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ON THE EXISTENCE OF SYMMETRIC BICIRCULAR CENTRAL
CONFIGURATIONS OF THE 3n—-BODY PROBLEM

MONTSERRAT CORBERA AND CLAUDIA VALLS

ABSTRACT. In this paper we consider central configurations of the planar 3n—body problem consisting
of n masses at the vertices of a regular n—gon inscribed in a circle of radius r and 2n masses at the
vertices of a second (not necessarily regular) concentric 2n—gon inscribed in a circle of radius ar which
are symmetric in the sense that the set of positions of the 3n masses and the set of the corresponding
masses are invariant under the action of a finite subgroup of O(2). There are two different types of
such configurations. In the first type, called regular bicircular central configurations of the 3n—body
problem, the second 2n—gon is regular, n of the vertices of the second n—gon are aligned with the
vertices of the first regular n—gon and the masses at the vertices of this 2n—gon alternate values.
In the second type, called semiregular bicircular central configurations of the 3n—body problem, the
second 2n-gon is semiregular and the masses at its vertices are all of them equal. A semiregular
2n—gon has n pair of vertices symmetric by a reflection of an angle 8 with respect to the axis of
symmetry of the first regular n—gon. Our aim is to analyze the set of values of the parameter a for the
regular 2n—gon and of the parameters (a, 8) for the semiregular 2n—gon providing symmetric bicircular
central configurations. In particular, for all n > 2 we prove analytically the existence of symmetric
bicircular central configurations with a (respectively (a,()) satisfying some particular conditions.
Using either computer assisted results or numerical results we also describe the complete set of values
of a (respectively, (a,3)) providing symmetric bicircular central configurations for n = 2,3,4,5 and
we give numerical evidences that the pattern for n > 5 is the same as the one for n = 5.

1. INTRODUCTION

We consider the planar Newtonian N-body problem

N
mi qr = — Z Gmpm T — 9 kE=1,...,N,
Mag — q4f?
J=1,5#k

where q; € R? is the position vector of the point mass my, in an inertial coordinate system and G
is the gravitational constant, which can be taken equal to one by choosing conveniently the unit
of time. A configuration of the N bodies is called central if the acceleration vector of each body
is proportional to its position vector with respect to the center of mass with the same constant of

proportionality. In other words, given my,...,my a configuration (qu,...,qy) with q; # q; for all
1 # j is central if there exists a constant A such that
al q q
Y — Qi
Z m]ﬁ:)‘(qk’_c)v k‘:l,...,N, (1)
=tk T

where ¢ = Zszl mg g/ Zi;vﬂ my, is the center of mass. For a classical background on the study of
central configurations, see for instance [16] and [5]. In this paper we deal with symmetric central
configurations having the masses at the vertices of two concentric polygons.

A (regular) polygon of n—vertices is usually called a (regular) n—gon. Concentric n—gons are called
nested when the vertices of all n—gons are aligned and they are called twisted when the vertices of at
least one of the n—gons is rotated by an angle of 7/n with respect to the other ones.

The simplest central configuration of the planar Newtonian N-body problem consists of N equal
masses at the vertices of a regular N—gon. At our knowledge the first author studying central
configurations having the masses at the vertices of two concentric n—gons was Hoppe [7] in 1879. In
his work Hope showed that if n equal masses are placed at the vertices of a regular n—gon, then n
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other equal masses may be placed at the vertices of a second nested /twisted regular n—gon in such a
way that the resulting configuration is central (see for more details [9]). Since then several authors
have studied central configurations having the masses at the vertices of concentric regular n—gons.
Assuming that the masses on each n—gon are equal and masses on different n—gons could be different,
Klemplerer [8] in 1967, gave the relation between the ratio of the masses and the ratio of the radii
for two twisted regular n—gons central configurations when n = 2,3,4. More recently Moeckel and
Simé in [11] proved that for any n and for every ratio of the masses there are exactly two nested
regular n—gons central configurations one with the ratios of the sizes of the n—gons less than one and
the other with the ratio of the sizes greater than one.

There are also several works studying central configurations with kn masses at the vertices of k
concentric n—gons such that all the masses on the same n—gon are equal and masses on different
n—gons could be different. These central configurations are called a crown of k rings of n bodies or
simply a (k,n)-crown in [2], but since only few authors use this nomenclature we will not use it here.
Llibre and Melo in [3] proved the existence of central configurations of three twisted regular n—gons
with n = 2,3 and of four twisted regular 2—gons. Corbera and Llibre in [4] proved the existence of
central configurations of p nested regular n—gons for all p > 2 and n > 2 (see also [6]). Zhao and
Chen in [19] proved the existence of central configurations of the (pn + gn)-body problem with pn
masses at the vertices of p nested regular n—gons and gn masses at the vertices of g twisted regular
n—gons. Barrabés and Cors in [2] derived the generic equations of central configurations having kn
masses at the vertices of k concentric regular n—gons. They also prove the existence of at least a two
twisted regular n—gons central configuration for any mass ratio and for any n > 1 and they give the
exact number and location of two twisted n—gons central configurations for n = 3, 4.

Up to here it is assumed that the masses on each n—gon are equal and masses of different n—gons
could be different and that the n—gons are either nested or twisted by an angle of 7/n. Without
imposing the condition that the masses on each n—gon are equal Zhang and Zhou in [20] proved
that if the configuration with 2n masses at the vertices of two nested/twisted n—gons is central then
the masses on each n—gon must be equal. Assuming that the n—gons can be twisted by an angle
0 € [0,7/n] Yu and Zhang in [17] proved that if a configuration having n equal masses at the vertices
a regular n—gon and n additional masses at the vertices of a second concentric n—gon rotated by an
angle of 6 with respect to the first one is central, then the angle § must be either 0 or 7 /n.

The configurations considered in all the previous papers are highly symmetric. Montaldi in [12],
using variational arguments, proved that for every possible symmetry type given by a finite subgroup
of O(2) and for any symmetric choice of the masses there is at least a central configuration. In
particular he gives an alternative proof for the existence of nested/twisted regular n—gons central
configurations when all the masses on each n—gon are equal and masses of different n—gons could be
different. He also proved the existence of symmetric central configurations of concentric polygons
that are combinations of nested /twisted regular n—gons and semiregular 2n—gons. Notice that in this
last cast the number of masses on each concentric polygon is not necessarily equal. See below for a
more precise explanation of Montaldi’s work.

There are some other works studying central configurations with the masses at the vertices of
concentric polygons having different number of vertices. Yu and Zhang in [18] proved that if a
configuration with n-equal masses at the vertices of a regular n—gon and ¢ equal masses at the
vertices of a regular /—gon with a common center is central, then n = ¢. Siluszyk in [13, 14] studied
central configurations consisting of n equal masses at the vertices of a regular n—gon and 2n masses
at the vertices of a second concentric 2n—gon with a common center. In particular in [13] the author
found the expressions of the masses in function of the sizes of the n—gons and in [14], by using
computer assisted methods, she studied the existence of central configurations of this type for n = 2.
Marchesin in [10] proved the existence of central configurations consisting of 4 equal masses at the
vertices of an square, 4 equal masses at the vertices of a second concentric square twisted by an angle
of w/4 and 8 equal masses on a third concentric polygon having the vertices at the bisectors of the
angles formed by each pair of position vectors of two consecutive masses of the previous two squares.

From now on a central configuration is symmetric if the set of positions and the set of masses are
invariant under the action of a finite subgroup of O(2). Inspired by the works of Siluszyk, Montaldi
and Marchesin, in this work we consider symmetric central configurations consisting of n equal masses
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at the vertices of a regular n—gon and 2n masses (not all them necessarily equal) at the vertices of
a second (not necessarily regular) concentric 2n—gon. We call this kind of configurations symmetric
bicircular central configurations of the 3n—body problem. Notice that by [18] if the 2n—gon is regular,
then the masses at this 2n—gon cannot be all of them equal. In fact, when the 2n—gon is regular the
symmetric bicircular central configurations of the 3n—body problem can be thought as the limit case
when as — ag of the central configurations of the 3n—body problem consisting of n masses equal to
m1 at the vertices of a regular n—gon inscribed in a circle of radius a1, n masses equal to mo at the
vertices of a nested regular n—gon inscribed in a circle of radius as and n additional masses equal
to mg (with mg # ms by [18]), at the vertices of a regular n—gon inscribed in a circle of radius ag
twisted by an angle of 7/n with respect the previous two. Thus when the 2n—gon is regular the
masses at the vertices of this 2n—gon alternate the values my and mgs. Using the nomenclature in
[2], the symmetric bicircular central configurations of the 3n—body problem are a (3, n)—crown.

2. STATEMENT OF THE PROBLEM AND OF THE MAIN RESULTS

According to Montaldi [12] we have two different types of symmetric bicircular central configura-
tions of the 3n—body problem. Indeed, in Montaldi [12] it is proved that a generic symmetric planar
central configuration consists of ko (with ko = 0 or ko = 1) masses at the origin, n - ky masses at
the vertices of kx regular nested n—gons, n - kr masses at the vertices of kp regular n—gons twisted
by an angle of w/n, and 2n - ks masses at the vertices of kg nested semiregular 2n—gons, all centered
at the origin. Moreover the masses on each polygon must be equal but masses on different polygons
can be different. A semiregular 2n—gon is a symmetric polygon of 2n vertices which is invariant by
reflections with respect to all symmetry axis of the regular n—gon.

The symmetric bicircular central configurations of the 3n—body problem does not contain any mass
at the origin, so ko = 0. Moreover since in these configurations we have 3n—bodies, ky+kr+2 kg = 3.
Thus we have only three possibilities: either ky = 1, k7 = 2 and kg = 0, or ky = 2, k7 = 1 and
ks =0, or ky =1, kp = 0 and kg = 1. Since central configurations are invariant under rotations
the case ky = 2, kp = 1 and kg = 0 and the case ky = 1, kp = 2 and kg = 0 provide the same
configuration up to a rotation. So we have only two different types of symmetric bicircular central
configurations of the 3n—body problem, the configurations with ky = 1, kr = 2 and kg = 0 which
are called regular bicircular central configurations of the 3n-body problem and the configurations
with ky =1, kr = 0 and kg = 1 which are called semiregular bicircular central configurations of the
3n—body problem.

In short, a regular bicircular central configuration of the 3n—body problem consists of n bodies
with masses equal to my at the vertices of a regular n—gon inscribed in a circle of radius a; = r
and 2n bodies with alternating masses msy and ms with mo # ms at the vertices of a second regular
2n—gon inscribed in a circle of radius as = ar with a common center having n vertices aligned
with the vertices of the first regular n—gon, see Fig. 1(a). Moreover, a semiregular bicircular central
configuration of the 3n—body problem consists of n bodies with masses equal to m; at the vertices
of a regular n—gon inscribed in a circle of radius a; = r and 2n bodies with masses equal to mg at
the vertices of a second concentric semiregular 2n—gon inscribed in a circle of radius as = ar having
n pair of vertices symmetric by a reflection of angle 5 with respect to the axis of symmetry of the
regular n—gon, see Fig. 1(b). Without loss of generality we choose the unit of mass and the unit of
length so that m; =1 and r = 1.

Notice that the regular bicircular central configurations of the 3n—body problem are the ones
studied in [13, 14], but the author in these two works does not analyze whether the expressions of
the masees are positive or negative and in case of being positive for which values of the ratios of the
radius they are positive and consequently they provide central configurations.

In the first part of the paper (Section 3) we go a step further in the study of the regular bicircular
central configurations of the 3n—body problem. In particular we prove analytically for all n > 3 the
existence of central configurations for either sufficiently small values, or sufficiently large values of
the ratio of the radius of the circles a and for n = 2 we prove the existence of central configurations
for sufficiently large values of a. Then using computer assisted methods we find the complete set of
values of a for which there exist regular bicircular central configurations of the 3n—body problem for
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Fig.1 a Regular bicircular

) Fig.1 b Semiregular bicircular
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FIGURE 1. Examples of bicircular configurations

n = 2,3,4,5 and we analyze these families of central configurations. Finally we make a numerical
exploration of the families of central configurations of the regular bicircular central configurations of
the 3n—body problem for n = 6, ..., 500. We remark that the result obtained here for n = 2 does not
coincide with the one given in [14].

In the second part of the paper (Section 4) we study the semiregular bicircular central configu-
rations of the 3n—body problem. In particular, we show that the only values of 8 that can provide
central configurations are 8 € (7w/2n,7/n) and we prove analytically the existence of semiregular
bicircular central configurations of the 3n—body problem for all values of 3 in a sufficiently small
neighborhood of 7/2n and of w/n for all n > 2. Then we make a numerical exploration of the families
of semiregular bicircular central configurations of the 3n—body problem for n = 2,...,100.

Next we give a complete summary of the obtained results.

2.1. Summary of the results concerning regular bicircular central configurations of the
3n—body problem. The analytical results that we have obtained for the regular bicircular central
configurations of the 3n—body problem are summarized in the following theorem.

Theorem 1. For eachn > 2 there exist a nonemptyset D and functions mg = mo(a) and ms = ms(a)
that provide regular bicircular central configurations of the 3n—body problem for all a € D. In
particular,

(a) If n =2, then we can assure the existence of central configurations at least for all a € (a*,00),
where a* € (1,00) is the largest zero of ms. In this configurations ms — 0 and mo — ma(a™)
when a — a*T and ma, m3 — 00 when a — 0.

(b) If n > 3, then we can assure the existence of central configurations at least for all a €
(0,a7) U (a3, 00), where ai is the minimum between the first positive zero and the pole of ma
and a} is the largest zero of ms. In these configurations ma,mg — 0 when a — 07, m3 — 0
and mg — ma(ab) when a — a3™, and ma, mz — oo when a — oo.

The computed assisted results that we have obtained for the regular bicircular central configura-
tions of the 3n—body problem with n = 2,3,4,5 are summarized in the following results.

Theorem 2. For n = 2 we can find functions ma = ma(a) and ms = ms(a) that provide regular
bicircular central configurations of the 6-body problem for all a € D = (a1, a2) U (a*, 00) where ay is
the pole of ma, ag is the first zero of mo and a* is the largest zero of ms. The approximate values of
a1, as and a* are given in Table 1. Moreover the functions mo and ms satisfy the following properties
(see Fig. 2):
(a) ma,m3 — oo with ma/m3 — 1~ when a — af;
(b) in the interval (a1,a2) the function mgo is decreasing and ms has a unique critical point at
a = ap = 0.5670013389.. which is a minimum with ms(ag) = 4.7014182338... Moreover
mo < Mms;
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n 2 3 4 )
D | (a1,a2)U (a*,00) | (0,a]) U (a1,a2) U (a3, 00) | (0,a]) U (a1,a2) U (a3,00) | (0,a]) U (a3, oc0)
af = 0.13753297.. af = 0.35631015.. af = 0.63131956..
a; = 0.53178607.. a; = 0.58231561.. a; = 0.61035220..
az = 0.61614478.. az = 0.63460382.. ag = 0.61188342...
a* = 3.52823222.. ay = 2.63616425.. ay = 2.26854434.. ay = 2.06282906..

TABLE 1. The set D providing regular bicircular central configurations of the 3n—
body problem. The values of a in the cells colored in light gray correspond to zeros
of the function meo, the ones in the cells colored in dark gray correspond to poles of
the function mo and the ones in the non colored cells correspond to the largest zero
of the function ms.

(¢) mg — 0 and mz — 5.950134407.. when a — a, ;

(d) mg — 1.6921282709.. and m3 — 0 when a — a**;

(e) in the interval (a*,00) both functions ma and mg are increasing and mg > ms;
(f) ma,m3 — oo with ma/ms — 17 when a — oo.

Theorem 3. For n = 3 we can find functions ma = ma(a) and ms = ms(a) that provide regular
bicircular central configurations of the 9-body problem for all a € D = (0,a}) U (a1,a2) U (a}, 00)
where aj is the first zero of ma, a1 is the pole of ma, ay is the second zero of ma(a) and ab is the
largest zero of ma. The approximate values of aj, a1, ag and a3 are given in Table 1. Moreover the
functions mo and mg satisfy the following properties (see Fig. 3):

(a) mo,ms — 0 with ma/ms — 1~ when a — 07

(b) in the interval (0,a7) the function ma has a unique critical point at a = ap = 0.1030896914..
which is a mazimum with ma(ap) = 0.0003095830... Moreover ms is increasing and mg < ms;

(¢) ma — 0 and m3 — 0.0060680996.. when a — aj~;

(d) ma,mg — o0 when a — aj with lim, .+ ma/ms =1";

(e) in the interval (a1, a2) the function my is decreasing and ms has a unique critical point at
a = asz = az = 0.6096781095.. which is a minimum with ms(as) = 4.7014182338... Moreover
mo < Mms;

(f) mg — 0 and mz — 4.4805332525.. when a — a; ;

(g) mo — 1.3553872894.. and mz — 0 when a — a3;

(h) in the interval (a%,00) both functions ma and ms are increasing and ma > ms;

(i) ma, m3 — 0o with ma/mz — 1 when a — co.

Theorem 4. For n = 4 we can find functions ma = ma(a) and ms = ms(a) that provide regular
bicircular central configurations of the 12-body problem for all a € D = (0,a}) U (a1, a2) U (a¥, 00)
where a is the first zero of ma, a1 is the second zero of ma, a is the pole of ma and a% is the
largest zero fo ms. The approximate values of aj, a1, az and aj are given in Table 1. Moreover the
functions mo and mg satisfy the following properties (see Fig. 4):

(a) ma,m3 — 0 with ma/ms — 1~ when a — 07 ;

(b) in the interval (0,a7) the function ma has a unique critical point at a = ap = 0.2746698699..
which is a maximum with ma(ap) = 0.0085881109.. and the function ms is increasing. More-
over ma < m3;

) m2 — 0 and m3 — 0.1238514421.. when a — a}~;
) mg — 0 and mz — 2.3831374646.. when a — af;
) in the interval (ay,az2) both functions mo and mg are increasing and ma < ms;

(f) ma,m3 — oo with ma/ms — 1~ when a — a; ;

) mg — 1.0670996767.. and ms — 0 when a — a}™;
)
)
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Theorem 5. For n = 5 we can find functions ma = ma(a) and ms = ms(a) that provide regular
bicircular central configurations of the 15-body problem for all a € D = (0,a?) U (a}, 0c0) where a¥ is
the pole of ma and a3 is the largest zero of ms. The approximate values of aj, az and a3 are given
in Table 1. Moreover the functions mg and ms satisfy the following properties (see Fig. 5):

(a) mo,m3 — 0 with ma/ms — 1~ when a — 07;

(b) in the interval (0,a}) both functions mg and ms are increasing and ma < mg;

(¢) ma,m3 — 0o with ma/mz — 1~ when a — aj~;

(d) mg — 0.8426164718.. and m3 — 0 when a — a}™";

(e) in the interval (a3, 00) both functions ma and mg are increasing and mg > mg;

(f) ma,m3 — oo with mo/ms — 17 when a — co.

The functions ma = ma(a) and mg = ms(a) in Theorems 1-5 are expressed by the formulas in (4).

After a numerical exploration of the cases n = 6,...,500 we see that the pattern observed for
n =6, ...,500 is the same as the one observed for n = 5. So we make the following conjecture.

Conjecture 6. For alln > 5 there exist functions ma = ma(a) and ms = ms(a) that provide reqular
bicircular central configurations of the 3n-body problem for all a in the set D C (0,a}) U (a3, 00)
where aj is the pole of ma and ab is the largest zero of ms. Moreover the functions mo and ms
are increasing in D and they satisfy that ma < mg when a C (0,a7}), m2 > ms when a C (a3, o),
ma, m3 — 0 with ma/ms — 1 when a — 07 ; ma, mg — oo with ma/ms — 1 when a — a3~ ; mg — 0
when a — a§+; and mg, mg — oo with ma/ms — 1 when a — oo.

In short, when n = 2 we have proved analytically (see Theorem 1(a)) the existence of central
configurations for all a in the interval (a*,o0) where a* > 1 is the largest zero of mgs. Using
computer assisted results we prove the existence of an additional interval (ai,as) providing central
configurations, where a; < 1 is the pole of mg and ay < 1 is a zero of mgy (see Theorem 2).

When n > 3 we have proved analytically (see Theorem 1(b)) the existence of central configurations
for a € (0,a}) U (a3, 00) where 0 < aj < 1 is the minimum between the first positive zero and the
pole of mg and a3 > 1 is the largest zero of ms. For n = 3,4 using computer assisted results we have
proved the existence of an additional interval (a1, a2) with a1, as < 1 providing central configurations.
Moreover for n = 3 we have proved that a] is the first positive zero of mg, a1 is the pole of ms and
asy is the second zero of ma (see Theorem 3). When n = 4 we have proved that aj is the first zero of
ma, a1 is the second zero of mgy and ay is the pole of mo (see Theorem 4). For n = 5 we have proved
using computer assisted results that the only set of values of a providing central configurations is
(0,a}) U (a%, 00); that is, the set given in Theorem 1(b) (see Theorem 5). Finally after a numerical
explorations of the cases n = 6,...,500 we conclude that for all n = 6,...,500 that the only set of
values of a providing central configurations is the one given in Theorem 1(b).

We must remark that fixed a value of n there are no central configurations of the regular bicircular
3n-body problem with a — 1. We have observed that as n increases the value a] increases and the
value of a} decreases, but we do not know whether a} — 1~ and a5 — 17 when n — oo or on the
contrary they could tend to a value different from one. This question remains as an open problem.

On the other hand, as n increases the values of my and mg are getting closer. We know from
results in [18] that mg # mg3 because we have two concentric regular n—gons with different number
of vertices but it seems that if n — oo then mo — ms.

2.2. Summary of the results concerning semiregular bicircular central configurations of
the 3n—body problem. The main analytic results for the semiregular bicircular central configura-
tions of the 3n—body problem are summarized in the following theorem.

Theorem 7. There exist a function m = m(a,3) that provides semiregular bicircular central con-
figurations of the 3n—body problem for some values of a > 0 and § € (7w/2n,7/n). In particular,

(a) If n > 3, then for each B in a sufficiently small neighborhood of w/n there exist at least two
central configurations, one with 0 < a < 1 and one with a > 1. Moreover, if n = 2, then for
each B in a sufficiently small neighborhood of w/n there exists at least one central configuration
with a > 1. The values of m at these central configurations satisfy that m — 0 as  — 7/n.
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(b) If n > 3, then for each [ in a sufficiently small neighborhood of B = 7/2n there exist at least
four central configurations, one with a sufficiently close to the origin, one with 0 < a < 1 not
necessarily close to the origin, one with a sufficiently large and one with a > 1 not necessarily
large. Moreover, if n = 2, then for each ( in a sufficiently small neighborhood of 5 = 7/2n
there exists at least three central configurations, one with a sufficiently large, one with a > 1
not necessarily large and one with 0 < a < 1. The values of m at the central configurations
with 0 < a < 1 not close to the origin and with a > 1 not being large satisfy that m — oo as
B — m/2n.

The function m(a, ) is given in (16).

After a numerical study of the behavior of the families of semiregular bicircular central configura-
tions of the 3n—body problem for n = 2, 3,4 we get the following numerical results.

Result 1 When n = 2, we can find continuous functions «y1(B) defined for 8 € (n/4,7/2), and
az(B) and as(B) defined for 5 € (mw/4,b*] with b* = 0.9195936184.. and a function m = m(a, ) such
that the following statements hold for the semireqular bicircular central configurations of the 6—body
problem (see Fig. 9a).

(a) If p € (w/4,b*), then m = m(B,a) provides three families of central configurations, one with
a = ai(f), one with a = aa(f) and one with a = as(f).
(b) If B = b*, then m = m(f3,a) provides two central configurations, one with a = a1 (b*) and one
with a = ag(b*) = az(b*) (the families with a = as(B) and a = a3(B) coincide at this point).
(c) If B € (b*,7/2), then m = m(fB,a) provides a unique family of central configurations with
a=a1(8).
Moreover m(c1(B), 8) — 0 when B — m/27; and m(ca1(B), B), m(a2(B), B), m(as(B), B) — co when
B — /4T,

Result 2 When n = 3, we can find continuous functions oy (5) and as(B) defined for g € (7/6,b*],
functions a1(B) and as(B) defined for B € (w/6,7/3), with b* = 0.7119233940.. and a function m =
m(a, 8) such that the following statements hold for the semiregular bicircular central configurations
of the 9-body problem (see Fig. 9b).

(a) If B € (n/6,b*), then m = m(B,a) provides four families of central configurations, one with
a = ai(f), one with a = a(f), one with a = a3(f3), and one with a = a4(S).

(b) If B = b*, then m = m(B, a) provides three central configurations, one with a = a1 (b*) = aa(b*)
(the families with a = a1(B) and a = a(B) coincide at this point), one with as(b*) and one
with a = ay(b*).

(c) If B € (b*,7/3), then m = m(f,a) provides two family of central configurations, one with
a = as(B) and one with a = ay(B).

Moreover m(as(B), ), m(ca(B),5) — 0 when B — 7/37; m(a1(B), ), m(a2(B),B), m(as(B),5) —
oo and m(aq(B),8) — 0 when 8 — 7/6T.

Result 3 When n =4, we can find continuous functions a1 () and ay(B) defined for g € (w/8,b*],
functions a2(B) and az(B) defined for B € (n/8,7/4), with b* = 0.4665964724.. and a function m =
m(a, B) such that the following statements hold for the semiregular bicircular central configurations
of the 12-body problem (see Fig. 9c).

(a) If B € (7/8,b%), then m = m(B,a) provides four families of central configurations, one with
a = a1(B), one with a = aa(B), one with a = as(f), and one with a = a4(f).

(b) If B = b*, then m = m(B, a) provides three central configurations, one with a = ay(b*) = ay(b*)
(the families with a = a1 (B) and a = ay4(B) coincide at this point), one with as(b*) and one
with a = ag(b*).

(c) If B € (b*,7/4), then m = m(f,a) provides two family of central configurations, one with
a = as(B) and one with a = as(B).

Moreover m(as(5), 8), m(az(8), 8) = 0 when  — 7/4~; and m(a1(B), B), m(az(B), 5), m(as(B), 5)

— 00 and m(ay(B),8) — 0 when B — m/8F.
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We have also studied numerically the families of semiregular bicircular central configurations of
the 3n-body for n = 5,...,100 and we have observed that the behavior is the same as the one for
n = 4. So we state the following conjecture.

Conjecture 8. For all n > 4 we can find a value 5 = b* and functions «;(5) for i =1,2,3,4 such
that

(a) for B € (7/2n,b*) there exist exactly four different families of semiregular bicircular central
configurations, one emanating from a point (a1, 7/2n) with 0 < a3 < 1 (the family with
a = a1(B)), one emanating from a point (ag,7/2n) with ag > 1 (the family with a = a1 (5)),
one emanating from the point (c0,0) (the family with a = as(B)), and one emanating from
the point (0,7/2n) (cs(B));

(b) for g = b* there exist exactly three different central configurations, the one with a = a1(b*) =
as(b*), the one with a = az(b*) and the one with a = as(b*);

(c) for B € (b*,m/n) there exist exactly two different central configurations, one tending to a point
(a},m/n) with 0 < aj < 1 when f — w/n~ (the family with a = a2(B)) and one tending to a
point (a%, 7/n) with a3 > 1 when 8 — w/n~ (the family with a = a3(5)).

Moreover the masses associated to these families of central configurations m = m(a, ) satisfy that

m(as(B),8), m(az(B),8) — 0 when  — 7/2n~; and m(a1(B), B), m(az(B), B), m(as(B), ) — oo
and m(az(B),8) — 0 when 8 — 7/n*.

We note that the relative length of the interval of values of the parameter 8 providing four different
families of central configurations gets smaller as n increases. With relative lenght we mean realitve
lengt with respect to the total length of the interval (7/2n,7/n).

3. REGULAR BICIRCULAR CENTRAL CONFIGURATIONS OF THE 3n—BODY PROBLEM

3.1. The equations. As we have seen in the introduction the regular bicircular central configura-
tions of the 3n—body problem can be thought as the limit case of a (3,n)—crown (see [2]) where two
twisted n-gons are inscribed in a circle of the same radius.

From equation (9) in [2] the equations for central configurations of any (3, n)-crown with n masses
equal to m; = 1 at the vertices of a first n-gon inscribed in a circle of radius a; = 1 and twisted an
angle w; = 0, n masses equal to ms at the vertices of a second n-gon inscribed in a circle of radius
as and twisted an angle wy = 0, and n masses equal to m3 at the vertices of a third n-gon inscribed
in a circle of radius ag and twisted an angle w3 = w/n are

Sh
Co1 — Spaz + ( — as C12> mo + (023 — as C13>m3 =0,
a3

Sn
Cs31 — Spaz + <C32 —as 012)77”&2 + <2 —as 013> mg =0,
az

where
"Z:I 11— cos (27” i: 1
j= 1481](l WJ) j=1 <2—2cos(2m)> = 2(2—2(}0s(27”)>1/2
n o o 2mj
Chr = Crular, ag) Z ap — Qg Cos (wk wy + ) -
j=1 (ak + ae — 2aayp cos (wk — wy + 27”))
for k #£ L.

Thus the equations of the regular bicircular central configurations of the 3n—body problem are
given by (2) with as = a3 = a and they can be written as the linear system in the variables ma, ms

(i) ()= (%) !
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where
a11=%—K2, alzz%—Kg, by = K1 — Ky,
a1 %—Kz, ag = %—Ks, by = K1 — K,
and
Ky = Sy,
K = Kaa)=Cr(La)= L acos (5)

N3/2’
j=1 (1+a2—2acos (2”7]))/

1—acos(%+%)

Kz = Kj(a) =Ci3(1,a) =

n n
C2(a,1 - 1—1/acos (2L
K4 = K4(a) = 721( ) — Z / ( n ) 3/2’
a _ 2 2 j
Jj=1 (1+a — 2a cos (T))
Ky = a2C’23(a,a) :aQng(a,a)
27 g T
o les(R+T) ¢ 1
. 3/2 4 1/2°
j=1 (2—2COS (%TJ+%)) j=1 2(2—2COS (ZWTJ—F%))
Cai(a,1) 1-1 #l4x
KG = Kﬁ(a) = 731(6% ) :Z /(ICOS( n n)

a

3|

n

. 3/2°
j=1 (1 + a? — 2acos (27” + 7r))

Solving system (3) we get the solution

B _agb —apby  dPmyp
my = ma(a) = = ,
a11a22 — 12021 mp
B _anby—amb  d®mpygs
ms = mg(a) = =
a11a22 — 12021 mp
where
mno = Ki — K1 Ka(a) — K1 K5 + K5 Ke(a) — a’ K3(a)(Ke(a) — Ka(a)),
mns = K — K1 K5 + Ki4(a)Ks — K1Kg(a) + a’ Ka(a)(Kg(a) — Ka(a)),
mp = (K5 — Kl)A(a),
and

A(CL) = —K1 — K5 + a3(K2(a) + Kg(@))

The solution (4) is defined when the denominator mp is different from zero. By Lemma 3 (c) in
Appendix 1 K5 — K1 # 0 and by Lemma 4 in Appendix 1 the function A(a) has a unique zero and
it belongs to the interval (0,1). So the set where mp is different from zero is not empty. So in what
follows we will assume that mp # 0. In fact, this not seems to be restrictive because, as we will see
in Section 3.3, we have numerical evidences that there are no solutions of (3) with mp = 0 (mp,

my 2, and my 3 are not simultaneously 0).
These expressions have been obtained in [13] by using a different approach.
Note that
a’(Ke(a) — Ky(a))
K5 — K4 )

ms3 = mo +

()

In short, a configuration of the regular bicircular 3n—body problem is central if mo and ms are

given by (4) and a is so that mg, ms > 0.
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3.2. Proof of Theorem 1. The central configurations of the regular bicircular 3n—body problem
are given by the solutions of (3) with mg, ms3 > 0. Let ma = ma(a) and mg = mgz(a) be the solutions
of (3) given in (4). We need the following auxiliary result that give some properties of mg and ms.

Proposition 9. Let mo = ma(a) and ms = ms(a) be the functions defined in (4). Then the following
statements hold for n > 2.

(a) mo — 0T when a — 0% for n >3 and ms — 0~ when a — 07 for n = 2;

(b) m3 — 0% when a — 0%

(c) m3 — —oo when a — 1T;

(d) ma — o0 and m3 — oo when a — oo;

(e) ma > ms when a > 1 and my < m3 when a € (0,1).
The proof of Proposition 9 is given in Appendix 1.

From Proposition 9(a) and (b), for each n > 3 there exist a sufficiently small interval I} = (0, a})
such that mo,ms > 0. Since ma < mgz when 0 < a < 1 (see Proposition 9(e)) this value aj
corresponds either to a zero of mqy or to a point where the denominator mp vanishes. In Section 3.3
we prove, by using a computer assisted proof, that a] is a zero of my when n = 3,4 and it is the
zero of mp when n = 5. Moreover we give strong numerical evidences that aj is the zero of mp for
n > 5.

We continue with the proof of Theorem 1. From Proposition 9(d) for each n > 2 there exists
a sufficiently large value a3 > 1 such that mg,mg > 0 for all a € Iy = (a5, 00). Using Proposi-
tion 9(c) and (d) we get that mg has at least a zero for a > 1 and from Lemma 4 in Appendix 1
we obtain that mp has no zeros for @ > 1. Since my > mg when a > 1 (see again Proposition 9),
and connecting all above comments together we can assure that a3 is the largest zero of ms. In
Section 3.3 using a computer assisted proof we prove, for n = 2,3,4,5, that ms has a unique zero,
a3, for a > 1 and we give strong numerical evidences that this also happens for n > 5.

These arguments, together with Proposition 9, complete the proof of Theorem 1.

3.3. Particular cases of regular bicircular central configurations of the 3n—body problem.

3.3.1. Case n = 2. Computing the values of K; with¢=1,...,6 for n =2 we get

1 2 1
K = -, Ka(a) = Kgla = —, K = =
1= 3(a) 6(a) s 5= 75 o
K() 1_a+ 1 K() 1—a+ 1
a) = a) = —
2 h12 (a + 1)2, 4 a h12 a(a + 1)2’

where his = ((1 — a)?)%? and hgy = (1 4 a?)*/2. Thus when n = 2, the solutions mg = my(a) and
ms = mg(a) of system (3) with mp # 0 are given by (4) with K; given by (6). Note that in order
that these solutions provide central configurations both msy and msg have to be positive. Next, we
find the set of values of a satisfying these conditions.

Since a > 0, the possible changes of sign of mg and m3 are given by the zeroes of my > and mp,
and my 3 and mp respectively, see (4). We start computing the zeroes of mp.

First we transform equation mp = 0 into a polynomial equation having all the solutions of equation
mp = 0 and probably new ones in the following way. Dropping the denominators we get the equation

qg= (a + 1)2 <4a3((a — 1)h22 — thg) + (1 + 2 \/5) h12h22>
— 4a3h12h22 =0.

In order to drop the square roots we consider equation g = 0 as a polynomial equation in the variables
a, h12 and hos. Then the zeroes of mp can be thought as solutions of the polynomial system g = 0,
e1 = 0 and ey = 0 with

e1 = hiy — ((1—a)?)?, e2 = h3y — (14 a®)*.

We eliminate the variable hjs by means of the resultant Ry = Res|g, e1, hi2] and the variable hgo
by means of the resultant Ry = Res[Ry, e, hoo]. The resulting polynomial is a polynomial in the

variable a with irrational coefficients (the coefficients depend on v/2) that has all the zeroes of mp and
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probably new ones. To avoid irrational coefficients, we introduce a new variable h3y = v/2 and a new
equation ez = h§2 — 2. We eliminate the variable hgy by means of the resultant R = Res[Rq, e3, hsa]
obtaining in this way a polynomial with integer coefficients having all the zeroes of mp and probably
new ones. The obtained polynomial is (a — 1)® Pso(a) where Pgo(a) is given by

(450410 + 47158245 + 1263627a>* + 90004442 + 1046137a%° + 172866a'® + 2332274'°
+47784a + 277230 — 18750a'° + 63294® — 564a° — 693a* — 98a* + 49) (409642
—2048a3! + 3212840 — 12064a%° + 176561a%® — 4278447 4 495902a°° — 5049642
+1006987a** + 27328a2% + 759372a%2 4 93472a%" + 1118393a2° + 648004 + 2593944'®
+11904a!™ 4 31028346 — 311044 + 38184a'* — 4169643 + 1675a*% — 15072a!!
—10814a'% — 1344a” + 3641a® — 1344a” — 1204a° + 224a° — 245a* + 224a® — 98a* + 49)

From now on we will denote by P, (a) a polynomial of degree n in the variable a. Applying Sturm’s

Theorem we get that the polynomial equation Pgp(a) = 0 has exactly four real solutions with a > 0.
We solve numerically the equation Psy(a) = 0 and we found the solutions a = a3 = 0.4656636054..,
a = ay = dy = 0.5317860740.., a = a3 = 0.5390030006.., a = a4 = 0.5824356327... By substituting
these solutions into the initial equation mp = 0 we see that only the solution a = ds can be a solution
of the initial equation. This can be proved in a more rigorous way by using intervalar aritmethics
(see [15]). We have used Mathematica’s capability of operating on interval objects to get an interval
enclosure of the function mp in a sufficiently small interval containing the possible solutions of the
equation mp = 0. We start proving that a; € a; = [4656636054/101°, 4656636055/10'°] cannot be
a solution of the initial equation. Notice that since a; < 1 we have that ((1 —a1)?)%? = (1 — a1).
Using intervalar arithmetics we get

30421064834853172729 4867370373949038521
1 + al S [h217 h’22] [ 25-1018 ) 4.1018 ]
1-a ) €hy [1220490080420246024105505069 19070157517273170971924514317]
1 8-1027 J 125-1027

Moreover we can see that

3/2 13423062258 13423062259 3/2
h 21 S [ 1010 9 1010 }7 h 292 €

[13423062259 13423062260]
1010 9 1010 9

so (1+a})3/? € hy = [13423062258/10'°, 13423062260,/10'°], moreover v/2 € hg = [14142135623/10'°,
14142135624/10'°]. By substituting into the expression of mp the values of a, ((1—a)?)%/2, (14-a2)3/?
and v/2 by aj, hi, hy and hs respectively and doing intervalar arithmetics again we get that
mp € [—0.1855803641, —0.1855803639], so a; does not satisfy equation mp = 0. Repeating this
procedure for the remaining solutions we get that mp € [—0.0000000001,0.0000000004] for as €
[5317860740/10%°, 5317860741/10%°], mp € [0.0271889606, 0.0271889613] for a3 € [5390030006/1017,
5390030007/10%°] and mp € [0.2330977572,0.2330977582] for a4 € [5824356327/10'°, 5824356328 /10'Y].
This proves that the unique solution of Psy(a) = 0 providing a solution of the initial equations is the
solution a = ds.

Using the same procedure the equation my» = 0 can be transformed into a polynomial equation
of the form (a — 1)%a* Ps4(a) = 0 where the polynomial Pgs(a) has exactly 8 real roots with a > 0.
Among these solutions only a = a1o = 0.6161447847.. and a = agss = 2.8235222602.. are solutions
of the initial equation my2 = 0. Doing it again we get that my3 = 0 can be transformed into a
polynomial equation of the form (a—1)'%a* Pyy(a) = 0 where the polynomial Pys(a) has exactly 8 real
roots with ¢ > 0. Among these solutions only a = bjs = 0.5161941182.. and a = bey = 3.5282322274..
are solutions of the initial equation my3 = 0.

Note that my 2, my3 and mp are not simultaneously zero. This means that when n = 2 there
could not be solutions of system (3) with mp = 0.

Finally we analyze the signs of mo and ms. By substituting a = 4/10, (1 — (6/10)%)3/2 ¢
[12493582352/101°, 12493582353/101°] and /2 € [14142135623/10'°, 14142135624/10'°] into mo and
ms and doing intervalar arithmetics again we get that ms € [—0.3673154049, —0.3673154050] and
mg € [0.6505307765, 0.6505307766], so ms is negative and mg is positive in (0, by2). Doing the same
for a = 6/10, a = 2, a = 3 and a = 4 we conclude that mg > 0 for a € (dg,a12) U (age,c0) and
ms > 0 for a € (0,b12) U (da, 1) U (b22,00). So the region where the masses ms and mg given in (4)
provide central configurations is a € (da, aj2) U (baa, 00), see Fig. 2 for the plots of mg and ms.
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/
my K my
—m, / —my

02 WW 06 os— 23"

-10 -10

Fig2a (0<a<1) Fig.2b (a > 1)
FIGURE 2. Plot of the masses ma (continuous line) and mg (dashed line) for n = 2.

Examining the properties of the functions mgy and ms we get that in the interval (da, a;2) the func-
tions mg, m3 — 0o when a — dj . Since mgy and mg satisfy the relation (5) and (Kg(a)—K4(a))/(Ks5—
K3) is a finite number for all a # 1 we can easily see that lima_>d2+ mgy/ms = 1. By computing the
derivatives of the functions ms and mg and analyzing its zeros as we have done with the zeroes of my
and mg, we see that the function mg is decreasing for a € (0,d2) U (da, 1) U (1,1.5015204804..) and
increasing for a € (1.5015204804.., c0); and the function mg is increasing for a € (0,0.4812067311..)U
(ac2,1) U (1,400) with ace = 0.5670013389.. and decreasing for a € (0.4812067311..,ds) U (d2, ac2)
(see Fig. 2). Moreover my — 0 when a — aj,, mg(ac2) = 4.7014182338.., m3 — 5.950134407.. when
a — Gy, mo — 1.6921282709.. and m3 — 0 when a — b;g. Finally we get that ms, m3 — oo when
a — oo with limg_oo ma/ms3 =1 (see Fig. 2 again).

3.3.2. Casen =3. When n = 3 the values of K; fori=1,...6 are

1 5
K= — Ky =~
1 \/g’ 5 47
l—-a 2+a 1 2—a
K == K =
2(a) hi3 * haz ’ 3(a) (1+a)? - hog ()
l—a 1+ 2a 1 1—2a
Ky(a) = — + Kg(a)

- a(1+a)2 B ah23 ’

where hyz = ((1 — a)?)%2, hag = (1 — a + a?)3/?, and hsz = (1 + a + a?)*/2. Thus when n = 3, the
solutions my = ma(a) and ms = ma(a) of system (3) with mp # 0 are given by (4) with K; given
by (7). Next we find the values of a for which mg = ma(a) > 0 and mgz = ms(a) > 0.

First we find all the real solutions of equations mp = 0, my2 = 0 and my3 = 0 with a > 0.
Following step by step the procedure explained in Section 3.3.1 by introducing the new variable
haz = /3 we transform equations mp = 0, m N2 = 0 and my 3 = 0 into polynomial equations with
integer coefficients having the same solutions as the initial equations and probably new ones. Then
we solve numerically the obtained polynomial equations and we check which of their solutions with
a > 0 provide solutions of the corresponding initial equations. The results that we have obtained
are summarized in Table 2. Note that my 2, my 3 and mp are not simultaneously zero. This means
that when n = 3 there could not be solutions of system (3) with mp = 0.

Proceeding again as in Section 3.3.1 we analyze the signs of ms and ms and we get that mo > 0 for
a € (0,a13) U (ds, a3) U (ass, 00) and mg > 0 for a € (0,b13) U (d3, 1) U (beg, 00). In short, the masses
ma and m3 given in (4) can provide central configurations when a € (0,a13) U (ds, ags) U (b2, 00),
see Fig. 3 for the plots of mg and ms.

Examining the properties of the functions mo and ms we get that in the interval (0,a;3) the
functions mg, m3 — 0 when a — 0%, moreover lim,_,g+ ma2/ms = 1; the function mq is increasing
for a € (0,ac,5), decreasing for a € (ac,5,a13), it has a maximum at ¢ = a.,; = 0.1030896914..
with ma(ac,5) = 0.0003095830.., and ma — 0 when a — aj3; and the function mg is increasing
in a € (0,a13) and m3 — 0.0060680996.. when a — aj; (see Fig. 3a). In the interval (ds,as3)
the functions mo, m3 — oo when a — d; with lim__, ai M2 /ms = 1; the function mg is decreasing

a h13 a h33 ’

and my — 0 when a — ay3; the function ms is decreasing for a € (ds,ac,5), is increasing for
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Equation Polynomial equation f Solutions
mp =0 | 6561(—14a)%Pi7o(a) =0 |12 | @ = d3 = 0.5823156170..

a = a3 = 0.1375329706..
my2=0| (=1+a)l%*Pya(a) =0 |27 |a= a3 = 0.6346038252..

a = azz = 1.9309056653..

a = by3 = 0.5726308779..

a = boz = 2.6361642533..

TABLE 2. Real positive solutions of mp = 0, my2 = 0, and my3 = 0 for n = 3.
Here, # means the number of real roots of the polynomial equation P,(a) = 0 for
a > 0.

my,3 =0 (—1+ a)32a4P252(a) =0 |18

0.01

—m / — my

0.005 K 5

0.1 0.2 5

Fig. 3a Fig. 3b

Fig. 1
0<a<0.2) 0.2<a<1) ig. 3¢ (a>1)

FIGURE 3. Plot of the masses mgy (continuous line) and ms (dashed line) for n = 3.

a € (acy5,a23), it has a minimum at a = a.,5 = 0.6096781095.. with m3(ac,) = 4.7014182338.., and
mg — 4.4805332525.. when a — ay; (see Fig. 3b). In the interval (ba3,00) both functions mg and
mg are increasing, mo — 1.3553872894.. and m3 — 0 when a — b;% and msg, m3 — oo when a — 0o
with limg_oo mo/ms3 =1 (see Fig. 3c).

3.3.3. Casen =4. When n = 4 the values of K; fori=1,...6 are

1 1 =
K1:7+75 K5: 2+\/§a

4 2
1—a 1 2 2—-v2a 2+4+V2a
K == —_— K =
2(a) hia * (14 a)? + has’ 3(a) h3a i hag (8)
l1—a 1 2 V2424 V24 2a
K — 2 K —
4(&) a h14 * a(l + a)2 + h24’ 6((1) ah34 + ah44

where his = ((1 — a)2)3/2, hoy = ((I2 + 1)3/2, h3y = (CL2 — \@a + 1)3/2 and hyy = (a2 + \/ia -+ 1)3/2.

Thus when n = 4, the solutions mgo = ma(a) and mg = mas(a) of system (3) with mp # 0 are
given by (4) with K; given by (8). Next we find the values of a for which my = ma(a) > 0 and
msz = mg(a) > 0.

First, proceeding as in Sections 3.3.1 and 3.3.2 by introducing the new variables hsy = v/2 and
hes = V' 2 + /2, we transform equations mp = 0, mpy2 = 0 and my 3 = 0 into polynomial equations
with integer coefficients. We find all the real solutions with a > 0 of these equations and the
results that we have obtained are summarized in Table 3. Note that my 2, my3 and mp are not
simultaneously zero. This means that when n = 4 there could not be solutions of system (3) with
mp = 0.
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Equation | Polynomial equation i Solutions

mp =0 (=1 + a)% Pggo(a) 50 | a =dy = 0.6118834277..

= a4 = 0.3563101506..

= ag4 = 0.6103522047..

= azq = 1.4630863479..

a = byy = 0.6121322975..

a = byy = 2.2685443458..

TABLE 3. Real positive solutions of mp = 0, my2 = 0, and my3 = 0 for n = 4.

Here, # means the number of real roots of the polynomial equation P,(a) = 0 for
a > 0.

MmN = 0 (—1 + a)64a16P1264(a) 107

Q2 2

my,;3 = 0 (—1 -+ a)128a16P1328(a) 76

0.4 ;
—my —my | —m
---my - ms ---mg

0.2

=02

Fig. 4a Fig. 4b (0.6 < Fig. 4c Fig. 4d
(0 <a<0.6) a < 0.63) (063 <a<1) (a>1)

FIGURE 4. Plot of the masses mg (continuous line) and m3 (dashed line) for n = 4.

Next we analyze the signs of my and m3 and we see the region where the masses mo and ms given
in (4) can provide central configurations is a € (0, a14) U (a4, ds) U (bag, 00). See Fig. 4 for the plots
of mg and ms.

Finally, we examine the properties of the functions my and ms we get that in the interval (0, aq4)
both functions mg,m3 — 0 when a — 0%, moreover lim,_,o+ ma/ms = 1; the function mqy is
increasing for a € (0, ac4), decreasing for a € (a4, a14), it has a maximum at a = a4 = 0.2746698699..
with ma(acs) = 0.0085881109.., and me — 0 when a — ay,; and the function mg is increasing in
a € (0,a14) and mgz — 0.1238514421.. when a — aj, (see Fig. 4a). In the interval (a2, ds), (see Fig.

4b) both functions ms and mg are increasing, mz, m3 — oo when a — d, with lim__, ,— ma/m3 =1,
4

and mo — 0 and m3 — 2.3831374646.. when a — a2+4. Finally in the interval (bgg, 00) both functions
ms and mg are increasing (see Fig. 4d), mg — 1.0670996767.. and m3 — 0 when a — b3, and
ma, mg — o0 when a — oo with limg_o ma/ms = 1.
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Case 0 <a<1
Equation | Polynomial equation fi1 Solutions
mp = k(—1+a) Pga(a) | 50 | a=ds = 0.6313195684..
mya =0 | k(=1+a)a* Pisgs(a) | 131 o
my3 =0 |r(=1+a)®a Pisog(a) | 85 | a= b5 = 0.6425878402..

)

Case a > 1

Equation Polynomial equation fio Solutions

mp =0 | w(=1+a)* Por(a) | 59 o

my2=0| k(=1+a)**a* Pisgs(a) | 108 | a = a15 = 1.2290630401..
mys =0 |k(=1+a)?a* Pisos(a) | 97 | a = bas = 2.0628290636..

TABLE 4. Real positive solutions of mp = 0, my2 = 0, and my3 = 0 for n = 5.
Here i (respectively, f2) means the number of real roots of the polynomial equation
P,(a) =0 for 0 < a < 1 (respectively, a > 1), and « is a constant.

3.3.4. Casen =5. When n =5 the values of K; fori=1,...6 are

K1= 1+55» K5=i+\/5,
Ko(a) = 1h15a N ﬁ(‘;; na) ﬂ(i; o)
Ralo) = g + g+ YR, )
Ke(a) = a(1ia)z N \/524}2125— &, ﬁ(j;g; 2]

where his = ((1—a)?)3/2, hos = (2@2 —a& + 2)3/2, hss = (2@2 —an+ 2)3/2, hys = (2@2 +an + 2)3/2,

hss = (2a2 + a& + 2)3/2, €=1++5,and n =1—+/5. So when n = 5, the solutions ms = ma(a)
and mg = m3(a) of system (3) with mp # 0 are given by (4) with K; for i =1,...,6 given by (9).

We proceed in a similar way than in the cases n = 2, 3,4 to find all the real solutions of equations
mp = 0, my2 = 0 and my3 = 0 with a > 0, but in this case to shorten the computations we
consider separately the cases @ > 1 and 0 < a < 1 and we eliminate the square root corresponding
to his directly by simplification instead of eliminating it by means of a resultant with respect his.
To transform equations mp = 0, my2 = 0 and my,3 = 0 into polynomial equations with integer
coefficients, we introduce the new variables hgs = V2, hrs = /5 and hgs = /1 + 2/h75. The
results that we have obtained are summarized in Table 4. Note that my 2, my3 and mp are not
simultaneously zero. This means that when n = 5 there could not be solutions of system (3) with
mp = 0.

Analyzing the signs of mo and mg we see that the region where the masses mo and mg given in
(4) can provide central configurations is a € (0, ds) U (bes, 00), see Fig. 5 for the plots of mo and ms.

Examining the properties of the functions ms and ms we get that in the interval (0, ds), m2 and ms
are increasing (see Fig. 5a), ma, m3 — 0 when a — 07 with lim,_,g+ ma/ms = 1, and mso, mg — oo

when a — dy with lim__,,- ma/m3 = 1. In the interval (b25,00), ma and mg3 are increasing (see
5

Fig. 5b), ma — 0.8426164718.. and m3 — 0 when a — b%, and meo, m3 — oo when a — oo with
lim,_yo0 mo/ms = 1.
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FIGURE 5. Plot of the masses mgy (continuous line) and ms (dashed line) for n = 5.

= 6) Fig. 6b (n Fig. 6¢ (n = 20)

FIGURE 6. Plot of the masses may (continuous line) and mgs (dashed lien) when n = 6
in Fig. 6a, n = 10 in Fig. 6b and n = 20 in Fig. 6c.
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Fig. 7a Fig. 7b

FIGURE 7. Plot of d,, (the zero of mp) in Fig. 7a and plot of b, (the zero of my 3
with @ > 1) in Fig. 7b.

3.3.5. Numerical study for n > 5. We have analyzed the behavior of ms and mgs as a function of
a for n = 6,7,...,500 and we have seen that it is essentially the same as the one for n = 5 (see
Fig. 6 for n = 6,10,20). More precisely, for all n = 5,...,500, the denominator mp has a unique
zero d, < 1 (the existence of such zero has been proved analytically in Lemma 4(d) in Appendix
1). We have computed numerically the value of d,, for n = 6,...,500 and we have plotted it in
Fig. 7(a). Note that d,, < dp+1 < 1 for all n = 6,...,499. We observe that for all n = 6,...,500
the functions mgy and msg are increasing in the interval (0,d,). Moreover mg < ms in this interval
(this has already been proved analytically in Proposition 9(e)), ma, m3 — 07 when a — 0% (this
has already been proved analytically in Proposition 9(a) and (b)) and mg, mg — oo when a — d,,.
So 0 < my < mg3 for all a € (0,dy,) and therefore the interval (0, d,) provides central configurations.
We also observe that for all n = 6,...,500 the function mg is negative in the interval (d,, 1), thus
this interval does not provide central configurations. Finally, we observe that for all n = 6,...,500,
m3 — —oo when a — 17 and m3 — oo when @ — oo (this has already been proved analytically in
Proposition 9(c) and (d))). Moreover we observe that ms is increasing in the interval (1, 00) for all
n = 6,...,500 and therefore ms has a unique zero b, with a > 1 (from Proposition 9(c) and (d)
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FIGURE 8. Plot of may(by,).

again we can prove analytically the existence of at least one zero of ms with a > 1, numerically we
see that this zero is unique). We have computed numerically the value of b, for n = 6,...,500 and
we have plotted it in Fig. 7b. We see that b, > b,41 > 1 for all n = 6,...,499. Since mo > ms
when a > 1 (this is proved analytically in Proposition 9(e)), the interval (b,,c0) provides central
configurations.

In short, the set of values of a where the solutions my and mg given by (4) are positive is a €
(0,dy) U (by,00), where d,, is the zero of mp and by, is the zero of the numerator my 3 with a > 1.
In the region (0, d,,) both masses go from zero (when a tends to 0) to infinity (when a tends to dy,),
whereas in the region (by,,c0) the mass ms goes from 0 (when a = b,) to infinity (when a — o0)
and the mass mg goes from the positive value ma(by,) to infinity (when a — 0o). We have computed
numerically the value ma(b,) and we have plotted it in Fig. 8. We observe that the value of
ma(by,) tends rapidly to 0 as n increases. For instance, when n = 5, ma(b,) = 0.8426164718..;
when n = 20, ma(b,) = 0.0236101462..; when n = 40, ma(b,) = 0.0000894392..; when n = 100,
ma(b,) = 1.1846352161.. x 10~ !1... All numerical computations have been done with a minimum of
100 digit precision and we have ensured that all the digits given here are exact.

We observe that as n increases the difference between mo and mgs decreases rapidly, see again
Fig. 6. Thus as n increases, the masses ms and mgs in a regular bicircular central configuration of
the 3n—body problem tend to be equal.

4. SEMIREGULAR BICIRCULAR CENTRAL CONFIGURATIONS OF THE 3n—BODY PROBLEM

4.1. The equations. Now we consider semiregular bicircular central configurations of the 3n—body
problem which consists of n bodies with masses m; = --- = m, = 1 at the vertices of a regular
n—gon inscribed in a circle of radius 1 and 2n bodies with masses equal m,+; = -+ = mg3, = m at
the vertices of a semiregular 2n—gon inscribed in a circle of radius a. By using complex coordinates
the positions of the vertices of the initial n-gon can be written as q; = ePi with Bj = 2mj/n for
j =1,...,n and the vertices of the semiregular 2n—gon situated on the circle of radius a can be
written as qjin = ac’% =9 and qj; 9, = ae% P with B € (0,7/n) and j = 1,...,n, see Fig. 1(b).

It is easy to check that the center of mass of the system is at the origin. Under these hypothesis,
the first n equations of (1) become

n
9k — 495 9k — 9j+n 9k — 9j+2n
+m = AQk, 10
) Z o = Z P (10)

j=1,7%#k |qk - q]|3 qj+7’b|3 qj+2n|3

for k=1,...,n, the following n equations become

Z | Ak+n — +m Z Qk+n_— q'j—l—n?’

Ak+n — q]]?’ =12k \Qk+n q]+n|

Qk+n — Aj+2n
+m = )\qur )
Zl |Qktn — Djt2n]? "
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for k =1,...,n, and the last n equations of (1) are

Adk+2n — Qk+4+2n — Aj+n
Z | +m Z , —qa.

qk+2n — 45 |3 qr+2n — Aj+n ’3

(12)
qk+2n — dj+2n

+m 3
‘qk+2n - qj+2n|

j=1,j#k

= )\Clk+2m

fork=1,...,n
Proceeding in a similar way than in [4], we divide the k-th equation of (10) by qg, k-th equation
of (11) by Qx4 and the k-th equation of (12) by qx+2, and we get system
n
> +m Z
’elﬁk — elﬁj |3 ’ezﬁk —aet (85— |3

=17k

n
+mZ |ewk e ﬂj+ﬁ)‘3 =

Z |ae’(f3k FETE 2 GBh B (13)
J=Llj#k
n
1— 6] Bk+26)
a3 Z - =\
a |e’ (Be=8) — ¢ilBj+5))3
1— 1/ae (Bj—Br— n 1 — H(Bi—Br—28)
Z |G 61(6k+6 — elﬁﬂ ‘3 (,l3 Z el(6k+/8) —e (B] ﬁ)|
n .
m 1 — e (ﬂ]fﬁk)
=D =
a |el Br+8) — e (ﬁy‘i’ﬁ)‘
J=1j#k

for k=1,...,n. Here

elﬁk _ elﬂj —

et (BeEB) _ ei(ﬂjiﬁ)‘ = (2 —2cos(p; — 5k))1/27

eBe _ g ot BiEB) | — (1 +a?-2a cos(Bj — B = 5))1/2

‘aei(ﬁkﬂ:ﬂ) _ Bl = (1 +a?2—-2a cos(Bj — B F 5))1/2

' BeFB) _ (iBED) | — (2 — 2cos(B; — By, + 28)) 2.

Since for all £ = 1,...,n the set {8; — B + ¢};=1,...n» modulus 27 is equal to the set {27j/n +
©}j=1,.n for all ¢ € R, the equations of system (13) are independent of k. So it is not restrictive
to take k = n. After straightforward computations we can see that system (13) is equivalent to the
system

K+ m(LQ + Ngl) + m(Lg + Ngl) =\,
Lo+ Nui + — K1 + (L5 + Nsi) = A, (14)
L6+N62+ (L7—|-N7Z)+ Kl—)\

where K is defined as in Section 3 (see (3)) and

i 1 —acos (21 —
L2 = L2(a76) = ( /8) 3/2°
j=1 (1 + a? — 2a cos (27” - B))
" —a31n(22‘7 —ﬁ)

4 3/2°
j=1 (1—|—a2—2acos(2’” —ﬂ)) /
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. 1—1/acos (3£ + B)

-1 (1+a2 — 2a cos (?Jrﬁ))g/z
- —1/asin (224 4+
j=1 (1+a2—2acos (2”73—1-5))

i 1 — cos (m—FQB)

Ly = Ls(8)=)_

j=1 <2 — 2cos (27” + 25))3/2’

n 21

N5 = Ns( —sin ]+2B) 3/2°

j=1 (2—2608 2” +26))
L3 — (aaﬂ) LQ(CL, ) N3:N3(CL,B):N2(CL, _B)a
LG - (0/75) L4(CL,—B), N6:N6(a76 :N4(CL, _6)7
Ly = Lz(B) = Ls(—B), N7 = N7(B) = N5(—5)

Note that
n—1 277

z_: —sin (T) o

Jj=1 (2 — 2cos (%TJDS/Q

Since for all ¢ € R
cos(zﬂ—go)—cos(%(n j)+<p) sin(%—gp)z—sin(%—l—gp),
we see that
Ly(a, B) = Ls(a,B), Naz(a,B) =—Ns(a,B), La(a,B)= Les,
Nu(a, B) = =Ne(a, 8), Ls(B) = L7(8), Ns(8) = —Nz(p).

So system (14) is equivalent to system
m m
K1 + 2mL2(a,5) = )\, L4(a,6) + E(Kl + L5(ﬂ)) = )\, N4(a,5) + $N5(5) =0. (15)
Solving the third identity in (15) we get

_ 3Nl )
Ns5(8)

and from the first and second identities in (15) we obtain
3 (K1 — La(a, B))

T K~ 243La(a, B) + Ls(B) (17)

Therefore, from (16) and (17) we have
F(a, ) = Ns(8)(K1 — La(a, 8)) + Na(a, B)(K1 — 24’ La(a, ) + Ls(8)) = 0.

In short, a semiregular bicircular configuration of the 3n—body problem is central if m = m(a, 8) is
given by (16) and a, 8 are such that F(a, ) = 0 and m(a,3) > 0.

4.2. Admissible values of 3. The following proposition provides the range of values of 5 that can
provide semiregular bicircular central configurations of the 3n—body problem.

Proposition 10. A necessary condition to have a semiregular bicircular central configuration of the
3n—body problem is that B € (7w/2n,m/n).

Proof. We will see that m = —a3N4(a B)/N5(B8) > 0 if and only if 5 € (7/2n,7/n). We recall that

1
Na(a, B) = — Z
“ d’BJ 1 (1+a2—2acos(2” +ﬁ)>1/2
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and that
1. d < 1

i 12"
j=1 (1 + a? — 2acos (L + Qﬂ))

Consider first the case in which a € [0,1). In this case using Proposition 14 in Appendix 1 with
a =1/2 and u =  and taking derivatives with respect to § we get

Con [t [ 2 1 1— (at)™
Ny(a,p) = a27r/0 % <(1 —1)1/2 (1 — a2t)1/2 By > dt

_ nsin(nf) /1 —2n(at)™(1 — (at)*™) it

- alr o tY2(1—t)V2(1 —a2t)1/2B2
with By = 1+ (at)?® — 2(at)" cos(n3), which is negative for 3 € (0,7/n) because the integrand in
the integral is negative. Moreover, using Proposition 14 again with a = 1/2 and v = 23 and taking
derivatives with respect to 5 we get

1 n (1d t=1/2 1 1 — (at)®
N, =—lim — [ — dt
5(8) =5 lim 7r/0 ds ((1 “HI2 (1-a2)2 B,
nsin(2np) . /1 —2n(at)™(1 — (at)*™) d
= ———~ lim
o tV2(1—0)Y2(1—a?t)l/2B3
with By = 1+ (at)®™ — 2(at)" cos(2n3), which is negative if 3 € (0,7/2n) and positive if 3 €
(m/2n,7/n) because again the integrand is negative.
Consider now the case a > 1. In this case using Proposition 15 in Appendix 1 with o = 1/2 and
u = (8 and taking derivatives with respect to 8 we get that

n 1 d a2n _ t27’l
Ny(a, ) = azﬂ/o a3 <t1/2(1 —1)1/2(a2 — t)1/2B3> dt

_ nsin(ng) /1 —2n(at)™(a®" — t2) gt

 ar o tV2(1—t)12(a? —t)\/2B2
with B3 = a®" + 2" — 2a"t" cos(n3), which is negative for 8 € (0, 7/n). Moreover, using Proposition
15 again with oo = 1/2 and v = 2 and taking derivatives with respect to 5 we get that

1. n[td a2n _ 2n
i 1 _ n( . 2n _ 12n
= M lim / 2n(at)" (a ") dt,
T asit Jo t1/2(1—1)V2(1 — at)1/2B}

with By = a®" + 2" — 2a™t" cos(2n3), which is negative if 3 € (0,7/2n) because the integrand is
negative and positive if § € (7/2n, 7 /n), again because the integrand is negative. Therefore, Ny(a, 3)
is negative for 8 € (0,7/n) and N5(3) is negative for 5 € (0,7/2n) and positive for 5 € (7/2n,7/n).

In short, m = —a3Ny(a, 3)/N5(3) is positive if and only if 3 € (7/2n,7/n) and the proposition is
proved. O

™ a—1—

4.3. Proof of Theorem 7(a). We study the existence of central configurations of the semiregular
bicircular 3n—body problem around f = 7/n. For proving Theorem 7(a) we need the following
auxiliary proposition concerning the sign of the function F'(a, ) as f — m/n.

Proposition 11. The following holds for F(a) = limg_/n F(a, B).

(a) F(a) >0 when a — oo;

(b) F(a) <0 when a — 1; B
(¢) F(a) >0 when a — 0 and n >3 and F(a) <0 when a — 0 and n = 2.

We note that in Proposition 11 we have that F'(a) could be +oo.
Proposition 11 is proved in Appendix 2.
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Proof of Theorem7(a). It follows from Proposition 10 that all solutions of F(a,B) = 0 for g €
(m/2n,m/n) satisfy m > 0, therefore all solutions of F'(a,) = 0 provide central configurations of
the semiregular bicircular 3n—body problem. Notice that the function F' is continuous for a € (0, 00)
and 8 € (7/2n,7/n), therefore the points where the sign of F' changes provides always solutions of
F(a,p) =0.

In view of Proposition 11 we have that when n > 3, fixed a value of § in a sufficiently small
neighborhood of 7/n, the function F' has at least one change of sign with a > 1 and one change of
sign with 0 < a < 1. So for each § in a sufficiently small neighborhood of 7/n there are at least two
values of a for which F'(a, ) = 0, one with a > 1 and one with 0 < a < 1. When n = 2 the function
F has at least one change of sign with @ > 1. So for each § in a sufficiently small neighborhood of
7/n there is at least one value of a with a > 1 for which F(a, 5) = 0.

On the other hand, from the proofs of Lemma 5 and Proposition 11 (see Appendix 2) we have
that limg_,/,, Na(a, 3) = 0 and limg_,/, N5(8) = oo, respectively. Therefore from (16), m — 0
when 5 — 7w/n.

O

4.4. Proof of Theorem 7(b). Now we study the existence of central configurations of the semireg-
ular bicircular 3n—body problem around 5 = 7/2n. For proving Theorem 7(b) we need the following
two auxiliary propositions concerning the study of the sign of the function F(a, ).

Proposition 12. The following holds for F(a) = limg_,. 2, F(a, 3).

(a) F(a) <0 when a — 0;

(b) F(a) <0 when a — oo;

(¢) F(a) >0 when a — 1.

Proposition 13. The following statements hold for F(f) = lim,_, F(a, 8) and F(3) = limg_s0 F(a, 3).
(a) For all B € (7/2n,7/n) we have F(B) > 0 forn >3 and F(B) <0 forn =2.
(b) For all B € (7/2n,m/n) and n > 2 we have F(5) > 0.

We note that in Proposition 13, both F(3) and F(8) could be #oo.
The proof of Propositions 12 and 13 can be found in Appendix 3.

Proof of Theorem 7(b). As in Theorem 7(a) recall that all solutions of F(a,8) = 0 with 8 €
(m/2n,m/n) satisfy m > 0 and therefore they provide central configurations of the semiregular
bicircular 3n—body problem. Moreover the points where the sign of F' changes provide solutions of
F(a,p) =0.

In view of Proposition 12 we have that in a sufficiently small neighborhood of 8 = m/2n the
function F' has at least one change of sign with ¢ > 1 and one change of sign with 0 < a < 1.
Therefore fixed a value of § in a sufficiently small neighborhood of 5 = 7/2n, there exist at least
two zeros of F, one with a < 1 and one with 0 < a < 1.

In view of Propositions 12 and 13 we have that when n > 3

il—% 5—1>1713/1an(&’6) <0, ﬂ—lg-l/lQn i%F(a,,B) > 0.
Therefore fixed a value of § in a sufficiently small neighborhood of 7/2n, there exist at least one zero
of I with a sufficiently close to the origin.

Again, in view of Propositions 12 and 13 we have that for all n > 2

ahﬁn;o Bilgan(a,ﬁ) <0, 637?/12n ahﬁrgo F(a,B) >0
Therefore fixed a value of § in a sufficiently small neighborhood of 7/2n, there exists at least one
zero of F' with a sufficiently large.

In short, fixed a value of 3 in a sufficiently small neighborhood of 7/2n there exist at least four
zeroes of ' when n > 3, one near a = 0, one with 0 < a < 1 not necessarily small, one with a
sufficiently large and one with a > 1 not necessarily large.

When n = 2 there exist at least three solutions of F' one with a sufficiently large, one with a > 1
not necessarily large, and one with 0 < a < 1.
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FIGURE 9. Solutions of F(a, ) = 0.

On the other hand, in the proof of Lemma 6 (see Appendix 3) we have seen that limg_, /o, N5(8) =
0. Moreover from (4.2) we have that a ¢ {0; 00} then limg_, /2, Na(a, ) # 0. Therefore from (16) we
can guarantee that m — oo at the central configurations coming from the zeroes of F' with 0 < a < 1
not small and a > 1 not large.

This completes the proof of Theorem 7(b). O

5. PARTICULAR CASES OF SEMIREGULAR BICIRCULAR CENTRAL CONFIGURATIONS OF THE
3n—BODY PROBLEM

When n = 2 from Theorem 7(b) we have at least three families (depending on ) of central
configurations in a neighborhood of = 7/4, one emanating from a point (a;,7/4), one emanating
from (ag,7/4) with as > 1, and one emanating from (co,7/4). From Theorem 7(a) we have at
least one family of central configurations in a neighborhood of 5 = 7/2 that emanates from a point
(a3, m/2) with ay > 1. They are given by the families of zeroes of F' for n = 2.

We have studied numerically these families of zeroes and we have obtained the following (see
Fig. 9a) the family of central configurations emanating from the point (a1, 7/4) = (0.6240605991.., 7w /4)
joins the family emanating from (a3, 7/2) = (v/3,7/2) and the family emanating from (ag,7/4) =
(1.4339374069.., 7/4) joins the family emanating from (oo, 7/4). Moreover, these are the only fami-
lies of central configurations. In particular if g € (7/4,b*) with b* = 0.9195936184.. the semiregular
bicircular 6-body problem has three different central configurations, if b = b* it has two central
configurations and if # > b* it has only one central configuration.

When n > 3 from Theorem 7(a) we have at least four families of central configurations of the
semiregular bicircular 3n—body problem in a neighborhood of § = 7/2n, one emanating from
(0,27/n), one emanating from a point (a,7/2n) with a; € (0,1), one emanating from a point
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(a2, m/2n) with ag > 1 and one emanating from (oo, 7/2n). Moreover, from Theorem 7(b) we have
at least two families of central configurations in a neighborhood of 5 = 7/n, one emanating from a
point (aj,7/n) with af € (0,1) and one emanating from a point (a3, 7/n) with a5 > 1. As above
they are given by the families of zeroes of F'.

We have studied numerically these families of zeroes for n = 3,4,5,6 and we have obtained the
following (see again Fig. 9).

When n = 3 the family of central configurations emanating from the point (0,7/6) joins the
family emanating from (af,7/3) = (0.4138879324..,7/3), the family emanating from (a;,7/6) =
(0.6280478552..,7/6) joins the family emanating from (az,7/6) = (1.1308109202..,7/6) and the
family emanating from (oo, 7/6) joins the family emanating from (a3, 7/3) = (1.6197896088..,7/3).
Moreover, these are the only families of central configurations when n = 3. In particular if g €
(m/6,b*) with b* = 0.7119233840.. the semiregular bicircular 9-body problem has four different
central configurations, if b = b* it has three central configurations and if § > b* it has two central
configurations.

When n = 4 the family of central configurations emanating from (0, 7/8) joins the family emanat-
ing from (a;,n/8) = (0.6351161391..,7/8), the family emanating from (ag,7/8) = (1.0636734282..,
7/8) joins the family emanating from (aj,7/4) = (0.697380509..,7/4) and the family emanat-
ing from (oo, 7/8) joins the family emanating from (a3, n/4) = (1.6024084862..,7/4). Moreover,
these are the only families of central configurations when n = 4. In particular if 3 € (7w/2n,b*)
with b* = 0.4665964724.. the semiregular bicircular 12-body problem has four different central
configurations, if b = b* it has three central configurations and if § > b* it has two central
configurations. The same behavior occurs for n = 5,...,100 (see Fig. 9 for n = 5,6), so we
conjecture that this happens for all n > 6. We note that when n = 5, a; = 0.6434495204..,
az = 1.0379259369.., a] = 0.822828699.., a5 = 1.5979217289.. and b* = 0.3406546931..; and when
n = 6, ap = 0.6515248377.., ay = 1.0252694202.., a7 = 0.8843211381.., a5 = 1.5922353553.. and
b* = 0.2733239284...

Finally have compute the values of the masses for the families of central configurations with
n = 2,3,4 and we have plotted them in Fig. 10.

APPENDIX 1. PROOF OF PROPOSITION 9

We state and prove some auxiliary results that will be used in the proof of Proposition 9. We need
the following two propositions taken from [1].

Proposition 14 ([1, Proposition 7]). For0 < a <1, a € (0,1) and u € [0,27) we have
n

1
Z (1+ a2 —2acos (2L +u))”

7j=1
_ msin(ra) [P ote7! 1 1 — (at)*
N 7r /0 (1—t)> (1 —a%t)® 1+ (at)?™ — 2(at)™ cos(nu)

dt.

Proposition 15 ([1, Proposition 8]). Fora > 1, a € (0,1) and u € [0,27) we have
n

1
]; 1+a2—2acos( —i—u))a

_ nsin(ra) /1 to-t 1 R dt
B 7r o (1=t (a® —t)™ a?" + 2" — 2(at)" cos(nu)

We need the following auxiliary result.

Lemma 1. Let u € R and let v =27 j/n + u.
(a) The following identites hold for all ¢ € N

n

Zcos (%%—i—u) =0, Zsin(%;r‘]
j=1

Jj=1
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F1GURE 10. Values of m at the families of semiregular bicircular central configurations
of the 3n-body problem.
whenn > 2 and n # (.
(b) Forn > 3 we have
= n
ZCOS2"}/ =3 (19)
j=1
and for n = 2 we have
2
Z cos? (mj+u) =2 cos? u. (20)
j=1
(¢) For allm > 1 we get
= a — cosy d 1
32 da Z 12"
Jj=1 (1 + a? — 2a cos fy) j=1 (1 +a2 -9 cosy)

(d) Let
L(a,u) = .
Jz; (1 +a?— 2acos'y>3/2

1—1/acosy

We have L(a,u) = —n/2 + O(a) when n >3 and L(a,u) = 2 — 6 cos?u + O(a) when n = 2.
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Proof. Using the sum of the first n terms of a geometric series we get

n
Z ei(2£7rj/n+u) -0
j=1

for all £ € Z with £ # n (here i = y/—1). This proves statement (a). From the formula of the cosinus
of twice an angle an applying statement (a) with £ = 2 and 2u instead of u we get

- 2 j ] — 21 j n

2 _ -

Zcos <n+u>—2z<cos<2< - +u>>+1>—2.
j=1 j=1

This proves statement (b) for n > 2. Statement (b) for n = 2 and statement (c) follows from direct

computations.
Expanding the function L in Laurent series around a = 0 we have

:_72(; +Zl—3ZCOS +u) + O(a).

Then, when n > 3 in view of (18) with £ =1 together w1th (19) we obtain

L(a,u) =n— 371% +O0(a) = —g +O(a)

and when n = 2 in view of (18) with £ =1 and (20) we obtain
L(a,u) =2 — 6cos> u + O(a).
This completes the proof of statement (d).

O
We need the following technical lemma.

Lemma 2. We have f(v) = (1+v)(1 —v?") —4nv™(1 —v) > 0 forn > 2 and v € (0,1).
Proof. Note that

flo)=1+v)(1=2")(1+0") —4nv"(1 —v)

=(1-v)(1+v)(1+v+v>+.. .+ 0" (1 +0") — 4no")
=1 —=v)g(v)
where
gv) =1 +v) 1 +v+02+... +0" (I +0") — 4"
=1+20+20% + 203 + ..+ 20" £ 20" £ 20" 4 20" 4
+ 2027y g (21)

=14204 ...+ 20" (2—dn)o" + 20" £ 4 207 4%

We see that
g(1)=0 and g¢'(1)=0.
Indeed,
g1)=1+2(n—-1)+2—4n+2(n—1)+1=0,
and since
JdW)=2+4v+603+ ... +2(n— 1" 2+ (2 — dn)nv™
+2(n 4+ Do + ... +2(2n — 1)o* 2 4 2n0?

then

Jg)=21+2+3+...+(n—1)) +n(2—4n)
+2n+14+n+2+...+2n—1)+2n
2n—1 2n—1

:Q(Zj—n—i-(l—Qn)n—i-n):Q(Zj—i-n(l—?n)):0.

Jj=1 Jj=1
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Therefore,
2n—2

g(v) = (1 =v)’h(v), h(v) = c;jvf
j=0

for some coefficients c;.
We will show by induction that

(j+1)2 for j=0,...,n—1,
<= {(2n—j—1)2 for j=n,...,2n— 2.
In view of (21) we have that the coefficients ¢; satisfy ¢o = 1, ¢1 =2 + 2¢y = 4,
cp+cep_o—2c,_1=2 fork=2,....n—1,n+1,....2n—2,
Cp+ Cpo —2¢p_1 =2 —4n,

Con—3 — 202n_2 =2 and Con—2 = 1 (and SO Cop—3 = 4).
We prove by induction the cases for j = 0,...,n — 1. It is clear for j = 0,1 and we will prove it
for some 2 < j < n — 1. Note that by the induction hypotheses

Cja1=—Cji1+2c;+2=—j+2/2+4j+2+2=52+4j +4=(j+2)
and so the induction is satisfied for j = 0,...,n — 1. For j = n we have
cn=2—dn—(n—-172+2n*=2—-dn-n*+2n—1+2n*=n?-2n+1=(n—1)3
and for j =n 4 1 we have
Cnt1 = —Cn1 +20, +2=—(n—1+1)7+2(n—1)>+2=2n— (n+1) — 1)~
For j = n,...,2n — 2 the induction hypotheses yields ¢; = (2n — j — 1)2. Note that it is clear for
j=mnand j =n+ 1 and we will show it for n + 1 < j < 2n — 2. In particular the cases j = 2n — 3
and j = 2n — 2 are also trivially satisfied. So, we only need to show it forn +1 < j < 2n — 3. By
the induction hypotheses for any n+ 1 < j < 2n — 3 we have
cj=2—cja+2c1=2—(2n—(j—2)—1)*+2(2n— (j — 1) — 1)?
=2-(2n—j+1)%+22n—j)* =(2n—j— 1)
and the induction hypotheses holds. In short the lemma is proved. O

The next result concern properties of the functions K;(a) introduced in Section 3.

Lemma 3. The following statements hold for all n > 2:
(a) Kg(a) > Ka(a) for a € (0,1);
(b) Ke(a) < Ky(a) fora>1;
(C) K5 > Ky > 0.
(d) a®Ky(a) = K2(1/a) and a®*Kg(a) = K3(1/a).

Proof. Note that

n _ mj 4o
CLKG(CL):Z a cos(n—i-n)

= (1 +a? — 2acos (2% + %))3/2,

3l

21y

a — cos (££2)
aKy(a) = o :
! ; (1+a? —2acos (2%7))3/2

When a € (0, 1), using Lemma 1(c) and Proposition 14 with o = 1/2 and u = 0 we get

n (1d t1/2 1 1 — (at)®"
Kia)= -2 & :
aka(a) T /0 da ((1 —)1/2 (1 — a2t)1/2 1 + (at)?™ — 2(at)” dt

and using Lemma 1(c) and Proposition 14 with & = 1/2 and u = 7/n we get

n (1d /2 1 1— (at)®"
Kola)= —— [ =
aKs(a) 7r/0 da ((1 T (1= @)1 1+ ()2 + 2(aty ) @
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Hence, for a € (0,1),

n 1 -1/ at)™
Kola) — Ka(a) = — d( e : o 1>> t

ma Jo da \ (1—)12 (1 —a2t)'/2 ((at)?" —

n /1 4(ta)™(ta(—1 + (ta)®™) + n(ta® — 1)(1 + (ta)?"))
0 a(l —t)1/2t1/2(1 — a2t)3/2((ta)?" — 1)2
because the integrand is negative for a € (0,1). Therefore, K¢(a) > Ky(a) for 0 < a < 1 and so

statement (a) is proved.
For a > 1 using Lemma 1(c) and Proposition 15 with o = 1/2 and v = 0 we get

1 -1/2 1 2n _ 42n
aKy(a) = _n/ da [t a’t —t "
T Jo da \ (1 —¢)1/2 (a? —t)1/2 a?" 4 20 — 207"

and using Lemma 1(c) and Proposition 15 with & = 1/2 and u = 7/n and taking derivatives with
respect to a we get

1 -1/2 2n _ 42n
aKg(a) = _n/ a t ! a t dt
7w Jo da \ (1 —t)1/2 (a2 —t)1/2 a?" + 27 4 2a™"

Hence, for a > 1,

n 1 -1/ at)™
K6(a)_K4(a):_/O d [ ¢4 1 4(at) )dt

dt > 0,

Ta

Ta % (1 _ t)1/2 (a2 _ t)1/2 $2n _ g2n

n [4ta)" (@ (@ — *") + n(a® — t)(@®" +*"))
ma Jo a(l — t)1/2t1/2(a2 — 1)3/2(#2n — g2n)2
because the integrand is positive for a > 1. Therefore, K¢(a) < Kq(a) for a > 1 and statement (b)

is proved.
To prove statement (c) we proceed as follows. Note that

dt <0,

n

1 1 1
K5:i%2jzl (1+a2—2acos (2%4_%))1/2 T iliri QAO’
n—1

1 1
Kq = lim — -
= ; (1+a2 — 2a cos (2%))1/2

1

DN | =

- 1 1
= lim , - ;
a1 ; (1+ a? —2acos (2%]))1/2 ; (14 a? — 2acos(27j))"/?

1
= lim *(Al — AQ),

a—12

Thus 1
Ks — K1 = lim *(A(] — A+ AQ) (22)
a—12

where Ay, A1, As are the summations defined above. Applying Proposition 14 we have that Ay —
A1+ Az when a € (0,1) is given by

_n /1 L - (ta)" dt
7 Jo (1 —)Y241/2(1 — a2t)/2(1 + (ta)™)
n /1 1+ (ta)” it
7 Jo (1—t)1/2t1/2(1 — a2t)1/2(1 — (ta)™)

1/1 1+ ta U
T Jo (1—1)1/2tY2(1 — a2t)1/2(1 — ta)

+

_n/1 4(ta)™ N 1+ta 1 "
o \ =1+ (ta)>  n(l—ta)) (1 —t)Y261/2(1 —a2t)t/2
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On the other hand, applying Proposition 15 we have that Ayg — A; + A when a > 1 is given by

— n [t 4(ta)” a+t 1
A=— — )
T /0 < q2n _ ¢2n + nla — t)) (1— )1/241/2(a2 — £)1/2 dt

After doing the substitution a — 1/a, the expression A can be written as a A. Thus

lim A= lim A= hm Ay — Ay + As. (23)

a—1- a—17t

Now we show that A > 0. Note that taking v = ta we get
4(ta)” 1+ta 4™ 114w

—1+ (ta)® n(l—ta)_—l—FvQ"—i_ﬁl—v'

Using Lemma 2 we get that

4u™ n 114v  (I+0)(1—0*) —4n"(1 —v)
—14+v"  pl-v n(l —v)(1—v?")

> 0,

for v < 1. So A > 0 and taking the limit when a — 17 together with (23) and (22) we get
lim, ,;- A =1lim, ,;+ A =2(K5 — K1) > 0 for all n > 2. Moreover K is positive by definition. So,
we have proved statement (c).

Statement (d) follows from direct computations. O

In the following lemma we provide properties of the function A(a) = —K1—Ks+a®(Ka(a)+K3(a))
that appears in the denominator mp in (4).

Lemma 4. For all n > 2 the following statements hold.

(a) A(a) is increasing for all a € (0,1);
(b) A(0) <0, A(a) — oo when a — 1~ and A(a) — —oco when a — 17;
(c) A(a) <0 for all a > 1;
(d) A(a) has a unique zero and it belongs to the interval (0,1).
Proof. We first note that setting b = 1/a we have
2mj
& - Cos( ) 1
K2 n = *KQ(b),
bz 1—H)2—2bcos(27m))3/2 b (24)
21]
i — Cos (T + g) 1_
Ks(a : = —K3(b).
bz (1+ b2 — 2bcos (2%—1-%))3/2 b
Let A(b) = (1/bK5(b) + 1/bK3(b)). We want to show that for a € (0, 1)
dA(b) b 1
/ !
A'(a) = b |, " da = (A(b)) ‘b:l/a. <_a2> > 0.
/a
So, it is sufficient to show that A(b)’ < 0 for b > 1.
Let
. 1
T = + ; .
Z 1+ b% — 2bcos (27r]))1/2 ; (1+ b2 —2bcos (2% + %))1/2
Using Lemma 1(c) we get that
Ks(b) + K3(b) = —dT'/db (25)
and so (A(b))' = 5T1 — T2 where
T °T
T = d Ty = d

db’ dp?
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Since from Proposition 15 we have

T = 2”/1d 1 £ ey
T o db \t/2(1 — t)1/2(p2 — £)1/2 {20 — p2n

n /1 1 Zb(th b2n) B 8nt2nb2n 1 ”
1 Jo t1/2(1 — £)1/2 \ (b2 — t)3/2(t2n — b2n) (b2 — t)1/2(#2n — p2n)2 ’
taking another derivative with respect to b we get

n 1 1 —8nt?"p?2((2n — 1)t2" + (2n + 1)b%7)
o tY/2(

2= T 1—t)t/2 (b2 — t)1/2(t2n — p2n)3

2 (802 (12 ) 2+ (202 4 6) (57— 7))\
(b2 — t)5/2 (t2n — b2n)2 '

Since T1 < 0 (the integrand is negative) and 7> > 0 (the integrand is positive) we readily obtain that
(A(b)) < 0 and so A'(a) > 0 for a € (0,1). In short statement (a) is proved.
It is clear that A(0) = —K; — K5 < 0, see Lemma 3(c). Moreover

— 21
— COS . 1—a
lim Ko (a Z (2 ) 372 + lim 3720
a—1 ) 2—200s( 7”)) a—1 (1—|—a2—2a)
SO
lim Ks(a) =00 and lim Kj(a) = —oc. (26)
a—1— a—1+

Furthermore lim,_,; K3(a) = K5 which is different from zero and from infinity. Hence, using (26) we
get
lim A(a) =00 and lim A(a) = —o0.

a—1-— a—17t

This completes the proof of statement (b).

Now we show that A(a) < 0 for @ > 1. To do so, we will show that a®K(a) + a3K3(a) < 0.
Note that this is sufficient because —K; — K5 < 0. Clearly in view of (24) and (25) we have
a3Ky(a) + a*Ks(a) = §(Ka(b) + K3(b)) = —%% with b < 1. So, applying Proposition 14 we get

L 1 L b
bdb 7 Jo db \#1/2(1—t)1/2(1 — b2¢)1/2 1 — (bt)2"

_2n 4n(tb)?"
B _7rb/0 <bt1/2(1 — t)1/2(1 — b2t)1/2(1 — (bt)2n)2
bt(1 + (bt)*")
TR )R )R - (bt)2”)>
and since the integrand is positive we readily have that a®Ks(a) + a®*K3(a) < 0 for a > 1 and so
A(a) < 0 for a > 1. In short, statement (c) is proved.

The proof of statement (d) is a direct consequence of the statements (a)—(c) together with the
Bolzano-Cauchy theorem. O

3

Proof of Proposition 9. We expand my = a’my2/mp in Laurent series around a = 0, see (4). The

expansion of mp around a = 0 is given by
mp = (K5 — Kl)(—Kl — K5+ O((IS))
Using Lemma 1(d) with u = 0 (respectively, u = 7/n) to expand K, (respectively, Kg) in Laurent

series around a = 0 we get

Ku(a) = —g +0(a) and  Kga) = —g +0(a) (27)
when n > 3 and

Ky(a) = =4+ O(a) and Kg(a) =2+ O(a) (28)
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when n = 2. Therefore, when n > 3 we have

K2+QK1—K1K5—EK5 K+ 2
381 T 9 2 4 3 2 4
mo = a 4+ 0(a*) =a°——= 4+ O(a
(K5 — Ky)(—K; — K5) (a%) K5+ K, (a")
and since K1, K5 > 0 we obtain lim,_,o+ mg = 0.
When n = 2 we compute directly the quantities K1 and K5 and we have K1 = 1/4, K5 = 1//2.
So expanding mg in Laurent series around a = 0 we get

my = —a® (1—77 + 2\/5) + O(a).

Hence, lim,_,q+ m2 = 0~. This completes the proof of statement (a).
For statement (b) we note that by (5)

a’(Kg(a) — Ku(a))
Ks — K '
Using the Laurent series of K4 and Kg around a = 0 given in (27) we get
a®(Ke¢ — Ky(a))

mg = mo +

= O(a*
K K, (a”)
when n > 3 and so
K+ 35
3 2 4
m3=a"—= + O0(a”),
3 K5+ K, ( )

which yields lim,_,o+ m3 = 0" when n > 3.
On the other hand, for n = 2, using the Laurent series of K4 and Kg around a = 0 given in (28)
and the values of K7 and K5 for n = 2 computed above we get
a3(K6 - K4(a)) _ CL3
K5 — Ky Ks — Ky

(6+0(a))
which yields
3
my = (7 +34V2) + O(a*),

and so lim,_,o+ m3 = 0F. This completes the proof of statement (b).
We expand m3 = a®my 3/mp in Laurent series around a = 1 (with a > 1), see (4). Note that

1
m+0(a—1), Kg(a):K5—{—O(a—1),

1 1
K4(a):K1+(a_1)2—a_1+1+0(a—1), K¢ = K5+ O(a—1),

and a® =1+ O(a — 1). Hence,
1

KQ(CL) = K1 —

K5 — Ky)

_ -3 _ -1
my3 = @1 +0((a—1)"") and mp = a1 +O0((a—1)"").
Therefore,
1
S O((a—1)71).
ms3 (a*].)Z(KE)*Kl) + (((l ) )
Since in view of Lemma 3(c) we have K5 > K; > 0, then lim, ,;+ m3 = —oo. which completes the

proof of statement (c).

For statement (d), note that taking b = 1/a and using Lemma 3(d) we have Ky(a) = Ky(1/b) =
b K4(b), K3(a) = K3(1/b) = b*Ks(b), Ka(a) = Ka(1/a)/a® = 0*Ka(b) and Kg(a) = K3(1/a)/a®
b3K3(b). Thus, using Lemma 1(d) for n > 3 we have

Ky(b) = —g +O®b), Kgb) = —g +O(b).

Moreover expanding in power series around b = 0 we get

Ky(b) =n+ 0(b), Ks(b) =n+ O(b).
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Hence for n > 3

Ka(b) = =26+ O(Y),  Ka(b) = =50+ O(b"),

(29)
Ky(b) =nb® + 0%,  Kg(b) = nb® + O(b*),
Proceeding in the same way for n = 2 we get
Ko(b) = —4b3 + O(b*),  Ks3(b) = 2b° + O(b?), (30)
)

Ky(b) =20+ O(b*),  Kg(b) = 2b* + O(b*).
Using (29) and (30) the numerators of mg and mg (see (4)) can be written as
1
b3
and the denominators of mg and mg (see again (4)) can be written as
(K5 — K1) (—K1 — K5 —n) + O(b)

for all n > 2. Thus the Laurent expansion of mgy and mg around b = 0 becomes (after simplifying
K5 — K1)

)
(Kf — K1K5) + O(1),

]. Kl 2
-+ 0(b™ 7).
b K+ Ks+n + ( )
Then taking into account that in view of Lemma 3(c) we have K5 > K; > 0, we conclude that
lim mo = lim m9 = o0, lim ms3 = lim m3 = oc.
a—00 b—0T1 a—00 b—0t

This proves statement (d).

From Lemma 3(a) we get K¢ — K4(a) > 0 for a € (0,1). From Lemma 3(b) we get K¢ — K4(a) <0
for a > 1 and from Lemma 3(c) we get K5 — K; > 0. Thus from (5) we get ma < m3 when a € (0,1)
and mg > m3 when a > 1, which proves statement (e). O

APPENDIX 2. PROOF OF PROPOSITION 11
We need the following auxiliary lemma.

Lemma 5. Let

" a(1 4 a?)con (223 4 ) + 50— acos (21 + 2)
E(a) := Z . 5/2 '
=0 a(1+a2—2acos (2”7]—1-%))

Then
lim Ny(a, 3)(K1 — 2a°Lo(a, B) + Ls(8)) = EE(G)

B—m/n

if n is even and

1 1
lim N, Ky —2d°L Ls(B)) = 7 | Ea) + —=——3
6%117]?/71 4(a, B)(K1 — 2a°La(a, B) + Ls(f5)) 1 ( (a) + a(1+a)3>
if n is odd.
Proof. First note that
lim Ny(a,B) (K1 —2a*La(a, B)) = 0
B—m/n
because o i
_ " —1/asin (L + T
lim Ny(a,B) = Z ( , ) 3/2 0
poni = (140 = 20008 (2 + 7))
and o
n 1— ) T
lim Ly(a, 8) = acos (52 = 5)

. 3/2
B—m/n = (1 + a2 — 2a cos (2”7] _ E))

n
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is finite for all a > 0. On the other hand,

n2 1 — cos (%TJ +25) n 1 — cos (w +26)

Ls(8) =
jzz:o (2—2008 (¥+25))3/2 <2—2008 (W*‘Qm)?ﬁ

:= L51(8) + Ls.2(8).

Clearly limg_, ,, Na(a, 8)Ls51(8) = 0. Therefore, we need to study limg_, /,, Na(a, 8)Ls2(3). Note
that expanding Ls 2 around 3 = m/n we have

1—COS(M+2B) B 1

n

Ls(8) = > ro(8-D+o((-1)?).

(2 — 2cos (w +2B)>3/2 GRS

On the other hand, we can rewrite Ny(a, ) as

N. (a,B) [n/i]_l —1/asin (%TJ +6) 1/asin (w + ﬁ)
4(a,B) = B |
j=0 (1+a2—2acos (?4—5))3/2 <1+a2—2acos (w+ﬁ))3/2

if n is even and as Ny(a, 3) + Nj(a, 3) with

—1/asin (L[:/Q] +ﬂ)
(1 +a? — 2acos (L [:/2] + 5))

if n is odd. Expanding N, around 8 = 7/n we get
Nu(a, 8) = E(a)(8 —7/n) + O((8 — 7/n)?),

and expanding N also around 3 = 7/n we get

Ni(0,5) = cpaga (8= m/m)+ O((8 = w/m)")

Thus, expanding Ny(a, 3)Ls2(8) around § = m/n we obtain

Nula, 6)Ls3(8) = (@) + O((8 — m/n)

Ni(a,8) =

3/2

if n is even and

1 1
N, L = |FE e _
@8 Laa() = § (B@+ o ) + 06— /)
if n is odd. Taking the limit as § — m/n we obtain the result that we wanted to prove. O
Proof of Proposition 11. Note that
n .27 (j+1)
) —sin (= —
hm/ N5(B) = ( : ) 572
pomin Jj=1j#n—1 (2 — 2cos (%))

—sin (L (Zfl) + 25)

+ ,31—1>r7£1/n 27 (n—1) 3/2 -
(2 — 2cos (T + Zﬁ))

In view of Lemma 5, it is clear that the sign of F'(a,f) as 8 — m/n is determined by the sign of the
difference G given by

G = lim (K| — Ly(a,B)) = K1 — Ly(a),
B—m/n
where o
_ ‘ " 1—1/acos (L + =
Ly(a) :5hm Ly(a, B) = Z / ( - n) 3/2°
—7/n j=1 (1—|—a2—2acos(2” —i—”))

n

3|
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When a — oo we have -
lim G = Ky — lim Ly(a) = K7 > 0.
a—r o0

a— 00
This proves statement (a) of the proposition.
Furthermore, when a — 1, using Lemma 3(c), we obtain
n 21 g
1—cos (L +I)
limG =K, — o "
lim G = K=

4 — Ky — K5 <0.
j=1 (2 — 2cos (%TJ + %))

3/2

So, statement (b) is proved.

Using Lemma 1(d) with u = 7/n, the expansion of Ly around a = 0 is given by L4(a) = —n/2 +
O(a), when n > 3 and Ly4(a) = 2+ O(a), when n = 2. Hence, when n > 3 the expansion of G
around ¢ =0 is G = K1 +n/2+ O(a) and so lim,—,0 G > 0. For n = 2, computing the value of K,
the expansion of G around a = 0is G = 1/4 — 2 + O(a) and so lim,,0 G = —7/4 < 0. This yields
statement (c) of the proposition. O

APPENDIX 3. PROOF OF PROPOSITIONS 12 AND 13
We need the following auxiliary lemma.

Lemma 6. We have

ﬁ£7{?2nN5(5)(K1 — Ly(a, B)) = 0.

Proof. First note that

n _ 2rj , m
li La(a8) = 30— —eeos G2+ )

. . 3/2°
pm/2n j=1 (1 + a? — 2acos (27” + %))

n

which is finite for all > 0. Moreover, it is easy to see that

L ()

lim N5(5) = 3 =0
. _ 72
Bam/2 j=1 (2—2008 (2734-%))
and so limg_, /2, N5(8)(K1 — La(a, 8)) = 0, as we wanted to prove. O

Proof of Proposition 12. In view of Lemma 6 the sign of F'(a, ) around § = 7/2n is determined by
the sign of Ny(a, 8)(K1—2a*La(a, )+ Ls(8)) unless limg_, /2, Na(a, 3) (K1 —2a>La(a, )+ Ls(3)) =
0. From the analysis of the sign of Ny(a, 3)(K; — 2a®La(a, ) + Ls(B)) around 8 — m/2n we will see
that limg_,. 2, Na(a, 8)(K1 — 2a°La(a, 8) 4+ Ls(8)) # 0.

In view of Proposition 10 we have that Ny(a, ) < 0 for @ € (0,7/n) and so Ny(a, 5) < 0. So, we
need to study the sign of K1 — 2a®La(a, 8) + Ls(B) as B — 7/2n.

Hence,
lim K —2a®Lo(a, B) + Ls(B) = Ky — 2a°Ly(a) + K5 := H,
B—m/2n
where N 1 (27rj _ )
- —acos (= — &
Ly(a) = lim Ly(a,B) =) e 573"
pm/2n j=1 (1 + a? — 2a cos (%TJ — %))

When a — 0 we have that Ly(a) — n. So lim,_0 H = K1 + K5 > 0 in view of Lemma 3(c). This
proves statement (a) of the proposition.

To study the behavior when a — oo we first observe that making the change b = 1/a we get
a®Ly(a) = L(b,7/2n) where L is the function defined in Lemma 1(d). Thus applying Lemma 1(d)
with v = 7/2n and using Lemma 3(c) we have

lim H=K;+n+ K5 >0,
a—r0o0
when n > 3 and
lim H =Ky —2(2—6cos® (T)) + K5 = K1 +2+ K5 > 0,

a— 00
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when n = 2. This proves statement (b).
Finally, to prove statement (c) we need to study the sing of H when a — 1. Note that

1 — 1 & 1
lim H = 72 —Z
ol 2 j=1 (2 — 2cos (%))1/2 Jj=1 EL]
1
j=1 (2 — 2cos (2” + ))1/2

In order to study the sign of lim, 1 H we rewrite lim,_,; H as lim,_,; H; where

n

N[ =

_l’_

n 1

1 1 1 1
H =— g _ 72 :
= (1 + a? — 2acos (—229)) 23 (1+ a® — 2a cos(27j))

n

n

1 1

, 1/2 .
j=1 <1+a2—2acos (22—]—%)) 2]‘:1 <1+a2—2acos (%Tj+%))

1

/2"

Now applying Proposition 14 with « = 1/2 and u = 0; n =1, « = 1/2 and u = 0; « = 1/2 and
u= —7/2n; and o = 1/2 and u = 7/n respectively we get

1 /1 1 4(at)?"n 1+at
H == — dt
7 Jo t1/2(1 —)1/2(1 — a2t)1/2 \1 — (at)  2(1 — at)

Setting v = at and N = 2n and using Lemma 2 we get

4(at)?"n l+at 4UN% 1+
1—(at) 2(1—at) 1—02N 2(1-0)
4NN —v) — (1 +0)(1 -0

(1 —v2N)2(1 —v)

< 0.

Therefore lim,_,;- H; < 0.
Applying Proposition 15 to H; with a =1/2 and u=0;n =1, =1/2 and u = 0; « = 1/2 and
u= —7/2n; and o = 1/2 and u = 7/n respectively we get

1t 1 4(at)*n a+t
H, = — dt.
0 t1/2(1 —t)1/2(a2 —t)1/2 adn — ¢4n 2(a—t)
After doing the substitution a — 1/a we get that H; can be written as a Hy. Thus lim,_,;+ H; < 0.
In short we have that H < 0 when a — 1 and statement (c) is proved. O

Proof of Proposition 13. We start proving statemt (a) for n = 2. Computing directly the quantities
Ky, Lo(a,B), La(a, ), Na(a,B), Ls(5), and N5(5) for a fixed 8 and expanding F' around a = 0 we
get

F(a,B) = —% tan B sec 3 (18 cos B + 6 cos(3B) + 17 cot® B+ 7) + O(a?).

So F(8) <0 for all 8 € (7/2n,7/n) and n = 2. )
Now we will show that for any g € (7/2n,7/n) and n > 3 we have F(3) > 0. We fix § and we
expand F' around a = 0. First, expanding Ny around a = 0 we get

N4(a,5)=—%z i (2”+ﬁ —*Zs —+2ﬂ)+0()

j=1
and in view of (18) we have Ny(a,8) = O(a). So expanding Ny(a, B)(K1 — 2a®La(a, 3) + Ls(B))
around a = 0 we obtain

Ny(a, B)(K1 — 2a*La(a, B) + Ls(8)) = O(a).
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On the other hand, using Lemma 1(d) with u = 5 and n > 3, the expansion of L4 around a = 0 is
given by Ly(a,3) = —n/2 + O(a). Therefore, around a = 0 we get

Fla, ) = (K1 + 5)N5(8) + O(a). (31)
The sign of N5(3) for any 8 € (0,7/n) was studied in Proposition 10 and we obtained that N5(5) is
negative if 8 € (0,7/2n) and positive if § € (7/2n,7/n). Therefore, from (31) we have that for any
B € (r/2n,7/n) and n > 3, F(B) > 0 which completes the proof of statement (a).
Now we consider the case in which a — co. Fixed 8 € (7/2n,7/n) we have that N5(f) is positive.
Moreover,

lim Ly(a,p) = lim Ny(a,B) =0.
a—r00 a—r 00

Making the change b = 1/a we get a®Lo(a,3) = L(b,), where L is the function defined in
Lemma 1(d). Thus, applying Lemma 1(d) with u = 3 we get that lim, .o a®La(a, 3) = limy_,g —n/2+
O(b) when n > 3 and lim, o a®La(a, B) = limy_so 2 — 6 cos?(S) + O(b) when n = 2. So,

lim (K — 2a°La(a, B) + Ls(8))Na(a, ) = 0,
lim N5(8)(K1 = La(a, B)) = N5(8) K1 > 0,

for all n > 2. In short, for any 8 € (7/2n,7) and n > 2, F(B) > 0. This concludes the proof of the
proposition. Il
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