found using only first order developments. We need to use higher
order developments or pay attention to the nongeneric cases in some parameter families
of isochronous centers.

5.1. Perturbing holomorphic centers. In the next result we will study the critical
periods bifurcation diagram of a 1-parameter cubic holomorphic system. We show how,
by applying Theorem 10, we can obtain 5 critical periods when choosing the values for
which the rank is not maximal. In the following subsection, these 5 critical periods will
appear from higher order developments.

Proposition 11. Let a ∈ R\{0}. Consider the 1-parameter family of cubic (holomorphic)
reversible systems

ż = i z (1− z) (1− az) . (28)

The number of critical periods bifurcating from the origin when perturbing in the class of
reversible cubic systems is at least 5 for a ∈ {−3/2,−1,−2/3, 1/2, 2} and 4 otherwise.

Proof. As we have explained in Section 4, system (28) is time-reversible holomorphic and
therefore it has an isochronous center at the origin.

We can consider system (28) without losing generality with respect to the general cubic
case (27), which is ż = i z (1− a1z) (1− a2z) , with |a1| > |a2|. Both systems are equivalent
after the rescaling (z, w) 7→ (a−11 z, a−11 w) and we get a := a−11 a2. Thus, we can reduce
our study to a ∈ [−1, 1) \ {0}. Notice that the case a = 1 is not included in (27) because
a1 6= a2.

As in (25), we consider the time-reversible cubic perturbation without the holomorphic
monomials,

{
ż = i z (1− z) (1− az) + i (r11zw + r02w

2 + r21z
2w + r12zw

2 + r03w
3),

ẇ = − iw (1− w) (1− aw)− i (r11wz + r02z
2 + r21w

2z + r12wz
2 + r03z

3).

When a ∈ R \ {−1, 0, 1/2, 2}, the rank of the linear developments of first four period
constants of this system with respect to (r11, r02, r21, r12) is 4. The explicit expressions of
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those linear developments are not shown here due to the fact that they are quite long.
Then, after using the Implicit Function Theorem, the period constants take the form

Tk = uk, for k = 1, . . . , 4.

Taking u1 = u2 = u3 = u4 = 0 and r03 = u5, the fifth and sixth period constants take the
form

T5 =
5

24

P (a)

3a2 + 2a+ 3
u5 + u25

∞∑

j=0

fj(a)uj5,

T6 = − 1

42

Q(a)

3a2 + 2a+ 3
u5 + u25

∞∑

j=0

gj(a)uj5,

(29)

where P (a) = a3(a−2)(3a+ 2)(2a+ 3)(2a−1), Q(a) = a3(a−2)(2a−1)(834a2 + 1735a+
834)(a+1)2, and fj and gj are rational functions. Applying Theorem 10 we have 4 critical
periods when P (a) 6= 0 and 5 when P (a) = 0, P ′(a) 6= 0, and Q(a) 6= 0. Then, as a 6= 0,
the statement follows except for the remaining cases a ∈ {−1, 1/2, 2}.

For the cases a ∈ {−1, 1/2, 2} we need to add the holomorphic monomials, then the
time-reversible cubic perturbation is now





ż = i z (1− z) (1− az) + i
3∑

k+l=2

rklz
kwl,

ẇ = − iw (1− w) (1− aw)− i
3∑

k+l=2

rklw
kzl.

(30)

When computing the linear parts of the period constants we observe that they have rank
3 with respect to three of the parameters in {r20, r11, r02, r30, r21, r12, r03}. Then, similarly
to what we did above, we have Tk = uk, for k = 1, 2, 3 and we should study the second
order developments of T4, T5, T6 under the condition u1 = u2 = u3 = 0 with respect to the
remaining parameters.

For a = 2 (and similarly for its equivalent case a = 1/2) we write the remaining
parameters, as in a blowup procedure, as r03 = u4v1, r12 = u4v2, r20 = u4, r30 = 0. Then,

Tk = u24Fk−3(v1, v2) + u34

∞∑

j=0

fkj(v1, v2)u
j
4, for k = 4, 5, 6, (31)

with

F1(v1, v2) = −96 v1 −
304

5
v2 − 24 v21 −

1016

5
v1v2 −

1178

15
v22,

F2(v1, v2) =
112

3
v2 − 350 v21 −

922

3
v1v2 −

1297

126
v22,

F3(v1, v2) = −1080

7
v21 +

6264

49
v1v2 +

212634

1715
v22.

Next we show that the zero level curves of F1 and F2 have a transversal intersection point

(v∗1, v
∗
2) =

(
−6972965

1901
α2 − 807195

7604
α− 1743

3802
,
105

2
α

)
,

being α the unique simple real zero of p(α) = 5578372α3 + 183328α2 + 1789α+ 7, where
F3(v

∗
1, v
∗
2) is nonvanishing. This follows because F1(v

∗
1, v
∗
2) = F2(v

∗
1, v
∗
2) = 0,

F3(v
∗
1, v
∗
2) = p1(α) = (1051652160α2 + 17223840α + 120960)/1901 6= 0,

det Jac(F1,F2)(v
∗
1, v
∗
2) = p2(α) = (−103534584320α2 − 571544320α + 7499520)/1901 6= 0,

and the resultants Res(p, p′, α), Res(p, p1, α), and Res(p, p2, α) are all nonvanishing.
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Then, after dividing (31) by u24 and using again the Implicit Function Theorem at
(v1, v2, u4) = (v∗1, v

∗
2, 0), we obtain that 5 critical periods unfold for this value of the

parameter a.

The proof for the case a = −1, also considering the perturbation (30), follows similarly
taking in r02 = u4, r11 = u4v1, r20 = u4v2, r30 = 0. Now we have

F1(v1, v2) = −8 +
192

5
v1 −

16

5
v2,

F2(v1, v2) =
1277

56
+

145

24
v1 −

85

8
v21 +

5

8
v1v2,

F3(v1, v2) =
12

35
− 144

7
v1.

Here, the zero level curves of F1 and F2 have two transversal intersection points, both of
them written as

(v∗1, v
∗
2) =

1

5
(α, 12α− 5),

being α each simple real zero of p(α) = 42α2 − 301α − 7662. Additionally, F3(v
∗
1, v
∗
2) =

p1(α) = 12(−12α + 1)/35 and det Jac(F1,F2)(v
∗
1, v
∗
2) = p2(α) = (−12α + 43)/3.

Finally, we would like to consider an alternative proof for the special case a = −3/2
(similarly for its equivalent case a = −2/3), which is a simple zero of P that does not
vanish Q in (29). We will consider (30) and second order developments, as in the previous
cases for which the generic result for every a does not apply.

Here, the linear parts of the first four period constants have rank 4. Then, by using the
Implicit Function Theorem, Tk = uk for k = 1, . . . , 4, and vanishing these first four we get
the next two period constants which depend on the remaining parameters (u5, u6, u7),

T5 = u5u6 +O3(u5, u6, u7),

T6 = u5

(9

2
− 2552689

12348
u5 −

1439

245
u6 − 15u7

)
+O3(u5, u6, u7),

(32)

where r03 = u5, r20 = (16000u5 − 4536u6 − 6615u7)/39690, and r30 = u7. To solve T5 = 0
we need to know the different branches of the variety T5 = 0 near the origin. The blowup
mechanism can help to discover them. This is the procedure proposed by Loud in [18],
where he considered it as a singular use of the Implicit Function Theorem. As we would
like to find a branch where T5 vanishes but T6 does not, we will not use the tangent
variety to u5 = 0 because it is not clear from (32) whether T6 vanishes on it or not.
Then, assuming u5 small but not zero and using the blowup u6 = u5v1 and u7 = u5v2, the
expressions (32) write as

T5 = u25

(
v1 + u5

∞∑

j=0

fj(v1, v2)u
j
5

)
,

T6 = u5

(9

2
+ u5

∞∑

j=0

gj(v1, v2)u
j
5,
)
.

Clearly, we can use the usual Implicit Function Theorem to write T5 = u25w1. Then, on
the variety w1 = 0 we have T5 = 0 but T6 6= 0, and the unfolding of 5 critical periods is
proved. �

We notice that we have not considered a = 0 because in this case the unperturbed
system is only quadratic, and up to first and second orders only one and two critical
periods appear, respectively.
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5.2. Perturbing other isochronous. This section is devoted to see the existence of
other cubic reversible isochronous systems from which, after perturbation inside the cubic
reversible class, also 5 critical periods bifurcate from the origin. All these systems appear
in the full classification of cubic reversible isochronous systems of Chen and Romanovski,
see [4]. We have not checked all of them and neither the ones in [3] because, as we have
commented previously, we think that there will be no more critical periods bifurcating
from the centers different from the harmonic oscillator.

In the following results the cubic reversible perturbations are considered as in (30),
because first we switch them to complex coordinates and then we apply the mechanism
explained in Section 2. Recall that the bifurcation mechanisms are the direct application
of the limit cycles bifurcation mechanisms described in [7, 14].

Proposition 12. Consider the cubic reversible isochronous systems
{
ẋ = −y + 16

3
xy,

ẏ = x− 16
3
x2 + 4y2 + 256

27
x3,

{
ẋ = −y − 3x2y,

ẏ = x+ 2x3 − 9xy2.

The number of critical periods bifurcating from the origin when perturbing in the class of
reversible cubic systems is at least 5.

Proof. The existence of the respective unfoldings of 5 critical periods follows as in Propo-
sition 11, so we only describe the main differences.

For the first system, after using the Implicit Function Theorem we get Tk = uk for
k = 1, . . . , 5. Then, after vanishing them, the sixth writes as

T6 = −2928640

81
u36 +O4(u6, u7).

For the second system we need again the Implicit Function Theorem but a little more
work is required. First, we get Tk = uk for k = 1, . . . , 3. Then, after vanishing them and
from the order two developments of the next three period constants, we have that there
exists a curve in the parameters space such that, along it, the zero level curves of T4 and
T5 intersect transversally and T6 does not vanish at this point. The curve is defined by

Λ := (r02(λ), r11(λ), r20(λ)) =
(3α

2
, 1,

1288836α2 − 33437α + 8492

2(182687α− 14408)

)
λ+O2(λ),

being α the unique simple zero of the polynomial p(α) = 14865206α3 − 9450402α2 +
5998353α− 494789. On such curve, T4 and T5 vanish and

T6(Λ) =
4428675 p1(α)

98996508541251328(182687α− 14408)2
λ2 +O3(λ),

det Jac(T4,T5)(r02, r20)(Λ) =
12695535 p2(α)

118921648(182687α− 14408)2
λ2 +O3(λ),

with

p1(α) = 8601448118622283590359α2 − 9039597241380812188234α

+ 767502262831182901877,

p2(α) = 62303007298924α2 + 70835816547508α− 7694925309941.

Moreover, the resultants with respect to α of (p, p′), (p, p1), and (p, p2) are nonzero rational
numbers. �
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Proposition 13. Consider the cubic reversible isochronous systems
{
ẋ = −y + 4

3
xy,

ẏ = x− 4
3
x2 + 4y2 + 16

27
x3,

{
ẋ = −y − 14

15
xy + 16

175
x2y,

ẏ = x+ 16
15
x2 − 46

15
y2 + 64

175
x3 + 48

175
xy2.

Up to a six order study, the number of critical periods bifurcating from the origin when
perturbing in the class of reversible cubic systems is only 4.

Proof. The proof follows just by checking that the linear parts of the first five period
constants have rank 5. Straightforward computations show that, after using the Implicit
Function Theorem and vanishing them, the next two period constants vanish up to a six
order study. �

Proposition 14. Let a ∈ R \ {0,±
√

3,±
√

5}. Consider the 1-parameter family of cubic
isochronous reversible systems

{
ẋ = −y + 2(1− a2)a−1xy + 2x2y − 2y3,

ẏ = x+ ax2 + (2− a2)a−1y2 + 4xy2.

The number of critical periods bifurcating from the origin when perturbing in the class of
reversible cubic systems is at least 5 for a ∈ {±

√
7/3,±2,±3} and 4 otherwise.

Proof. The proof follows using Theorem 7 as the proof of Proposition 11. Here, the linear
part of the first four period constants have rank 4, then there exists a change of variables
such that Tk = uk for k = 1, . . . , 4. The differences are only the expressions of T5 and T6
which are, after vanishing the first period constants,

T5 = −70(a− 2)(a− 3)(a+ 3)(a+ 2)(3a2 − 7)a4

44a8 + 90a6 + 129a4 + 167a2 + 30
u5,

T6 =
4(834a10 − 16310a8 + 115767a6 − 387870a4 + 629063a2 − 401940)a2

44a8 + 90a6 + 129a4 + 167a2 + 30
u5.

�
In the above result we have not considered a ∈ {±

√
3,±
√

5} because for these values
more computations and higher order developments should be studied, and we suspect
that no more than 5 oscillations of the period function will appear. Now we explain
the main difficulties. Let R`(a) = (R1, . . . , R`) be the sequence of ranks of the linear
developments of the ordered period constants for a fixed value of the parameter a, be-

ing Rk = Rank(T
(1)
1 , . . . , T

(1)
k ). Then, we have that R10(±

√
3) = (1, 2, 3, 3, 4, 4, 4, 4, 4, 4)

and R10(±
√

5) = (1, 2, 2, 3, 4, 4, 5, 5, 5, 5) while for the other values, that is for a ∈
R \ {0,±

√
3,±

√
7/3,±2,±

√
5,±3}, we have R7(a) = (1, 2, 3, 4, 5, 5, 5).

6. Perturbing quartic isochronous systems

In this section we will prove that there exist quartic reversible centers for which at
least 10 critical periods bifurcate by using Theorem 10. This proves the statement of
Theorem 1 corresponding to n = 4, that is C`(4) ≥ 10. Basically we will follow the same
scheme as in the previous section for the holomorphic case. Assuming that the linear
parts of the period constants of a quartic system have rank 9, we rewrite the 9 first period
constants as

Tk = uk +O2, for k = 1, . . . , 9,

where the uk are new variables which depend on the original perturbative parameters
and O2 denotes a sum of monomials of degree at least 2. Linear parts of higher period
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constants would be a linear combination of these uk. For convenience we can also write
directly, by using the Implicit Function Theorem, Tk = uk for k = 1, . . . , 9.

Before the main result of this section we will formulate Poincaré–Miranda’s Theorem,
which will be necessary in the proof. This result could be described as a generalization of
Bolzano’s Theorem to higher dimensions.

Theorem 15 ([23]). (Poincaré–Miranda’s Theorem) Let B = {x ∈ Rm : |xj| ≤ L, for 1 ≤
j ≤ m} and suppose that the mapping F = (f1, f2, . . . , fm) : B → Rm is continuous on B
such that F (x) 6= (0, 0, . . . , 0) for x on the boundary ∂B of B, and

(i) fj(x1, x2, . . . , xj−1,−L, xj+1, . . . , xm) ≥ 0 for 1 ≤ j ≤ m, and
(ii) fj(x1, x2, . . . , xj−1,+L, xj+1, . . . , xm) ≤ 0 for 1 ≤ j ≤ m.

Then, F (x) = (0, 0, . . . , 0) has a solution in B.
For the proof of this theorem the reader is referred to [23] or [31]. By using it to-

gether with Theorem 10, in the following result we present a family of quartic reversible
isochronous centers from which at least 10 critical periods can bifurcate.

Proposition 16. Let a, b ∈ R. Consider the 2-parameter family of quartic (holomorphic)
reversible systems

ż = i z (1− z) (1− az) (1− bz) . (33)

Generically, at least 8 critical periods bifurcate from the origin when perturbing in the
class of reversible quartic centers. Moreover, in this perturbation class there exists a point
(a, b) such that at least 10 critical periods bifurcate from the origin.

Proof. System (33) is time-reversible holomorphic and therefore has an isochronous center
at the origin. Let us add a time-reversible quartic perturbation with no holomorphic terms
as in (25), this is, being rlm ∈ R,

ż = i z (1− z) (1− az) (1− bz) + i
4∑

l+m≥2
m≥1

rlmz
lwm.

Straightforward computations show that the coefficients of the linear parts of the first
9 period constants, with respect to the only 9 perturbation parameters in the above
equation, form an square matrix. Its determinant is a polynomial of degree 64 in the
parameters of the family (a, b). We do not show it here because of its size. Then, the first
statement follows from Theorem 10.(i).

The proof of the second statement needs more computations. After a linear change
of coordinates in the parameters space we obtain that, generically, the period constants
have the following form:

Tk = uk +O2, for k = 1, . . . , 8,

T9 =
G(a, b)P (a, b)

D(a, b)
u9 +O2,

T10 =
G(a, b)Q(a, b)

D(a, b)
u9 +O2,

T11 =
G(a, b)R(a, b)

D(a, b)
u9 +O2,

with G(a, b) = (ab− a− b+ 2)(ab− 2b2− a+ b)(2a2− ab− a+ b)a3b3 and P (a, b), Q(a, b),
R(a, b), and D(a, b) certain polynomials with rational coefficients in the variables a and
b. We do not show the complete polynomials here because they are too large. They have
respectively total degree 37, 39, 41, and 37. Their number of monomials are respectively
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657, 736, 819, and 606. Then, the second statement follows directly from Theorem 10.(ii)
just checking that there exists a point (a0, b0) in the parameters space such that P (a0, b0) =
Q(a0, b0) = 0, R(a0, b0) 6= 0, det Jac(P,Q)(a0, b0) 6= 0, and D(a0, b0) 6= 0. To show the
difficulty to find this special point, the zero level curves of the polynomials P, Q, R, and
D in the square [−1, 1]2 are depicted in Figure 1. The point (a0, b0) should be in the
intersection of the red and blue curves but not in the green and black ones, although the
curves are very close to see the point.

Figure 1. Plot of the zero level curves of P (a, b), Q(a, b), R(a, b), and
D(a, b) for (a, b) ∈ [−1, 1]2, in color red, blue, green, and black, respectively

Before proving analytically the existence of at least one intersection point (a0, b0), we
will do some numerical simulations to later apply the Poincaré–Miranda’s Theorem.

After some tedious work zooming some zones of the figure together with some tricks,
we have found a numerical approximation of this special point. Increasing the number of
digits in the computations up to see the stabilization of the results, we obtain

a0 ≈ 0.62577035826746384070691323127,

b0 ≈ 0.71179266608573393310773491596,

R(a0, b0) ≈ −1.44391455520361722121698980760 · 1013,

det Jac(P,Q)(a0, b0) ≈ −7.71411995359481041501433585645 · 1029,

D(a0, b0) ≈ −9.87896448642393578498609236141 · 1013.

(34)

For the sake of simplicity of the expressions, we will divide each of the polynomials P, Q,
R, and D by the coefficient of its highest power in a and, with a slight abuse of notation,
we call them P, Q, R, and D again. Now we perform a linear change of variables which
allows to separate the curves. The (numerical) Taylor expansion of P (a, b) and Q(a, b) at
the above numerical approximation (a0, b0) is

P (a, b) ≈ 14476.355528262242592711069492

− 1516162.34376751076199474015954 a

+ 1312591.63242100192712169534384 b+O2(a, b),

Q(a, b) ≈ 78319.07106237404777027603042

− 8048108.27358418867430264665612 a

+ 6965439.18320811849214303073248 b+O2(a, b),

where O2 are sums of monomials of degree at least 2. Consider now a change of variables
from (a, b) to new parameters (u, v) such that u and v are respectively the above linear
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parts. By solving these two equations with respect to a and b, we obtain that

a = 0.625770358267463840706913241773

+ 0.00221618993488297996013588284494u

− 0.000417626554172747676923930511920 v,

b = 0.711792666085733933107734928103

+ 0.00256066216093940651327090078741u

− 0.000482396534881316802873914874492 v.

(35)

We notice that at (u, v) = (0, 0) we approximately recover the values for (a0, b0) at (34).
Figure 2 shows the zero level curves of the polynomials P, Q, R, and D near (0, 0) after
this change of variables. Now it is clear that the four zero level curves do not intersect
simultaneously at such point. Moreover, the ones correspoding to P and Q are transversal.
Observe that D(u, v) is not seen in the graph because it stays out of the plotted region.
This intersection point has shifted to near (0, 0) in the new variables, and is not exactly
at (0, 0) due to the rounding errors.

Figure 2. Plot of the zero level curves of P (u, v), Q(u, v), and R(u, v) in
color red, blue, green, respectively; the curve corresponding to D(u, v) is
out of the plotted region

The last step is the analytical proof of the existence of the point (a0, b0), which we
have seen above that exists numerically. We will do a computer-assisted proof checking
the properties in Theorem 15 by using rational interval analysis, because all the involved
polynomials have rational coefficients. We start by writing the relation (35) as rational
numbers with a 30 digits precision,

a =
803010141443820

1283234545763833
+

59980860399959

27064855523371976
u− 5287648183641

12661187682653458
v,

b =
480154601557585

674570874968458
+

4931930765653

1926037273048026
u− 4470981572020

9268270496843407
v.

We will set h = 10−3 in Theorem 15, and we will show that in the square B = [−h, h]2

there must be a zero of P (u, v) and Q(u, v). The proof follows checking also that R(u, v),
D(u, v), and the Jacobian determinant J(u, v) := det Jac(P,Q)(u, v) do not vanish in the
whole square. The draws in Figure 3 show that these conditions hold. Observe that
P (u, v) and Q(u, v) are continuous because they are polynomials. Then there will be
a point (u0, v0) ∈ (−h, h)2 such that P (u0, v0) = 0 and Q(u0, v0) = 0 by applying the
Poincaré–Miranda’s Theorem because the following conditions hold.

(a) P (h, v) > 0 and P (−h, v) < 0 for v ∈ [−h, h].
First we find the first derivatives of P (h, v) and P (−h, v) with respect to v. Then we
compute all its real roots and see that none of them belongs to the interval (−h, h),
which implies that there are no local maxima nor minima in this interval. Now we
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Figure 3. Plot of rescaled polynomials P and Q at the boundaries of
[−h, h]2 and the polynomials R(u, v), D(u, v), and J(u, v) in the full square
[−h, h]2

check that P (h,−h) > 0, P (h, h) > 0, P (−h,−h) < 0, and P (−h, h) < 0, which
together with the fact that there are not any local extrema means that the function
P (h, v) is strictly positive in the whole interval while P (−h, v) is strictly negative.

(b) Q(u, h) > 0 and Q(u,−h) < 0 for u ∈ [−h, h].
The proof follows checking that the first derivatives of Q(u, h) and Q(u,−h) with
respect to u have only one real root in the interval (−h, h), which means only one
extremum. We also see that the second derivatives of Q(u, h) and Q(u,−h) again
with respect to u at those points take a negative value, so these only local extrema
are local maxima. Also, the value of Q(u, h) and Q(u,−h) evaluated at the u which
gives the maxima are positive and negative, respectively. Additionally, Q(−h, h) > 0,
Q(h, h) > 0, Q(−h,−h) < 0, and Q(h,−h) < 0. Then, the functions Q(u, h) and
Q(u,−h) are respectively strictly positive and negative in the whole interval.

Strictly speaking, we observe that due to how Theorem 15 is formulated we should apply
it to −P (u, v) and −Q(u, v) rather than P (u, v) and Q(u, v), but the conclusion is exactly
the same.

The last step of the proof is to ensure that R(u, v), D(u, v), and J(u, v) do not vanish
in the whole square.

First we will prove that there exists R̃ ∈ Q+ such that R(u, v) ≥ R̃ > 0 for (u, v) ∈
[−h, h]2. It is clear that R(u, v) can be written as

R(u, v) = R(0, 0) +
k̂∑

i=0

l̂∑

j=0
(i,j)6=(0,0)

aiju
ivj (36)

for certain rational coefficients aij, where k̂ and l̂ denote the degree of R(u, v) with respect
to u and v, respectively. Observe that

R(u, v) = R(0, 0) +
k̂∑

i=0

l̂∑

j=0
(i,j)6=(0,0)

aiju
ivj ≥ R(0, 0)−

k̂∑

i=0

l̂∑

j=0
(i,j)6=(0,0)

|aij|hi+j =: R̃,
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where we have used that |u| ≤ h and |v| ≤ h. The right part of the inequality can be

easily computed and we obtain a positive rational number R̃ ≈ 1.7529595059.

The proof that there exists J̃ ∈ Q+ such that J(u, v) ≥ J̃ > 0 for (u, v) ∈ [−h, h]2

follows analogously to the one for R(u, v), just by writing the equivalent expression (36)

for function J and adequately changing the values for the degrees k̂, l̂, and the rational

coefficients aij. The positive rational lower bound is J̃ ≈ 0.9996974188. Similarly, we

can prove that there exists d̃ ∈ Q− such that D(u, v) ≤ d̃ < 0 for (u, v) ∈ [−h, h]2. In

this case, as well as changing the values for the degrees k̂, l̂ and the rational coefficients
aij we have to invert all inequalities. The upper bound is the negative rational number

d̃ ≈ −14177.3096985157.
We notice that these values for the lower and upper bounds obtained above are far from

the values in (34) because we have rescaled all the involved functions. �

7. Perturbing higher degree systems

In this section we will use period constants only up to first order in the perturbative
parameters to obtain as many critical periods as possible by bifurcating, in the class of
reversible systems, from some reversible holomorphic systems. The idea is to consider
an isochronous center of the form (27) perturbed as in (25), being rlm ∈ R. Using linear
terms of the period constants one can deduce that at least (n2 + n− 4)/2 critical periods
bifurcate from the origin. In Proposition 17 this is proved for 3 ≤ n ≤ 16. This provides
the lower bound for C`(n) given in Theorem 1 for 10 ≤ n ≤ 16. In fact, we notice that for
n = 3 and n = 4 we have already found better bounds in the previous sections, but we
also include them for the sake of completeness. According to Theorem 10, under certain
conditions the system could unfold up to n−2 extra critical periods with respect to those
(n2 + n− 4)/2 obtained by using only linear parts, as the system has n− 2 holomorphy
parameters aj. Nevertheless, we will see that this is unfeasible even for degree 5 due to the
large size of the obtained polynomials, but we will add at least one extra critical period
in Proposition 18 for 5 ≤ n ≤ 9. This gives the lower bound for C`(n) given in Theorem 1
for 5 ≤ n ≤ 9.

Proposition 17. For 3 ≤ n ≤ 16, consider the system

ż = i z
n∏

k=2

(
1− Φ

([
k

2

])(−1)k

z

)
, (37)

where Φ(j) is the j-th prime number and [·] denotes the integer part function. Then, when
perturbing in the class of reversible centers at least (n2 +n−4)/2 critical periods bifurcate
from the origin, which is of isochronous reversible center type.

Proof. The n-th degree system (37) can alternatively be written as
{
ż = i z (1− 2z) (1− 2−1z) (1− 3z) (1− 3−1z) (1− 5z) (1− 5−1z) · · · ,
ẇ = − iw (1− 2w) (1− 2−1w) (1− 3w) (1− 3−1w) (1− 5w) (1− 5−1w) · · · .

This system is reversible and holomorphic, so it has an isochronous center at the origin.
Now add an n-th degree perturbation with real parameters rlm as in (25).

The next step is to compute the first N = (n2 + n − 2)/2 period constants of the
perturbed system up to first order. To this end, we apply the method presented in
Section 2 which uses Proposition 4. We have performed these calculations for degree
3 ≤ n ≤ 16 by using Maple plus the parallelization with PBala (see [29]), and we have
found that the rank of the linear part of the first N period constants is precisely N,
thus we obtain maximal rank. Therefore, by applying Theorem 10.(i) this implies that
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N − 1 critical periods bifurcate from the origin, which is the lower bound given in the
statement. �

It is worth saying that we would not have been able to reach degree n = 16 in the
above result without using the technique presented in Proposition 4. The reason why
for a certain degree n we can obtain rank N = (n2 + n − 2)/2 in the linear parts of the
corresponding period constants is as follows. By basic combinatorics one can see that the
number of perturbative terms in a reversible degree n ≥ 3 system is

n+1∑

j=3

j =
n+1∑

j=1

j − 2− 1 =
(n+ 2)(n+ 1)

2
− 2− 1 =

n2 + 3n− 4

2
. (38)

However, observe that the terms of the form cj0z
j = Ajz

j belong to the holomorphic part
of the system and are not considered perturbative parameters, so they cannot appear in
the linear part of the period constants. As a consequence, for degree n the terms Ajz

j

for 2 ≤ j ≤ n do not count when computing ranks of linear parts of period constants,
so the number of perturbative parameters which can actually play a part results from
substracting n − 1 to the total number (38), which results in N. This means that with
Proposition 17 we have reached the maximum number of critical periods that can bifurcate
by studying the rank when perturbing a fixed holomorphic system using linear parts only.

As we can theoretically get rank N for degree n, then N − 1 critical periods could
bifurcate from the origin. In Proposition 17 we proved that this number of critical periods
can actually appear for 3 ≤ n ≤ 16, and for higher degrees the problem gets too demanding
in computational terms. We have used a cluster of servers with more than 100 cores and
more than 300 GB of RAM in total. Nevertheless, it is natural to think that this lower
bound will hold for any degree n ≥ 3.

In the next result we provide one more critical period than the obtained in the previous
proposition, considering the holomorphic reversible system of degree n

ż = i z(1− z)
n−2∏

j=1

(1− ajz) , (39)

with 5 ≤ n ≤ 9 and aj ∈ R, but with only one free parameter instead of n − 2,
(a1, . . . , an−2), because of the difficulties in the analytical computations.

Proposition 18. Let 5 ≤ n ≤ 9 be a natural number and a ∈ R. For the (holomorphic)
reversible 1-parameter family

ż = i z(1− az)
n−2∏

k=1

(1− kz) , (40)

there exists a real value a such that at least (n2 + n− 2)/2 critical periods bifurcate from
the origin when perturbing in the class of polynomial reversible centers of degree n.

Proof. System (40) is time-reversible holomorphic and therefore it has an isochronous
center at the origin. We consider the time-reversible polynomial perturbation of degree
n with no holomorphic terms as in (25) and we compute the first order developments
of its (n2 + n)/2 first period constants as a function of a. Notice that this system has
N := (n2 + n− 2)/2 perturbative parameters, which is the maximal rank that the linear
parts can have. In the case that we have rank N − 1 instead, as in Theorem 10.(ii), a
perturbative parameter is still not used. We have checked that, after a linear change of
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parameters, for each degree 5 ≤ n ≤ 9, the period constants have the form

Tk = uk +O2 for k = 1, . . . , N − 1,

TN = a2Cn(a)
Pn(a)

Dn(a)
uN +O2,

TN+1 = a2Cn(a)
Qn(a)

Dn(a)
uN +O2,

for certain polynomials Pn(a), Qn(a), Dn(a), and Cn(a) in the variable a with rational
coefficients. These polynomials are not shown here because of their large size: Pn(a) has
degree 100, 206, 374, 626, and 986 for n = 5, 6, 7, 8, and 9, respectively; Qn(a) has degree
102, 208, 376, 628, and 988 for n = 5, 6, 7, 8, and 9, respectively; Dn(a) has degree 89,
188, 349, 593, and 944 for n = 5, 6, 7, 8, and 9, respectively. The polynomials Cn(a) are
C5(a) = 2a− 3 and Cn(a) = 1 for n = 6, 7, 8, 9.

To prove the unfolding of an extra critical period by following the ideas in Theorem 10,
we should see that there exists some value an such that Pn(an) = 0, P ′n(an) 6= 0, Qn(an) 6=
0, and Dn(an) 6= 0 for 5 ≤ n ≤ 9. Straightforward computations show that P5(a) has a
root a5 in the interval [0.75, 0.76], P6(a) has a root a6 in the interval [1.27, 1.28], P7(a)
has a root a7 in the interval [0.11, 0.12], P8(a) has a root a8 in the interval [0.58, 0.59] and
P9(a) has a root a9 in the interval [0.12, 0.13]. Thus, we know that for each n = 5, 6, 7, 8,
and 9, Pn(a) has a real root an.

Finally, we find that the resultant of Pn(a) with P ′n(a), the resultant of Pn(a) with
Qn(a), and the resultant of Pn(a) with Dn(a) are nonzero rational numbers for each
n = 5, 6, 7, 8, and 9, which means that Pn(a) has no common zeros with P ′n(a), Qn(a),
and Dn(a). Therefore, by applying Theorem 10.(ii), we can conclude that for degrees
from 5 to 9 one extra critical period unfolds. �

As we already commented, due to the fact that system (39) has n − 2 holomorphic
free parameters, according to Theorem 10.(ii) one could expect to see n− 2 extra critical
periods. However, when computing the period constants of (39) even for n = 5, we observe
that we cannot deal with them: after appropriately handling the following three period
constants T14, T15, T16, the obtained polynomials that we need to apply the theorem have
approximately half a million of monomials, with degrees 154, 156, and 158. Moreover,
their coefficients are integer numbers between 40 and 80 digits long. Because of this, we
have not been able to see numerically the existence of a transversal intersection of them.
Nevertheless, by working with two parameters we have numerical evidence that for n = 5
actually 2 additional critical periods unfold, as we will see followingly. Even for this case,
the size of the expressions is too large to achieve an analytical proof.

Let us consider the system
{
ż = i z(1− z)2(1− az)(1− bz),

ẇ = − iw(1− w)2(1− aw)(1− bw).
(41)

Firstly, we compute the first 16 period constants of system (41), consider their linear
parts and denote by P (a, b), Q(a, b), and R(a, b) the numerator of the coefficient of the
corresponding linear part and D(a, b) the common denominator, following the notation in
the proof of Proposition 18. Working with enough precision up to see the stabilization of
the values of the intersection of the zero level curves of P and Q, together with the value
of R,D, and the Jacobian determinant of (P,Q), we can find a transversal intersection at

(a0, b0) ≈ (0.63824202454687891,−1.75185147414301379).
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In Figure 4 we represent graphically the intersection of the zero level curves of the poly-
nomials P (a, b) and Q(a, b).

Figure 4. Plot of the zero level curves of polynomials P (a, b) and Q(a, b)
in red and blue color, respectively; the zero level curves of the polynomials
R,D, and the Jacobian determinant of P and Q do not appear because
they stay out of figure. The intersection of P (a, b) and Q(a, b) can be clearly
seen

8. Six critical periods on cubic systems

This section is devoted to prove the part of the statement of Theorem 1 corresponding
to n = 3, this is C`(3) ≥ 6. This result will not arise from a perturbation of isochronous
centers as we did in Section 5, in the sense that the perturbative parameters are not
‘small’.

Proposition 19. There exist values of r20, r11, r02, r30, r21, r12, r03 ∈ R for which the cubic
reversible system

ż = i
(
z − z3 +

3∑

l+m=2

rlmz
lwm

)
, (42)

unfolds 6 local critical periods.

Proof. The proof will consist on the following steps. First we compute the first 7 period
constants of system (42). Then we show the existence of a point in the parameters space,
with r20 = 1, for which T1 = · · · = T6 = 0 but T7 6= 0. The complete unfolding is proved
checking that the determinant of the Jacobian matrix of (T1, . . . , T6) with respect to the
remaining 6 parameters is not zero.

The first 7 period constants of system (42) have been obtained by using the method
described in Section 2. Because of their size, here we only show the first two,

T1 =− 2r11r20 + 2r21 −
4

3
r202 − 2r211,

T2 = 4r12 − 8r211 + 4r11r20 − 4r212 − 3r203 − 4r12r30 + 8r211r30 + 8r211r21 +
8

3
r202r21

+ 16r211r12 −
8

3
r20r02 −

40

3
r02r

3
11 −

44

3
r11r02 −

4

3
r202r

2
20 − 15r202r

2
11 + 20r12r11r02

+
8

3
r02r12r20 + 4r11r12r20 − 4r11r20r21 +

4

3
r03r20r02 +

44

3
r30r11r02 +

58

3
r02r03r11

+
8

3
r30r20r02 − 4r11r20r30 −

28

3
r202r11r20 −

8

3
r02r

2
20r11 − 12r02r20r

2
11.

The number of monomials of the following constants, T3, T4, T5, T6, T7, are respectively
164, 576, 1645, 3861, 8303, and their degrees are 6, 8, 10, 12, 14.
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Now the second step is to check that there exists some point in the parameters space
such that the first 6 period constants vanish but T7 does not. Let us start by imposing
r20 = 1 and solving T1 = T2 = 0 provided that D := 3r12+3r11−11r02r11−2r02−6r211 6= 0.
Then

r21 =r11 +
2

3
r202 + r211,

r30 =
1

12 (3r12 + 3r11 − 11r02r11 − 2r02 − 6r211)

(
16r402 − 63r202r

2
11 − 84r202r11

− 12r202 − 120r02r
3
11 − 108r02r

2
11 − 24r02r

2
11 + 72r411 + 36r311 − 36r211

+ 174r02r03r11 + 12r02r03 + 180r02r11r12 + 24r02r12 + 144r211r12

+36r11r12 − 132r02r11 − 24r02 − 27r203 − 72r211 + 36r11 − 36r212 + 36r12
)
.

Under the above condition D 6= 0, the Jacobian determinant of T1 and T2 with respect
to r21 and r30 is nonzero. This implies that the study of the complete versal unfolding
of the 6 critical periods can be restricted to the study of the remaining period constants
with respect to the four free parameters r11, r02, r12, r03.

To simplify the manipulation of T3, . . . , T7, we take their numerators and divide them
by their highest coefficient in absolute value; with a slight abuse of notation, we call them
again T3, . . . , T7, respectively.

Before the analytical proof, we will provide numerical evidence that there exists a
solution for {T3 = 0, T4 = 0, T5 = 0, T6 = 0} such that T7, the denominator D, and the
Jacobian determinant J of (T3, T4, T5, T6) do not vanish. We have increased the precision
up to see the stabilization of the results. A 30-digits approximation to this intersection
point is

S := {r11 = 0.332239671964981276819848124224,

r02 = −1.14623564863006725151534814297,

r12 = 0.707146879073682873590033571024,

r03 = −0.857479316438844353902485565632}

and, at this point,

T7 =− 1.84620573446485590097286118 · 10−9,

D =− 4.92423261813104720132211463191 · 10−14,

J =− 8.93740626746136868462260172503.

Even though T7 and D might seem too close to zero, the numerical values of T3, T4, T5, T6
at S are about 20 orders of magnitude lower, so we can actually consider that T7 and D
are nonzero.

Having this numerical evidence, we will proceed with the analytical proof by following
a computer-assisted proof as we have done in the proof of Proposition 16.
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Let us consider the rational approximation of the first order Taylor expansion of the
period constants T3, T4, T5, T6 at the point S,

T
(1)
3 =− 73352896192857

1157958866091236
+

66262571735671

670216015479518
r11 −

119234362424303

776335803127460
r02

+
7903848963503

675876388619388
r12 +

55731331328881

310685226195660
r03,

T
(1)
4 =− 25841873263308

2144739207215017
+

40160593855699

1426912747264762
r11 −

117691544210802

4702223212288759
r02

+
7773205101075

2079218586073918
r12 +

110363479645312

3304887976984249
r03,

T
(1)
5 =− 16219703349568

10414082088666585
+

42608385876433

9737281715798994
r11 −

29366717293918

9762325804542787
r02

+
6748894626740

9711312046719413
r12 +

6430413960561

1437481484699156
r03,

T
(1)
6 =− 1959207228925

14543712037193487
+

11134499629945

27672511586934129
r11 −

5248411486748

20480381071923191
r02

+
3134463695044

45208235327076605
r12 +

8433554097025

21161093903316966
r03,

and the change of variables

{T (1)
3 = u1, T

(1)
4 = u2, T

(1)
5 = u3, T

(1)
6 = u4}. (43)

Now one can solve this system to obtain the inverse change. To deal with shorter rational
numbers, we convert the coefficients of the resulting expressions to a 30-digit approxima-
tion and then reconvert it to rational, obtaining

r11 =
114216314885635

343776871106692
+

3690270297600200

19535367373429
u1 −

24306493749268230

4889036398111
u2

+
3565552496655516

44921198443
u3 −

74580049035068047

133328816009
u4,

r02 =− 2830661790614852

2469528664544625
− 8579444837165377

6135160885376
u1 +

62633434081451044

1884512347855
u2

− 218159188810346297

437320083677
u3 +

433555893724556147

125890356506
u4,

r12 =
308981620175863

436941220161516
+

14794405087051724

7814232065819
u1 −

52171010172694907

1180772594709
u2

+
207814747586335205

323119349554
u3 −

91326167194000251

20903373436
u4,

r03 =− 301994834117308

352189059639955
− 28146991231557103

19831964964997
u1 +

65898129221474685

1933801767914
u2

− 292164620132414823

569752028783
u3 +

570903623821683593

161190849884
u4.

Using these expressions we can rewrite the whole T3, . . . , T7 in these new variables. For
simplicity we denote them by Uj(u1, u2, u3, u4) := Tj+2(r11, r02, r12, r03) for j = 1, . . . , 5.
Observe that the first order Taylor expansion of U = (U1, U2, U3, U4) with respect to
the variables u = (u1, u2, u3, u4) is near the identity. Consequently, the problem reduces
to proving the existence of some point u∗ = (u∗1, u

∗
2, u
∗
3, u
∗
4) near the origin for which

U1(u
∗) = U2(u

∗) = U3(u
∗) = U4(u

∗) = 0, and U5(u
∗), the denominator D(u∗), and the

Jacobian determinant J(u∗) := det JacU(u∗) do not vanish. The existence of such point
will be shown applying again Poincaré–Miranda’s Theorem (Theorem 15).



NEW LOWER BOUNDS OF THE NUMBER OF CRITICAL PERIODS 27

Let us set h = 10−12. We have implemented an algorithm which provides rational upper
and lower bounds to a given function with m variables in B = [−h, h]m, for m = 3, 4.
Using it as a computer-assisted proof, we have been able to find the following bounds.

• For U1, we have 0 < û1 < U1(h, u2, u3, u4) and U1(−h, u2, u3, u4) < −û1 < 0 for all
u2, u3, u4 ∈ [−h, h], where û1 ≈ 2.67 · 10−13.
• For U2, we have 0 < û2 < U2(u1, h, u3, u4) and U2(u1,−h, u3, u4) < −û2 < 0 for all
u1, u3, u4 ∈ [−h, h], where û2 ≈ 8.78 · 10−13.
• For U3, we have 0 < û3 < U3(u1, u2, h, u4) and U3(u1, u2,−h, u4) < −û3 < 0 for all
u1, u2, u4 ∈ [−h, h], where û3 ≈ 9.85 · 10−13.
• For U4, we have 0 < û4 < U4(u1, u2, u3, h) and U4(u1, u2, u3,−h) < −û4 < 0 for all
u1, u2, u3 ∈ [−h, h], where û4 ≈ 9.98 · 10−13.

This means that Uj is positive in uj = h and negative in uj = −h for j = 1, 2, 3, 4.
Therefore, by applying Poincaré–Miranda’s Theorem we can conclude that there exists
some point in [−h, h]4 which vanishes U1, U2, U3, U4.

By following an analogous computer-assisted proof, one can see that functions U5 and D
satisfy U5(u1, u2, u3, u4) < −û5 < 0 and D(u1, u2, u3, u4) < −d̂ < 0 for all u1, u2, u3, u4 ∈
[−h, h], where û5 ≈ 1.84 · 10−9 and d̂ ≈ 8.93, so both functions are always negative in
[−h, h]4 and do not vanish in the box.

The last part of the proof will be to check that the Jacobian determinant J(u) is also
nonzero in [−h, h]4. From the change (43), it is clear that the Jacobian matrix JacU is close
to the identity matrix I and we can write JacU = I +M for some matrix M. By adapting
and using the previously implemented algorithm, we find upper and lower bounds for
each one of the 16 entries (k, l) of M, proving that for every entry Mkl of the matrix there
exists a positive rational number m̂kl such that −m̂kl < Mkl < m̂kl.

It is straighforward to check that the Jacobian determinant J(u) has the following
structure,

J(u) = 1 +
64∑

s=1

Ms,

where every Ms is a product of entries of matrix M which may be either positive or
negative. Let us denote by M̂s the rational number resulting of the substitution of every
factor Mkl by m̂kl inMs. We have then a rational lower bound Ĵ for which J(u) satisfies

J(u) = 1 +
64∑

s=1

Ms ≥ 1−
64∑

s=1

|M̂s| = Ĵ ≈ 0.9918518555136.

This justifies that the determinant is positive for every u1, u2, u3, u4 ∈ [−h, h], so we can
guarantee that it does not vanish in [−h, h]4 and the result follows. �

9. Final remarks for arbitrary degree

The method used in Section 5 for cubics and Section 6 for quartics can be theoretically
extended to systems of any degree n. We have seen that for the cubic case we can obtain
families with an extra parameter which gives one extra oscillation, and for the quartic
case we have families with two extra parameters which give two extra oscillations. Indeed,
holomorphic reversible systems of degree n of the form (27) can be rescaled as z 7→ a−11 z
to obtain

ż = i z (1− z) (1− b1z) · · · (1− bn−2z) ,

where we have defined the n − 2 new parameters bj := aj+1a
−1
1 for j = 1, . . . , n − 2.

By adding a time-reversible perturbation, with the same technique from Sections 5 and
6 we should be able to obtain n − 2 extra critical periods. Even though this method
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seems pretty clear from a theoretical point of view, when trying to make the calculations
one realises that it soon becomes too demanding in computational terms, and this is the
reason why we have not gone further than n = 4. However, we think that these n−2 extra
critical periods must appear near the holomorphic reversible centers, by bifurcation in the
class of polynomial reversible systems of degree n. Then the local criticality of polynomial
holomorphic reversible systems of degree n in the class of polynomial reversible vector
fields also of degree n would be Ch` (n) ≥ (n2 + 3n − 8)/2. We notice that we have not
considered here the harmonic oscillator, ż = i z, because it is not strictly a degree n
system.

As we have seen in Section 8, if we consider the complete polynomial reversible center
family of degree 3, an extra oscillation can be found when using the total number of
parameters except the scaled one. This rescaling is saying that the harmonic oscillator
will be the reversible center with the highest criticality. We think that what is happening
for degree 3 is a bifurcation phenomenon that will occur for every degree, being C`(n) ≥
(n2 + 3n− 6)/2.

As a summary, being N = (n2 + 3n− 4)/2 the total number of parameters in reversible
nondegenerate centers, we think that C`(n) ≥ N − 1 while Ch` (n) ≥ N − 2.
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