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TIPS OF TONGUES IN THE DOUBLE STANDARD FAMILY

KUNTAL BANERJEE, XAVIER BUFF, JORDI CANELA, AND ADAM EPSTEIN

ABSTRACT. We answer a question raised by Misiurewicz and Rodrigues con-
cerning the family of degree 2 circle maps F : R/Z — R/Z defined by

b
Fy(z) =2z +a+ —sin(2rz) with X:=(a,b) € R/Z x (0,1).
7r

We prove that if F{™ — id has a zero of multiplicity 3 in R/Z, then there is a
system of local coordinates (, 8) : W — R? defined in a neighborhood W of
A, such that a(A) = B(A) = 0 and F™ — id has a multiple zero with 4 € W

if and only if 83(u) = a?(u). This shows that the tips of tongues are regular
cusps.

INTRODUCTION

Following Misiurewicz and Rodrigues [MRO7], we consider the family of double
standard maps of the circle Fy : R/Z — R/Z defined by

b
Fy(z) =2z +a+ . sin(2rxz) with X := (a,b) € R/Z x [0,1].

If b € [0,1/2), then F) : R/Z — R/Z is expanding and all periodic cycles of F)
in R/Z are repelling. If b € [1/2,1], it may happen that F\ : R/Z — R/Z has
a non-repelling cycle. The multiplier of such a cycle belongs to [0,1]. There is
at most one such cycle. Connected components of the open sets of parameters
A € (a,b) € R/Z x[0,1] for which F) has an attracting cycle are called tongues (see
[MRO7] and [D10]). The period of the attracting cycle remains constant in each
tongue, and is called the period of the tongue

These tongues can be understood as an analogue to Arnold tongues of the stan-
dard maps of the circle. The family of standard maps A, : R/Z — R/Z is given
by

b
Agp(x) = +a+ o sin(2rz) with (a,b) € R/Z x [0,1]

and was introduced by Arnold in [A65] as a family of perturbations of rotation maps
of the circle. If b € [0, 1], each map A, ; is a homeomorphism of the circle and has
a rotation number associated to it. In this case, tongues are connected sets of
parameters for which the corresponding map has a given rational rotation number
p/q € Q/Z. Notice that double standard maps do not have a rotation number
associated to them since they are not homeomorphisms of the circle. Instead,
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tongues in the double standard family can be classified in terms of the type of the
corresponding attracting cycle (see [MROT]).

Let T be a tongue of period p > 1 of the double standard family. The boundary
of T consists of two smooth curves which are graphs with respect to b and intersect
tangentially at the tip Ay € R/Z x (0,1) (see [MR07, MRO8] and Figure 1). If
A € 0T, then Fy has a cycle of period p and multiplier 1. On the one hand, if
A € 9T~{\r}, then the points of the cycle are double zeros of Fy” —id. On the
other hand, for the tip parameter Ar the points of the cycle are triple zeros of
F ;ﬁ —id. Moreover, there is a cusp bifurcation which takes place around Ar (see
[HK91] for an introduction to cusp bifurcations).
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FIGURE 1. The tongues of the family F). The horizontal axis
corresponds to the parameter a and the vertical axis to b. We
draw in black the boundary of the tongue of period 1.

It arises as a relevant topic to understand the shape of a given tongue T near
its tip Ap. This can be studied in terms of the order of contact of its boundary
curves. Let Bj(b) and By(b) be the parametrizations of the boundary curves of T'
with respect to b. If Ay = (ag,bp), then we say that the order of contact of the two
curves at the tip Ap is r if the limit

. |B1(b) — Ba(b)]
b1i>nl;lo |b - b0|T+1

is positive and finite. In the case of the standard family, the order of contact of the
boundary curves at the tip of Arnold tongues depends on the rotation number. If a
tongue has rotation number p/q, with p and ¢ coprime, the order of contact is ¢ — 1
(see [A65]). However, this situation is very different for the double standard family
due to the cusp bifurcation at the tip of its tongues. Misiurewicz and Rodrigues
[MRO7] proved that the order of contact of the boundary curves is 1/2 for the
unique tongue of period 1. This is equivalent to saying that the cusp bifurcation
which takes place around Ar for the tongue of period 1 is generic (see [MR11]). In
[MRO8] they asked whether this property holds for all tongues of the family Fy. In
this article, we answer positively to this question. More precisely, we prove that
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near the tip of any tongue of the double standard family, the two boundary curves
form an ordinary cusp.

Theorem 1. Assume FY"™ —id has a zero of multiplicity 3 in R/Z. Then there
is a system of local coordinates (o, ) : W — R? defined a neighborhood W of X
in R/Z x (0,1), such that a(\) = B(A) = 0 and F;" —id has a multiple zero with

w € W if and only if 53(n) = o®(u).

Our proof relies on a transversality result due to Adam Epstein for families of
finite type analytic maps, which itself relies on an injectivity result of a linear map
acting on an appropriate space of quadratic differentials. Even though the proof
we present is done specifically for the tongues of the family of double standard
maps F), it may be adapted to study cusp bifurcations of other families of holo-
morphic maps. Cusp bifurcations are a common phenomenon in the parameter
planes of real-analytically parametrized families of holomorphic maps (see for in-
stance [Mi92, CFG15, CFG16, NS03]). However, the non-holomorphic dependence
on the parameter hinders the study of the parameter planes of such families. In
this respect, this paper aims to provide a strategy to analyze the genericity of cusp
bifurcations.

The proof of Theorem 1 is structured as follows. In §1, we prove that the maps
F)\ are finite type analytic maps. In §2, we define the functions « and 5. In §3,
we identify the derivatives of those functions at A. In §4, we state and prove the
injectivity result. In §5, we prove that (o, 3) is a system of local coordinates.

Some classical results on quadratic differentials are collected in Appendix A.

NOTATION

If U is a complex manifold, we denote by TU the tangent bundle of U and
for z € U, we denote by T,U the tangent space to U at z. If ¢ : U — C is a
holomorphic function, we denote by d¢ : TU — C the exterior derivative of ¢ (this
is a holomorphic 1-form on U). If F : U — V is a holomorphic map between
complex manifolds U and V, we denote by DF : TU — TV the bundle map
T.U3v— D.F(v) € Tp,)V.

Assume f : U — V is a holomorphic map between Riemann surfaces. If w is a
holomorphic 1-form on V, then f*w := w o Df is a holomorphic 1-form on U. If ¥
is a holomorphic vector field on V', then there is a meromorphic vector field f*9 on
U satisfying Df o f*9 =49 o f.

We will consider various holomorphic families t — ~; defined near 0 in C. We
will employ the notation

dy

y:=7 and 7:= It oo’

1. FINITE TYPE ANALYTIC MAPS

The notion of finite type analytic maps originates in [E1]. Let f: X — Y be an
analytic map of complex 1-manifolds, possibly disconnected. An open set V' C Y
is evenly covered by f if fiy : U — V is a homeomorphism for each component U
of f~Y(V); we say that y € Y is a regular value for f if some neighborhood V 3 y
is evenly covered, and a singular value for f otherwise. Note that the set Sy of
singular values is closed. Recall that x € X is a critical point if the derivative of
f at x vanishes, and then f(x) € Y is a critical value. We say that y € Y is an
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asymptotic value if f approaches y along some path tending to infinity relative to X.
It follows from elementary covering space theory that the critical values together
with the asymptotic values form a dense subset of Sy. In particular, every isolated
point of Sy is a critical or asymptotic value.

An analytic map f : X — Y of complex 1-manifolds is of finite type if

e f is nowhere locally constant,

e f has no isolated removable singularities,

e Y is a finite union of compact Riemann surfaces, and
o Sy is finite.

If Y is connected, we define degf as the finite or infinite number card(f_l(y))
which is independent of y € Y~\Sy. When f : X — Y is a finite type analytic map
with X C Y, we say that f is a finite type analytic map on Y.

We first prove that the maps F) extend to finite type analytic maps.

1.1. Preliminaries. Set T := C/Z and A :=T x C*. Let F': A x T — T be the
holomorphic map defined by

b
F(\z)=2z+a+ —sin(2rz) with X:=(a,b) € A.
7r
For A € A, let F) : T — T be the holomorphic map defined by
Fy(z) := F(\ 2).

It will be convenient to consider the global coordinate w : T — C* defined by
w(z) = e*™*. Note that it is an isomorphism. Thus, adding two points denoted
z = 4ioco (or w = 0) and z = —ico (or w = o), T may be compactified into a
Riemann surface T isomorphic to the Riemann sphere.

We will prove that for A € A, the map F : T — T is a finite type analytic map
on T.

1.2. The singular set. Fix A := (a,b) € Aand set f:=F,;: T — T. Note that

wo f — eZmaw2eb(w71/w)

and
F*(dw) = 2™ =1/%) (hp? 4 2 + b) duw.
In particular, f has two critical points counting multiplicities: the solutions of
bw? + 2w+ b =0, i.e., the points ¢t € T such that
4 —1+v1-0b2

w(c™) = —
If b # 1, those are simple critical points of f. We denote by Cy = {¢T,c¢™} C T the
set of critical points of f and by Vy := f(Cy) C T the set of critical values of f.

Lemma 2. The singular set Sy is equal to V¢ U {%ioco}.

Proof. We already identified the set of critical values of f. Note that +ioco are
singular values since those points are omitted values. It is therefore enough to
show that f does not have any asymptotic value in T.

If v € T is an asymptotic value, then there exists a curve v : [0,1) — T, such
that v(t) — +ico and fo~(t) = v as t — 1. We assume that y(¢t) — +ico. The
proof for the case y(t) — —ico is analogous.
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It is convenient to lift via the canonical covering w : C — T := C/Z. Choose
A € C such that w(A) = a. Let f: C — C be defined by

JE(Z):QZJrAJrésin(QﬂZ) sothat wo f=fom.
T

Let I' : [0,1) — C be a lift of v : [0,1) — T, i.e., satisfying w o' = 7. Then, fol
is a lift of f o, thus fo I'(t) converges in C as t — 1.

Set X :=Re(T") : [0,1) > Rand Y :=Im(T') : [0,1) — R. Then,
727TYeZ7TiX _ e27TY6727TiX

2i

e

= b
foll =2(X +1iY)+ A+ —sin(2aT"), sin(27al) =
T
and Y (t) — +oo as t — 1. It follows that as ¢t — 1,
. b .
T ~ 92X _ 27Y (t) 727r1X(t).
FoT(e) ~2X (1) — ™ e

We can distinguish 2 cases. If there exists a sequence {tx }ren converging to 1 with
{X(tk>}keN bounded, then

= b
|f OF(tk)| ~ EGQWY(%) k?oo +o00.

Otherwise, X () — £oo as ¢ — 1 and there exists a sequence {t}ren converging
to 1 with X (¢;) € Z for all k € N, so that

for(tk)Nzx(tk)+i4ie2”(tk> — .
m

k—+oco

In both cases, the sequence {f o F(tk)}keN cannot converge in C. ]

Corollary 3. The map f : T — T is a finite type analytic map on T. More
precisely, f: T~ f~1 (V) — T~Vy is a covering map.

2. SPLITTING TRIPLE ZEROS

In the remainder of the article, we fix a parameter A := (a,b) € R/Z x (0,1)
such that FY™ —id has a triple zero € R/Z. We set f := F) : T — T. The point
x is periodic for f with period p dividing n. For k > 0, we set z, := f°*(z) and we
denote by (z) := {zg,21,...,2p_1} the cycle of z.

Since f : R/Z — R/Z preserves the orientation, the multiplier of f°P at z is
necessarily 1 and there is a local coordinate ¢ : (T,z) — (C,0) vanishing at =
satisfying
(1) ((2) =C(2) and Co fP=(++0(C).

According to the Weierstrass Preparation Theorem, there exist a neighborhood

W1 C A of A\, a neighborhood Wy C C of 0 and analytic functions A : W; — C,
B: Wy —-C,C:W; —Cand g:W; x Wy — C such that for u € Wy,

(2) CoFP — (= Pu(¢) - 9(n, Q)

with

(3) A(N) =B =C(\) =0, g1 =1+0(¢)
and

(4) Pu(Q) = A(n) + B()¢ + C(u)¢* + ¢
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The polynomial Py has a zero of multiplicity 3 at 0, and as p varies in W1, this zero
splits in three zeros (counting multiplicities) of P,. When p € R/Z x (0,1), the
map F;" —id commutes with z — Zz, so that the polynomial P, has real coefficients.
For such a parameter u, a multiple zero of P, is necessarily real.

For any p € A, the function ¢ o F? — ¢ vanishes at the periodic points of F, of
period dividing p, and so, divides ( o Fl‘j" — ¢ which vanishes at the periodic points
of period dividing n. In addition, if n = mp, then ( o f°" — ¢ = m¢3 + O(¢?). So,
there is an analytic function h : Wy x Wy — C such that for u € Wy,

CoF™ = (¢ =Pu(Q) - h(p,¢) with h(X,¢) =m+O(¢?)
Since f only has two critical points in T, it has a single non-repelling cycle, that is,
the cycle (z). All other cycles of f in R/Z are repelling. Shrinking W; if necessary,
it follows that for u € W1, the function (o F™ — ¢ has a multiple zero in R/Z if and
only if the polynomial P, has a multiple zero in R/Z. According to the previous
discussion, this is the case if and only if P, has a multiple zero.

Let a: W7 — C and 8 : W7 — C be defined by

_C3 BC A _C* B
a.:§—7+§ and 5.:?—3.
Then,
discriminant(P,) = 1083 () — 1082 ().

So, if u € W1y, the polynomial P, has a multiple zero if and only if 8%(u) = o ().

In order to prove Theorem 1, it is therefore enough to show that («, 8) is a system
of local coordinates near \. For this purpose, we shall show that the restrictions of
da and dfB to Ty A are linearly independent. Since A, B and C vanish at A,

1 1
da‘TAA = gdA‘TAA and d6|TAA = _gdB|TAA'

It is therefore enough to show that the forms dA|p,no and dB|p,a are linearly
independent.

3. IDENTIFYING THE DERIVATIVES

Here, we identify dA(v) and dB(v) for v € TyA. First, to cach v € TxA, we shall
associate a meromorphic vector field 9, on T having simple poles along CyU{%ioco},
such that for all z € T\Cy,

Df od,(z) =Dy .F(v,0).
Second, for k € [1,p], let { : (T, zr) — (C,0) be the local coordinate vanishing at
x), defined by
G 1= Co [0,
Our identification goes as follows.
Proposition 4. Let g4 and qp be quadratic differentials, defined and meromorphic

near (x), such that qa — (d¢x)?/Ck and qp — (d¢k)?/¢? are holomorphic at xy, for
all k € [1,p]. Then, for all v € T)A,

P P
dA(v) = Zresidue(qA ® Yy, x) and dB(v) = Z residue(gp ® Yy, T).
k=1 k=1

In the remaining parts of this section we prove Proposition 4.



TIPS OF TONGUES IN THE DOUBLE STANDARD FAMILY 7

3.1. Meromorphic vector fields. Assume v € TyA and z € T~Cy. Then, the
derivative D, f : T.T — TyT is an isomorphism and D) . F'(v,0) € Ts(;)T. Let
¥, be the vector field defined on T\C; by

0y(2) = (D, f) " (Dx,.F(v,0)) € T.T.

Lemma 5. For all v € T)\A, the vector field 9, is holomorphic on T\Cy, mero-
morphic on T, vanishes at z = £ico and has at worst simple poles along Cy.

Proof. The map v + 9, is linear. So, it is enough to prove the result for v, := d/da
and v, := d/db. We have

9 27T1627riaw26b(w—1/w) i _ 27Tiw2 i
Yo 2miagb(w—1/w) (b2 + 2w +b) dw  bw? + 2w + bdw
and ‘
g eZman(w _ 1/w)eb(w71/w) i 7 ’LU3 —w i
v e2miagb(w—1/w) (2 + 2w + b) dw  bw? + 2w + b dw
Those two vector fields have the required properties. O

Denote by T¢ the space of meromorphic vector fields on T which are holomorphic
on T\Cy, vanish at +ioco and have at worst simple poles along C;. In other words,

7o e )
Let ©f : TAA — T; be the linear map defined by
Of(v) == 1y.
Let 7 € T be the radial vector field

Note that 7 — f*7 belongs to Ty. Indeed,

. bwd + w? 4+ bw d

T—ffr=————
bw? + 2w +b dw

Lemma 6. The space T¢ is the direct sum of the image of © ¢ and the line spanned
by T — f*T:

e Ty

T =Im(0y) & Vect(r — f*71).

Proof. The dimension of T¢ is 3. Thus, it is enough to show that the three vector
fields v,,, ¥, and 7 — f*7 are linearly independent. Equivalently, it is enough to
show that the three functions

w?, wl—w and bw®+w?+bw
are linearly independent. This is true since b # 0. O

Assume now v € T A and let t — A; € A be a curve such that A=v. Let t — fi
be the family of maps defined by

fit=F\:T—T.
Then, for each z € T,
f(2) = Dy.F(v,0)=D.fod,(2) with ©,:=0;(v)cT;.
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Lemma 7. For allk > 1,
dftOk
dt le=0

Proof. The proof follows from an elementary induction on k£ > 1 using the following
fact: if hy = g o fy with f =Df o ¢ and § = Dg o 7, then

h=gof+Dgof=Dgorof+DgoDfod =Dho(f*r+9). O

Note that the poles of 97 are the critical points of f and their iterated preimages
(up to order n —1). The two critical points of f are in T\R/Z, and so are all their
preimages. Therefore, 97 is holomorphic in a neighborhood of R/Z. In particular,
it is holomorphic near the parabolic periodic point © € R/Z.

3.2. Polar parts of quadratic differentials. Our identification of the derivatives
dA|r, s and dB|r, A relies on the use of quadratic differentials (see Appendix A for
basics regarding quadratic differentials). Recall that ¢ : (T,z) — (C,0) is a local
coordinate vanishing at x such that

Cofr=¢++0(C).

We shall use the quadratic differential (d¢)?/¢ and (d¢)?/¢? which are defined and
meromorphic near x in T.

Following §A.7, if Z C T is a finite set, if ¢ is a quadratic differential, defined
and meromorphic near Z, and if ¥ is a vector field, defined and meromorphic near
7, we shall use the notation

(q,9), = Z residue(q ® 9, z).
2€Z

If ¢ has at worst simple poles along Z and if 6 is defined on Z with 6(z) € T, T for
z € Z, we shall use the notation

<qa 9>Z = <qa 19>Z

where ¥ is any vector field, defined and holomorphic near Z, with 9¥(z) = 6(z) for
z € Z. The result does not depend on the choice of extension.

Lemma 8. For all v € T)A,
2 2
dA(v) = <(d<) ,195> and dB(v) = <(dC2) ,ﬁﬁ> .
¢ . ¢ @

Proof. According to Equations (2), (3) and (4),

Cofi” = ¢ = (AN) + BA)C+O(C?) - (1+0(6%).
Taking the derivative with respect to ¢ and evaluating at ¢ = 0 yields

d¢ o DfP o 9P = dA(v) + dB(v)¢ + O(¢?).

According to Equation (1),
CofP=(+0(¢% sothat d(oDf” = (1+0O(¢%))dC.
As a consequence

d¢(9%) = dCoDfP o 9% + O(¢?) = dA(v) + dB(v)¢ + O(¢?).
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Thus,

dA(U):residue<dC(£9 de0) g, ) <(d§) , >x

and similarly

dB(v) = residue <d<£1295) d(j,x) = <(d<<2)2719£>, ) O

Rather than working near x with the vector field 9%, it will be convenient to

v

work along the cycle (x) with the vector field ¥,. Recall that for k € [1,p], the
local coordinate (. : (T, zx) — (C,0) vanishes at x and is defined by

G = (o forh.
Lemma 9. For all k € Z/pZ,

. (de+1)2> N CIC) ((de+1)2> ~ (dG)®
f < Cr1 Ck ¢ f ¢

Gt

are holomorphic near xj.

Proof. If k € [1,p — 1], then (i = (r+1 0 f, so that

. (de+1)2>_(de)2 n *<(de+1)2>_(de)2
f(Ck+1 G d f G

If k= p, then ¢, = Cand (10 f = (o fP = (1+ O((2))¢- As a consequence,
F1d6) = (1+0(6)dGy,

L (@) o 0GR ooy (46,)?
f( R )“*O(Cp)) , M ( a >(”O(Cp)) -

Gt

Proof of Proposition 4. Recall that {;, = (. According to the previous lemma, for
all k € Z/pZ,

(d¢e)?  (d¢)?
Ck ¢
is holomorphic near z. By assumption, g4 — (d¢x)?/¢ is holomorphic at xy. It

follows that (f°*)*qa — (d¢)?/¢ is holomorphic near z.
Since (f°*¥)*9, is holomorphic near x, we therefore have

(fok)*

d 2
<<§)7<f0'“>*m> — () aa (F4)9,). = {aa ),
AS a consequence
2 p—1 p—1
dA(v <(d( ’Z Ok)*ﬁv> (qa,? = (qa, %y ><x>.
k=0 s k=0

This proves Proposition 4 for dA. The proof for dB is similar. O
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4. INJECTIVITY OF Vj

In order to prove Theorem 1, we need to use the global properties of the map f.
Up to now, we only used the local properties near the cycle. For this purpose, it is
important that the quadratic differentials g4 and gp which appear in Proposition
4 are globally meromorphic on T. Here, we define such quadratic differentials g4
and ¢p and we prove that the linear map

Vf =id — f,

is well defined and injective on the vector space Vect(ga, ¢p) spanned by g4 and
qaB-

4.1. A space of quadratic differentials. Denote by Q(T) the space of mero-
morphic quadratic differentials on T which have at worst simple poles at z = £ioco.
Given Z C T, denote by Q(T; Z) C Q(T) the subspace of quadratic differentials
which are holomorphic outside Z. Finally, we denote by Q'(T;Z) C Q(T; Z) the
subspace of quadratic differentials having at worst simple poles.

Lemma 10. Any polar part of quadratic differential along (x) may be realized as
the polar part of a quadratic differential in Q(T; (x)U{c+}) having at worst a simple
pole at ct.

Proof. For all k € [0,p — 1], the quadratic differentials

(dw)? (@op o (dwp

(w —w(zy)) (w —w(ct))w’ (w —w(ack))zw (wfw(wk))j

for j >3

belong to Q(T; (z) U {c*}). The first has a simple pole at zj, the second has a
double pole at xj, and the third has a pole of order 5 > 3 at zp. Thus, they
generate the space of polar parts at xy. (I

From now on, we assume that ¢4 € Q(T; (z) U{c"}) and ¢p € Q(T; (z) U{cT})
have at worst simple poles at ¢* and that g4 — (d(x)?/¢ and g — (dx)?/¢} are
holomorphic at zy, for all k € [0,p — 1]. We set

Qy = Vect(qa, gB)-

4.2. Pairing quadratic differentials in Q; with vector fields in 7. Recall
that

T = w% and T — f*(1) € Ty.
Lemma 11. For all g € Qy,
<Q7T_f*7—>(:t> =0.

Proof. Assume ¢ € Q¢. According to Lemma 9, ¢ — f*q¢ is holomorphic near (z).
Since 7 is also holomorphic near (z), and since f is a local isomorphism near (z),

<q7f*7><w> = <f*qaf*7'><l-) = <q7T>(z> : =
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4.3. Pushing forward quadratic differentials in Qf. According to Corollary
3, £+ TNf71(Vf) = T\Vy is a covering map. Here, we show that for all ¢ € Oy,
the following series defines a meromorphic quadratic differential on T:

(5) fuq = > g'q

g inverse branch of f
The (minor) difficulty is that the degree of the covering map is not finite, and that
q may fail to be integrable on T since it may have multiple poles along (x). So,
we cannot apply directly the results presented in Appendix A. The reason why the
series in Equation (5) converges is that ¢ is locally integrable near the essential
singularities of f, i.e., the points +ico.

Lemma 12. If ¢ € Qy, the series in Equation (5) converges locally uniformly in
T\(Vf U (x)) Its sum f.q is a meromorphic quadratic differential on T.

Proof. Assume g € Qy. Let V C T~ (Vy U (z)) is compactly contained in T~ (z).
Then, U := f~1(V) is compactly contained in T~ (z). In particular, ¢ is integrable
on U. In addition, f : U — V is a covering map. It follows that the series in
Equation (5) converges uniformly on V and that f.q is integrable on V. This
shows f.q is holomorphic on T~ (Vf U (:r}) and has at worst simple poles at +ico
and on Vy.

To see that f.q is meromorphic near z, k € [1,p], let V' C T\Vy be a topological
disk containing 3. Then, U := f~(V) is the disjoint union of a topological disk U’
containing xy_1 and a open set U” compactly contained in T~ (x). Then, (flu)«q
is holomorphic. In addition, f : U’ — U is an isomorphism so that (f|y+).q — and
thus f.q = (f|lu/)«q + (f|lu’)«q — is meromorphic near xzy. O

We may therefore consider the linear map
Vi=1id— f.: Qf — Q(T).

It will be convenient to set
Y :={ct}uU V.

Lemma 13. We have the inclusion
Vi(Qr) € QY(T;Y).

Proof. Assume g € Qy. As mentioned in the proof of the previous lemma, f.q is
holomorphic on 'JI\(Vf U (x)) and has at worst simple poles at +ico and on Vy.
In addition, for k € [1,p], the polar part of f.q at zx is equal to the polar part of
g*q where g is the inverse branch of f sending zj to x;_1. According to Lemma 9,
q — f«q is therefore holomorphic near (z). It follows that ¢ — f.q € QY(T;Y). O

4.4. Injectivity of V. An observation due to the fourth author [E2] is that the
linear map Vy is injective on Q¢, and that this is the key to the proof of Theorem
1.

Proposition 14. The linear map V¢ : Qp — Q(T) is injective.

Proof. We must prove that f.q # ¢ for ¢ € Qp~{0}. If g were integrable on
T, the result would follow immediately from Proposition 21, since we would have
Il feqllrery < llgllor(r)- Since ¢ may have double poles near (z), it may fail to be
integrable on T. In that case, we may proceed as follows.
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Assume g € Qy~{0}. For € > 0 small, let V. C T be the union of topological
disks

p
Vo= J{IGl <}
k=1

Set U. := f~Y(V.) ¢ T. Then, (x) C U. and so, q is integrable on T~U.. As a
consequence,

I feallreravey < llallzrerao.)-
Similarly, for &’ < ¢,
Il feallr v vy < llallorw.uv.)-
As a consequence, the function
€ ||QHL1('H‘\U5) - ”f*QHL‘(’Jl‘\VE)

is positive and decreasing. In particular, it has a positive limit. Note that
lallrervny = lalleravy = llallorvesvn) = lallzrwo vy < llallr v,
We deduce from the following lemma that f.q # q. a
Lemma 15. For any q € Qy,
lim flq]| 1 (v v = 0.
Proof. Since ¢ o f°P = ¢ + O(¢3), there is a constant x; such that
[Co fP > [¢] = mal¢f

Since ¢ has at worst a double pole at x, there is a constant 2 such that for |(]
small enough
|d¢?|

lg] < ko .
I¢CI?

Note that for € > 0 small enough,
VU = {|¢| < e}nfl¢o fP| <e} c {e —rie® < || < e}
Thus,

2 €
rdrdt 1
. . P P
= ||Q||L1(VE\U5) = /0 /ElilEs k2 r2 The 1 — K12 e—0

5. LINEAR INDEPENDENCE

We may now complete the proof that dA|r, o and dB|r, s are linearly indepen-
dent. According to Proposition 4, for all v € T)\A,

dA(v) = <qA,9f(U)><x> and dB(v) = <qB,@f(v)>(m>.
According to Lemma 6,
Ty =Im(©y) ® Vect(r — f*7).

Showing that dA|r,» and dB|r,a are linearly independent therefore amounts to
proving that for all ¢ € Q¢~{0}, there exists ¥ € T; such that (g, ) (@) # 0.
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5.1. Guiding vector fields. Set Z := Cy U Vy and denote by TZ the space of
maps & : Z — TT satistying £(z) € T, T for all z € Z.

Lemma 16. For any ¥ € Ty, there exists a unique & € TZ such that for any
vector field &, defined and holomorphic near Z with £(z) = &y(z) for z € Z, the
vector field ¥ + & — f*¢ is holomorphic and vanishes along Cy.

Proof. Fix ¥ € Ty. Let us first prove the uniqueness of {y € TZ. Assume &; and &
are two vector fields, defined and holomorphic near Z, such that ¥ 4+ &; — f*¢; and
¥4 & — f*& are holomorphic near Cy. Then, (£ — &) — f* (&1 — &2) is holomorphic
and vanishes along Cy. As a consequence, Df o (& — &) — (& — &) o f vanishes
on Cy. Since Df o (§&1 — &) vanishes on Cy, this forces & — & to vanish on Vy. In
that case, f*(&1 — &2) vanishes on C; and so, & — & vanishes on Cy. This shows
the uniqueness of £y € TZ.

This also proves that if ¥ 4§ — f*¢ is holomorphic and vanishes along C; for
some vector field &, defined and holomorphic near Z with £(z) = &y(z) for z € Z,
then ¥ +¢ — f*¢ is holomorphic and vanishes along C; for any vector field £, defined
and holomorphic near Z with £(z) = &y(z) for z € Z.

Let us now prove the existence of & € TZ. Note that Df o4 is a map from
T~Cy to the tangent bundle TT. Note that it is not a vector field since for z € T,
the vector D f 01)(z) belongs to T,)T. However, since 9 has at worst simple poles
along C; and since D f vanishes on Cy, the map D f o ¥ extends holomorphically to
T. Set

& (f(cF)) :=Df o d(c™).

Next, let £ be any vector field, defined and holomorphic near V;, coinciding with
&9 on Vy. Then, ¥ — f*¢ is holomorphic near C; and we may set

E9(c*) = (0 = fE)(c¥). .

Recall that Y := {¢"} UV; C Z. It will be convenient to consider the linear
map Z¢ : Ty = TY defined by

27 (9) = Eoly.
Lemma 17. The map Z5 : T — TY is an isomorphism.

Proof. Since the dimensions of 7y and TY are both equal to three, it is enough to
show that the map is injective. Assume ¥ € Ty and &y vanishes on {¢*} UVy. Let
& be a vector field, defined and holomorphic near Z, which coincides with &y on Z.
We may assume that £ identically vanishes near {¢t}UVy. Then, 94 f*¢—& = 9—¢
is holomorphic and vanishes on Cy. This shows that ¥ is holomorphic near Cy and
vanishes at ¢t. As a consequence, 9 is globally holomorphic on T, and vanishes at
three points: ¢*, +ico and —ico. So, ¥ = 0. (]

5.2. From the cycle to the critical set. We may now transfer the local com-
putations done near the cycle (z) to local computations done near the critical set
Y.

Lemma 18. For all ¥ € T¢ and all ¢ € Qy,

(0:9) @y = (V50, Ef () -
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Proof. Let £ be a vector field, defined and holomorphic near Z, coinciding with
&9 = Z5(9¥) on Z. Then, 9+ & — f*¢ is holomorphic near Cy. In addition, since
V rq is holomorphic near ¢,

<qu7€19>y = <q - f*q7€>Z = <qa £>Cf - <f*Q7£>Vf
= <Q7§>Cf - <q’f*£>cf
=g, —19>cf = <q7’l9><m> :

In the second line, we used the fact that the only poles of ¢® f*¢ in f~!(V¢) belong
to Cy. For the last equality, we used the fact that ¢ ® 9 is a globally meromorphic
1-form on ']/I\‘, whose poles are contained in C¢ U (z), and that the sum of all residues
of a globally meromorphic 1-form on a compact Riemann surface is 0. (]

5.3. Completion of the proof. Assume by contradiction that dA|rt, o and dB|r, o
are not linearly independent. Then, there is a ¢ € Q¢~{0} such that for all ¥ € Tz,

0= (q,9) ) = (Vg Zr(9))y-

According to Lemma 17, the map Zf : 7y — TY is an isomorphism. In particular,
it is surjective. It follows that for all £ € TY,

(Via. &)y =0.
As a consequence, V¢q is holomorphic near Y and thus, has at most three simple
poles at ¢~ , +ico and —ico. A non zero quadratic differential on T has at least four
poles, counting multiplicities. Thus, Vg = 0.
According to Proposition 14, the map Vy : Qf — QYT;Y) is injective. It
follows that ¢ = 0. Contradiction.
This completes the proof of Theorem 1.

APPENDIX A. QUADRATIC DIFFERENTIALS

A.1. Meromorphic quadratic differentials. A quadratic differential on a Rie-
mann surface U is a section of the square of the cotangent bundle T*U ® T*U.
We shall usually think of a quadratic differential ¢ as a field of quadratic forms.
In particular, if ¢ is a vector field on U and ¢ is a function on U, then ¢(9) is a
function on U and q(¢¥) = ¢2q(V).

If ¢ : U — C is a coordinate, we shall use the notation (d¢)? = d¢ ® d¢ - not
be confused with 1-form d(¢?). Then, a quadratic differential ¢ on U is of the
form ¢ = ¢ (d¢)? for some function ¢. We say that ¢ is meromorphic on U if ¢ is
meromorphic on U. In that case, the order of ¢ at a point « € U is ord,q := ord, ¢,
i.e., 0 if ¢ is holomorphic and does not vanish at =, k > 1 if ¢ has a zero of
multiplicity k at x, and —k < —1 if ¢ has a pole of multiplicity £ at x.

A.2. Pullback. The derivative Df : TU — TV of a holomorphic map f: U — V
naturally induces a pullback map f* from quadratic differentials on V' to quadratic
differentials on U:

ffq:=qoDfJ.
Lemma 19. If f : (U,x) = (V,y) is holomorphic at z, and q is meromorphic at

y = f(x), then
2 +ord,(f*q) = deg, f - (2 + ordyq).
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Proof. Choose local coordinates z : (U,z) — (C,0) and w : (V,y) — (C,0) such
that wo f = zF, with k := deg, f. If ¢ = ¢ (dw)?, then f*q = ¢ o f - (kzF~1dz)2.
Thus,

2+ord,(f*q) =2+ ordy(po f) +(2k —2) =2k + k-ordy¢p =k - (2+ ordyq). O

A.3. Pushforward for finite degree covering maps. Assume f : U — V is
a finite degree covering map. If ¢ is a quadratic differential on U, we define a
quadratic differential f,q on V by

feq = > g*q.
g inverse branch of f
If ¢ is holomorphic on U, then f,q is holomorphic on V.
Lemma 20. Assume U := ﬁ\{x} and V := ?\{y} are punctured disks, f: U —

V' is a covering map ramifying at x with local degree deg, f and q is meromorphic
at x. Then, f.q has at worst a pole at y and

2 4+ ord,q
deg, f

Proof. The group of deck transformations of f : U — V is a cyclic group of order
deg,, f. Note that

2 +ordy(f.iq) >

f*(feq) = > h*q,

h deck transformation of f

and ord;h*q = ord,q for all deck transformations h, so that

ord, f*(fsq) > ord.q.

Then,

2 4 ord, f*(f«q) S 2 + ord,q
deg,f = deg,f

A.4. Integrable quadratic differentials. If ¢ is a quadratic differential on U, we

denote by |g| the positive (1,1)-form on U defined by its action on pairs of vector
fields (1, 12) as follows:

2+ ordy(f.q) = O

1 . 1 .
|q|(1913192) = Z‘q(ﬁl - 1192)‘ - Z|q(191 + 1192)|.
If ( : U — C is a coordinate and ¢ = ¢ (d¢)?, then
i _

lal = I6 - 54¢ A dC.

We shall say that ¢ is integrable on U if
lall oy = [ lal <.
U

Note that ¢ is integrable in a neighborhood of a pole if and only if the pole is simple.

If f:U — V is an isomorphism and ¢ is an integrable quadratic differential on V/,
then f*q is integrable on U and || f*q||z1 vy = llgll 1 (v)-
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A.5. Pushforward for infinite degree covering maps. Assume f: U — V is
an infinite degree covering map. If ¢ is an integrable quadratic differential on U,

we may still define
fuq = > 9°q-

g inverse branch of f

Indeed, the series converges in L], since if V/ C V is a topological disk, so that
the inverse branches g : V/ — U of f are defined on V', and if U’ := f~1(V’), then

Z lg*allzr vy = llallr @y < llallorw)-

The limit of a sequence of holomorphic functions converging in L{ . is itself holo-

morphic. It follows that if ¢ is holomorphic on U, then f.q is holomorphic on
V.

A.6. The Contraction Principle.

Proposition 21. Let f : U — V be a covering map and let q be a holomorphic
integrable quadratic differential on U. Then, ||feqllzrvy < llgllor@y and equality
holds if and only if either ¢ = 0, or the degree of f is finite and f*(f.q) = deg(f)-q.

Proof. The proof is an immediate application of the triangle inequality: for any
topological disk V’ C V, we have

f*q=/‘ g*qé/ g'ql = /g*qZ/ qls
L= [ o< [ S =3 [ wd=[

where the sums range over the inverse branches g : V/ — U of f. It follows that

/If*qlﬁ/ |<Z|:/ lq]
v F=1(V) U

with equality if and only if for all inverse branches g of f, we have g*q = 94 fiq
for some function 1, : V' — [0,1] satisfying - 1 = 1. Setting ¢(g(y)) = ¥g(v),
we see that ¢ = ¢ f*(f«q) for some function ¢ : U — [0,1]. Since q and f*(f.q)
are holomorphic, either ¢ = 0, or the function ¢ is constant, let us say equal to
c € [0,1]. Since 3, 1y = 1, we have that deg(f) - ¢ =1, which forces the degree of
f to be finite with f*(f.q) = deg(f) - ¢. O

A.7. Pairing quadratic differentials and vector fields. If ¢ is a quadratic
differential on U and ¢ is a vector field on U, we may consider the 1-form ¢ ® ¢
defined on U by its action on vector fields 7:

g2 9(r) = i(q(ﬁ—kT) —g(0— 7).

Note that if ¢ = ¢ (d¢)? and ¥ = d/d(, then ¢ ® ¥ = ¢¢p d(.
If z € U, and if ¥ and ¢ are meromorphic on U, we set

(g,9), := residue(q @ 9, z).

If ¢ has at worst a simple pole at x, then (g, ?), only depends on 8 := ¥(0), and
we use the notation

<Q79>I = <q, 19)1 .
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Lemma 22. Let U := U~{z} and V = V~{y} be punctured disks, let f : U — V.
be a covering map ramifying at x, let ¢ be a meromorphic quadratic differential on
U and let 9 be a meromorphic vector field on U. Then

(fsa,9), = (q, f*9), .
Proof. Let v C V be a loop around y with basepoint a. Then

/(f*q)®79=2/ (g*q)®19=2/ q®f*19=/ q® [0,
¥ g J~{a} g Ja(r~{a}) =t

where the sum ranges over the inverse branches g of f defined on y~{a}. O
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