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Abstract. We consider the piecewise differential equations of the form



dx1
dt
dx2
dt


 =

{
a0(t) + a1(t)x1 + ....+ an(t)xn1 , if 0 6 t 6 π,
b0(t) + b1(t)x2 + ....+ bm(t)xm2 , if π 6 t 6 2π,

where a0(t), a1(t), ..., an(t) and b0(t), b1(t), ..., bm(t) are 2π-periodic functions in the variable
t, and we study the number of limit cycles of such equations on the cylinder. In this way we
give exact bounds for the maximum number of limit cycles that the piecewise differential
equations have in function of n and m.

1. Introduction and statements of the main results

Pugh proposed the following problem (see [7]). Let a0, a1, ..., an : [0, 2π]→ R be analytic
functions and consider the differential equation

(1)
dx

dt
= a0(t) + a1(t)x+ ....+ an(t)xn, 0 6 t 6 2π.

A solution x(t) of (1) is called a closed solution or a periodic solution if it is defined in
the interval [0, 2π] and x(0) = x(2π). The adjectives closed and periodic are motivated
by the case where a0, ..., an are 2π-periodic, in which (1) can be considered in the cylinder
and the closed solutions really correspond to closed orbits in the cylinder. Closed orbits in
polynomial planar differential systems can be isolated or belong to an annulus of periodic
orbits. In the isolated case they are called limit cycles. So the problem is this: Is there a
bound on the number of limit cycles of (1)?

We note that the differential equation (1) with n = 1 (resp. n = 2) is a linear equation
(resp. a Riccati equation), and when n = 3, (1) is called an Abel equation. It is well known
that linear (resp. Riccati) equations have either a continuum of periodic solutions or at most
1 (resp. 2) periodic solutions. For the Abel equation it was proved that for any k there
exist equations (1) with ai(t) trigonometric 2π-periodic polynomials, having at least k limit
cycles. A similar result holds for n > 3, see for more details [7, 9, 1].

In this paper we deal with the piecewise differential equation

(2)




dx1
dt
dx2
dt


 =

{
a0(t) + a1(t)x1 + ....+ an(t)xn1 , if 0 6 t 6 π,

b0(t) + b1(t)x2 + ....+ bm(t)xm2 , if π 6 t 6 2π,
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where a0(t), a1(t), ..., an(t) and b0(t), b1(t), ..., bm(t) are 2π-periodic functions in the variable
t. If we consider that x1(t) = φ1(t, ρ) is the solution of

dx1
dt

= a0(t) + a1(t)x1 + ....+ an(t)xn1 ,

such that φ1(0, ρ) = ρ, and let x2(t) = φ2(t, ρ) be the solution of

dx2
dt

= b0(t) + b1(t)x2 + ....+ bm(t)xm2 ,

such that φ2(2π, ρ) = ρ, then a solution of the piecewise differential equation (2) satisfying
φ1(π, ρ) = φ2(π, ρ) is called a closed solution or a periodic solution. Like in the smooth
case the adjectives closed and periodic are motivated by the case where a0, a1, ..., an and
b0, b1, ..., bm are 2π-periodic, in which (2) can be considered in the cylinder and the closed
solutions really correspond to periodic orbits in the cylinder. Then the function Π(ρ) :=
φ1(π, ρ)− φ2(π, ρ) plays a great role to find the number of closed orbits. Thus the zeros of
Π(ρ) correspond to closed orbits of (2), and their isolated zeros provide initial conditions for
the limit cycles of equation (2). Then the problem is this: Is there a bound on the number
of limit cycles of (2)?

We note that the problem here studied is an extension of the Pugh’s problem to piecewise
differential equations on the cylinder.

Then H(n,m) denotes the maximum number of limit cycles that some piecewise differen-
tial equations (2) can exhibit. The number H(n,m) is usually called the Hilbert number of
piecewise differential equation (2). The Hilbert number for polynomial differential systems
in the plane is the main objective of the well known 16th Hilbert problem, see [4, 5, 6]. The
Hilber number also has been considered for piecesise differential linear centers in the plane,
see for instance [8].

The main results of this paper are stated in the following theorems.

Theorem 1. The piecewise differential equation

(3)




dx1
dt
dx2
dt


 =

{
a0(t) + a1(t)x1, if 0 6 t 6 π,

b0(t) + b1(t)x2, if π 6 t 6 2π,

where a0(t), a1(t), b0(t) and b1(t) are 2π-periodic functions in the variable t, has at most
one limit cycle on the cylinder. In particular, H(1, 1) = 1.

Theorem 2. The following piecewise differential equations

(4)




dx1
dt
dx2
dt


 =

{
a0(t) + a1(t)x1, if 0 6 t 6 π,

b0(t) + b1(t)x2 + b2(t)x
2
2, if π 6 t 6 2π,

where ai(t) and bi(t) are 2π-periodic functions in the variable t, have at most two limit cycles
on the cylinder. In particular, H(1, 2) = 2.

Theorem 3. There are piecewise differential equations of the form

(5)




dx1
dt
dx2
dt


 =

{
a1(t)x1, if 0 6 t 6 π,

b2(t)x
2
2 + εb3(t)x

3
2, if π 6 t 6 2π,
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where ai(t) and bi(t) are 2π-periodic functions in the variable t, having at least k limit cycles
on the cylinder for all positive integer k. In particular, H(1, 3) =∞.

We present a corollary of Theorem 3 in the following.

Corollary 4. The piecewise differential equation (2) with max{n,m} ≥ 3 has H(n,m) =∞.

2. Proof of the main results

Here we will prove the main results of the paper that are stated in Theorems 1-3 and
Corollary 4.

Proof of Theorem 1. Consider the piecewise differential equation (3). The solution of dx1/dt =
a0(t) + a1(t)x1 satisfying x1(0) = ρ is

x1 = φ1(t, ρ) =

(∫ t

0

a0(s)e
−K1(s)ds+ ρ

)
eK1(t), K1(s) =

∫ s

0

a1(w)dw,

and the solution of dx2/dt = b0(t) + b1(t)x2 satisfying x2(2π) = ρ is

x2 = φ2(t, ρ) =

(∫ t

2π

b0(s)e
−K2(s)ds+ ρ

)
eK2(t), K2(s) =

∫ s

2π

b1(w)dw.

Therefore we have the function

Π(ρ) = φ1(π, ρ)− φ2(π, ρ) = m1 −m2 + (n1 − n2)ρ,

where

m1 =eK1(π)

∫ π

0

a0(s)e
−K1(s)ds, n1 = eK1(π),

m2 =eK2(π)

∫ π

2π

b0(s)e
−K2(s)ds, n2 = eK2(π).

Then the initial conditions for periodic orbits of equation (3) correspond to the zeros ρ of
the equation Π(ρ) = 0. This equation has 0, 1 or a continuum of solutions according to the
values of m1, n1, m2 and n2. We conclude that piecewise differential equations (3) have at
most 1 limit cycle.

It is easy to construct examples of equations (3) with 1 limit cycle. For example, the
piecewise differential equation

(6)




dx1
dt
dx2
dt


 =

{
2 sin t+ sin t x1, if 0 6 t 6 π,

2 sin t− x2, if π 6 t 6 2π,

has a unique limit cycle. In this case the solution of ẋ1 = 2 sin t+sin t x1 satisfying x1(0) = ρ
is

x1 = φ1(t, ρ) = −2 + (2 + ρ)e1−cos t,

and the solution of ẋ2 = 2 sin t− x2 satisfying x2(2π) = ρ is

x2 = φ2(t, ρ) = sin t− cos t+ (1 + ρ)e2π−t.

Then the solution of Π(ρ) = x1 (π)− x2 (π) = 0 gives us

ρ = −eπ−2 + 3 e−2 − 2

eπ−2 − 1
.
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We know that the number of simple zeros of Π(ρ) is equivalent with the number of limit
cycles of the piecewise differential equation (6). �

Proof of Theorem 2. Consider the piecewise differential equation (4). On the half cylinder
with t ∈ [0, π] we have a linear differential system and on the half cylinder with t ∈ [π, 2π]
we have a Riccati differential system.

Suppose that we have a periodic solution x(t) = x1q(t)|t∈[0,π] ∪ x2q(t)|t∈[π,2π]. Then doing
the change of variable x2 → y where

y =
1

x2 − x2q(t)
,

the differential equation (4) with t ∈ [π, 2π] is written as

dy

dt
= −b2(t)− (2b2(t)x2q(t) + b1(t))y,

which is a linear differential equation. By computing its solution and undoing the change of
variables we see that the solution of (4) with t ∈ [π, 2π] satisfying x2(2π) = ρ is written as

x2(t) = φ2(t, ρ) =
A(t) +B(t)ρ

C(t) +D(t)ρ
,

where

A(t) = N (t)x2 q (t)x2 q (2π) + e−M(2π)x2 q (t)− e−M(t)x2 q (2 π) , B(t) = −N (t)x2 q (t) + e−M(t),

C(t) = N (t)x2 q (2 π) + e−M(2π), D(t) = −N(t), N(t) =

∫ 2π

t

−b2(s)e−M(s)ds,

M(s) =

∫ s

0

−(2b2(z)x2q(z) + b1(z))dz.

The solution of (4) with t ∈ [0, π] satisfying x1(0) = ρ is

x1(t) = φ1(t, ρ) = H(t) + ρL(t),

where

H(t) =

∫ t

0

a0(s)e
−K1(s)ds, L(t) = eK1(t), K1(s) =

∫ s

0

a1(w)dw.

Therefore the zeros of ρ that are obtained from the equation

Π(ρ) = φ1(π, ρ)− φ2(π, ρ) = h+ ρ`− a+ bρ

c+ dρ
= 0,

correspond to the periodic orbits of the piecewise differential equation (4), where

h = H(π), ` = L(π), a = A(π), b = B(π), c = C(π), d = D(π).

This equation has 0, 1, 2 or a continuum of solutions according to the values of the parameters
h, `, a, b, c, d. We conclude that the piecewise differential equation (4) has at most 2 limit
cycles.

Now we construct an example with two limit cycles for this case. Consider the following
piecewise differential equation

(7)




dx1
dt
dx2
dt


 =

{
cos t, if 0 6 t 6 π,

1 + sin t+ cos t− cos2 t− (1 + 2 sin t)x2 + x22, if π 6 t 6 2π.
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The solution of equation ẋ1 = cos t with t ∈ [0, π] satisfying x1(0) = ρ is x1(t) = ρ + sin t.
The solution of

ẋ2 = 1 + sin t+ cos t− cos2 t− (1 + 2 sin t)x2 + x22,

with x2(2π) = ρ is

x2(t) =
−et sin t+ (et sin t− e2π sin t− e2π) ρ

−et + (et − e2π) ρ
.

Therefore the zeros of equation

x1(π)− x2(π) = ρ+
ρ e2π

−eπ + (eπ − e2π) ρ
= 0,

are ρ = 0, 1. It shows that the piecewise differential equation (7) has two limit cycles.
In fact the limit cycles of piecewise differential equation (7) are x(t) = sin t|t∈[0,2π] and
x(t) = 1 + sin t|t∈[0,2π].

�

Before starting to prove Theorem 3 we give some notations that will be used in the paper,
for more details, [2, 3] is referred.

Definition 5. Let f0, f1, ..., fn−1 be real analytic functions on some open interval I of R.
Then

(i) (f0, f1, ..., fn−1) is called a Chebyshev system (T-system) on I if any nontrivial linear
combination

α0f0(x) + α1f1(x) + ...+ αn−1fn−1(x)

has at most n− 1 isolated zeros on I.
(ii) (f0, f1, ..., fn−1) is called a complete Chebyshev system (CT-system) on I if (f0, f1, ..., fk−1)

is a T-system for all k = 1, 2, ..., n.
(iii) (f0, f1, ..., fn−1) is called an extended complete Chebyshev system (ECT-system) on I

if for all k = 1, 2, ..., n, any nontrivial linear combination

α0f0(x) + α1f1(x) + ...+ αk−1fk−1(x)

has at most k − 1 isolated zeros on I counting multiplicity.

Definition 6. Let f0, f1, ..., fk−1 be real analytic functions on some open interval I of R.
The Wronskian of (f0, f1, ..., fk−1) at x ∈ I is

W [f0, f1, ..., fk−1](x) =

∣∣∣∣∣∣∣∣∣

f0 f1 . . . fk−1
f ′0 f ′1 . . . f ′k−1
...

...
...

...

f
(k−1)
0 f

(k−1)
1 . . . f

(k−1)
k−1

∣∣∣∣∣∣∣∣∣
.

The following relation between an extended complete Chebyshev space and their contin-
uous Wronskians is well known.

Lemma 7. The set {f0, f1, ..., fn−1} is an extended complete Chebyshev space on I if and
only if, for each k = 1, 2, ..., n,

W [f0, f1, ..., fk−1](x) 6= 0 for all x ∈ I.

The next result can be found in Theorem A in [2] that we will use this theorem to prove
our results.
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Theorem 8. For any n ∈ N and any α ∈ R\Z−, the ordered set of functions (I0,α, I1,α, ..., In,α),
defined by

Ik,α(y) :=

∫ b

a

gk(t)

(1− yg(t))α
dt,

is an ECT-system on J . When α ∈ Z− it is an ECT-system on J if and only if n 6 −α.
In particular, when this set of functions is an ECT-system, any non-trivial function of the
form

(8) Φα(y) :=
n∑

k=0

akIk,α(y),

with ak ∈ R, has at most n zeros in J counting multiplicities.

Proof of Theorem 3. Consider the piecewise differential equation

(9)




dx1
dt
dx2
dt


 =

{
a1(t)x1, if 0 6 t 6 π,

b2(t)x
2
2, if π 6 t 6 2π.

We compute the solution of
dx1
dt

= a1(t)x1,

satisfying x1(0) = ρ and we get

x1 = φ1(t, ρ) = ρ eA2(t), where A2(t) =

∫ t

0

a1(s)ds.

On the other hand the solution of

(10)
dx2
dt

= b2(t)x
2
2,

satisfying x2(2π) = ρ is

x2 = φ20(t, ρ) =
ρ

1− ρB2(t)
, where B2(t) =

∫ t

2π

b2(s)ds.

Imposing that A2(π) = B2(π) = 0 we obtain that the piecewise differential equation (9) has
a continuum of periodic solutions in the neighborhood of ρ = 0.

In order to find an appropriate equation with at least k limit cycles we perturb (9) as
follows

(11)




dx1
dt
dx2
dt


 =

{
a1(t)x1, if 0 6 t 6 π,

b2(t)x
2
2 + ε b3(t)x

3
2, if π 6 t 6 2π,

where ε is small parameter. Let φ2(t, ρ, ε) be the solution of

(12)
dx2
dt

= b2(t)x
2
2 + εb3(t)x

3
2,

with initial condition φ2(2π, ρ, ε) = ρ. Then the solution (12) can be expressed for small
ε > 0 in the form

φ2(t, ρ, ε) = φ20(t, ρ) + εψ(t, ρ) +O(ε2),

where ψ(t, ρ) = ∂φ2(t, ρ, ε)/∂ε|ε=0. For simplicity we write

φ2(t, ρ, ε) = φ2 = φ20 + εψ +O(ε2), b2 = b2(t), and b3 = b3(t).
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Then we have
∂

∂t

(
φ20 + εψ +O(ε2)

)
=b2

(
φ20 + εψ +O(ε2)

)2
+ εb3

(
φ20 + εψ +O(ε2)

)3

=b2
(
φ2
20 + 2 εφ20ψ +O(ε2)

)
+ εb3(φ

3
20 +O(ε))

=b2φ
2
20 + ε(2b2φ20ψ + b3φ

3
20) +O(ε2).

Therefore ψ′ = 2b2φ20ψ+ b3φ
3
20, where ψ′ = ∂ψ(t, ρ)/∂t. Using that φ20 is a solution of (10),

this differential equation is written as ψ′ = 2φ′20ψ/φ20+b3φ
3
20, or equivalent (ψ/φ2

20)
′ = b3φ20.

Solving this differential equation we have

ψ(t, ρ) = φ20(t, ρ)2
∫ t

2π

b3(s)φ20(s, p)ds = φ20(t, ρ)2
∫ t

2π

ρb3(s)

1− ρB2(s)
ds.

Recall that the solution starting at ρ is a limit cycle of the perturbed differential equation
if it is an isolated zero of function D(ρ, ε) := φ1(π, ρ)− φ2(π, ρ, ε). This equation is

D(ρ, ε) := ερ3
∫ π

2π

b3(t)

1− ρB2(t)
dt+O(ε2) = 0.

The function

M(ρ) :=

∫ π

2π

b3(t)

1− ρB2(t)
dt,

is known as a Melnikov function associated to the problem. By the Implicit Function Theo-
rem applied to D(ρ, ε)/ε it follows that the simple zeros of M(ρ) lead to simple zeros of the
function D(ρ, ε). More specifically if ρ = ρ̄ satisfies M(ρ̄) = 0, M ′(ρ̄) 6= 0 then there exists
a differentiable function g such that g(0) = ρ̄ and for ε small enough D(g(ε), ε) ≡ 0.

In other words what we have seen is that each of the simple non-zero roots of M(ρ) gives
a limit cycle of the Abel differential equation (11). Therefore we reduced the proof of the
theorem to find functions b2 and b3 such that the corresponding function M(ρ) has at least
k simple zeros.

For any k ∈ N we take b2(t) = cos t and b3(t) = P (sin t), where P is a polynomial of
degree k in the variable sin t. Since

M(ρ) :=

∫ π

2π

P (sin t)

1− ρ sin t
dt,

can be written into the form (8), with

Ij,1(ρ) =

∫ π

2π

sinj t

1− ρ sin t
dt, for j = 0, 1, ..., k.

Then from Theorem 8 the maximum number of zeros of M(ρ) is k, and k can be reached
taking conveniently the coefficients of the polynomial P (sin t). �

Proof of Corollary 4. Similar to the proof of Theorem 3 we consider the piecewise differential
equation

(13)




dx1
dt
dx2
dt


 =

{
a1(t)x1, if 0 6 t 6 π,

b2(t)x
2
2, if π 6 t 6 2π.

The solution of
dx1
dt

= a1(t)x1,
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satisfying x1(0) = ρ is

x1 = φ10(t, ρ) = ρ eA2(t), where A2(t) =

∫ t

0

a1(s)ds,

and the solution of

(14)
dx2
dt

= b2(t)x
2
2,

satisfying x2(2π) = ρ is

x2 = φ20(t, ρ) =
ρ

1− ρB2(t)
, where B2(t) =

∫ t

2π

b2(s)ds.

Imposing that A2(π) = B2(π) = 0 we obtain that the piecewise differential equation (13)
has a continuum of periodic solutions in the neighborhood of ρ = 0.

Now we perturb (13) as follows
(15)


dx1
dt
dx2
dt


 =

{
a1(t)x1 + ε2 (a0(t) + a2(t)x

2
1 + ...+ an(t)xn1 ) , if 0 6 t 6 π,

b2(t)x
2
2 + ε b3(t)x

3
2 + ε2 (b0(t) + b4(t)x

4
2 + ...+ bm(t)xm2 ) , if π 6 t 6 2π,

where ε is small parameter and max{n,m} ≥ 3. The solution of the differential equations

dx1
dt

= a1(t)x1 + ε2
(
a0(t) + a2(t)x

2
1 + ...+ an(t)xn1

)
,

and
dx2
dt

= b2(t)x
2
2 + ε b3(t)x

3
2 + ε2

(
b0(t) + b4(t)x

4
2 + ...+ bm(t)xm2

)
,

can be expressed for small ε > 0 in the form

φ1(t, ρ, ε) = φ10(t, ρ) + εψ1(t, ρ) +O(ε2),

and

φ2(t, ρ, ε) = φ20(t, ρ) + εψ2(t, ρ) +O(ε2),

respectively, where ψi(t, ρ) = ∂φi(t, ρ, ε)/∂ε|ε=0 for i = 1, 2. Then we have

ψ1(t, ρ) = 0, ψ2(t, ρ) = φ20(t, ρ)2
∫ t

2π

b3(s)φ20(s, p)ds = φ20(t, ρ)2
∫ t

2π

ρb3(s)

1− ρB2(s)
ds.

Therefore the simple zeros of the function

D(ρ, ε) := φ1(π, ρ, ε)− φ2(π, ρ, ε) = ερ3
∫ π

2π

b3(t)

1− ρB2(t)
dt+O(ε2) = ερ3M(ρ) +O(ε2) = 0,

correspond to limit cycles of piecewise differential equation (15). Now Taking again b2(t) =
cos t and b3(t) = P (sin t), where P is a polynomial of degree k in the variable sin t, we can
apply Theorem 8 to function M(ρ) and obtain that the maximum number of simple zeros
of the function M(ρ) is k. This completes the proof of Corollary 4. �
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