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Universitat Autònoma de Barcelona
08193 Bellaterra, Barcelona, Spain

jllibre@mat.uab.cat

Received (to be inserted by publisher)

We provide an upper bound for the maximum number of limit cycles of the classes of discontin-
uous piecewise differential systems formed by two differential systems separated by a straight
line presenting rigid centers. These two rigid centers are polynomial differential systems with a
linear part and a nonlinear homogeneous part. We study the maximum number of limit cycles
that such a class of piecewise differential systems can exhibit.
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1. Introduction and main results

The search for limit cycles is one of the most important studies in the qualitative theory of the planar
ordinary differential equations. Such importance is evidenced by the 16th Hilbert’s problem (see [Hilbert,
1902]) that seeks the determination of an upper bound for the number of limit cycles for the class of planar
polynomial vector fields of degree n, a problem that remains unsolved for n ≥ 2. Recently the study of the
limit cycles also is relevant in the discontinuous piecewise differential systems.

In the last decades the study of discontinuous piecewise vector fields has had a great growth in the
mathematical community, since such vector fields can be used as important models in applied science.
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Indeed, several models used in applied problems are described by systems that are not completely differen-
tiable, but in different parts, where a law of evolution is suddenly interrupted by another law of evolution
that will begin to govern such system. The modeling of such systems consists of different vector fields
defined in distinct regions separated by a switching manifold and are known as piecewise smooth vector
fields, discontinuous piecewise systems, or Filippov systems.

Pioneering studies initiated by Andronov [Andronov et al., 1966] and Filippov [Filippov, 1988] led to
a theoretical foundation for this kind of differential systems. Nowadays a vast literature on these vector
fields is available. See for instance [di Bernardo et al., 2008] for the main theory and some applications,
[Chua et al., 1986] for applications in electrical circuits, [Brogliato, 1999; Leine & Nijmeijer, 2004] for
applications in mechanical models, [di Bernardo et al., 2001; Jacquemard & Tonon, 2012] for applications
in relay systems, among others. As in the regular case the study of the existence and location of limit cycles
in piecewise smooth vector fields is also of great importance, because in addition to the smooth dynamic
elements, there are new ones which did not exist in the smooth world.

Let p ∈ R2 be a singularity of an analytic differential system in the plane. The singularity p is a center
if there exists an open neighborhood U of p such that all the solutions in U \ {p} are periodic. Without
loss of generality we may assume that the equilibrium point is at the origin. Denote by Tq the period of
the periodic orbit through q ∈ U \ {p}. We say that p is an isochronous center if Tq is constant for all
q ∈ U \ {p}. An isochronous center is uniform or rigid if the angular velocity of the vector field is the same
for all periodic orbits in U \ {p}, that is if in polar coordinates (r, θ) defined by x = r cos θ, y = r sin θ it
can be written as ṙ = G(r, θ), θ̇ = k, where k ̸= 0 is a constant. See [Chavarriga & Sabatini, 1999; Conti,
1994] for details. After scaling the time (if necessary) it is always possible to consider θ̇ = 1 in the previous
expression.

Isochronicity in the regular case has been extensively studied in the last decades, see for instance
[Algaba & Reyes, 2003, 2009; Dias & Mello, 2012; Gasull et al., 2005; Gasull & Torregrosa, 2005; Han &
Romanovski, 2012; Llibre & Rabanal, 2015] and references therein. Such importance is due to its applica-
tions in physical phenomena and its relation with the famous center-focus problem, a classical open problem
in the qualitative theory of planar differential equations to distinguish an equilibrium point between a focus
and a center. In recent years isochronicity has also been explored for the discontinuous piecewise differ-
ential systems, see for instance [Benterki & Llibre, 2020; Itikawa et al., 2017; Llibre & Teixeira, 2018], by
considering the coupling of two or more rigid systems and investigating their dynamics.

The main goal of this paper is to provide the maximum number of limit cycles that can bifurcate from
a discontinuous piecewise differential systems formed by the coupling of two rigid centers whose switching
manifold is the straight line {x = 0}. More precisely, in one half-plane we consider a rigid center of degree
n of the form

ẋ = −y + x
n−1∑

i=0

six
n−i−1yi, ẏ = x+ y

n−1∑

i=0

six
n−i−1yi, (1)

and in the other half-plane we consider either an arbitrary linear rigid center, that is,

ẋ = −y, ẏ = x, (2)

or a rigid center analogous to (1) but with degree m.
The linear-linear case was studied in [Itikawa & Llibre, 2015] and has no limit cycles. Our first main

result is the following one.

Theorem 1. The discontinuous piecewise differential systems separated by the straight line x = 0 having
the linear rigid center (2) in x ≤ 0 and the nonlinear rigid center (1) in x ≥ 0, have no limit cycles.

Our second main result is the next one.

Theorem 2. Consider the discontinuous piecewise differential systems formed by system (2) in x ≤ 0 and
system (1) in x ≥ 0 after an affine change of variables. Then such discontinuous piecewise differential
systems have at most one limit cycle when the degree of system (1) is 2 or 3. Furthermore there are
examples of such systems with one limit cycle.
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The third main result is the next.

Theorem 3. Consider the discontinuous piecewise differential systems formed by system (1), of degree n, in
x ≥ 0 and system (1), of degree m, in x ≤ 0 after an affine change of variables. Then such discontinuous
piecewise differential systems have at most one limit cycle when the degree of systems are 2 or 3, i.e.,
m,n ∈ {2, 3}. Furthermore there are examples of such systems with one limit cycle.

The paper is organized as follows. In Section 2 we recall the basic theory of the piecewise smooth vector
fields that we need for proving our results. Section 3 brings some considerations about the rigid centers
considered in this work besides the proof of Theorem 1. Theorem 2 is proved in Section 4. Theorem 3 is
proved in Section 5. Finally Section 6 closes the paper with concluding remarks.

2. Preliminary definitions and results

In this section we present the basic results of the theory on piecewise smooth vector fields that we need.
A piecewise smooth vector field on an open set U ⊂ R2 is a pair of Cr-vector fields X and Y with
r ≥ 1, defined on U separated by a smooth codimension one manifold Σ. The switching manifold Σ is
obtained by considering Σ = h−1(0), where h : U ⊂ R2 −→ R is a differentiable function having 0 as a
regular value. Note that Σ is the separating boundary of the regions Σ+ = {(x, y) ∈ U |h(x, y) > 0} and
Σ− = {(x, y) ∈ U |h(x, y) < 0}. So a piecewise smooth vector field is provided by

Z(x, y) =

{
X(x, y), h(x, y) ≥ 0,

Y (x, y), h(x, y) ≤ 0.
(3)

As usual system (3) is denoted by Z = (X,Y,Σ) or simply by Z = (X,Y ), when the separation line Σ is
well understood. In order to establish a definition for the trajectories of Z and investigate its behavior we
need a criterion for the transition of the orbits between Σ+ and Σ− across Σ. The contact between the
vector field X (or Y ) and the switching manifold Σ is characterized by the derivative of h in the direction
of the vector field X (also known as the Lie derivative of h with respect to X), that is by the expression

Xh(p) = ⟨∇h(p), X(p)⟩ ,
and for i ≥ 2 we define Xih(p) =

〈
∇Xi−1h(p), X(p)

〉
, where ⟨., .⟩ is the usual inner product in R2. The

basic results of the discontinuous piecewise differential systems in this context were stated by Filippov
[Filippov, 1988]. We can divide the switching manifold Σ in the following sets:

(a) Crossing set: Σc : {p ∈ Σ : Xh(p) · Y h(p) > 0};
(b) Escaping set: Σe : {p ∈ Σ : Xh(p) > 0 and Y h(p) < 0};
(c) Sliding set: Σs : {p ∈ Σ : Xh(p) < 0 and Y h(p) > 0}.

The escaping Σe or sliding Σs regions are respectively defined on points of Σ where both vector fields X
and Y simultaneously point outwards or inwards from Σ while the interior of its complement in Σ defines
the crossing region Σc (see Figure 1). The complementary of the union of these regions is the set formed
by the tangency points between X or Y with Σ.

Σ

Fig. 1. Crossing, sliding and escaping regions, respectively.

A point p ∈ Σ is called a tangency point of X (resp. Y ) if it satisfies Xh(p) = 0 (resp. Y h(p) = 0). A
tangency point is called a fold point of X if X2h(p) ̸= 0. Moreover, p ∈ Σ is a visible (resp. invisible) fold
point of X if X2h(p) > 0 (resp. X2h(p) < 0).
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In order to define a trajectory of a discontinuous piecewise differential system passing through a crossing
point, it is enough to concatenate the trajectories of X and Y through that point. However in the sliding
and escaping sets we need to define an auxiliary vector field. So we consider the Filippov’s convention
(see [Filippov, 1988]) and a new vector field is defined on Σs ∪ Σe. This new vector field, called sliding
vector field, is a convex linear combination of X(p) and Y (p) in a way that Zs is tangent to Σ in the cone
generated by X(p) and Y (p). Furthermore given a discontinuous piecewise vector field Z = (X,Y ) we say
that an equilibrium point p of X is real if p ∈ Σ+ and it is virtual if p ∈ Σ−. In this scenario the trajectories
of Z are considered as a concatenation of trajectories of X, Y and Zs.

Given a vector field F (x, y) = (F1(x, y), F2(x, y)), defined on an open set U ⊂ R2, we consider the
corresponding ordinary differential equations

ẋ =
dx

dt
= F1(x, y), ẏ =

dy

dt
= F2(x, y), (4)

where the independent variable t is called the time. Denote the flow of (4) by φF or simply by φ when
there is no danger of confusion. Also denote by φF (t, p) or by φ(t, p) the solution of system (4) by the
point p such that φ(0, p) = p. When the trajectory of the vector field X through p ∈ Σ returns to Σ (by
the first time) after a positive time t1(p), called X–flight time, we define the half return map associated
with X by πX(p) = ϕX(t1(p), p) = p1 ∈ Σ. When the trajectory of Y through p1 ∈ Σ returns to Σ (by
the first time) after a positive time t2(p1), called Y –flight time, we define the half return map associated
with Y by πY (p1) = ϕY (t2(p1), p1) ∈ Σ. The first return map associated with Z = (X,Y ) is defined by the
composition of these two transition maps, that is,

πZ(p) = πY ◦ πX(p) = ϕY (t2(p1), ϕX(t1(p), p)) (5)

or the reverse, applying first the flow of Y and after the flow of X. See Figure 2.

ϕX(t, p)

πZ(p)
p p1 Σ

ϕY (t, p1)

Fig. 2. First return map of a discontinuous piecewise differential system.

When the vector fields X and Y associated to Z = (X,Y ) have a first integral (see [Arnold, 1992]), the
solution curves of the respective differential equations are contained in the level sets of the first integrals.
In this scenario the first return map can be handily computed by seeking for points in Σ that are on the
same level curves of these first integral functions. In this case we avoid working with flight times.

3. Proof of Theorem 1

The paper [Llibre & Teixeira, 2018] provides the normal form

ẋ = −bx− 4b2 + ω2

4a
y + d, ẏ = ax+ by + c, (6)

with a ̸= 0 and ω > 0, for an arbitrary planar linear differential system having a linear center. Let us
consider the equilibrium point of system (6) at the origin, that is, consider c = 0 and d = 0. Under these
conditions. in polar coordinates (r, θ) defined by x = r cos θ and y = r sin θ, system (6) gets the form

ṙ = r

(
sin θ cos θ

(
4a2 − 4b2 − ω2

)

4a
− b cos(2θ)

)
θ

θ̇ = a cos2 θ + 2b sin θ cos(θ) +

(
4b2 + ω2

)
sin2 θ

4a

(7)
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So we have that system (6) is a rigid center if and only if b = 0 and ω = 2a. Since a is nonzero we can
take a = 1 rescaling the time. Therefore system (6) becomes system (2), that is system ẋ = −y, ẏ = x.
We call X(x, y) = (−y, x) the vector field associated with system (2). Equivalently in polar coordinates
system (2) can be rewritten as

ṙ = 0, θ̇ = 1.

We may notice that system (2) has the first integral

F (x, y) =
√
x2 + y2 or, in polar coordinates F (r, θ) = r. (8)

Now we consider a polynomial differential system in R2, ẋ = P (x, y), ẏ = Q(x, y) of degree n. Assume that
it has a center at the origin of coordinates. Then it is well known, see for instance [Conti, 1994; Itikawa &
Llibre, 2015], that this center is a uniform isochronous if and only if by doing a linear change of variables
and a rescaling of time it can be written as

ẋ = −y + xf(x, y), ẏ = x+ yf(x, y) (9)

where f(x, y) is a polynomial of degree n − 1 in the variables x and y, and f(0, 0) = 0. Consider system
(9). Conti [Conti, 1994] proved the following result.

Proposition 1. Let f(x, y) =
∑n−1

i=0 aix
n−i−1yi be a homogeneous polynomial of degree n − 1. Then the

origin is a uniform isochronous center of system (9) if either n is even, or n is odd and

n−1∑

i=0

ai

∫ 2π

0
cosn−i−1 θ sini θ dθ =

n−1∑

i=0

aiIn−i−1,i = 0. (10)

When n is even,
∑n−1

i=0 ai In−i−1,i = 0 always holds, because f(cos(θ + π), sin(θ + π)) = −f(cos θ, sin θ),
where

f(cos θ, sin θ) =
n−1∑

i=0

ai cos
n−i−1 θ sini θ.

In the sections 2.511 and 2.512 of [Gradshteyn & Ryzhik, 2007] we obtain the following expressions for
integrals of power of trigonometric functions:

∫ t1

t0

sinp x cos2m xdx =

(
sinp+1 x

2m+ p

[
cos2m−1 x+

m−1∑

k=1

(2m− 1)(2m− 3) . . . (2m− 2k + 1) cos2m−2k−1 x

(2m+ p− 2)(2m+ p− 4) . . . (2m+ p− 2k)

])x=t1

x=t0

+
(2m− 1)!!

(2m+ p)(2m+ p− 2) . . . (p+ 2)

∫ t1

t0

sinp xdx,

for arbitrary real p, except for the negative even integers −2, −4, . . ., −2n. We also have,

∫ t1

t0

sin2l xdx =

(
−cosx

2l

[
sin2l−1 x+

l−1∑

k=1

(2l − 1)(2l − 3) . . . (2l − 2k + 1) sin2l−2k−1 x

2k(l − 1)(l − 2) . . . (l − k)

])x=t1

x=t0

+
(2l − 1)!!

2ll!
(t1 − t0)

and

∫ t1

t0

sin2l+1 xdx =

(
− cosx

2l + 1

[
sin2l x+

l−1∑

k=0

2k+1l(l − 1) . . . (l − k) sin2l−2k−2 x

(2l − 1)(2l − 3) . . . (2l − 2k − 1)

])x=t1

x=t0

.

For arbitrary real p, except for the negative odd integers −1, −3, . . ., −(2n+ 1), we have

∫ t1

t0

sinp x cos2m+1 xdx =

(
sinp+1 x

2m+ p+ 1

[
cos2m x+

m∑

k=1

2km(m− 1) . . . (m− k + 1) cos2m−2k x

(2m+ p− 1)(2m+ p− 3) . . . (2m+ p− 2k + 1)

])x=t1

x=t0
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Also, for real p, except for the negative even integers −2, −4, . . ., −2n, we have

∫ t1

t0

cosp x sin2m xdx =

(
−cosp+1 x

2m+ p

[
sin2m−1 x+

m−1∑

k=1

(2m− 1)(2m− 3) . . . (2m− 2k + 1) sin2m−2k−1 x

(2m+ p− 2)(2m+ p− 4) . . . (2m+ p− 2k)

])x=t1

x=t0

+
(2m− 1)!!

(2m+ p)(2m+ p− 2) . . . (p+ 2)

∫ t1

t0

cosp xdx.

Moreover,

∫ t1

t0

cos2l xdx =

(
sinx

2l

[
cos2l−1 x+

l−1∑

k=1

(2l − 1)(2l − 3) . . . (2l − 2k + 1) cos2l−2k−1 x

2k(l − 1)(l − 2) . . . (l − k)

])x=t1

x=t0

+
(2l − 1)!!

2ll!
(t1 − t0)

and

∫ t1

t0

cos2l+1 xdx =

(
sinx

2l + 1

[
cos2l x+

l−1∑

k=0

2k+1l(l − 1) . . . (l − k) cos2l−2k−2 x

(2l − 1)(2l − 3) . . . (2l − 2k − 1)

])x=t1

x=t0

.

For arbitrary real p, except for the negative odd integers −1, −3, . . ., −(2n+ 1) we have

∫ t1

t0

cosp x sin2m+1 xdx =

(
− cosp+1 x

2m+ p+ 1

[
sin2m x+

m∑

k=1

2km(m− 1) . . . (m− k + 1) sin2m−2k x

(2m+ p− 1)(2m+ p− 3) . . . (2m+ p− 2k + 1)

])x=t1

x=t0

.

If n odd, from the formulas above we get that In−i−1,i = 0 when i odd, and consequently,

n−1∑

i=0

ai

∫ 2π

0
cosn−i−1 θ sini θ dθ = a0

[
2π(n− 2)!!

2
n−1
2

(
n−1
2

)
!

]
+

+

n−3
2∑

k=1

a2k2π(2k − 1)!!(n− 2k − 2)!!

(n− 1)(n− 3) · · · (n− 2k + 1) 2
n−2k−1

2

(
n−2k−1

2

)
!

+ an−1

[
2π(n− 2)!!

2
n−1
2

(
n−1
2

)
!

]
,

(11)

where (2p)!! = 2p(2p − 2)(2p − 4) · · · 2 and (2p + 1)!! = (2p + 1)(2p − 1) · · · 3 · 1. Thus, hypothesis (10) is
equivalent to supposing

an−1 = −a0 −
2

n−1
2

(
n−1
2

)
!

(n− 2)!!

n−3
2∑

j=1

a2j




(2j − 1)!!(n− 2j − 2)!!

2
n−2j−1

2

(
n−2j−1

2

)
!

j∏

i=1

(n− 2i+ 1)



. (12)

So in this paper under the conditions of Proposition 1 we shall work with rigid centers of the form (1), i.e.

ẋ = −y + x
n−1∑

i=0

aix
n−i−1yi, ẏ = x+ y

n−1∑

i=0

aix
n−i−1yi.

We denote by

Yn(x, y) =

(
−y + x

n−1∑

i=0

aix
n−i−1yi, x+ y

n−1∑

i=0

aix
n−i−1yi

)
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the vector field associated to system (1). Equivalently in polar coordinates system (1) writes

ṙ = rn
n−1∑

i=0

ai cos
n−i−1 θ sini θ

θ̇ = 1.

(13)

System (13) has the first integral

Hn(r, θ) =
1

(1− n)rn−1
−

n−1∑

i=0

ai

∫
cosn−i−1 θ sini θdθ.

So in Cartesian coordinates the first integral of system (1) becomes

Hn(x, y) =
1

(1− n)(x2 + y2)
n−1
2

−
n−1∑

i=0

ai

∫
xn−iyi

(x2 + y2)
n+1
2

dy.

By coupling the two rigid centers (2) and (1) we can consider the piecewise smooth vector field

Z(x, y) =

{
Yn(x, y), x ≥ 0,

X(x, y), x ≤ 0.
(14)

Observe that the switching manifold is the straight line Σ = h−1(0), where h(x, y) = x. Since the vector
fields X and Yn associated with the piecewise smooth vector field Z = (Yn, X) are integrable, then the
solution curves of the respective differential equation are contained in the level sets of their respective
first integrals. Thus the first return map associated with the discontinuous piecewise vector field Z can
be computed by seeking for points in the switching manifold Σ that are on the same level curves of these
first integrals. In this way for a limit cycle of the discontinuous piecewise differential system associated
with Z given by (14) which has two intersecting points (0, y1) and (0, y2) with the line of discontinuity
Σ = {x = 0}, its coordinates y1 and y2 must satisfy the set of equations

{
F (0, y1) = F (0, y2),

Hn(0, y1) = Hn(0, y2),
or, in polar coordinates,

{
F
(
r0,

π
2

)
= F

(
R0,

3π
2

)
,

Hn

(
r0,

π
2

)
= Hn

(
R0,

3π
2

)
,

(15)

where (r0, π/2) and (R0, 3π/2) are the respective intersecting points (0, y1) and (0, y2) in polar coordinates.
The first equation of (15) produces r0 = R0. Substituting r0 = R0 in the second equation, we get

n−1∑

i=0

ai

∫ π
2

0
cosn−i−1 θ sini θdθ =

n−1∑

i=0

ai

∫ 3π
2

0
cosn−i−1 θ sini θdθ. (16)

Using the formulas of [Gradshteyn & Ryzhik, 2007] described above for the power of trigonometric functions
we conclude that

(i) If ai = 0 for all i then the equality (16) holds for every r0, i.e. we have a continuum of period orbits.
Therefore there are no limit cycles and the origin is a piecewise rigid center.

(ii) If ai ̸= 0 for some i then, from equality (16) we obtain an expression of the form

P (a) = k0a0 + k1a1 + . . .+ kn−1an−1

where a = (a0, . . . , an−1) and ki ∈ R. In this way the vectors a such that P (a) = 0 correspond to values
of ai such that the equality (16) holds, for all r0 > 0. Therefore we also get a continuum of period orbits.
The vectors a such that P (a) ̸= 0 correspond to values of ai such that the equality (16) does not hold.
Therefore the origin behave like a focus. So there are no periodic orbits and then no limit cycles.

In summary there are no limit cycles in the piecewise smooth vector field Z and Theorem 1 is proved.
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Example 3.1. We present a numerical example of Theorem 1. Consider the discontinuous piecewise vector
field

W (x, y) =

{
(W1(x, y),W2(x, y)) , x ≥ 0,

(−y, x) , x ≤ 0,
(17)

where

W1(x, y) = −y + x
(
a0x

3 + a1x
2y + a2xy

2 + a3y
3
)

and

W2(x, y) = x+ y
(
a0x

3 + a1x
2y + a2xy

2 + a3y
3
)
.

A first integral of the linear vector field is given by F (r, θ) = r. So F (r0, π/2) = F (R0, 3π/2) wields r0 = R0.
A first integral of the nonlinear system in polar coordinates is

H(r, θ) =
1

12

(
− 4

r3
− 4a2 sin

3 θ − a0(9 sin θ + sin(3θ)) + 4a1 cos
3 θ + 9a3 cos θ − a3 cos(3θ)

)
. (18)

Then we obtain that

P (a) = H(r0, π/2)−H(r0, 3π/2) = −2

3
(2a0 + a2) .

Therefore if a2 = −2a0 we have a continuum of periodic orbits around the singularity at the origin, that is
the singularity is a center. If a2 ̸= −2a0 we have no periodic orbits and the origin is a repulsive focus. See
Figure 3.

(a) (b)
Fig. 3. In (a) we have the phase portrait of the discontinuous piecewise vector field W near the origin when a0 = 1, a1 = 1,
a2 = −2 and a3 = 1. In (b) we have the phase portrait of the discontinuous piecewise vector field W when a0 = 1, a1 = 1,
a2 = 1 and a3 = 1.

4. Systems (2) and (1) after an affine change of variables

The discontinuous piecewise vector field (14) has the centers of both smooth vector fields placed at the
origin of coordinates. Now, we give the expression of the differential Systems (2) and (1) and their first
integrals after the respective general affine change of variables

(X,Y ) = (b1x+ b2y + d1, b3x+ b4y + d2), bi, dj ∈ R, i = 1, 2, 3, 4 and j = 1, 2, (19)

and

(X,Y ) = (c1x+ c2y +M1, c3x+ c4y +M2), ci,Mj ∈ R, i = 1, 2, 3, 4 and j = 1, 2. (20)

We want to investigate the number of limit cycles of the discontinuous piecewise vector field (14) after this
change of variables. However after this change of variables we still want that the centers of each smooth
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vector field are rigid. First we consider the change of variables (19) with d1 = d2 = 0. Since X = b1x+ b2y
and Y = b3x+ b4y we have that the linear system in the new variables is of the form

Ẋ =
(−b1b3 − b2b4)X

b2b3 − b1b4
+

(
b21 + b22

)
Y

b2b3 − b1b4
,

Ẏ =

(
−b23 − b24

)
X

b2b3 − b1b4
+

(b1b3 + b2b4)Y

b2b3 − b1b4
.

(21)

Equivalently in polar coordinates we obtain

ṙ =
r
(
b21 sin(2θ) + b22 sin(2θ)−

(
b23 + b24

)
sin(2θ)− 2b3b1 cos(2θ)− 2b2b4 cos(2θ)

)

2b2b3 − 2b1b4
,

θ̇ =
−b21 sin

2(θ)− b22 sin
2(θ) + b1b3 sin(2θ) + b2b4 sin(2θ)−

(
b23 + b24

)
cos2(θ)

b2b3 − b1b4
.

(22)

Using polar coordinates we conclude that (21) has a rigid center at the origin if and only if b1 = b4 and
b2 = −b3 and (21) writes

Ẋ = −Y Ẏ = X. (23)

Now with (d1, d2) ̸= (0, 0) we obtain

{
Ẋ = −Y + d2,

Ẏ = X − d1,
or, in polar coordinates,





ṙ = d2 cos θ − d1 sin θ,

θ̇ =
r − d2 sin θ − d1 cos θ

r
.

(24)

Observe that a first integral of (24) is

F1(X,Y ) =
√
(X − d1)2 + (Y − d2)2, (25)

or, in polar coordinates,

F1(r, θ) =
√
(r cos θ − d1)2 + (r sin θ − d2)2.

On the other hand we consider in x ≥ 0 system (1) with the affine change of variables (20) given by
(X,Y ) = (c1x+ c2y +M1, c3x+ c4y +M2). First we consider M1 = M2 = 0. So we get

Ẋ =

(
c21 + c22

)
Y − (c1c3 + c2c4)X

c2c3 − c1c4
+X (c2c3 − c1c4)

1−n · S,

Ẏ =
(c1c3 + c2c4)Y −

(
c23 + c24

)
X

c2c3 − c1c4
+ Y (c2c3 − c1c4)

1−n · S,
(26)

where

S =
n−1∑

i=0

ai (c3X − c1Y ) i (c2Y − c4X) n−i−1,

or equivalently in polar coordinates

ṙ =
r
((
c21 + c22 − c23 − c24

)
sin(2θ)− 2 (c1c3 + c2c4) cos(2θ) + 2 (c2c3 − c1c4)

2−nS̄
)

2c2c3 − 2c1c4
,

θ̇ = −c21 sin
2 θ − c3c1 sin(2θ) + c23 cos

2 θ + (c2 sin θ − c4 cos θ)
2

c2c3 − c1c4
,

(27)

where

S̄ =
n−1∑

i=0

ai (c3r cos θ − c1r sin θ)
i (c2r sin θ − c4r cos θ)

n−i−1.
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Again using polar coordinates we conclude that this system has a rigid center at the origin if and only if
c4 = c1 and c3 = −c2. Under these conditions system (26) writes

Ẋ = −Y +X
(
c21 + c22

)
1−n

n−1∑

i=0

ai (c2X + c1Y ) i (c1X − c2Y ) n−i−1,

Ẏ = X + Y
(
c21 + c22

)
1−n

(
n−1∑

i=0

ai (c2X + c1Y ) i (c1X − c2Y ) n−i−1

)
.

(28)

or equivalently

ṙ = rn
(
c21 + c22

)
1−n

n−1∑

i=0

ai (c1 sin θ + c2 cos θ)
i (c1 cos θ − c2 sin(θ))

n−i−1,

θ̇ = 1.

(29)

Note that

Hn(r, θ) =
r1−n

(
c21 + c22

)n−1

1− n
−

n−1∑

i=0

ai

∫
(c1 sin θ + c2 cos θ)

i (c1 cos θ − c2 sin(θ))
n−i−1 dθ (30)

is a first integral of (29). Then a first integral of system (28) has the expression

Hn(X,Y ) =

(
c21 + c22

)
n−1

(
X2 + Y 2

) 1−n
2

1− n
−

n−1∑

i=0

ai

∫
(c1Y + c2X)i(c1X − c2Y )n−i−1

(X2 + Y 2)
n+1
2

X dY (31)

Now if we apply the change of variables (X ,Y) = (X+M1, Y +M2) to system (28) with (M1,M2) ̸= (0, 0),
and rewriting it again in the variables X and Y we get

Ẋ = M2 − Y +
(
c21 + c22

)
1−n (X −M1) · SM ,

Ẏ = X −M1 +
(
c21 + c22

)
1−n (Y −M2) · SM ,

(32)

where

SM =
n−1∑

i=0

ai (c2 (X −M1) + c1 (Y −M2))
i (c1 (X −M1)− c2 (Y −M2))

n−i−1.

whose first integral is

Hn(x, y) =

(
c21 + c22

)
n−1

(
(M1 −X) 2 + (M2 − Y ) 2

) 1−n
2

1− n
− (X −M1)

n−1∑

i=0

ai

∫
T (X,Y ) dY (33)

where

T (X,Y ) = [c1 (Y −M2) + c2 (X −M1)]
i [c1 (X −M1)− c2 (Y −M2)]

n−i−1·
·
[
(X −M1)

2 + (Y −M2)
2
] 1

2
(−n−1)

In polar coordinates, the corresponding first integral is

Hn(r, θ) =

(
c21 + c22

)
n−1

(
(M2 − r sin θ) 2 + (M1 − r cos(θ)) 2

) 1−n
2

1− n
−

n−1∑

i=0

ai

∫
T (r, θ) dθ, (34)

where

T (r, θ) =
r sec θ (r cos θ −M1) [c1 (r sin θ −M2) + c2 (r cos θ −M1)]

i

[(M2 − r sin θ) 2 + (M1 − r cos(θ)) 2]
n+1
2

·

· [c1 (r cos θ −M1)− c2 (r sin θ −M2)]
n−i−1

Notice that the above expressions coincide with the expression for the first integral when M1 = M2 = 0.
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4.1. Case linear-quadratic

We investigate the number of limit cycles of the discontinuous piecewise vector field formed by the translated
linear system (24) and system (32) when n = 2, that is we consider the consider

Z2(x, y) =

{
Y2(x, y) =

(
Y 1
2 (x, y), Y

2
2 (x, y)

)
, x ≥ 0,

X(x, y) = (−y + d2, x− d1) , x ≤ 0,
(35)

where

Y 1
2 (x, y) = −y +M2 +

(x−M1) · S2

c21 + c22
, (36)

Y 2
2 (x, y) = x−M1 +

(y −M2) · S2

c21 + c22
. (37)

and

S2 = a1 (c2 (x−M1) + c1 (y −M2)) + a0 (c1 (x−M1)− c2 (y −M2)) .

From equation (25) we have that F1(x, y) =
√

(x− d1)2 + (y − d2)2 is a first integral of X, and from (33)
we get that

H2(x, y) =
a0 (c2 (M1 − x) + c1 (M2 − y)) + a1 (c1 (x−M1) + c2 (M2 − y))− c21 − c22√

(x−M1) 2 + (y −M2) 2
(38)

is a first integral of Y2. So the limit cycles for the discontinuous piecewise vector field Z2 are given by the
solutions of the following system of equations

F1(0, y1) = F1(0, y2), H2(0, y1) = H2(0, y2). (39)

From the first equation of (39) we obtain that y2 = −y1+2d2, for every y1, y2 ∈ R with y1 ̸= y2. Substituting
this expression into the second equation of (39) we have that the solutions of H2(0, y1) = H2(0,−y1+2d2)
are given by y1 = d2 and y1 = d2 ±A where A =

√
υ1υ2υ3υ4/υ5 with υ1 = −a0c1 − a1c2,

υ2 = −a1c1M1 + c2 (a0M1 − c2)− c21,

υ3 = c1 (a0 (d2 −M2) + a1M1) + c2 (a1 (d2 −M2)− a0M1 + c2) + c21,

υ4 = −c1M1 (a1 (M2 − d2) + a0M1) + c21 (d2 −M2) + c2 (c2 (d2 −M2)−M1 (a0 (d2 −M2) + a1M1)) ,

and

υ5 = (a0c1 + a1c2)
(
M1 (a1c1 − a0c2) + c21 + c22

)
.

Observe that the solution y1 = d2 corresponds to the periodic orbit of X that is tangent to the separation
line given by the y-axis. Therefore this solution does not correspond to a limit cycle. Moreover the solutions
y11 = d2 +A and y12 = d2 −A are on the same level curve of the first integral. Therefore they correspond
to the same limit cycle, because each limit cycle corresponds to a pair of intersections between the curves
given by (39) and the switching manifold. As a consequence, we conclude that there are at most one limit
cycle associated to the piecewise smooth vector field Z2.

Example 4.1. We now present a numerical example. Consider the discontinuous piecewise vector field

Q(x, y) =





(
−17y

5
+ 5 +

2

5
x (x+ 3y − 7) ,

1

5

(
3x+ 2(−8 + x)y + 6y2

))
, x ≥ 0,

(−y + 2, x+ 2) , x ≤ 0.

(40)
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Observe that (40) corresponds to system (35) when d1 = −2, d2 = 2, c2 = −1, c1 = 2, M1 = 2, M2 = 1,
a0 = 2 and a1 = 2. By solving the first equation of the respective system (39) we get y2 = 4− y1. Then we
have that

H2(x, y) =
6x− 2y − 15√

x2 − 4x+ y2 − 2y + 5

is a first integral of the nonlinear system of the vector fieldQ. So the solutions ofH2(0, y1) = H2(0, 4−y1) are

given by y1 = 2 and y1 = 2±3
√

19/34. Therefore there is a limit cycle through the points
(
0, 2− 3

√
19/34

)

and
(
0, 2 + 3

√
19/34

)
, see Figure 4.

Fig. 4. The limit cycle of the discontinuous piecewise vector field Q in red. In blue we have the periodic orbit of the vector
field Q that is tangent to the separation line and corresponds to the solution y1 = d2.

4.2. Case linear-cubic

Now we investigate the number of limit cycles of the discontinuous piecewise differential system formed by
the translated linear system (24) and system (32) when n = 3, i.e. of the discontinuous piecewise vector
field

Z3(x, y) =

{
Y3(x, y) =

(
Y 1
3 (x, y), Y

2
3 (x, y)

)
, x ≥ 0,

X(x, y) = (−y + d2, x− d1) , x ≤ 0,
(41)

where

Y 1
3 (x, y) = −y +M2 + (x−M1)P (x, y),

Y 2
3 (x, y) = x−M1 + (y −M2)P (x, y),

and

P (x, y) =
a2 (c2 (x−M1) + c1 (y −M2))

2 − a2 (c1 (x−M1)− c2 (y −M2))
2

(
c21 + c22

)
2

+

a1 (c1 (x−M1)− c2 (y −M2)) (c2 (x−M1) + c1 (y −M2))(
c21 + c22

)
2

.

Note that the vector field Y3 takes into account hypothesis (10) of Proposition 1 to have a rigid center.
In this case hypothesis (10) becomes π(a0 + a2) = 0. Therefore we are assuming that a0 = −a2. Again

Equation (25) assures that F1(x, y) =
√
(x− d1)2 + (y − d2)2 is a first integral of X. From (33) we get



December 8, 2021 12:24 CarGonLlib2021IJBCFinal

13

that

H3(x, y) =
a1 (x−M1)

(
c21 (x−M1) + c22 (M1 − x) + 2c2c1 (M2 − y)

)

2
(
−2M1x− 2M2y +M2

1 +M2
2 + x2 + y2

) +

2a2 (x−M1)
(
2c2c1 (x−M1) + c21 (y −M2) + c22 (M2 − y)

)
−
(
c21 + c22

)
2

2
(
−2M1x− 2M2y +M2

1 +M2
2 + x2 + y2

)

is a first integral of Y3. So the limit cycles of the discontinuous piecewise vector field Z3 are given by the
solutions of the system of equations

F1(0, y1) = F1(0, y2), H3(0, y1) = H3(0, y2). (42)

From the first equation of (42) we obtain that y2 = −y1+2d2, for every y1, y2 ∈ R with y1 ̸= y2. Substituting
this expression in the second equation of (42) we have that the solutions of H3(0, y1) = H3(0,−y1 + 2d2)
are given by y1 = d2 and y1 = d2 ±B where

B =

√
M1

(
a1c1c2 + a2

(
c22 − c21

))
B1

M1

(
a1c1c2 + a2

(
c22 − c21

))

with

B1 = c21
(
M1

(
a1M1 (d2 −M2)− a2

(
(d2 −M2)

2 −M2
1

))
+ 2c22 (M2 − d2)

)
+

+ c2c1M1

(
a1
(
(d2 −M2)

2 −M2
1

)
+ 4a2M1 (d2 −M2)

)
+ c42 (M2 − d2)

+ c22M1

(
a2
(
(d2 −M2)

2 −M2
1

)
+ a1M1 (M2 − d2)

)
+ c41 (M2 − d2) .

Also the solutions d2 ±B are on the same level of the first integral H3 because

H3(0, d2 +B) = H3(0, d2 −B) =
M1

(
a1c1c2 + a2

(
c22 − c21

))

2 (d2 −M2)
.

Since the solution y1 = d2 corresponds to the periodic orbit of X that is tangent to the separation line
given by the y-axis and each limit cycle corresponds to a pair of intersections between the curves given
by (42) and the switching manifold, we conclude that there is at most one limit cycle associated to the
piecewise smooth vector field Z3.

Example 4.2. Consider the discontinuous piecewise vector field

Q3(x, y) =

{(
Y 1
3 (x, y), Y

2
3 (x, y)

)
, x ≥ 0,

(−y + 2, x+ 2) , x ≤ 0.
(43)

where

Y 1
3 (x, y) =

2x3

25
+

22x2y

25
− 19x2

25
− 2xy2

25
+

26xy

25
− 9x

10
− y2

25
− 7y

10
+

3

4

Y 2
3 (x, y) =

2x2y

25
− 2x2

25
+

22xy2

25
− 42xy

25
+

9x

5
− 2y3

25
+

17y2

25
− 11y

10
+ 1.

Observe that (43) corresponds to system (41) when d1 = −2, d2 = 2, c2 = −1, c1 = 2, M1 = −1/2, M2 = 1,
a0 = 2, a1 = 2, and a2 = −2. By solving the first equation of the respective system (42) we get y2 = 4−y1.
In this case, we have that

H3(x, y) =
44x2 + x(52− 8y)− 4y − 35

4x2 + 4x+ 4y2 − 8y + 5

is a first integral of the right-hand side system of the vector field Q3. Then the solutions of H3(0, y1) =
H3(0, 4−y1) are given by y1 = 2, y1 = −5/2, and y1 = 13/2. Note that H3(0,−5/2) = H3(0, 13/2) = −1/2.
Therefore there exists a limit cycle through the points (0,−5/2) and (0, 13/2), see Figure 5.
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Fig. 5. The limit cycle of the discontinuous piecewise vector field Q3 in red. In blue we have the periodic orbit of the vector
field Q that is tangent to the separation line and corresponds to the solution y1 = d2. The black dots represent the equilibrium
points of the two centers of Q3.

5. Study of cases where none vector field is linear

In order to obtain a complete characterization of the n ≤ 3 case, in this section, we analyze the maximum
number of limit cycles that can bifurcate from the piecewise smooth vector field

Zn,m(x, y) =

{
Un(x, y), x ≥ 0,

Vm(x, y), x ≤ 0,
(44)

with Un and Vm, n,m ∈ {2, 3}, being rigid centers of the form (1) after the respective change of variables
(19) and (20), with ai = si for the vector field Un. We will call these cases (n,m) with n,m ∈ {2, 3}. In
other words, we have that Vm is of the vector field associated with the differential system (32) and Un is
the vector field associated with the differential system

Ẋ = d2 − Y +
(
b21 + b22

)
1−n (X − d1) · Sd,

Ẏ = X − d1 +
(
b21 + b22

)
1−n (Y − d2) · Sd,

(45)

where

Sd =

n−1∑

i=0

si (b2 (X − d1) + b1 (Y − d2))
i (b1 (X − d1)− b2 (Y − d2))

n−i−1.

Moreover, we found examples that ensure that the upper bound is reached in each case.

5.1. Case (2,2)

Consider the piecewise smooth vector field

Z2,2(x, y) =

{
U2(x, y), x ≥ 0,

V2(x, y), x ≤ 0,
(46)

where V2(x, y) =
(
Y 1
2 (x, y), Y

2
2 (x, y)

)
is given by Equations (36) and (37), and U2(x, y) =

(U1
2 (x, y), U

2
2 (x, y)) has components

U1
2 (x, y) = −y + d2 +

(x− d1)S22

b21 + b22
,

and

U2
2 (x, y) = x− d1 +

(y − d2)S22

b21 + b22
,
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with

S22 = s0 (b1 (x− d1)− b2 (y − d2)) + s1 (b2 (x− d1) + b1 (y − d2)) .

From (33) we get that H2 given by (38) is a first integral of V2 and

F2(x, y) =
b1 (s1 (x− d1) + s0 (d2 − y))− b2 (b2 + s0 (x− d1) + s1 (y − d2))− b21√

(x− d1) 2 + (y − d2) 2

is a first integral of U2. So the limit cycles for the discontinuous piecewise vector field Z2,2 are given by the
solutions of the following system of equations

F2(0, y0) = F2(0, y1), H2(0, y0) = H2(0, y1). (47)

From the second equation of (47) we obtain y1 = y0 and

y1 = y1e =
η1 + η2 + η3 + 2a0(η4 + η5)

η6 + η7 + η8
(48)

where

η1 = 2a1
(
c21 + c22

) (
c1M1 (2M2 − y0) + c2

(
M2 (y0 −M2) +M2

1

))
+
(
c21 + c22

)
2 (2M2 − y0) ,

η2 = a20M1

(
c21M1 (y0 − 2M2)− 2c2c1

(
M2 (y0 −M2) +M2

1

)
+ c22M1 (2M2 − y0)

)
,

η3 = a21M1

(
c21M1 (2M2 − y0) + 2c2c1

(
M2 (y0 −M2) +M2

1

)
+ c22M1 (y0 − 2M2)

)
,

η4 = c22M1

(
c2 (y0 − 2M2)− a1

(
M2 (y0 −M2) +M2

1

))
+ c31

(
M2 (y0 −M2) +M2

1

)
,

η5 = c21M1

(
a1
(
M2 (y0 −M2) +M2

1

)
+ c2 (y0 − 2M2)

)
+

+ c2c1
(
2a1M

2
1 (y0 − 2M2) + c2

(
M2 (y0 −M2) +M2

1

))
,

η6 = c22
(
−2c2 (a1 (M2 − y0) + a0M1) +M1

(
2a1a0 (M2 − y0) + a20M1 − a21M1

)
+ c22

)
+ c41,

η7 = 2c31 (a0 (y0 −M2) + a1M1)−
− 2c1c2

(
a0 (M2 − y0) (c2 − a0M1) + a1M1 (2a0M1 − c2) + a21M1 (M2 − y0)

)
,

η8 = c21 (−2c2 (a1 (M2 − y0) + a0M1)) + c21
(
M1

(
2a1a0 (y0 −M2) + a20 (−M1) + a21M1

)
+ 2c22

)
.

From the first equation of (47) we obtain y1 = y0 and

y1 = y1d =
µ1 + 2b1b2(µ2 + µ3) + b22(µ4 + µ5) + b21(µ6 + µ7)

µ8 + µ9 + µ10
(49)

where µ1 = 2b31
(
d1s1 (2d2 − y0) + d2s0 (y0 − d2) + d21s0

)
+ b41 (2d2 − y0) ,

µ2 = d1
(
2d1s0s1 (y0 − 2d2) + d2

(
s20 − s21

)
(d2 − y0) + d21

(
s21 − s20

))
,

µ3 = b2
(
d1s1 (2d2 − y0) + d2s0 (y0 − d2) + d21s0

)
,

µ4 = d1
(
d1
(
s20 − s21

)
(2d2 − y0) + 2d2s0s1 (d2 − y0)− 2d21s0s1

)
,

µ5 = 2b2
(
d1s0 (y0 − 2d2) + d2s1 (y0 − d2) + d21s1

)
+ b22 (2d2 − y0) ,

µ6 = 2b2
(
d1s0 (y0 − 2d2) + d2s1 (y0 − d2) + d21s1

)
− 2b22 (y0 − 2d2) ,

µ7 = d1
(
d1
(
s20 − s21

)
(y0 − 2d2) + 2d2s0s1 (y0 − d2) + 2d21s0s1

)
,
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µ8 = b22
(
−2b2 (s1 (d2 − y0) + d1s0) + b22 + d1

(
2s0s1 (d2 − y0) + d1

(
s20 − s21

)))
+ b41,

µ9 = 2b31 (s0 (y0 − d2) + d1s1) + b21
(
−2b2 (s1 (d2 − y0) + d1s0) + 2b22 + d1

(
2s0s1 (y0 − d2) + d1

(
s21 − s20

)))
,

µ10 = 2b1b2
(
b2 (s0 (y0 − d2) + d1s1) + d1

(
s20 (d2 − y0) + s21 (y0 − d2)− 2d1s1s0

))
.

Consider D2,2 the numerator of the difference y1e− y1d. We have that D2,2 has two zeros in the variable y0
whose expressions are complicated and will be omitted. Therefore we conclude that the piecewise smooth
vector field Z2,2 given by (46) has at most one crossing limit cycle.

Example 5.1. Consider the discontinuous piecewise vector field

Q2,2(x, y) =

{(
U1
2 (x, y), U

2
2 (x, y)

)
, x ≥ 0,

(
V 1
2 (x, y), V

2
2 (x, y)

)
, x ≤ 0.

(50)

where

U1
2 (x, y) = −y + 1 +

1

5
(x− 1)(3(x+ 2(y − 1)− 1)− 2(x− 1) + y − 1),

U2
2 (x, y) = x− 1 +

1

5
(y − 1)(3(x+ 2(y − 1)− 1)− 2(x− 1) + y − 1),

V 1
2 (x, y) = 1− y +

1

5

(
x− 1

2

)(
2

(
−x+ 2(y − 1) +

1

2

)
+ 2

(
2

(
x− 1

2

)
+ y − 1

))
, (51)

and

V 2
2 (x, y) = x− 1

2
+

1

5
(y − 1)

(
2

(
−x+ 2(y − 1) +

1

2

)
+ 2

(
2

(
x− 1

2

)
+ y − 1

))
. (52)

Observe that (50) corresponds to system (46) when b1 = 2, b2 = 1, d1 = 1, d2 = 1, s0 = −1, s1 = 3,
c2 = −1, c1 = 2, M1 = 1/2, M2 = 1, a0 = 2, and a1 = 2. By solving the first and second equations of the
respective system (47) we get

y1d =
286− 119y0
24y0 + 119

and y1e =
102− 31y0
32y0 + 31

.

Solving y1e = y1d we get the solutions y0 =
(
419± 7

√
386
)
/383 which are the intersections of the limit

cycle with the ordinate axis. See Figure 6.

Fig. 6. The limit cycle of the discontinuous piecewise vector field Q2,2 in red. The black dots represent the equilibrium points
of the two centers of Q2,2.
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5.2. Case (2,3)

Consider the piecewise smooth vector field

Z2,3(x, y) =

{
U3(x, y), x ≥ 0,

V2(x, y), x ≤ 0,
(53)

where V2(x, y) =
(
Y 1
2 (x, y), Y

2
2 (x, y)

)
is given by Equations (36) and (37), and U3(x, y) =

(U1
3 (x, y), U

2
3 (x, y)) has components

U1
3 (x, y) = −y + d2 +

(x− d1)S23(
b21 + b22

)
2
, (54)

and

U2
3 (x, y) = x− d1 +

(y − d2)S23(
b21 + b22

)
2
, (55)

with

S23 = −s0 (b2 (x− d1) + b1 (y − d2))
2 + s1 (b1 (x− d1)− b2 (y − d2)) ·

· (b2 (x− d1) + b1 (y − d2)) + s0 (b1 (x− d1)− b2 (y − d2))
2.

Note that the vector field U3 is considering the hypothesis s2 = −s0 given by Equation (12) so that we
have a rigid center. From (33) we get that H2 given by (38) is a first integral of V2 and

F3(x, y) = −b21
(
2b22 + (x− d1) (s1 (d1 − x) + 2s0 (y − d2))

)

2
(
−2d1x− 2d2y + d21 + d22 + x2 + y2

) +

+
2b2b1 (x− d1) (2s0 (x− d1) + s1 (y − d2))

2
(
−2d1x− 2d2y + d21 + d22 + x2 + y2

) +

+
b22 (x− d1) (s1 (x− d1) + 2s0 (d2 − y)) + b41 + b42

2
(
−2d1x− 2d2y + d21 + d22 + x2 + y2

)

(56)

is a first integral of U3. So the limit cycles for the discontinuous piecewise vector field Z2,3 are given by the
solutions of the following system of equations

F3(0, y0) = F3(0, y1), H2(0, y0) = H2(0, y1). (57)

From the second equation of (57) we obtain y1 = y0 and y1 = y1e given by Equation (48). From the first
equation of (57) we obtain y1 = y0 and

y1 = y3d =
ω1 + ω2 + ω3

ω4
(58)

where ω1 = b22d1
(
2s0
(
d2 (y0 − d2) + d21

)
− d1s1 (y0 − 2d2)

)
+ b41 (− (y0 − 2d2))− b42 (y0 − 2d2),

ω2 = 2b1b2d1
(
−2d1s0 (y0 − 2d2)− s1

(
d2 (y0 − d2) + d21

))
,

ω3 = b21
(
d1
(
d1s1 (y0 − 2d2)− 2s0

(
d2 (y0 − d2) + d21

))
− 2b22 (y0 − 2d2)

)
,

and

ω4 = b21
(
2b22 − d1 (2s0 (y0 − d2) + d1s1)

)
+ 2b2b1d1 (s1 (d2 − y0) + 2d1s0)+

+ b22d1 (2s0 (y0 − d2) + d1s1) + b41 + b42.

Consider D2,3 the numerator of the difference y1e− y3d. We have that D2,3 has two zeros in the variable y0
whose expressions are complicated and will be omitted. Therefore we conclude that the piecewise smooth
vector field Z2,3 given by (53) has at most one crossing limit cycle. The case (3,2) can be treated similarly.
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Example 5.2. Consider the discontinuous piecewise vector field

Q2,3(x, y) =

{(
U1
3 (x, y), U

2
3 (x, y)

)
, x ≥ 0,

(
V 1
2 (x, y), V

2
2 (x, y)

)
, x ≤ 0.

(59)

where V2(x, y) =
(
V 1
2 (x, y), V

2
2 (x, y)

)
is given by equations (51) and (52),

U1
3 (x, y) = −y + 1 +

16

289
(x+ 1) (Se) , (60)

and

U2
3 (x, y) = x+ 1 +

16

289
(y − 1) (Se) , (61)

with

Se =

(
y − 1

2
− 2(x+ 1)

)2

+

(
x+ 1

2
+ 2(y − 1)

)(
y − 1

2
− 2(x+ 1)

)
−
(
x+ 1

2
+ 2(y − 1)

)2

.

Observe that (59) corresponds to system (53) when b1 = 1/2, b2 = −2, d1 = −1, d2 = 1, s0 = −1, s1 = 1,
s2 = −s0 = 1, c2 = −1, c1 = 2, M1 = 1/2, M2 = 1, a0 = 2, and a1 = 2. By solving the first and second
equations of the respective system (57) we get

y3d =
826− 325y0
88y0 + 325

and y1e =
102− 31y0
32y0 + 31

.

Solving y1e = y3d we get the solutions y0 =
(
1091± 2

√
71486

)
/959 which are the intersections of the limit

cycle with the ordinate axis. See Figure 7.

Fig. 7. The limit cycle of the discontinuous piecewise vector field Q2,3 in red. The black dots represent the equilibrium points
of the two centers of Q2,3.

5.3. Case (3,3)

Consider the piecewise smooth vector field

Z3,3(x, y) =

{
U3(x, y), x ≥ 0,

V3(x, y), x ≤ 0,
(62)

where U3(x, y) =
(
U1
3 (x, y), U

2
3 (x, y)

)
is given by Equations (54) and (55), and V3(x, y) =

(V 1
3 (x, y), V

2
3 (x, y)) has components

V 1
3 (x, y) = −y +M2 +

(x−M1) (S33)(
c21 + c22

)
2

,
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V 2
3 (x, y) = x−M1 +

(y −M2) (S33)(
c21 + c22

)
2

,

with

S33 = −a0 (c2 (x−M1) + c1 (y −M2))
2 + a0 (c1 (x−M1)− c2 (y −M2))

2

+ a1 (c1 (x−M1)− c2 (y −M2)) (c2 (x−M1) + c1 (y −M2)) .

Note that the vector field V3 is considering the hypothesis a2 = −a0 given by Equation (12) so that we
have a rigid center. From (33) we get that

H3(x, y) = −−a1 (x−M1)
(
c21 (x−M1) + c22 (M1 − x) + 2c2c1 (M2 − y)

)

2
(
−2M1x− 2M2y +M2

1 +M2
2 + x2 + y2

)

− 2a0 (x−M1)
(
2c2c1 (x−M1) + c21 (y −M2) + c22 (M2 − y)

)

2
(
−2M1x− 2M2y +M2

1 +M2
2 + x2 + y2

)

−
(
c21 + c22

)
2

2
(
−2M1x− 2M2y +M2

1 +M2
2 + x2 + y2

)

(63)

is a first integral of V3 and F3 given by (56) is a first integral of U3. The limit cycles for the discontinuous
piecewise vector field Z3,3 are given by the solutions of the following system of equations

F3(0, y0) = F3(0, y1), H3(0, y0) = H3(0, y1). (64)

From the first equation of (64) we obtain y1 = y0 and y1 = y3d given by Equation (58). From the second
equation of (64) we obtain y1 = y0 and

y1 = y3e =
ν1 − ν2

ν3
(65)

where

ν1 = a1M1

(
c21M1 (y0 − 2M2)− 2c2c1

(
M2 (y0 −M2) +M2

1

)
+ c22M1 (2M2 − y0)

)
+
(
c21 + c22

)
2 (2M2 − y0) ,

ν2 = 2a0M1

(
c21
(
M2 (y0 −M2) +M2

1

)
+ 2c2c1M1 (y0 − 2M2)

)
− 2a0M1

(
c22
(
M2 (y0 −M2) +M2

1

))
,

and

ν3 = c21
(
2c22 −M1 (2a0 (y0 −M2) + a1M1)

)
+ 2c2c1M1 (a1 (M2 − y0) + 2a0M1)

+ c22M1 (2a0 (y0 −M2) + a1M1) + c41 + c42.

Consider D3,3 the numerator of the difference y3e− y3d. We have that D3,3 has two zeros in the variable y0
whose expressions are complicated and will be omitted. Therefore we conclude that the piecewise smooth
vector field Z3,3 given by (62) has at most one crossing limit cycle.

Example 5.3. Consider the discontinuous piecewise vector field

Q3,3(x, y) =

{(
U1
3 (x, y), U

2
3 (x, y)

)
, x ≥ 0,

(
V 1
3 (x, y), V

2
3 (x, y)

)
, x ≤ 0.

(66)

where U1
3 (x, y) and U2

3 (x, y) are given by Equations (60) and (61),

V 1
3 (x, y) = −y + 1 +

1

25

(
x+

1

2

)
(S33e) ,

and

V 2
3 (x, y) = x+

1

2
+

1

25
(y − 1) (S33e) ,
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with

S33e = −2

(
−x+ 2(y − 1)− 1

2

)2

−3

(
2

(
x+

1

2

)
+ y − 1

)(
−x+ 2(y − 1)− 1

2

)
+2

(
2

(
x+

1

2

)
+ y − 1

)2

.

Note that (66) corresponds to system (62) when b1 = 1/2, b2 = −2, d1 = −1, d2 = 1, s0 = −1, s1 = 1,
s2 = −s0 = 1, c2 = −1, c1 = 2, M1 = −1/2, M2 = 1, a0 = 2, a1 = −3, and a2 = −a0 = −2. By solving the
first and second equations of the respective system (64) we get

y3d =
826− 325y0
88y0 + 325

and y3e =
50− 15y0
16y0 + 15

.

Solving y3e = y3d we get the solutions y0 =
(
1102 +

√
278354

)
/970 which are the intersections of the limit

cycle with the ordinate axis. See Figure 8.

Fig. 8. The limit cycle of the discontinuous piecewise vector field Q3,3 in red. The black dots represent the equilibrium points
of the two centers of Q3,3.

6. Conclusions

In this paper we have studied the upper bound for the maximum number of limit cycles of discontinuous
piecewise differential systems formed by two differential systems separated by the straight line x = 0.
We assume that each one of the differential systems has a rigid center formed of a linear part with a
homogeneous polynomial nonlinear part of degree m and n respectively.

If both centers are localized at the origin of coordinates and n = 1 then for all positive integer m we
have proved that such discontinuous piecewise differential systems have no limit cycles, see Theorem 1.

If the centers are not at the origin of coordinates for a subclass of these discontinuous piecewise
differential systems with n,m = 2, 3 we have proved that they can have at most one limit cycle, see for
more details the statement of Theorems 2 and 3.
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