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Abstract. In this paper we study the phase portraits in the Poincaré
disk of the reversible vector fields of type (2;0) having generic bifurca-
tions around a symmetric singular point p. We also prove the nonex-
istence of any periodic orbit surrounding p. We point out that some
numerical computations were necessary in order to control the number
of limit cycles.

1. Introduction and Main Results

Given two real Ck, k > 1, functions of two variables P , Q : R2 → R we
define a planar Ck differential system as a system of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

where the dot in system (1) denotes the derivative with respect to the inde-
pendent variable t. We call the map X = (P,Q) a vector field. If P and Q
are polynomials then system (1) is a planar polynomial differential system.
In this case we say that system (1) has degree n if the maximum of the de-
grees of P and Q is n. If n = 1 then system (1) is called a linear differential
system. This last class of systems is already completely understood (see for
instance chapter 1 of [17]). However for n ≥ 2, that is for nonlinear dif-
ferential polynomial systems we know very few things. The class of planar
polynomial systems with degree n ≥ 2 is too wide, so is common to study
more specific subclasses and to classify their topological phase portraits. See
for instance [1], [10] and [23].

In this paper we are concerned with the reversible vector fields. Given
a Ck vector field X (not necessarily planar) and a Ck diffeomorphism ϕ :
Rm → Rm satisfying ϕ2 = idRm we say that X is ϕ-reversible of type (m; r),
for r ∈ {0, 1, . . . ,m}, if

Dϕ(z)X(z) = −X(ϕ(z))

for all z ∈ Rm and Fix(ϕ) = {z ∈ Rm : ϕ(z) = z} is a r-dimensional
manifold. Many types of reversible vector fields have been studied for several
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authors. For example in [22] all the low codimension singularities of systems
(2;1)-type are classified, in [4] all (3;2)-type. In [15, 16] there is a study of
the quadratic reversible vector fields of type (3;2) on the sphere S2.

In the space of planar C∞ reversible vector fields we consider the following
equivalence relation: X ∼ Y if there is a neighborhood U of (0, 0) such that
X and Y coincide in U . The equivalence class of X is called the germ of
X. We will denote the germ of X also by X. In this paper we study the
space of germs of C∞ reversible vector fields of type (2; 0) with a singularity
at the origin. This class of vector fields, endowed with the C∞ topology,
will be denoted by X. From now on any vector field will be a C∞ vector
field, unless we say other thing. In what follows we will state some necessary
definitions.

Definition 1. Two germs of vector fields X, Y ∈ X are topologically equiv-
alent if there are two neighborhoods U , V of the origin and a homeomorphism
h : U → V which sends orbits of X to orbits of Y preserving or reversing the
orientation of all orbits. The homeomorphism h is a topological equivalence
between X and Y .

Definition 2. A germ of vector field X ∈ X is structural stable if there
is a neighborhood N of X such that X is topologically equivalent to every
Y ∈ N . The set of the structural stable germs will be denoted by Σ0. We
will also consider the set X1 = X\Σ0, i.e. the bifurcation set of X.

Definition 3. Let J = [−ε, ε] be a closed interval. Denote by Θ the space
of C1 mappings ξ : J → X endowed with the C1 topology. Its elements will
be called one-parameter families of germs of vector fields of X. ξ is generic
if

1. ξ(−ε), ξ(ε) ∈ Σ0;
2. there is at most one ε0 ∈ J such that ξ(ε0) ∈ X1 and in this case
ξ(ε0) is structural stable in X1;

3. it is transversal to X1.

Definition 4. Two one-parameter families ξ, η ∈ Θ are topologically
equivalent if there is a reparametrization h : J → J and a family of homeo-
morphisms H : J → Hom(U, V ), not necessarily continuous, such that for
every λ ∈ J we have that H(λ) is a topological equivalence between ξ(λ) and
η(h(λ)).

For more details about generic one-parameter families and bifurcation
sets, see [13,20]. Buzzi proved in [2] the following theorem about X.

Theorem 1. The following statements hold.

(a) Every structural stable germ of a vector field in X is topologically
equivalent to one of the following germs:

1. X1 = (x2 − y2, 2xy);
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2. X2 = (−x2 − 2y2, xy);
3. X3 = (2x2 − y2, xy);
4. X4 = (−x2 − y2,−2xy);
5. X5 = (x2 − 2y2,−xy).

(b) For λ small enough every generic one-parameter family of germs of
vector fields of X is topologically equivalent to one of the following
families:

1. Every germ given in (a);
2. (X12)λ = (−λx2 − y2 + x4, (1− λ)xy);
3. (X21)λ = (λx2 − y2 − x4, (1 + λ)xy);
4. (X34)λ = (λx2 + 2xy − y2 − x4, (λ− 1)xy + 2y2);
5. (X43)λ = (−λx2 + 2xy − y2 + x4,−(λ+ 1)xy + 2y2);
6. (X45)λ = (λx2 − y2 − x4, (λ− 1)xy);
7. (X54)λ = (−λx2 − y2 + x4,−(λ+ 1)xy);
8. (X13)λ = ((2 + λ)x2 − y2 + x4,−λx2 + 2xy + y2);
9. (X24)λ = ((λ− 1)x2 − xy − y2 + x4,−λx2 − xy).

We note that all the germs of vector fields which appear in the statement
of the previous theorem are polynomial.

Theorem 1 motivated us to classify the phase portrait of the differential
vector fields which appear in its statement and thus to extend the results of
[2].

Our first result provides a tool for studying periodic orbits of those vector
fields.

Theorem 2. If X is a C1 ϕ-reversible vector field of type (2; 0) satisfying
Fix(ϕ) = {p} then there is no periodic orbit surrounding p.

The phase portraits of the vector fields in the statement of Theorem 1
will be presented in the Poincaré disk. See subsection 2.1 for more details
of the Poincaré compactification.

The next theorem summarize our results.

Theorem 3. The following statements hold.

(a) The phase portraits in the Poincaré disk of the vector fields of The-
orem 1 are given in Figures 1, 2, 3, 4 and 5.

(b) The phase portraits of X1 and X3 are topologically equivalent.
(c) The bifurcations between X1 and X2, X1 and X3, X2 and X4, X3 and

X4 and between X4 and X5 are generic and are given, respectively,
by the phase portraits of X12 (and X21), X13, X24, X34 (and X43)
and X45 (and X54) for λ = 0.

(d) The bifurcation between X3 and X5 is degenerated and is given by
the phase portraits of X45 (for λ = 1) and X54 (for λ = −1).

(e) The path of each family through X is described in Table 1.
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Remark 1. Figures 1, 2, 3, 4 and 5 work as follow. The thicker lines
represent the separatrices of the phase portrait and the thin lines represent
generic orbits of the canonical regions (see subsection 2.3 for more details).
The biggest dots represent isolated singularities. The dot line at X12 and
X45 for λ = 1 and at X54 for λ = −1 represents a line of singularities.

Remark 2. Table 1 work as follow. The line given by X45 mean that X45

is topologically equivalent at the origin to X1 for λ > 1; to X4 for λ 6 0; to
X5 for 0 < λ < 1 and to none of the five structural stable ones for λ = 1.
Although the phase portraits of X1 and X3 are topologically equivalent at the
origin, in Table 1 we consider equivalent to X1 the families with only two
elliptical sectors at the origin. If the origin has two elliptical sectors and
also some parabolic sectors then we consider it equivalent to X3. The other
lines are similar.

Remark 3. Although we struggled to give as many analytical proofs as pos-
sible, one shall see in Proposition 4 that dealing analytically with limit cycles
is a very difficult task and therefore we point out that numerical calculations
about the number of limit cycles of system X34 were used when the parameter
λ ∈ (1, 3).

The paper is organized as follows. In section 2 we present the prelimi-
naries. Theorem 2 is proved in section 3. In section 4 we study the phase
portraits. Theorem 3 is proved in section 5.

X1 X2 X3 X4 X5 None

X12 0 < λ λ 6 0 λ = 1
X21 0 < λ λ 6 0

X34
−1 < λ 6 0

3 6 λ
λ 6 −1

0 < λ < 3

X43
λ < −3

0 < λ 6 1
−3 6 λ 6 0

1 < λ
X45 1 < λ λ 6 0 0 < λ < 1 λ = 1
X54 λ < −1 0 < λ −1 < λ 6 0 λ = −1
X13 λ 6 −1 −1 < λ

X24 λ < 0
0 6 λ < 1

1 < λ
λ = 1

Table 1. Behavior of each family through X.

2. Preliminaries

2.1. Poincaré Compactification. Let X be a planar polynomial vector
field of degree n ∈ {2, 4}, as our polynomial differential systems of Theo-
rem 1. The Poincaré compactified vector field p(X) is an analytic vector
field on S2 constructed as follow (for more details see Chapter 5 of [6]).
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First we identify R2 with the plane (x1, x2, 1) in R3 and define the Poincaré
sphere as S2 = {y = (y1, y2, y3) ∈ R3 : y21+y22+y23 = 1}. We define the north-
ern hemisphere, the southern hemisphere and the equator respectively by
H+ = {y ∈ S2 : y3 > 0}, H− = {y ∈ S2 : y3 < 0} and S1 = {y ∈ S2 : y3 = 0}.

Consider now the projections f± : R2 → H± given by f±(x1, x2) =

±∆(x1, x2)(x1, x2, 1), where ∆(x1, x2) = (x21 + x22 + 1)−
1
2 . These two maps

define two copies of X, one copy X+ in H+ and one copy X− in H−. Con-
sider the vector field X ′ = X+∪X− defined in S2\S1. Note that the infinity
of R2 is identified with the equator S1. The Poincaré compactified vector
field p(X) is the analytic extension of X ′ from S2\S1 to S2 given by yn−13 X ′.
The Poincaré disk D is the projection of the closed northern hemisphere to
y3 = 0 under (y1, y2, y3) 7→ (y1, y2) (the vector field given by this projection
will also be denoted by p(X)). Note that to know the behavior p(X) near
S1 is the same than to know the behavior of X near the infinity. We define
the local charts of S2 by Ui = {y ∈ S2 : yi > 0} and Vi = {y ∈ S2 : yi < 0}
for i ∈ {1, 2, 3}. In these charts we define φi : Ui → R2 and ψi : Vi → R2 by

φi(y1, y2, y3) = −ψi(y1, y2, y3) =
(
ym
yi
, ynyi

)
, where m 6= i, n 6= i and m < n.

Denoting by (u, v) the image of φi and ψi in every chart (therefore (u, v)
will play different roles in each chart) one can see the following expressions
for p(X):

vn m(u, v)

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

)
,−vP

(
1

v
,
u

v

))
in U1,

vn m(u, v)

(
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

)
,−vQ

(
u

v
,

1

v

))
in U2,

m(u, v)(P (u, v), Q(u, v)) in U3,

where m(u, v) = (u2 + v2 + 1)−
1
2
(n−1). We can omit the term m(u, v) by

a time rescaling of p(X). Therefore we obtain a polynomial expression of
p(X) in each Ui. The expressions of p(X) in each Vi is the same as that for
each Ui, except by a multiplicative factor of −1. In these coordinates for
i ∈ {1, 2}, v = 0 always represents the points of S1 and thus the infinity of
R2. Note that S1 is invariant under the flow of p(X).

2.2. Blow Up Technique. If the origin is an isolated singularity of a
polynomial vector field X then we can apply the change of coordinates
φ : R+ × S1 → R2 given by φ(θ, r) = (r cos θ, r sin θ) = (x, y), where
R+ = {r ∈ R : r > 0}. Therefore we can induce a vector field X0 in
R+ × S1 by pullback, i.e. X0 = Dφ−1X. One can see that if the k-jet of
X (i.e. the Taylor expansion of order k of X, denoted by jk) is zero at the
origin then the k-jet of X0 is also zero in every point of {0} × S1. Thus,
taking the first k ∈ N satisfying jk(0, 0) = 0 and jk+1(0, 0) 6= 0 we can define

the vector field X̂ = 1
rk
X0. Therefore, to know the behavior of X̂ near S1 is

the same than to know the behavior of X near the origin. One can also see
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X1 X2 X3

X4 X5 X12

λ 6 0

X12

0 < λ < 1
X12

λ = 1
X12

1 < λ

Figure 1. Phase portraits of X1, X2, X3, X4, X5 and X12.
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X21

λ 6 0
X21

0 < λ
X13

λ 6 −1

X13

−1 < λ
X34

λ 6 −1
X34

−1 < λ 6 0

X34

0 < λ < 1
X34

λ = 1
X34

1 < λ < λ0

Figure 2. Phase portraits of X21, X13 and X34.
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X34

λ = λ0

X34

λ0 < λ < 1 +
√

2
X34

1 +
√

2 6 λ < 3

X34

3 6 λ
X43

λ < −3

X43

−3 6 λ 6 0

X43

0 < λ 6 1
X43

1 < λ
X45

λ 6 0

Figure 3. Phase portraits of X34, X43 and X45.
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X45

0 < λ < 1
X45

λ = 1
X45

1 < λ

X54

λ < −1
X54

λ = −1
X54

−1 < λ 6 0

X54

0 < λ
X24

λ < 0
X24

λ = 0

Figure 4. Phase portraits of X45, X54 and X24.
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X24

0 < λ < 1
X24

λ = 1
X24

1 < λ

Figure 5. Phase portraits of X24.

that S1 is invariant under the flow of X̂. For a more detailed study of this
technique, see Chapter 3 of [6]. One can also see that X̂ is given by

ṙ =
xẋ+ yẏ

rk+1
, θ̇ =

xẏ − yẋ
rk+2

.

There is a generalization of the Blow Up Technique, known as Quasi-
homogeneous Blow Up. This time we consider the change of coordinates
ψ(θ, r) = (rα cos θ, rβ sin θ) = (x, y) for (α, β) ∈ N2. Similarly to the previ-
ous technique, we can induce a vector field X0 in R+ × S1. For some k ∈ N
maximal one can define Xα,β = 1

rk
X0 and see that this vector field is given

by

ṙ = ξ(θ)
cos θ rβẋ+ sin θ rαẏ

rα+β+k−1
, θ̇ = ξ(θ)

α cos θ rαẏ − β sin θ rβẋ

rα+β+k
,

where ξ(θ) = (β sin2 θ + α cos2 θ)−1. Similarly to the previous technique, to
know the behavior of Xα,β near S1 (which is invariant) is the same than to
know the behavior of X near the origin. For more details see chapter 3 of
[6].

2.3. Markus-Neumann-Peixoto Theorem. Let X be a polynomial vec-
tor field, p(X) its compactification defined on D and φ the flow defined by
p(X). The separatrices of p(X) are:

1. all the orbits contained in S1, i.e. at infinity;
2. all the singular points;
3. all the separatrices of the hyperbolic sectors of the finite and infinite

singular points; and
4. all the limit cycles of X.
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Denote by S the set of all separatrices. It is known that S is closed, see for
instance [6]. Each connected component of D\S is called a canonical region
of the flow (D, φ). The separatrix configuration Sc of a flow (D, φ) is the
union of all the separatrices S of the flow together with one orbit belonging
to each canonical region. The separatrix configuration Sc of the flow (D, φ) is
topologically equivalent to the separatrix configuration S∗c of the flow (D, φ∗)
if there exists a homeomorphism from D to D which transforms orbits of Sc
into orbits of S∗c , orbits of S into orbits of S∗ and preserves or reverses the
orientation of all these orbits.

Theorem 4 (Markus-Neumann-Peixoto). Let p(X) and p(Y ) be two Poin-
caré compactifications in the Poincaré disk D of the two polynomial vector
fields X and Y with finitely many singularities, respectively. Then the phase
portraits of p(X) and p(Y ) are topologically equivalent if and only if their
separatrix configurations are topologically equivalent.

For a proof of this Theorem see [7, 11,12,14].

In Figures 1, 2, 3, 4 and 5 we wrote the separatrix configurations of the
corresponding Poincaré compactifications.

2.4. Index of Singularities of a Vector Field. Let p be an isolated
singularity of a polynomial vector field X. Let e and h denote the number
of elliptical and hyperbolic sectors of p, respectively. The Poincaré index of
p is given by

ip =
e− h

2
+ 1.

It is known that ip ∈ Z. See for instance chapter 6 of [6].

Proposition 1. Let Γ be a limit cycle of a planar polynomial vector field
X. Then there is at least one singularity in the bounded region limited by it.
Moreover if there is a finite number of singularities in the bounded region
limited by Γ then the sum of their Poincaré index is 1.

Theorem 5 (Poincaré-Hopf Theorem). Let X be a planar polynomial vector
field and p(X) its compactification defined on S2. If p(X) has a finite number
of singularities then the sum of their Poincaré index is 2.

For a proof of Proposition 1 and Theorem 5 see chapter 6 of [6].

3. Proof of Theorem 2

Proof. The proof is by contradiction. Without loss of generality we can
suppose p = (0, 0). Let γ = γ(t) be a periodic orbit with period T > 0
surrounding p. There are two options: either the sets Γ = γ([0, T ]) and
ϕ(Γ) are disjoint or not.
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If Γ intersects ϕ(Γ) then there are t1, t2 ∈ R satisfying γ(t1) = ϕ(γ(t2)).
Define t3 = (t1+t2)/2, t4 = (t1−t2)/2, ξ(t) = γ(t+t3) and ν(t) = ϕ(ξ(−t)).
It is clear that ξ and ν are both solutions of X and that ξ(t4) = ν(t4).
Therefore by the Existence and Uniqueness Theorem we have ξ(t) = ν(t)
for all t ∈ R. Hence ξ(0) = ν(0), i.e. γ(t3) = ϕ(γ(t3)) and therefore
γ(t3) = p, contradicting the fact that γ surrounds p.

If Γ does not intersects ϕ(Γ) then denote by A the ring delimited by Γ
and by ϕ(Γ). Denote by U the interior of the region delimited by Γ. Once
p ∈ U it follows that p ∈ ϕ(U). Without loss of generality we can suppose
that Γ delimit the inner boundary of A, i.e. Γ ⊂ ϕ(U). Let r be any straight
line through p and τ : R → R2 a parametrization of r with τ(0) = p. Let
η1 < 0 be the greatest and η2 > 0 the smallest real numbers satisfying
qi = τ(ηi) ∈ Γ, for i ∈ {1, 2}. Observe that τ([η1, η2]) does not intersects
ϕ(Γ). Define µ = ϕ ◦ τ and note that µ is continuous, µ(ηi) = ϕ(qi) for
i ∈ {1, 2} and µ(0) = p. It follows from the continuity that µ([η1, η2]) must
intersect Γ and therefore τ([η1, η2]) must intersect ϕ(Γ). But this contradicts
the fact that τ([η1, η2]) does not intersects ϕ(Γ). �

4. Phase Portraits

We will show how to obtain the phase portraits of the vector field X34

and give a sketch of how to obtain the phase portraits of the other families.
First we remember that X34 is given by

ẋ = λx2 + 2xy − y2 − x4, ẏ = (λ− 1)xy + 2y2.

Note that {(x, y) ∈ R2 : ẏ = 0} is the union of the straight lines y = 0 and
y = 1−λ

2 x. Therefore one can see that all the possible finite singularities are
given by the origin and the points

p± = ±
(√

λ, 0
)
, q± = ±

(
1

2

√
f(λ),

1

4
(1− λ)

√
f(λ)

)
,

where f(λ) = −(λ+1)(λ−3). By possible singularities we mean that p± are
well defined only for λ ≥ 0 and q± are well defined only for −1 6 λ 6 3. In
the following three propositions we study the local behavior of X34, i.e. we
study the local phase portrait of X34 at each finite and infinite singularity
and the existence of limit cycles for every λ ∈ R.

Proposition 2. For every λ ∈ R the following statements hold.

(a) The origin is the only singularity of the chart U1 and it is an unstable
node.

(b) The origin is the only singularity of the chart U2 and its local phase
portrait is given by Figure 6.
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Figure 6. Local phase portrait at the origin of chart U2 of p(X34).

Proof. The first statement follows from the fact that p(X34) is given in the
chart U1 by

u̇ = u− uv2 + u3v2, v̇ = v − λv3 − 2uv3 + u2v3.

To prove the second statement we will do a quasihomogeneous blow up
at the origin of the chart U2. Following the algorithm of section 3.3 of [6]
we choose (α, β) = (1, 2) to apply the technique. Doing that one will obtain
the vector field X0 = X0(r, θ) given by

ṙ = rR1(r, θ), θ̇ = f(θ) sin θ + rR2(r, θ),

where f(θ) 6= 0 for all θ ∈ S1. The linear part of X0 at (0, 0) and at (0, π)
are given by

DX0(0, 0) = −DX0(0, π) =

(
−1 0
0 2

)
.

Therefore all the singularities of S1 are hyperbolic and thus one can conclude
Figure 6. �

Proposition 3. The following statements hold.

(a) Singularity p+ (resp. p−) is a stable (resp. unstable) node for 0 <
λ < 1. For 1 < λ both singularities p± are saddles.

(b) Singularities q± are both saddles for −1 < λ < 1. For 1 < λ <
1.4314.. singularity q+ (resp. q−) is a stable (resp. unstable) node.
For 1.4314.. 6 λ < 1+

√
2 singularity q+ (resp. q−) is a stable (resp.

unstable) focus. For 1+
√

2 6 λ 6 2.8549.. singularity q+ (resp. q−)
is a unstable (resp. stable) focus. For 2.8549.. < λ < 3 singularity
q+ (resp. q−) is a unstable (resp. stable) node.

(c) For λ = 1 we have q± = p± and they are both saddle-nodes.
(d) The local phase portrait of X34 at the origin and its Poincaré index

i are given by Figure 7.
(e) It occurs a Hopf bifurcation at q+ (resp. q−) when λ = 1 +

√
2.

Moreover, there is a hyperbolic stable (resp. unstable) limit cycle
surrounding q+ (resp. q−) for 1 +

√
2− ε < λ < 1 +

√
2.

Proof. The first statement follows from

DX34(p
+) =

(
−2λ

3
2 2

√
λ

0 (λ− 1)
√
λ

)
.
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λ 6 −1
i = 0

−1 < λ 6 0
i = 2

0 < λ < 3
i = 0

3 6 λ
i = 2

Figure 7. Local phase portrait of X34 at the origin.

Using the Theorem of Hartman-Grobman, the Trace-Determinant Theory
(see Section 4.1 of [8]) and knowing that the determinant and the trace of
DX34(q

+) are given, respectively, by

Det(λ) =
1

8
(λ+ 1)2(λ− 1)(λ− 3)2,

T r(λ) =
1

2

[
λ−

(
1−
√

2
)] [

λ−
(

1 +
√

2
)]√

f(λ),

one can prove the second statement.

Doing the change of coordinates (u, v) = (x− 1, y) and then applying the
blow up technique at the origin of the vector field Y = Y (u, v) we obtain
the vector field Y0 = Y0(r, θ) given by

ṙ = rR1(r, θ), θ̇ = 2 sin θ(cos θ − sin θ) + rR2(r, θ).

Therefore the singularities of S1 are given by (r, θ) = (0, θ0), where θ0 ∈
{0, π4 , π, 5π4 }. Observe that

DX0(0, 0) = DX0(0, π) =

(
−2 0
0 2

)
,

DX0

(
0,
π

4

)
= −DX0

(
0,

5π

4

)
=

(
0 0
∗ −2

)
.

Applying the Center Manifold Theorem at the non-hyperbolic points and
knowing that v̇ > 0 for every point outside the u-axis we can conclude that
(0, π4 ) is a saddle and (0, 5π4 ) is a stable node for Y0 and thus prove the third
statement.

To prove the fourth statement note that the origin is a degenerated sin-
gularity, i.e. DX34(0, 0) = 0. Doing a blow up at the origin one will obtain
a vector field X0 = X0(r, θ) given by

ṙ = rR1(r, θ), θ̇ = sin θ(sin2 θ − cos2 θ) + rR2(r, θ).
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Therefore the singularities of S1 are given by (r, θ) = (0, θ0), where θ0 ∈
{0, π4 , 3π4 , π, 5π4 , 7π4 }. Observe that

DX0(0, 0) = −DX0(0, π) =

(
λ 0
0 −1

)
,

DX0

(
0,
π

4

)
= −DX0

(
0,

5π

4

)
=

(
f1(λ) 0

0
√

2

)
,

DX0

(
0,

3π

4

)
= −DX0

(
0,

7π

4

)
=

(
f2(λ) 0

0 −
√

2

)
,

where f1(λ) = 1
2

√
2(λ+ 1) and f2(λ) = −1

2

√
2(λ− 3). Therefore all the six

singularities are hyperbolic for λ /∈ {−1, 0, 3} and thus one can conclude the
local phase portrait. When λ ∈ {−1, 0, 3} we have a saddle-node bifurcation
at {(0, 14π), (0, 54π)}, {(0, 0), (0, π)} and {(0, 34π), (0, 74π)}, respectively.

The fifth statement follows from general results on the Hopf bifrucation.
See for instance sections 3.4 and 3.5 of [9]. �

Proposition 4. The vector field X34 may admit the existence of some limit
cycle only if λ ∈ (1, 3). Moreover, there is a unique λ0 ∈ (1, 3) in which
occurs the formation of a polycicle between the origin and p− (and p+).

Proof. It follows from Proposition 1 that there is at least one singularity in
the interior of the bounded region limited by a limit cycle. From Theorem 2
we known that this singularity cannot be the origin. Also it cannot be
singularities p± because the x-axis is invariant. For −1 < λ < 1 singularities
q± are both saddles and therefore cannot have a limit cycle surrounding
them because the topological index of a saddle is −1 (otherwise it must
have another singularity in the bounded region limited by the limit cycle,
which is impossible). Therefore if there is a limit cycle then it surrounds
one (and only one) of the singularities q± and 1 < λ < 3. From now on we
will focus on the q− singularity at the second quadrant. The dynamics at
q+ follows from the symmetry of the system.

At λ = 1 we have a saddle-node bifurcation between singularities p− and
q−. At λ = 3 we have another saddle-node bifurcation, but now between
a hyperbolic saddle at the blow up of the origin and q−. Therefore, from
the continuity of the vector field we conclude that there is a bifurcation of
a heteroclinic orbit Γ0 between the hyperbolic saddles p0 and p− for some
value of the parameter λ = λ0, see Figure 8.

Let x0 ∈ Γ0 and l0 be a transversal section of Γ0 passing through x0.
Following [19] we define n to be the coordinate along the normal line l0 such
that n > 0 outside the polycycle and n < 0 inside the polycycle. We also
denote by Γsλ and Γuλ the perturbations of Γ0, for |λ−λ0| small enough, such
that ω(Γsλ) = p− and α(Γuλ) = (0, 0). Let xsλ and xuλ be the intersection of Γsλ
and Γuλ with l0 and ns(λ), nu(λ) its coordinates along l0, respectively. We
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λ = 1 + ε

Γ0

λ = λ0 λ = 3− ε

Figure 8. Heteroclinic orbit between the origin and p−.

d(λ) > 0xuλ
xsλ

Γuλ
Γsλ

λ 6= λ0

Γ0

l0

x0

λ = λ0

d(λ) < 0xsλ
xuλ

ΓuλΓsλ

λ 6= λ0

Figure 9. The displacement function d(λ) defined for λ near λ0.

define the displacement function d(λ) = nu(λ) − ns(λ). See Figure 9. Let
γ(t) be a parametrization of Γ0, with γ(0) = x0, and f(t;λ) = X34(γ(t);λ).
It follows from [19] that

d′(λ0) = − 1

|f(0;λ0)|

∫ +∞

−∞

(
e−

∫ t
0 Div(f(s;λ0)) ds

)
f(t;λ0) ∧

∂f

∂λ
(t;λ0) dt,

where (x1, x2) ∧ (y1, y2) = x1y2 − x2y1. One can see that

X34(x, y;λ) ∧ ∂X34

∂λ
(x, y;λ) = x3y − xy3 − x5y = H(x, y).

Therefore the set {(x, y) ∈ R2 : H(x, y) = 0} is given by the union of

the graphs of y = 0 and y = ±
√
x2 − x4. We denote y1(x) =

√
x2 − x4

when −1 6 x 6 0. The graph of y1 is given by the solid line of Figure 10.
The dashed line denotes the points which satisfy ẋ = 0, given explicitly

by y = x
(

1−
√
λ+ 1− x2

)
when −

√
λ 6 x 6 0. One can see that the

flow of X34 is transversal to the graph of y1, except at q− = (q1, q2), for
every 1 < λ < 3. Moreover it points outwards for x > q1 and inwards for
x < q1. One can also see that H, inside the second quadrant, is positive
at the unbounded region delimited by the graph of y1 and negative at the
bounded region. The Taylor series of y1 at x = 0 is given by

y1(x) = −x+ 3x3 +O(x5).
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p−

q−

H < 0

H > 0

ẋ > 0

ẋ < 0

Figure 10. Plot of H(x, y) = 0 and ẋ = 0 at the second quadrant.

On the other hand the separatrix Γ0 is given, for |x| small, by

y2(x) = −x+
1

8− 2λ
x3 +O(x5).

Therefore for x < 0 small enough we have

y2(x)− y1(x) =

(
1

8− 2λ
− 3

)
x3 +O(x5).

Hence the heteroclinic orbit Γ0 is above the graph of y1 and therefore we
conclude that

f(t;λ0) ∧
∂f

∂λ
(t;λ0) > 0

for every t ∈ R, independently of the exactly value of λ0. Hence d′(λ0) < 0.
Thus we conclude that if a heteroclinic orbit Γ0 exists at λ = λ0 then for
|λ− λ0| small enough the displacement function is well defined and is given
by

d(λ) = a1(λ− λ0) +O((λ− λ0)2),
with a1 < 0. Therefore we have d(λ) > 0 if λ < λ0 and d(λ) < 0 if λ > 0.
See Figure 9. And this happens independently of the value of λ0. Hence
there is a unique λ0 ∈ (1, 3) for which Γ0 exists. �

If Γn is a polycycle with n hyperbolic saddles such that µi < 0 < νi are
its eigenvalues, then we say that Γn is simple if

H(Γn) =

n∏

i=1

|µi|
νi
6= 1.

Moreover Γn is stable if H(Γn) > 1 and unstable if H(Γn) < 1. See for
instance [3,5,21]. The polycycle Γ that bifurcate at λ = λ0 is formed by p−
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and from two hyperbolic saddles from the blow up of the origin. Hence one
can calculate that

H(Γ0) =
λ− 1

3− λ.

To precise in an analytical way how many limit cycles exists in a given
interval in general is a very difficult task. But numerical computations (see
chapters 9 and 10 of [6]) points that λ0 = 2.3761.. and thus Γ is stable.
Moreover the numerical computations also indicates that there is no limit
cycles for λ ∈ (1, λ0) ∪ (1 +

√
2, 3) and that there is a unique limit cycle for

λ ∈ (λ0, 1 +
√

2). So to provide an analytic proof of these two facts is an
open problem. Knowing this, it follows from [18] that the limit cycle which
ends at the Hopf bifurcation belongs to an open maximal family of limit
cycles which born at the polycicle for λ = λ0.

In what follows we will study some cases of X34. The other cases can be
obtained similarly.

Proposition 5. The phase portrait of X34 for 1 +
√

2 6 λ < 3 is the one
in Figure 3.

Proof. From Propositions 2, 3, 4 and from the invariance of the x-axis we
can conclude Figure 11. To simplify the writing we will name the infinite

1

2

3

4

5

6

Figure 11. Unfinished phase portrait of X34 for 1 +
√

2 6
λ < 3.

singularities by north pole, south pole, east pole (right) and west pole (left).
We claim that separatrix 1 must have the west pole as its ω-limit. To prove
this consider Figure 12. Denote S = {(x, y) ∈ R2 : ẋ = 0} and observe that
it is given explicitly by

y = x±
√
x2(λ+ 1)− x4.

Observe that separatrix 1 must cross the y-axis because all its options for
ω-limit are at the second quadrant. At the bounded region limited by S we
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S

1

p+

p−

γ
y = 1−λ

2 x

q−

q+

Figure 12. Illustration of the zeros of ẋ = 0 and ẏ = 0.

have ẋ > 0, therefore separatrix 1 must pass above S, at least somewhere
near γ. Observe that this does not depend if separatrix 1 is tangential or not
with S. One can prove using the Lagrange Multipliers that the maximum
value of y at S is given by

y0 =

√
2

8

(
2

√
3 + 4λ+

√
9 + 8λ+

√
3 + 12λ+ 8λ2 +

√
9 + 8λ

)
.

At the region limited by y > 0 and y > 1−λ
2 x we have ẏ > 0 and therefore

separatrix 1 will cross the straight line given by y = 1−λ
2 x at a point (x1, y1)

such that y1 > y0. This is enough to ensure that separatrix 1 cannot end at
separatrix 3 nor at the stable node because ẋ < 0 at the unbounded region
delimited by S. Therefore separatrix 1 ends at the west pole and q− is in
the bounded region limited by it. Separatrix 3 has no other option than
born at the origin. Once the stable node (i.e. the singularity q−) came from
a saddle-node bifurcation at the origin at λ = 3 we conclude that separatrix
5 end at this node. The symmetry of the system is now enough to finish the
phase portrait. �

Proposition 6. The phase portrait of X34 for λ0 < λ < 1 +
√

2 is the one
given by Figure 3.

Proof. Similarly to Proposition 5, here we conclude Figure 13 and the fact
that separatrix 1 also end at the west pole with the limit cycle in the bounded
region delimited by it. Follows from Proposition 5 and the continuity of X34

with respect to λ that separatrix 3 must end at the limit cycle. Separatrix
5 has no other option than born at the origin. Symmetry is now enough to
finish the phase portrait. �
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1

2

3

4

5

6

Figure 13. Unfinished phase portrait of X34 for λ0 < λ <
1 +
√

2.

Proposition 7. The phase portrait of X34 for 1 < λ < λ0 is the one given
by Figure 2.

Proof. Similarly to Propositions 5 and 6, here we conclude Figure 14 and
the fact that separatrix 1 also end at the west pole with the unstable node
(i.e. the singularity q−) in the bounded region delimited by it. Once we

1

2

3

4

5

6

Figure 14. Unfinished phase portrait of X34 for 1 < λ < λ0.

have a generic saddle-node bifurcation at λ = 1 we conclude that separatrix
5 born at the unstable node. Separatrix 3 has no other option than end at
the west pole. Symmetry is now enough to finish the phase portrait. �
Proposition 8. The phase portrait of X34 for 0 < λ < 1 is the one given
by Figure 2.

Proof. Similarly to Proposition 5, 6 and 7 in this case we have Figure 15.
Observe that ẋ = −y2 if x = 0, therefore no orbit can cross the y-axis from
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1
2

3

45

67

8

9
10

Figure 15. Unfinished phase portrait of X34 for 0 < λ < 1.

left to right. Remember that y = 1−λ
2 x imply ẏ = 0 and thus we conclude

Figure 16. Observe that separatrix 2 cannot end at separatrix 1 nor at

1
2

3

4

7

8

9
10

Figure 16. Local phase portrait of X34 at y = 1−λ
2 x for

0 < λ < 1.

separatrix 3, otherwise it would have a singularity in the bounded region
limited by it. If separatrix 2 ends at stable node then by Figure 16 separatrix
1 could not born anywhere. Therefore the only option to separatrix 2 is to
end at the west pole. Separatrix 4 must end at the stable node because
we have a generic saddle-node bifurcation. There is no other option for
separatrix 3 other than born at the east pole. The fact that no orbit can
cross the y-axis from left to right give to separatrix 1 no other option than
born at the origin (not at separatrix 5). Separatrix 5 cannot cross the y-axis,
therefore it must end at the west pole. Symmetry is now enough to finish
the phase portrait. �
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Remark 4. The proofs for λ 6 0 and 3 6 λ are similarly as Propositions 5,
6, 7 and 8.

Remark 5. Theorem 2 together with observations as the invariance of the
x-axis, the fact that the index of a saddle is −1 and the Bendixson criterion
proves the nonexistence of any limit cycles at the others families of vector
fields.

Proposition 9. The phase portrait of X12 for λ ∈ R are those given by
Figure 1.

Proof. Once ẏ = 0 if, and only if x = 0 or y = 0 or λ = 1 one can see that the
only possible finite singularities are the origin and the points p± = ±(

√
λ, 0)

if λ 6= 1, and the algebraic curve −x2 − y2 + x4 = 0 if λ = 1. Doing a blow
up at the origin and knowing that

DX12(p
+) =

(
2λ

3
2 0

0 (1− λ)
√
λ

)
,

one can understand the local behavior of X12, similarly as we did with X34.
At the infinite one will see that the only singularities are the origins of each
chart. The origin of the chart U1 (the east pole) is a stable node for every
λ ∈ R. The origin of the chart U2 requires a blow up. First note that the
field p(X12) at this chart is given by

u̇ = −v2 + u4 − u2v2, v̇ = (λ− 1)uv3.

Assume λ 6= 1. Doing a quasihomogeneous blow up with (α, β) = (1, 2) one
will see that the only singularities of our interest (i.e. those with r = 0) are
given by the zeros of

sin θ(cos4 θ − sin2 θ) = 0,

for 0 6 θ < 2π. There are six singularities, given by θ = 0, θ = π and
θ = θi, i ∈ {1, 2, 3, 4}, where θi is the solution of cos4 θ = sin2 θ at the i-th
quadrant of S1. The linear part of the vector field X0 = X0(r, θ) in each of
these singularities are given by

DX0(0, 0) =

(
1 0
0 −2

)
, DX0(0, θ1) =

(
0 0
0 η

)
,

DX0(0, θ2) =

(
0 0
0 −η

)
, DX0(0, π) =

(
−1 0
0 2

)
,

DX0(0, θ3) =

(
0 0
0 −η

)
, DX0(0, θ4) =

(
0 0
0 η

)
,

where η = 4
√√

5− 2. Using the Hartman-Grobman Theorem at (0, 0) and
(0, π) and the Center Manifold Theorem at (0, θi), for i ∈ {1, 2, 3, 4} one can
obtain Figure 17(a). Remember that v̇ = (λ− 1)uv3 and therefore

sign(v̇) = sign(λ− 1)sign(u)sign(v),
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where sign(x) denotes the signal of x, i.e. sign(x) = −1 if x < 0, sign(x) =
0 if x = 0 and sign(x) = 1 if x > 0. Therefore we can complete Figure 17(a),

(a) (b)
(c)

Figure 17. Local phase portrait of the blow up of the origin
of chart U2.

obtaining Figure 17(b) for λ < 1 and Figure 17(c) for λ > 1. Observe that
ẋ 6 0 if y = 0. The invariance of the x-axis does not permit any limit
cycle here. With this informations one can obtain the phase portrait of X12

similarly as we did with X34. When λ = 1 the equation of the vector field
X12 becomes

ẋ = −x2 − y2 + x4, ẏ = 0.

So all the straight lines y = constant are invariant and the algebraic curve
−x2 − y2 + x4 = 0 is filled up with singularities. �

Proposition 10. The phase portrait of X21 for λ ∈ R are those given by
Figure 2.

Proof. First assume λ 6= −1. Observe that the only possible singularities
are the origin and the points p± = ±(

√
λ, 0). With a blow up at the origin

and an analysis of DX21(p
±) one can conclude the local behavior of X21. At

the infinity only the origins of the charts are singularities. The origin of U1

is an unstable node and a quasihomogeneous blow up with (α, β) = (1, 2)
at the origin of U2 is necessary. But in this case the analysis of this blow
up is much more simple than the last one. Finally, observe that X21 is also
reversible with ϕ(x, y) = (−x, y), i.e. it is reversible in respect to the y-axis
and that no limit cycle can exist due to the invariance of the x-axis. Also
observe that ẋ < 0 if x = 0. When λ = −1 the equation of the vector field
X21 becomes

ẋ = −x2 − y2 − x4, ẏ = 0,

so all the straight lines y = constant are invariant. Note that the only finite
singularity is the origin because the algebraic curve −x2 − y2 − x4 = 0 is
degenerated. �
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Proposition 11. The phase portrait of X43 for λ ∈ R are those given by
Figure 3.

Proof. Note that the zeros of ẏ = 0 are given by y = 0 and y = 1+λ
2 x. The

finite singularities are the origin and the points

p± =
(
±
√
λ, 0
)
, q± = ±

(
1

2

√
f(λ),

1

4
(1 + λ)

√
f(λ)

)
,

where f(λ) = (λ + 3)(λ − 1). An analysis of DX43 at p± and q± and a
blow up at the origin is enough to obtain the local behavior of X43. The
origin of the chart U1 is a stable node and the origin of U2 requires an
analysis similar to the vector field X12. The nonexistence of limit cycles can
be proved similarly as we did in Proposition 4. Finally, note that ẋ < 0 if
x = 0 and an analysis (as we did in Proposition 8) of the flow on the straight
line y = 1+λ

2 x is necessary to complete the phase portrait. �

Proposition 12. The phase portrait of X45 for λ ∈ R are those given by
Figure 3 and 4.

Proof. The only finite singularities are the origin and the points p± =
±(
√
λ, 0). A blow up at the origin and an analysis of DX45(p

±) is enough to
know the local behavior of X45. The origin of the chart U1 is a unstable node
for every λ ∈ R and the origin of the chart U2 requires a quasihomogeneous
blow up with (α, β) = (1, 2). The analysis of this blow up is simple and
there is no other infinite singularity for this vector field. The invariance of
the x-axis does not permit any limit cycle here. Finally, note that X45 is
also invariant with φ(x, y) = (−x, y) and that ẋ < 0 if x = 0. �

Proposition 13. The phase portrait of X54 for λ ∈ R are those given by
Figure 4.

Proof. The only finite singularities are the origin and the points p± =
±(
√
λ, 0). As before, a blow up at the origin and an analysis of DX54

is enough to describe the local behavior of X54. The origins of the charts are
only infinite singularities. The origin of U1 is a stable node and the origin
of U2 requires a quasihomogeneous blow up, with (α, β) = (1, 2), and an
analysis similarly as we did with X12. The invariance of the x-axis does not
let any limit cycle to exist. Finally, observe that ẋ < 0 if x = 0 and that
X54 is invariant with ϕ(x, y) = (−x, y). �

Proposition 14. The phase portrait of X13 for λ ∈ R are those given by
Figure 2.

Proof. First observe that

ẏ =
[
y +

(
1 +
√
λ+ 1

)
x
] [
y +

(
1−
√
λ+ 1

)
x
]
.
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Knowing this one can see that the only finite singularities are the origin and
the points

p± = ±
(√

2
4
√
λ+ 1,−

(
1 +
√
λ+ 1

)√
2

4
√
λ+ 1

)
.

An analysis of the determinant of DX13(p
±) is enough to describe the local

phase portrait of X13 at these singularities. A blow up at the origin is
necessary. At this case the singularities of the blow up are given by the
zeros of

−λ cos3 θ − λ cos2 θ sin θ + cos θ sin2 θ + sin3 θ = 0,

which are given by

3π

4
,

7π

4
, ± arctan

√
λ and π ± arctan

√
λ.

Therefore a non usual number of bifurcations will occur at the origin. But
they are all very simple and almost never changes the phase portrait. The
infinite singularities are given by the origins of the charts. The origin of U1 is
a stable node. As we did in X12, a quasihomogeneous blow up with (α, β) =
(1, 2) is required for the origin of U2. The nonexistence of limit cycles can
be prove similarly as we did in Proposition 4. Observe that ẋ < 0 if x = 0.
Finally, an analysis of the flow on the straight line y = −(1 +

√
λ+ 1)x is

necessary to complete the phase portraits. �

Proposition 15. The phase portrait of X24 for λ ∈ R are those given by
Figure 4 and 5.

Proof. First note that the zeros of ẏ = 0 are the union of the straight lines
x = 0 and y = −λx. Therefore the only finite singularities are the origin
and the points

p± = ±(λ− 1,−λ(λ− 1)).

An analysis of the determinant of DX24(p
±) is enough to describe the lo-

cal behavior of the singularities p±. A blow up at the origin is necessary.
Similarly to X13 the singularities are given by

3π

4
,

7π

4
, ± arctan

√
λ and π ± arctan

√
λ.

Once more the infinite singularities are the origins of the charts. The origin
of U1 is a stable node. A quasihomogeneous blow up, with (α, β) = (1, 2), is
necessary at the origin of U2 and the analysis is similarly to X12. An analysis
of the straight line y = −λx, as we did at Proposition 8, is necessary at every
case. Finally, follows from the blow up at the origin that for 0 < λ < 1 and
for 1 < λ that the separatrix at the fourth quadrant of the hyperbolic sector
of the origin is always tangent to the line y = −x, which is, respectively,
bellow and above the straight line given by y = −

√
λx, for x > 0. Therefore

the flow at this last straight line must be analyzed to complete the phase
portrait. �
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Proposition 16. The phase portrait of X1, X2, X3, X4 and X5 are those
given by Figure 1.

Proof. No bifurcations occurs at any of this five vector fields. The origin is
always the unique finite singularity. A blow up is enough to describe their
local phase portrait at the origin. The nonexistence of limit cycles follows
from Theorem 2. Every infinite singularity is hyperbolic. Finally, note that
the straight lines y = ±x are invariant by X3, X4 and X5. �

5. Proof of Theorem 3

Proof. The first statement follows from Section 4.

The second statement follows from the phase portrait of X13. Although
it bifurcates from X1 to X3 at λ = 0 its phase portrait does not change
topologically for λ > −1.

To prove the third statement observe that Theorem 1, statement (b), says
that any bifurcation of Xij for λ = 0 is generic. Therefore it is only necessary
to know which bifurcations occurs from each Xij at λ = 0 (the families were
named after this).

The fourth statement follows from the phase portrait of X45 and X54.

Once we know the phase portrait of every family described in Theorem 1
one can prove the fifth statement with an analysis of each family. �

6. Conclusion

To prove in a analytical way every bifurcation that can happen at a given
vector field X sometimes is a very difficult task, see for instance the hun-
dreds of papers about the bifucations of limit cycles and heteroclinic or
homoclinic connections between saddles. Therefore although we struggle
to give as many analytical proofs as possible, to deal in an analytical way
with the number of limit cycles is a very difficult task and thus the appeal
for some numerical computations was inevitable in the system here stud-
ied. Furthermore we point out that the technique of choosing convenient
curves and observing how the flow crosses them has been a good tool for the
analytical proofs of this paper.
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