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COMPLETE INTEGRABILITY OF VECTOR FIELDS IN RV

JAUME LLIBRE!, RAFAEL RAMIREZ2 AND VALENTIN RAMIREZ3

ABSTRACT. We give necessary and sufficient conditions for the complete inte-
grability of first order N-dimensional differential systems.

‘We propose a new method to determine in the Jacobi Theorem the last N—1
first integral for the complete integrability of an N-dimensional differential
system with N — 2 independent first integrals and with a Jacobi multiplier.

As an application we study the complete integrability of some 3—dimensional
differential systems, more precisely the complete integrability of the asymmet-
ric and symmetric May—Leonard differential systems.

1. INTRODUCTION

For the N—dimensional nonlinear differential systems the existence of K < N —1
independent first integrals means that these systems are partially integrable. The
existence of N — 1 independent first integrals means that the system is completely
integrable, i.e. for such systems the intersection of the N —1 hypersurfaces obtained
fixing the N — 1 first integrals provide the trajectories of the differential system.

We give necessary and sufficient conditions under which the differential system

(1) .i‘j:Xj(l‘l,...,l‘N), for jzl,...7N,
or its associated vector field
0 0 0
X=X —+Xo—+... + Xnyn—
18%1 + 281‘2 + + N8$N7

is completely integrable. Here X; : U — R are C! functions defined in an open
subset U C RY. Using these necessary and sufficient conditions we propose a new
method to determine the last N — 1 first integral in the Jacobi Theorem for the
complete integrability of the differential system (1) having N — 2 independent first
integrals and a Jacobi multiplier.

This paper is organized as follows. In section 2 we state some basic definitions
and results. In section 3 we give our main results. In section 4 we prove our results.
Finally in section 5 we apply the obtained results to the study the completely
integrability of the asymmetric and symmetric May—-Leonard differential systems
and Clebsch differential systems.
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2. PRELIMINARY RESULTS AND DEFINITIONS

2.1. Complete integrable vector fields. For simplicity we shall assume that all
the functions which appear below are of class C" for » > 2 although most of the
results remain valid under weaker hypotheses.

Let U be an open subset of RY. We say that a non-locally constant function H :
U — R is a first integral of the differential system (1) if H = H(z1(t),...,zn(t))
is constant for all values of ¢ for which the solution (z1(t),...,zn(t)) is defined and
contained in U. Clearly a C! function H is a first integral of system (1) if and only
if

A=y sy M oo
8%1 8.232 833]\[

If H. :U. — Rforr=1,...,K are K first integrals of system (1), we say that
they are independent in Uy := Uy N Us ... N Uk if their gradients are independent

in all the points of U except perhaps in a zero Lebesgue measure set.

We say that system (1) is completely integrable in an open set Uy_; if it has
N —1 independent first integrals. In this case the orbits of system (1) are contained
in the curves

{H1 - hl} N {Hg - hg} n...n {HN_1 - hN_l},
when hq, ho ..., hy_1 vary in R.

Let J = J(z1,...,2n) be a non—negative function non—identically zero on an
open subset U of RY. Then J is a Jacobi multiplier of the differential system (1) if

/ J(x1,...,zy)dzy ... dey :/ J(x1,...,zn)dzy ... dey,
Q ()

where 2 is any open subset of U, ¢; is the flow defined by the differential system
(1), and ¢+(Q?) is the image of the domain Q under the flow ;.

The following result of Whittaker [20] plays a main role for detecting a Jacobi
multiplier.

Theorem 1. Let J be a non-negative C' function non—identically zero defined on
an open subset of RN . Then J is a Jacobi multiplier of the differential system (1)
if and only if the divergence of the vector field JX is zero, i.e.

0(JX1) n O(JXnN)

= X(J) + Jdiv(X) = 0.

Note that if N = 2 then the definition of Jacobi multiplier coincides with the
definition of integrating factor.

The following result goes back to Jacobi, for a proof see Theorem 2.7 of [12].

Theorem 2 (Jacobi Theorem). Consider the differential system (1) and assume
that it has a Jacobi multiplier J and N —2 independent first integrals Hy, Ha, ..., Hy_5.
Then the system admits an additional first integral independent of the previous ones
given by

J /-~ -
(3) HN,1 = /Z <X2d.%’1 — de.I'g) 5
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where ~ denotes quantities expressed in the variables (x1,x2,h1,...,hn_2) with
(4) Hj(asl,...,xN):hj,
forj=1,...,N—2 and

OH1 O0H1 0H1

Ox3 04 T Oy

OH, OH, OH,

A= Ox3 0xq o ox N
a'HN72 6.HN72 - 3H1.V72
8903 81’4 o axN

Then system (1) is completely integrable.

2.2. Nambu bracket. In the 1970s Nambu in [16] proposed a new approach to the
classical dynamics based on an N — dimensional Nambu-Poisson manifold replacing
the even dimensional Poisson manifold and replacing a single Hamiltonian H for
N — 1 Hamiltonian Hy,...,Hyx_1 In the canonical Hamiltonian formulation the
equations of motion (Hamilton equations) are defined via the Poisson bracket. In
Nambu‘s formalism the Poisson bracket is replaced by the Nambu bracket. Nambu
had originally considered the case N = 3.

Although the Nambu formalism is a generalization of the Hamiltonian formal-
ism its real applications are not as rich as the applications of this last one. In
the monographs of Galliulin [9] used the Nambu formalism to study some inverse
problems in ordinary differential equations. In this work there is also an extensive
bibliography on the Nambu formalism.

Let U be an open subset of RY. Let H; = Hj(x1,...,an) for j =1,2,...,N—1
be independent functions defined in U.

Given functions H; for j = 1,..., N — 1 the Nambu vector field (see for instance
[13]) associated to these functions is the N—dimensional vector field
OH, OH, OH,
0x1 0xo o ozr N
0Hs 0H, 0H,

{H17H2,---,HN717*} = : :
8HN_1 GHN_l aHN—l

8:1:1 6%2 o 81‘]\/
9 9 9
0z 0z T Oy

When we apply a Nambu vector field to a function F, i.e. {Hl, Hy,...,Hn_q, F},

the obtained function is called a Nambu bracket, (see [13, 16]). For properties on
the Nambu braket see [13]. In particular from the property (iv) of [13] we get that
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the Nambu vector field has zero divergence i.e,

N
. 7]
(5) le{Hl,HQ,...,HN_l,*}Z E %{Hl,HQV..,HN_l,{L’j}EO.
j=1 "

In [13] we study the inverse approach to the ordinary differential equations. The
inverse problem as the problem of finding the more general differential system of
first order satisfying a set of given properties was stated by Erugin [7] and developed
by Galiullin and his followers (see for instance [10, 11, 15]).

The new approach of the inverse problem which we proposed in [13] uses as an
essential tool the Nambu bracket. We deduce new properties of this bracket which
plays a very important role in the proof of all the results of this work and in its
applications. In particular we prove the following properties of the Nambu bracket
(see Proposition 1.2.2.)

Proposition 3. We define
Q(fl-”,folagl"'angG) = 7{fl---7fN717G}{gl-~~7gN}

N
+ (Z{fh"'7fN—lagn}{gla~~~7gn—1»Gagn+la---agN}> P
n=1

and

F)\(flu-afohgla"ng) = _{fl---7fN715>\{gl~~-7gN}}

N
+ (Z{gla"'vgn—lv)‘{fl'"7fN—17gn}agn+17'"7.9N}> 9

n=1

for arbitrary functions f1,..., fn-1, G, 91,-..,9N, \. Then the Nambu bracket sat-
isfies the identities:

(Vlll) Q(fl---7fN—17gl'--7gN7G) :()7 and

(ix) Fx(fi---yfn-1,01,---,9n) = 0. Note this identity is a generalization of the
Filippov fundamental identity (see [8]) which is obtained when \ = 1.

It is interesting to observe that the identity Q (f1..., fN-1,91...,98,G) =0is
more basic, in the sense that for the identity F (f1..., fN-1,91,--.,9n) = 0, the
following relation holds

N
1o}
F/\ (flv"'va—laglw--agN) ZT(AQ f17'"7fN—1agl7"'7gNaxj)>'

Let H; befor j =1,..., N arbitrary C" independent functions with r > 2 satisfying
(6) {HlaHQa"'7HN}7é07

in U C U with U\U is a set of zero Lebesgue measure. In the solution of the inverse
problem in ordinary differential equations play a fundamental roll the following
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vector field

0H, 0H, 0H, \
81’1 81’2 8131\7 !
0H, 0H, OHo \
81‘1 81‘2 8IN 2
1
Y= : : :
{Hy,Ha, ..., Hy} : : :
(7) OHy OHy O0Hn An
81‘1 81‘2 8IN
o9 9 9
8%1 BIQ o 8%1\7
i\’:)\ {Hl,H2,--~7Hj—17 *:Hj+1---aHN}
N =~ / {Hi,..., Hn} ’
where A\, = A\i(z1,...,2N) are convenient functions satisfying
(8) Y(Hi)=—-Xg, for k=1,...,N.
In view of the identity (see identity (vi) of [13])
N
0
Zaf {Hl,HQ,...,Hj_l,xm,HjH,...,HN}
(9) m=1 Tm

= {H17H27---»Hj—l’vaj+17---»HN}7

we obtain that

i N N o \ {HI,HZ,~~~,Hj7171‘m7Hj+1’~--7HN}
IV(y)_ ]Z:;mz::l 8:13m I {H17H2,...,HN}

N ~

= Z {H17H27”'7Hj—17)‘j7Hj+17'"7HN}7
=1

>\.
Where)\ J .
{]'-]1,[{27...7 Hy}

The function ¢g : U — R and the set {(z1,...,2nx) € U: g(x1,...,25) =0}
are called the partial integral and the invariant hypersurface of a vector field Y,
respectively, if Y(g)|,_o = 0.

The differential system generated by ) can be written as follows
N {H17H25"'aHj—laxM7Hj+la"'aHN}
10 Ty = V(Tm) = — Aj =Y,
(10) (@m) Z J {Hy,Hs,..., Hy}
for m =1,..., N. Clearly that if Hy is a first integral of ) then A\; = 0, and if Hy,

is a partial integral then )\k|Hk:0 =0, and if Hy = Ji is a Jacobi multiplier then
A = —JpdivX, see formula (2).

As we shall see in the next two theorems (see Theorem 1.3,1 and 1.4.1 of [13]) by
choosing properly the functions Hy, Hs, ..., Hy and Aq, Ag,..., Ay we can obtain
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the most general autonomous differential system (1) in U C RY having the set of
partial integrals H; = g; for j = 1,2,..., M, and the given set of first integrals Hj,
fork=M;+1, My +2,...,M; + My = M, with M = My + My < N defined in U
and such that (6) holds

The first result characterizes the differential systems (1) having a given set of
M = M, partial integrals with M < N.

Theorem 4. Let H; = g; = gj(x1,...,2n) for j =1,2,...,.M with M < N be
a given set of independent functions defined in an open set U C RY. Then any
differential system defined in U which admits the set of partial integrals g; for
1=1,2,..., M can be written as

M
P = Z(Dk{gla'"7gkflyxjygk+]_,...,gN}+
! k=1 {917927~~~79N}

S {9 Gr-1,%j,9 gn}
)\k 1y---59k—-1,L5,9k+15---H YN :y$'7
Z {917927"'79N} ( j)

k=M+1

where Haryj = g+ = gm+5 (%1, ..., xn) forj=1,...,N—M, are arbitrary func-
tions defined in U which we choose in such a way that the Jacobian {g1,...,gn} #
0, in the set U C U and the functions A =@, =®;(x1,...,an), forj=1,2,..., M
and Apr+k = Aypax(x1, ... xy) fork=1,2,... N— M are arbitrary functions such
that ®;|g,—0 =0, for j=1,..., M.

The second main result characterizes the differential systems (1) having a given
set of My partial integrals and M, first integrals with 1 < My < N and M; + My <
N.

Theorem 5. Let Hy = g; = gi(x1,...,zn) forl =1,2,..., My and H, = Hg(z1,...,2N)
fork=1,2,..., My with M1 + My = M < N be independent functions defined in
the open set U. Then the most general differential systems in U which admits the
partial integrals g; for j = 1,..., My and the first integrals Hy for k = 1,..., M>
are
(11)

M,

1‘7: Z(I)k{gh s 9k—1,25, k41, s9My, 111, y A Mo s GM+1 gN}
k=1

+
{gla"' gAfl)Hla"'7H]\/12’ gM+17"'7gN}

N
Z )\k{glv'"791\417H17"'7HJV127 gM+1>'"7gk717xjygk+17“'7gN}
‘7gM17H17"'7HM27 gM-‘rlv"'vgN}

)

k=M+1 {g1, -

for j = 1,2,...,N, where Hy1j = gy4y for j = 1,...,N — M are arbitrary
functions satisfying {g1, ... gary, Hu, - Hatyy Grrgts - gy Y # 0 in the set U C U
and the functions \j = ®; = ®;(z1,...,2n), for j = 1,2,..., My and A4 =
Ae(21,. ., wN) fork = M+1,2,... N are arbitrary functions such that ®;], —o = 0,
forj=1,..., M.
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Moreover if My =0 and My = N — 2 then system (11) becomes
(12)
&y = Yj(z;)

{Hl,...,HN,Q,.’L‘j,gN} _)\ {Hl,...,HN,Q,gN,hLKj}
{Hi,....Hy_2.9v-1.9n} " {Hi,...,Hy_2,9x-1,9n8}
forg=1,2,....N. forj=1,...,N, and if M1 =0 and Ms = N — 1 then system
(11) becomes

= —AnN-1

{Hl,...,HNfl, Sﬂj}

13 T;=—A\ :
( ) J N{Hl,...,Hth gN}

3. STATEMENT OF THE MAIN RESULTS

The first result is related with the completely integrability of vector field ) see
[13, 14, 18]

Theorem 6. Differential system (4) is completely integrable if and only if

(14) )\k:_ﬂ{Fh---,FNflka}a

for k =1,...,N where u, Fi,...,Fny_1 are convenient independent functions in
U. Moreover if (14) holds then vector field Y becomes

(15) y:M{F17"'7FN717*}7

i.e. it is completely integrable with independent first integrals Fy, ..., Fny_1 and the
Jacobi multiplier J = 1/p.

The following classical result is well known: If a 2-dimensional differential system

(16) i = Xq(w1,22), By = Xo(w1,72),
has an integrating factor J, then it can be written as
1 0H; 1 0H,
17 i =———" = o — — 1
(17) L1 J Oas 15 L2 J 0a1 2,

being H; is a first integral of system (16). The next theorem will extend this
classical result to N-dimensional differential systems.

Corollary 7. A differential system (1) is completely integrable first integrals H;
forj=1,...,N — 1 if and only if it can be written as

1
(18) ij:j{Hl,HQ,...,HNfl,ij}:Y}, fOT j:17...,N7
where J = J(x1,22,...,2N) 15 a Jacobi multiplier.

We note that Corollary 7 is the natural extension of (17) because
. 1 . 1
961=j{H1,9€1}=Y1, 96‘2:?{171,1‘2}:5/27

where {Hy,x1} and {H;, 22}, are Nambu brackets, which in this case coincides with
the Poisson bracket.

We observe that Corollary 7 is a simple consequence of Theorem 6. Another
proof of Corollary 7 appeared in [19, 4].



8 J. LLIBRE, R. RAMIREZ AND V. RAMIREZ

The proofs of Theorem 6 and Corollary 7 are given in section 4.

From Corollary 7 it is immediate to prove the following result.

Corollary 8. Assume that differential systems (1) has N — 2 independent first
integrals Hy, Ha,...,Hn_o and a Jacobi multiplier J, then another independent
first integral Hy _1 can be obtained as a solution of the partial differential equation

(Hy, Ho,... Hy_s, HN,hxj} =JX;, for j=1,...,N.

Note that in order to compute the integral (3) by applying the Jacobi Theo-
rem we need to solve the system of equations (3) for z3,...,xx. In general to get
zg(z1, 22, h1,...,hn_2) for k =3,..., N cap be a very difficult problem. Addition-
ally, in general the explicit computation of the integral (3) is practically impossible
to obtain.

Corollary 8 provide a new method for computing a first integral Hy_; which
avoid the necessity of the inversion of (3).

In the next theorem we provide an extension of the classical result which goes
back to Jacobi (see Theorem 2).

Theorem 9. Consider the differential equations (1) with N — r independent first

integrals Hy, ..., Hy_, and r—1 distinct Jacobi multipliers Jn_r4+1,...,Jn—1 Such

that the functions H,, =:
IN-1

If the functions Hy, Ha, ..., Hn_o are independent, then system (1) can be written

as

(19)

are not locally constants forn = N—r+1,..., N—2.

y {Hl,...7HN_T,10gHN_T+1,...,IOgHN_Q, :Ej,gN}

{Hl,. . 7HN_T-,10gHN_,»+1,...,lOg HN_Q, IOgJN_l,gN}
{Hy,...,HN ,Jog HN yy1,...,l0g Hy o, log Jn_1,7;}
{Hy,...,Hy_,Jog HN_yy1,...,lo0g Hy_ o, log Jn_1,9n}

T; =

7)\N

Y;

forj=1,2,...,N, where gy, v and AN are functions which satisfy the first order
partial differential equation

{H17'"aHN—TlogHN—T+1;"'7log HN—Z; D79N}

(20) N
+{H1, .., Hy_ IOgHN,H,l, . ,log Hy_o, Jn_1, )\N} =0.
where
b= JN_11/
{Hl, ey HN_T-,IOgHN_7-+1, . ,log HN_Q, lOg JN—lagN}’
Ay = IN-1AN
{Hl, .. .,HN_T,IOgHN_T+1, e ,10g HN_Q, log JN_1,gN}'
Moreover functions Hy_r11, - .., Hy—o are first integrals, independent with Hy, ..., Hy_,.

and using the Jacobi multiplier Jx_1, the differential system (19) is completely in-
tegrable.
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The additional first integral Hyx_1 can be determine as a solution of the first
order partial differential equation

{Hl,...,HN,T,IOgHN,Tle,...,lOg HN,Q, HN,I,J}]'}
— 5 {Hl,. .. 7]JN_T,IOgI‘I]\/'_T_~_1,... ,log HN_Q, xj7gN}
(21) {Hy,...,HNy—r,Jog HN —yy1,...,log Hy 2, log Jn_1,9n}
_S\N {Hla' . wHNf'rlegHNf'r‘«I»lv' - 7log HN*Q) 1Og JNflaxj}
{Hi,...,HN r,Jog HN i1, ...,log Hy 2, log JN_1,9n}

Corollary 10. Consider the differential equations (1) with N — r first integrals
Hy,...,Hyx_, and r distinct Jacobi multipliers Jny—_r41,...,Jn such that H, =:

J,

J—" are not locally constant forn = N—r+1,..., N—1. If the functions Hy, Hoa,..., Hy_1

N
are independent, then system (1) can be written as

by {Hy,...,Hy_p,Jog HN_yy1,...,log Hy_o,log Hy_1,2;} _v
’ {Hy,...,HN_,Jog HN _yy1,...,log Hy_o, log Hy_1,log Jn} 7

and it is completely integrable. Moreover if r = N then system (1) can be written
as

. {logHy,...,log Hy_1,%;}
&j=v =Y,
{log Hy,...,log Hn_1,log Jn}

4. PROOFS OF THE RESULTS

Proof of Theorem 6. Assume that the vector field ) associated to differential sys-
tem (4) is completely integrable, with the N—1 independent first integrals F1, ..., Fn_1,
and consequently

oF; oF,
0z T Oy
= {Flv"'7FN—17‘TN} 7& 07
8F1.V_1 8F].V—1
0x1 T Oy

N
~ F
in U C U. Thus from the equations Y(Fy) = E %Yj =0fork=1,...,N—-1
»

=
or, equivalent
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for j =1,..., N — 1. Solving this linear system in the unknown Y7,...,Yy_1 we
get
0F OF} OF; OF, OF;
dry T 0w Orn Oziyn  Own_
8F2 6H2 8F2 8F2 8F2
Yy 67961 o O0x;i_1 Ozy 3557',-;-1 o Oxn_1
OFNn_1 OFn_1 OFn-1 OFn_1 OFNn_1
Yi _ 8331 o (9%‘1‘_1 8951\; 8xi+1 o a.%'N_l

{Fb e 7FN7175L'N}

fori=1,..., N — 1. Consequently
7] 0 0
y=Y—+4+Yo—+ ...+ Yy— :[L{Fl,Fg,...,FN_l,*},
o0x1 Oxo orn
where u =Yy ({F1,..., Fn_1, :L'N})_1 . So the “only if” part of the theorem follows.
Now we shall prove the “if” part.

We suppose that in system (4) we have that \; = —p{Fi, ..., Fy_1, H;}. Thus
the vector field associated to differential system (4) takes the form

N
{Hlv" . 7Hn7171'7'7Hn+17~H7HN}
Y= =S, -
V() ; (Hy, Hy,... Hy}

N
{Hlananlanan#»la~~':HN}
— Y {Fi, .. Fyo1, H, .
”7_1{ e Fve, Ho} (Hy, Hy,..., Hy}

In view of the identity Q(f1..., fv-1,91...,9~n,G) =0 with G = z; f; = F; for
j=1,...,N—1,and H; =g; for j =1,...,N we get that
7Hn_17$j7Hn+1,...,HN}
{Hy,Hs,...,Hn}
{Hy,Hs,...,Hn}
{Hy,Hs,...,Hn}

Thus ¥ = pu{Fi,..., FN_1,*}. Consequently Y(F;) =0 for k =1,...,N — 1 ie.
Fy, ..., Fy_; are first integral. Hence the vector field Y is completely integrable.

N
y(m7):NZ {Flv"'vFNfl»Hn}{ L
n=1

= /’L{Fla"'aFNflwrj} :M{Fla"wFNfbxj}-

Finally we prove that 1/u is a Jacobi multiplier. Indeed in view of relation (5)
we get that

o) o ()

i X —— H 1 woo B
le<M>—— Ot + s +.. 4+ Dzn =div({Ff1,...,Fn_1,%}) =0.

Y, Y

Hence from Theorem 1 we obtain that 1/ is a Jacobi multiplier. Thus the theorem
is proved. O

Proof of Corollary 7. It follows from Theorem 6. Indeed in this case from differen-
tial system (13) which is the most general differential equations which have N — 1



COMPLETE INTEGRABILITY OF VECTOR FIELDS IN RY 11

independent first integral, we have that this system is completely integrable if and
only if \y = —pu{Hi,...,Hy_1, gn} where J = 1/p is a Jacobi multiplier. O

Proof of Theorem 9. First by considering that

. 0J; 0J; 0J; . .
div(J;Y) = Yla—le + YQ&Tc; +...+ YNﬁ + J;divy = Y(J;) + J;divX = 0.

Hence Y(J;) = —J;divY := —vJ; =N, for j=N—-r+1,...,N -1

Now we shall construct the most general differential system (1) with N —r inde-

pendent first integrals Hy, ..., Hy—_, and r—1 Jacobi multipliers Jy—_y+1,..., Jny—1.

We use the vector field Y given in formula (4).

Since H; are first integrals, from (8) it follows that A\; =0 for j=1,...,.N —r
and H; = J;, \j =—vJjfor j=N—r+1,...,N —1, we get that vector field (7)

becomes

o, om om
81‘1 6172 o 8.1‘]\[
OHN_, OHNn_, OHn_, 0
81‘1 6172 o 61‘]\[
OJN—rs1  OJIN—ry1 OJN—r+1 i
8:101 6232 o 8IN —rt
0Jn-1 0Jn-1 0JnN-1 TN
ox1 Oxo ox N -
OH N OH N O0Hy
.. AN
(91‘1 (91‘2 81‘]\[
PR 0,
0z 0xy o Orn

y f—
{Hi,..., Hn—r, IN—r41, ..., In—1, Hn}
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Multiplying the numerator and the denominator of the vector field Y by 1/(Jy—_r41 ... Jnv—1)
we get that ) can be written as

o o, om
0z Oxy o N

aHNfr 8HN77’ aHNfr 0
0z Oz, o o N

Odlog JN—ry1  Olog JN—ri1 Odlog JN_ri1
61‘1 8332 o 81‘]\7
(22)

dlog Jn_1 dlog Jn_1 Olog Jyn_1 .,
c')xl 8332 o 81‘]\7
6)HN 8HN aHN

. AN
81‘1 8x2 al'N

o 0 o,
8I1 81‘2 o BSL‘N

y:
{Hy,..., Hn_y, log JN—r41,...,log Jn_1, Hn}

Subtracting the file N —1 of the determinant of (22) to the files N—r+1, ..., N—2
we obtain

0H, 0H, om
6901 8302 o a:EN
aHfo aHNfr aHNfr 0
6901 6302 o a:EN
OlogHn_ry1  Olog Hy_,q1 Olog Hy_r11
e 0
0x1 Oz oxn
(23)
Olog Hy o dlog Hy_o . dlog Hy_o 0
8901 8332 ' 0xN
610g JN,1 810g JNfl 810g JN,1 —y
6:1?1 6172 o 8121\]
8HN BHN aHN
e AN
81‘1 81‘2 8:EN
9 9 9 0
8951 81‘2 o 63:N

y =
{H1,..., Hn—y, log JN—r41,...,l0g In_1,Hn}
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In ;
where H; = T forj=N—r+1,...,N — 2. Hence (19) follows.
N-1

This differential system has IV — 2 first integrals H; for j =1,..., N — 2. Note
that if ) is a vector field associated to the differential system (19), then it follows
that Y(H;) =0for j = N —r+1,...,N — 2, so these H;’s are first integrals. In
fact it is well known that the quotient of two Jacobi multipliers is a first integral.
Thus in view of Jacobi Theorem 2 we get that system (19) is completely integrable.

The relation (20) holds. Indeed, the vector field
(24)

Hy,...,Hy_,log Hx—ri1,. .. log Hy o, 7,
InoV(a) == Ty {Hy,...,Hy_rlog HN 41 og Hy_2, zj,9n}
{Hla'"aHN—TlogHN—T+17"'7log HN—2710g‘]N—lygN}
{H,...,Hy_ylog HN_y41,...,log Hy_o, log Jn_1,2;}

{Hy,...,Hy_y,Jog HN_yy1,... log Hy_o, log JN_1,9n}’

—JINo1 AN

has zero divergence, i.e. div(Jy_1Y) = 0. In view of identity (34) we get after
some computations (20).

The proof of relation (21) is obtained by considering that the constructed vector
field is completely integrable with Jacobi multiplier Jy_;. Consequently there
exists an additional first integral Hy_1. Thus the vector field ) can be written as
(18) with J = JN—1~ i.e.

IN-1V(xj) = {Hy, Ha,...,HNy_o, HN_ 1,75} .

Hence in view of (24) we obtain the relations (21). In short the theorem is proved.
O

Proof of Corollary 10. 1t follows from Theorem 9 taking gy = Jy and Ay =
—v Jy, from (4) we obtain
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OH, OH, OH; 0
O, 0z Orn
OHn_, OHn_, OHn_, 0
(9.7)1 (9.7)2 8.%]\]
Olog Hy_ry1  Olog Hy_p41 Olog Hy_r11
—F— 0
O, 0z orn
Olog Hy o Olog Hy_o Olog Hy_o 0
0x1 Oz Oxn
810g HN,1 810g HN,1 810g HN,1 0
ory Oxo oxy
OH log Jn dlog Jn Olog Jn
0z 0xo orn v
o 0 o,
Y= 0x1 0z oxrn
{Hi,..., Hn_r,10g IN—r41,...,log Hy_1,log Jn}
Hl, ey HN—ra log JN—r+17 SR 7log HN—17 *
Hence ' = U{H{l,..., Hy—r, 108 IN—ri1s- -, 10g Jn_1,log J}N} where Hy—; =
In_1/JInN.

4.1. Construction of differential systems with given first integrals and
Jacobi multiplers. We shall construct differential system (1) for N = 3 with a
given first integral and Jacobi multipliers.

First we study the case when the functions Hy, Hy and H3 and Ay, Ao and A3
are

2] 1 ||
H - b - 9 H - b
YT O e —y = T gz y 2D T [yl —a—y - 2[I
)\1 = G’K’(‘T7y7z) H17 )\2 = b’i(xyyaz) H27 )‘3 = CH(IIJ7y,Z) H37
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where k = k(x,y,2) is a convenient function and a,b,c are constant. The vector
field Y given in (7) can be written as

Olog Hy OlogH; OJlogH;
ox y 0z a
Olog H, OlogH, OlogH, b
oz Jy 0z
Olog H3 OlogH; OlogHjs
ox y 0z o
L
oz oy 0z

V= {log Hy, log Hs, log Hs}
{log F1, log Fs, x}
If ab 0 th =

abe # en Y K{lothlogHg, log Hs}’
integrals such that Fy = H{/H¢, Fy, = H§/HJ.

where I and Fy are the first

Choosing properly the function x we obtain, after some computations, that the
differential equations generated by the vector field ) are

&= x((a+b7 26)(x — 1) + ((2 — ba)(a + b) — (ba + 2)c)y
+ ((by +1)(a — b) + (b3 — 4)(c — b))z) _

7= y((a+b+e)y—1)+ (bala+b) + (bs + o)
+((B=b2)a+ (2—b3)(c+ b)z) =Y,

i = z( —2a+b+c)(z— 1)+ ((ba +2)(b—a) + (bs — 3)(b — )z
+(bs(b+ €)= (b + by + 1)a)y ) = Y,

which are the completely integrable Lotka—Volterra systems. Hence we get that

(26)  Y(H)) —aHdivy, Y(Hs)=—bHydivy,  Y(Hs)= —cHsdiv).

where Y = Ylga +Y2§+}/368 nd

divy = b((2b1 b+ 1)@+ (44 by — b))y + (7 — by — 2b3)z — 3b).
From (26) we get that if a = b= c =1 then Hy, Hy and H3 are Jacobi multipliers.

Ifa=c=0and b= 1then Hy, Hs are first integrals and H> is a Jacobi multiplier.

Second we study differential system (19) for the case when N = 3 with the first
integral H1 and the Jacobi multipliers Jo = Hy and J; = Hj

We study differential system (12) for the case when N = 3 with first integral

b1 —1
H, = log (’ >
z

bz — 1.
z




16 J. LLIBRE, R. RAMIREZ AND V. RAMIREZ

and two Jacobi multiplier Js, J3.

b

1 Y\ FaeT
Ty = c s=(9) Ty
2 zyzle+y+2z—1| 3 z vz

with Ay = —v Jo, A3 = —v J3, where v is a convenient function.

After some computations we get that

(Hy, Jo, 3} = (7 — by — by)x + (by 4+ 2bs + 1)y + (by — by +4)z + 3) J2J5 = 11 J2 T,

b3 +2b; — 4 2—b; —2b
MJ& {Hl’y,(]g}:u

E Tz

{Hlvxﬂ]?)}: J?n

(Hy, Jy, 0} = ((le +3by — 5)z + (by + 2bs — 3)y + (b + 3bs — 4)z + 3 — by — 2b3) J2,
{Hy, J2,y} = ((3 —2b; — b3)x + (5 — 2b3 — 3b1)y + (4 — 3by — b3)z + 2by + bz — 3)J227
{Hl, Ja, Z} = ((2b1 — b3 — 1)1‘ + (b1 — 2b3 + 1)y + (b1 — b3)Z + b3 — bl)Jg

Hence the equation (12) for N = 3 becomes

. {Hlaxa J3} {H17J2:$}
= -\ - = H 1 Hy, 1l
T 2{H1;J27J3} 3{H1,J27J3} 1 ({ 1,@,log J3} + {Hq, Ong,JT})

v Jo
” J2 { 1,108 — J } y(.%'),

. {thv‘]?)} {H17‘]2’y} v
_ Y _ Hy,y.log Js} + {Hy, log J
7 2TH, o Ja) 3Ty T, Jo] zfng({ 1,Y,log J3} + {Hy,log z,y})
14 JQ
- Hilog 22,y b =
V1J2{ 1,108 T >y} y(y)n
. {Hy,z,J3} {Hy, J2, 2}
2= =X - A Hy,z,logJ3} + {Hy,log Jo, z
*{Hy, Jy, J5} 3{H1,J27J3} v1Jo ({ ! 8Ja} + {H, log /o })

v

J2
=l {Hl,log 7, } = Y(z).

Taking v = v we obtain the following differential system
. 1 J2
= x(l—x—(b1+b3—1)y—blz):J— Hl,logJ—,x = Y(x),

e =y @t = 5 sy b = V)
1

i= z(1—z—(2—b)a —byy) = {Hl,log }:Y(z).

This differential system has the first integral H; and two Jacobi multiplier J> and
Js and consequently Jo/J3 is a first integral. It is easy to show that div)y = —u;.
We observe that the obtained differential system (27) is a particular case of the
asymmetric May—Leonard system (see for instance [5])
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5. NEW METHOD FOR DETERMINING THE ADDITIONAL FIRST INTEGRAL IN THE
JACOBI THEOREM 2

The problem on the determination the (N — 1)-th first integral in the Jacobi
Theorem 2 was study in several papers. In particular for N = 3 the following result
is given in [1].

Theorem 11. Suppose that the polynomial vector field

y:x()\+aa;+by+cz)% +y(u+d:1:+ey+fz)§y +z(u+gw+hy+kz)%
has an analytic first integral F1 = x°y527(1 4+ O(z,y, 2)) with at least one of
a,B,v # 0, and a Jacobi multiplier J = z"y*z'(1 + O(z,y,2)) if the cross prod-
uct of (r—i—1,s—j—1,t —k—1) and («, 8,7) is bounded away from zero for
any integers i,j,k > 0, then the system has a second analytic first integral of the
form Fy = o' ="yl =521t (1 4+ O(x, vy, 2)), and hence Y is completely integrable in a
neighborhood of the origin.

Jacobi (see Theorem 2) proposed a constructive method to build an extra first
integral by knowing the multiplier J and N —2 first integrals for an N— dimensional
differential system (1). In particular for N = 3 Theorem 2 writes:

Theorem 12. Consider a three dimensional vector field (1) and assume that it
admits a Jacobi multiplier and one first integral Hy(x1,x2,23) = h1. Then the
system has the following extra first integral given by (see (3) for N =3

J ~ ~
(28) HQ = /Z <X1d1‘2 — XQd.’L‘l) 5

where
OH (z1, 2, 23)

A: axs ) j: J(l‘l,l‘g,l‘g)|

3=V (x1,x2,h1)
z3="(z1,x2,h1)

Xl = Xl(i‘l,xz,lg)‘ XZZ X2(I1:$27x3)|

z3=W(z1,22,h1)? x3=V(x1,22,h1) "’

and x3 = V(x1, 2, h1) s a solution of the equation Hy = hy.

As we observe above the inversion of H; = hj, in terms of one of the
variables is much more involved and the resulting extra first integral is given
by the integral (28) which in general is very difficult to compute. Below we propose
a new method for computing a first integral Hy which avoid the necessity of the
inversion of Hy = hy.

Corollary 13. Assume that differential systems (1) with N = 3 has a first integral
Hy and a Jacobi multiplier J, then a second first integral Hy can be obtained as
a solution of the partial differential equation {Hi, Ha,z;} = JX;, for j = 1,2,3
which is equivalent to
OH, 0H, 0OH, 0H>
oy 0z 0z 0Oy
OH, 0H, 0H, 0H>
(29) 8z Ox oxr 0z T Xz,
OH, 0H, 0OH, 0H>
ox Oy dy Ox

= JXi,

= JXs,
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where x = x1, y = T2 and z = x3.

Proof. The existence of the second first integral Hs follows from Jacobi Theorem
2. To obtain the function Hy we apply Theorem 7 with N = 3 from which we get
equations (29). O

Corollary 14. If

8H1 8H1 8H1 _
T ox ty Oy te 0z =0,

then Hs is a solution of the differential equations

(30)

0H. O0H. 0Hy\ 0H
g2y g Lo J@X, —yX)),
31) ox oy 0z 0z
0H, 0H, O0H; 0H
10ty  OMhOdy gy

ox Oy dy Ox

J(.’L’Xz — yXl)

Ol := L is a homogenous function of degree one, then the
1

Moreover if

0z
solution of the first equation of (31) is

Proof. From the two first equations of (29) it follows that
(33)

0H 0H OH,\ 0H O0H. O0H 0Hy\ 0H
(20 y Ol DI Ol _ (00, Ol 0l Oy

T ox Oy 0z Y or Oy 0z = S —eXs).

Hence if H; is a homogenous function of degree zero, i.e, (30) holds, then from
equation (33) if follows the first equation of (31).

If the function V' is a homogenous function of degree one, i.e.
oL n oL n oL I
T—— — +tz—=
or Y Oy 0z ’
then after some computations it follows that the solution of (33) can be written as
(32). O
Example 15. The particular case of Lotka-Volterra system

a1b4(a2 — bg)

ba(ar — b1)
y= y(bs +bix + bay + bsz) = Xy,
z= bgz = X3

2= x(bs+ a1z + a2y + z= X,

is completely integrable with first integral Hy and Jacobi multiplier J such that

Hl _ be(bl—(h)yth (az—bZ)Z(llz_b2)(a1_b1) Galbz—azbl ,

J = (yblbz_alaz)z(a2_b2)(al_bl)Gbl(a2+b2)_2alb2) 1/(bz(as 7b1)7
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where G = ba(a1 —by)x + (ag — ba)bay + by(ag — b)) z = 0 is an additional invariant
plane. It is easy to show that Hy and J are homogenous functions of degree zero
and three respectively. In this case the first equation of (31) becomes
8H2 8H2 (9H2 6H1 nyZG
x +vy +z = .
ox 8y 0z 0z a1b4(b2 — ag)HQ

By considering that

(34)

JxyzG ~
L:= abi(bs —a2) s = L(z/z,y/2)G
is a homogenous function of degree one we get that the solution of equation (34) is
H=L(x/z,y/2)G+U(x/z,y/z).
Inserting it into the second equation of (31) with X5 = bsz we get the equation
OH, 0H,  0H, OH,
or 0Oy oy Ox
After some computations we have that
OH  baay(a; — b1)x + agba(a; — b1)y + ba(ag — ba)z OH

(CL2 — bQ)(b1$ + b2y + b42)$67y - b2(a1 — bl) y%

1+ aby JrxyzG
al a1b4(b2 — ag)HQ '

In view of relation

oL bgal(al — bl)l‘ + a2b2(a1 — bl)y + b4(a2 — bg)Z oL i
(ag—b)(b1z+boy+bsz) By bo(ar — by) o9z =0

we obtain that the function U(x/z,y/z) satisfies the equation
oU B bgal(al — bl).%' + agbg(al — bl)y + b4(a2 — bg)Zaﬂ

(a2 — ba) (b1 + bay + 542)871 ba(ar — by) Oz

_ 1+aby JryzG
aj a1b4(b2 — a2)H2 '

After the change § = x/z and n = y/z we obtain
5@ _ bgal(al — bl)f + ang(CU - b1)77 + b4(a2 - b2) @
on ba(a1 — b1) ¢
14 agby -~
=, LEmGEn ).

where U = U(&,n) == U|

(ag — b2)(b1& + ban + by)

r=2§,y=21"

5.1. Applications of Corollary 13. Now we shall illustrated the applications
of Corollary 13 in the determination of the second first integral in three particular
cases of 3—dimensional Lotka-Volterra differential systems. More precisely, we study
the existence of a second first integral Ho

(i) of the integrable asymmetric May—Leonard model,
(ii) of the integrable symmetric May—Leonard model.
(iii) of some integrable cases for the special Lotka—Volterra systems studied in

[1].
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5.2. Integrability of the asymmetric Mlay—Leonard model. Determination
of the second first integral. A particular 3—dimensional Lotka—Volterra system
is

2= z(l—z—ay—bz) =Xy,
(35) y= y(l—y—agz—boz) =Xy,
2= z(1—z—aszx—bsy) = Xs.

This system is known as the asymmetric May—Leonard model (see for instance
[5]). This model describes the competitions between three species and depending
on six non-negative parameters a; and b; for j = 1,2, 3. The state space is the set

]Ri:{(x,y,z)e]R?’:xZO y > O0and 220,}.

We shall study the integrability of system (35) under the conditions that it has
an additional invariant plane and the first integral H; satisfying (30), consequently
Hy, = Hi(x/y, z/y). From (33) it follows that the additional first integral Hs is a
solution of the first order partial differential system

0H. O0H. 0Hy\ OH
(% 4%+ o2 ) O = —ay((bn = D)o+ (1= o)y + (a2 = 1)2),

Y y N 0z 0z
OH, 0Hy  0H, 0H»
oxr Oy oy Ox

Proposition 16. Differential system (35) under the conditions

= JXBa

—1) —agbs +1 by —bibs+b3—1
(36) b2:a3(a2 ) — agbs + , a1:a31 103 + 03 7
1—b3 a3—1
i.e. differential system
by —biby +b3—1 -
o x(l—x—a31 103 + b3 y—blz>:X1,
a3—1
—1) —asb 1 -
(37) j— y(l—y—azz—a?’(m ) — agbs + x):Xg,

1— b3
z= Z(].—Z—agll?—bgy):Xg.

has the additional invariant plane

9:=9(x,y,2) = (1 —az)(az — Dz + (1 —b1)(bs — L)y + (a2 — 1)(by — 1)z =0,
with cofactor K = 1 —x —y — z. Moreover this differential system is completely
integrable with first integral Hy and the Jacobi multiplier J given by
B2 B3
917>,

[e5] a2
H, =log (’m Y
g

where
a1 = (a3—1)(b3—1)(a2—1), Qg = (1—&3)(b3—1)(b1 —1), Q3 = (1—&2)([)1 —1)(&3—[)3),
1—0,2 —bl a3(b1 —b3—1)—b1l)3

ﬂ2: ﬁ’ /33: (1—63)(1—a3) ;




COMPLETE INTEGRABILITY OF VECTOR FIELDS IN RY 21

Moreover the first integral Ho becomes
(38)
1482 1483 148 148
) z Y 2 /2 3
Hy = -\ = — A =-A(= = A
2 A(g) (g) z+A(y/x, z/x) A(I) (x) lgl+A(y/z, z/x),

where X is a convenient constan and A = A(y/x,z/x) is a function which satisfies
the first order partial differential equation

oA oA ¢ 1485 1+83
(39) 5 (1,€, — — T3 (L,¢, :‘ a(l.€n)
5 (1,¢ n))nan 3 ( 577)585 9(1,€m) g9(1,&m)
where £ =y/x and n = z/z, and
OH OH oH
ng; :Tl(x,y,z), ygT; :TZ(xayaZ)7 298721 :T3(x7y7z)a

Proof. After some computations we can check that
Xg) =1-z—y—2)g, X(H)=0, div(JX) = 0.
This completes the proof of the first statement.
The partial differential system (29) for system (37) becomes

0H, 0H,
Tyy 2 _ T -
3Y dy 22 02 w1,
0H, 0H,
40 —_— _— =
(40) Tz P Tsa 2 wa,
0H, 0H,
Tox 22 — Ty t2 =
2X Oz 1Y ay w3,

where wy = JyzX1, wp = JzzXs, w3 = JryXs.
By considering that Ty + T + T5 = 0 from the two first equations of (40) we get

8H2 + 6H2 + 8H2 yZXl - )\I‘ZXQ
x z - -z -

Oor Y Yy 0z T3

1482 1+8s
(41) = —AxyzgJ = — 'y z x
g g
y 1+B2 | z |1+B3
= —)\‘;) 5‘ g="F(y/z,z/x)x

Hence we get that Hy = F(y/z,z/x)x + A(y/z, z/x).
Inserting Hy into the third equation of (40) and by considering that

OF OF
) m W OFW/Rfn)r R By 2/
dy Ox
we have that function A = A(y/z, z/x) is a solution of the equation
OH. H
le—2 - Tng =ayzJg
dy ox

In view of the relations

OHy _,0H,  OHy ( L2 aHg)

Yoy ~Soe Taw 2¢ "o
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we deduce that (42) becomes

8H2 8H2 é— 1+ﬁ2 T] 1+ﬁ3
(Th + To)¢ +1an = 1 £
¢ on 9(1,&m) 9(1,&n)
Hence by considering that Ty +7T» = —T3 and dividing by z after some computations
we obtain (39). In short the proposition is proved. O

Now we shall study integrability of another particular cases of differential system
(35).

Proposition 17. Differential system (35) under the conditions
(43) a1:2—62, a3=2—b1, a2:2—b37

i.e. differential equations (27) have the following five invariant planes with the
corresponding cofactors:

g1 = Ki=1—2—(2-=by)y— bz,
g2 = v, Ko=1—y—(2—b3)z — bz,
g3 =z, Kz=1-2—(2—-bi)z —bsy,
ga= l—z—y—2z, Ky=—2—y—2z
g5 = TH+y+ =z, Ky=1—2x—y—z.

Proof. The fourth and firth invariant planes come from the relations

d d
S (—z—y—2) = —(etyta)(i-a—y=2), o (@+y+2) = (1—e—y=2)(zty+a)
This completes the proof. O

Under the assumptions of Proposition 17 and Proposition

Proposition 18. Differential system (27) is completely integrable. More precisely,
system (27) has the first integral Hy and Jacobi multiplier J where

b371 blfl bgfl
Hy = log |z| |y ||
|z +y+ 2| |z +y + 2| |z +y + 2| ’

1
lzyz(z +y+2—1)|
A second first integral Ho is

» o, vl
H = 10 —
(44) 2T gtz

where U(y/x, z/x) is a solution of the partial differential equation

((2 — bl — bg)(l +§+77) + (bl +b2 +b3 - 3)(1 +77)5667§
(45)

0
+((1 —b3)(1+&+m) + (by + b2+ b3 73)77)778—‘71; =—(1+¢&+n),

with € = x/y and n = z/y.
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If by + bs + b3 = 3 then Hy and Hs becomes

e
Hy = log| |- - = (by = 1)Fy + (b3 — 1)y,
Y Yy
(46) 1-b2 bs—1
Hy = log< - ¢ )
yle+y+ 2z — 1|1 ylo +y+z— 1170
= (1—=0bo)F + (b3 — 1)Fy,
2| |2
here F} =1 dFy=1 ..
where 'y Og<|y|$+y+z—1|lb2 , an 2 og |y||x+y+2_l‘b37l

Moreover differential system (27) can be written as

. 1 . 1 . 1
(47) m:j{FlaFQVT}v y:j{FlaFZJy}a Z:j{FlaFZVZ}'

Proof. Partial differential system (29) can be rewritten as (40) with T = T} (=, y, z),
and w; for j =1,2,3 are given by

T1: (1—b3)($+y+2)+(b1+bg+b3—3)x,
Iy = (I=bi)(x+y+2)+ (b1 +b2+0b3—3)y,

T3: (17b2)(.1‘+y+2’)+(b1+b2+b3*3)2,
(x+y+2) (
wi= ———— T (b —1Dz+(1—by)y+x+ +z—1),
1 (CL‘+y+Z*1) (1 ) ( Q)y Yy
r+y+z (
wy= —F——————((b2— Dz +(1—-b3)z+x+ Jrzfl)7
e v ey { (G LR (R N EE
r+y+=z <
wy3= —F7—— | (bs—1Dy+(1—-b))x+zx+ —|—z—1).
1= (s = D+ (= by
Sy rT+y+z
Hence by considering that 71 + 75 + 13 = 0, and w; —ws = —— T3, then
z+y+z-—1
from the two first equations and the first equation of (41) we get that
0H, 0H> 0H, r+y+z
T +y +z = - .
Ox dy 0z (z+y+2z—1)
By considering the equation
0H, 0H, 0H,
=0
T ox +y Oy te 0z ’
we obtain that Hs satisfies the equation
0H, 0H, 0H, T+y+z
x +y +z = — .
ox y 0z r+y+z-—-1

A particular solution of this partial differential equation is —log(z +y + z — 1).
Consequently Hy can be written as
Hy = —log(z +y+2—1)+¥(z,y,2),
where¥ = U(x,y, z) is a solution of the equation
ov ov ov

oy 42— =0
Yor +y8y +Z@z
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Thus ¥ = ¥(z/y,z/y). Hence H becomes (44). Inserting into the third equation
of (40) and after some computations we obtain the equation

ov ov
1—‘1776777 —+ (Tl —+ T2)£87£ = —(l’ +y—|— Z),

where £ = x/y and n = z/y. By considering that Ty + T = (x + y) (b1 + by + b3 —
3)+ (2 —by —bs)(x +y + z), then we get the equation

((2—b1—bg)(x+y+z)+(b1+b2+b3—3)(x+y))§aa—§
+((1*bg)(I+y+Z)+(b1+b2+b3*3)2)§867::*(.’E+y+2),

and by dividing this equation by y and introducing the notations £ = z/y and
7 = z/y after some computations we get equation (45).

Now we assume that by + be 4+ bs = 3. From (45) we obtain that

ov ov

376 — (b3 — 1)776717 = —1.

(b2 —1))¢

A particular solution of this equation is log (nl/(2_2b2)§1/(2b3_2)) . Thus the general
solution of the previous equation is

U = log (771/(2_2b2)§1/(2b3_2)) + @(fl_b3771_b2),

where © = (¢17%n1=b2) is an arbitrary function. Taking © = 0 and equation
(44) becomes equation (46). The representation (46) and deduction of differential
system (47) are easy to obtain. In short the proposition is proved. O

5.3. Determination of the second first integral H; of the symmetric May—
Leonard model. The differential system

t= a(l—xz—ay—bz),
(48) = y(l-y—br—az),
2= z(1—z—ax—by),

is well known as the symmetric May—Leonard model (see for instance [2]), where
a and b are positive parameters. Clearly differential system (48) is obtained from
(35) under the conditions b; = b and a; = a for j =1,2,3.

Proposition 19. Consider the symmetric May-Leonard model.

(i) If a+ b = 2 then this system has the first integral Hy and the Jacobi mul-
tiplier J, where

B 1

ey +y+ -1

xyz

Hy =log| —————
L= o8 (x+y+2)3

, and J

Moreover a second independent first integral is

z
Hg:(b—1)10g|:{:—|—y—|—z—1|—§—A(%,5)7
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z
where A = A (Q, f) s a solution of the partial differential equation
rx

dA IA
4 —2n—-€¢-1D)é—+2—n—1)n—=-(1
(49) =€~ DGe +@E—n—n = ~(1+6-+).
where A = A(&,n), € = y/z, and n = z/x.
(ii) Ifa=0b#1 then

y(z —z)
x(y — z)
where Hy is a first integral and J is a Jacobi multiplier, moreover a second
independent first integral is

e . Sy e
=1y = 22l el - o2 =) e (2, 2)),

1
H, =lg and J — (|I|b+1|zl2b—1|y a2z — a:|_b_1) =3

Hy =log
T x

where A is a solution of the partial differential equation
oA oA
—1Dé— -1)—=-9
€—-1)¢ o€ +n1(n )877 1(&,m),
< 26-1 b1
where A = A(&,m), € = y/z, = z/x and D1(§,n) = 1=t (n—1)*F (€ ~
=2 2
(€ —mn)".
(iii) Ifa=0b=1 then
1
lzyz(z +y+2-1)
where Hy is a first integral and J is a Jacobi multiplier, moreover a second

H, :1og‘3(, and J =
T

z
independent first integral is Hy = log ‘f’ .
T

Proof. For the case when a + b = 2 the symmetric May—Leonard systems has two
Jacobi multiplier
o 1 B 1
eyt y+ 2 - 1)) (@+y+2P@+y+z—1)]

Jy =

S |zyz|
hence H; =log — =log ————
ence H; ng g oty + o

The second independent first integral can be obtained from equations (29) which,
after some computations can be written as (40) with

Th= z4+y+z—3x, Te=ax4+y+2z—3y, Ts3=x+y+z—3z,
r+y+z

is a first integral.

= ———(1l—-z—-2-b)y—>
w1 ($+y+271)( x ( )y 2)7
rT+y+z
= 7" _(1-y—-(2-bz—-b
w= o (@b,
r+y+=z
= ——(1—-z—-(2- — .
R ey USRS CRRE)

By considering that T} + 15 + 75 = 0 we get that the first of equation of system
(41) becomes

OH. OH. OH.
2+y 2, OH: Tty+=z

= —1).
T ox Ay 0z Hl(x+y+z—1)(b )
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and considering the equation

OH OH, OH,

1
=0
T ox ty Oy tz 0z ’
we obtain that Hy satisfies the equation
8H2 8H2 8H2 T+ Yy +z
x +y +z = — .
Oz Jy 0z z+y+z—1

The general solution of this equation is

eMz/y,2/y)
|z +y+2z— 110"
Inserting it into the second equation and introducing the notations ¢ = x/y and
n = z/y, we obtain

Hy=(b—1)log|z+y+z—1|+ A(z/y, 2/y) = log(

OA OA
W+ T)—+Tin—=— .
(T + 2)5854— 177877 (x+y+=2)
Dividing this equation by y we deduce (49). So the proof of statement (i) is done.

The proof of statement (ii) is the following. Symmetric May—Leonard system
with @ = b # 1 is completely integrable (see [2]). Moreover the Jacobi multiplier J
and first integral Hy are

1

_ _ _ph_ i—b Tr —
7= (Ja =Pty = a2z =) = dog | X

respectively.

The second independent first integral Hy = H can be obtained from equations
(40) with

ley—Z, TZZZ—LU, ngy—x7
wi =AMz +by+2)—1), wr=Ay+bz+z)—1), ws=Az+by+z)-1),
where A = (y — 2)* (23212 (y — ) (= — 2)"*1) .

The differential system (41) in this case becomes
OH, OH, OH,

T +yay +zaz = (-1,
2 8H2 _ 8H2 3H2 8]—]2
(50) (@ —2)eg -+ W—2y7p= = Z(I 2z TV “az>
OHy OH, OHy
2 2 2
e ox Ty oy tz 0z

= AMblz+y+z)—1-(b—1)z).
Hence in view of the first equation the second equation can be written as follows

aHQ 8H2 8H
2 2 2

By considering that the function A = A(z,y, z) can be rewritten as

b 1 11 1

ZZ
T T T yzxr =z



COMPLETE INTEGRABILITY OF VECTOR FIELDS IN RY 27

where
2b—1 2-b b1\ 1/ (0=1) 2
oy (Y. %) = ((Z) (L-1)" (20 ) (Z-4)
xr X T x x T x
o (L 11 1)_ 1o\ 1\ b1 1 1)’
\z y'z z2) r oz Y z y)’

after some computations the functions ®; and ®, satisfies the equations
0P, 0P, 0P,

=0
iy Ty Oy te 0z ’
0D, 0Ps 0P,
2 2 2 - 0.
o ox ty oy T 0z
Consequently the function A satisfies the following partial differential equations
oA n oA n oA A\
T— — tz— =
oz Y Oy 0z ’
oA oA oA b
=yt = (z+y+2)\

Ox oy 9z b—1
Thus the solution of the first equation of (50) is
Yy oz
Hy = (b—1)A(z, v, A(f,f),
2= (b= DAy 2) + A (L2
where A is a solution of the equation

0 0 0 Yy oz Yy z
20 20 | 20 Y 2\ _ Y Z\_
(51) <I Oz ty Ay 2 82>A(m’x) 2% (x’q:) A9, 2).

After the change z = z, y = x€ and z = xn and by considering that
ON  y ON 2z OA oA 10A oA 10A

%" GAOE #Oy Oy w0E Bz woy
and dividing equation (51) by = we obtain, after some computations, that it becomes

oA oA

(= 1)5575 +n(n — 1)877 = —®y(&m),
where A = Al ., and &1 (6,n) = n7 (n— 1) (€ — 1)1 (¢ —)*. Hence
statement (ii) is proved.

Finally we prove statement (iii). Then the symmetric May—Leonard system with

a = b =1 is completely integrable. Moreover a Jacobi multiplier and a first integral
are

1

J = ,
lzyz(x +y + 2 — 1)

H, zlog’g
x

)
respectively.

The second independent first integral can be obtained from equations (29) which,
after some computations, in this case becomes

1 0H, 1 10H, 1 10H, 10H, 1

y 0z w2 wx 0z xz oz dy y Ox  yx’
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where we have assumed that the absolute value of J is positive. If it negative the
first integrals only changes the sign.

The previous equations become

OH. 1 OH. OH.
2 2 . 2

=—1.

0z 2 or Y Oy

The solution of these equations is

22 x z x x z
ta = o[+ ) = o |+ o 5]+ 005 = 2]+ a0,

x
where ®,(—) is an arbitrary function for j = 1, 2. Consequently a second indepen-

z
dent first integral is log ’f’ . In short the proposition is proved. (I
T

5.4. Determination of the second first integral H; in the Lotka—Volterra
system which are integrable at the origin. Now we shall apply Proposition
13 to some particular Lotka—Volterra systems having a first integral and Jacobi
multiplier given in the paper [1]. Other results on the integrability of 3—dimensional
Lotka-Volterra systems can be found in [3].

Proposition 20. The Lotka—Volterra differential system

t=z(2+ax), y=y(-l+de+hy+kz), 2=z014+gx+hy+kz),

d+a—g

has the first integral Hy = z(2 + ax)  « /(zy) and the Jacobi multiplier J =
z%y3(2 + az) 2020 Then it has the second first integral
a+2d
(2+ az) = (1 z >
52 Hy= 2T % (2072 a)).
(52) D (S rC)

where the function T = T(g,x) s a solution of the partial differential equation
oT oT
(53) 2+ (g— d)x)na—n +x(2+ ax)% +(zd—1)T(n,z) = h + kn,
with n = z,
Yy

Proof. In this case the partial differential system (29) becomes

O0H, 0H, (2 +agj)%jd

Y oy te 0z + YT =0
0H, 0OH (2 + ax) a2
= —d)z) S — (-1 wwar) o
(2 + ax) o +2(24 (g — d)x) % (=14 dx+ hy + k=2) T 0,
O0H, 0 Ho (2+ax)a;5d B
z(2 + ax) e y(2+ (g —d)x) 9 (14 gz + hy + kz) T = 0,
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a+2d
2 a
The solution of the first equation is Hs given by the formula Hy = %A(:c, Y),

T

where A(z,y) is a solution of the partial differential equation
oA oA 1

Consequently A = 1/y + T(z/y,x). Hence

w\;ﬁi <; + T(z/y,x)) = Az) (; + T(z/y,:c)) .

Inserting this expression into the second equation and by considering that A (z) =
Az)

Hy =

z
, and introducing the notation 7 = — we obtain the differential equation
)

(2 + ax)
1 oT oT -1 h A
M) 1) (AT (=, ) (2 ar) O 24 (g—d)ay o = L H T IDND
Yy Ox on y
thus after simplification we get differential equation (53). O

Proposition 21. The Lotka—Volterra differential system
t=x(l+gr+by+kz), y=y(-2+ey), zZ==z(1+gz+hy+kz),
h—b
has the first integral Hy = z (1 —ey/2) ¢ /z, and the Jacobi multiplier J =

— b—4h+te
(2/Y) 3 (1— ey/2)_2 < Then it has the second first integral
ey e
2(1-5) L o2
H=— 7 |[__ T(—
2 \/g < P + ($7y)> )

where the function T =T (z/x,y) is a solution of the partial differential equation
oT orT
(54) 2 —eylyng -+ b= hnyg- = (1+hynT +nk +g,
Y n
with n = z.
x

Proof. The dlifferential system (29) in this case becomes

2h+te

OH on 2(1-F) "
2
2—e) e —(h—bjeoe = —— 27 (g
2h+e
(& 2e
OH  OH 2(1—3
Ttz = ———,
8x 82 zyi

2h+e

ey\ “2e
oH oH 2(1— 5)

(14 gz + hy + kz),

From the second equation and in a similar way to the determination of function
(52) we get the function Hs. Inserting this function into the first and third equation
and in analogous way to the proof of Proposition 20 we get that the function T
satisfies equation (54). O
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Proposition 22. The Lotka—Volterra differential system
t=z(l+ar+by+2kz), y=y(—2+ey—kz), 2z=z(1+kz),

has the first integral Hy = y2z?/(1 — ey/2 + kz) and the Jacobi multiplier J =

(x/2)% (1 —ey/2 + 1432)272 (1+kz) =<. Then the system has the second first inte-
gral

¢ 1
(55) H, :z(lf%+kz> (lJrlcz)l_g <+T(y,z)> ,
x
where T = T(y, z) is a solution of the partial differential equation

(56) y(ey—kz—2)g—§ +z(1+kz)%—lj + (1 +by +2k2)T = a.

Proof. System (29) in this case becomes

OH oH ey : 1—b
y(ey—kz—?)a—y—i-z(l—l—kz)a— —z(l—;—l—kz) (14 kz)t—=

<1+ax+by+2kz)>
T )

b
OH z(l—%—l—kz)e(l—kkz)l*g
or x2 '
The solution of the second equation is Hs given in (55). Inserting this function into
the first equation of (57) and by considering that

yley — kz — 2)? +2(1+ kz) g/\ = —(1+ by +2k2)A,
Y

P
where A = 2 (1 —ey/2 + k:z)g (14 kz)'~¢, we obtain differential equation

(y(ey —kz— 2)2—2 +2(1+ kz)a)\) (f% + 1)+

0z
oT oT 14+ ax + by + 2kz
A —kz—2)— 1+kz)— | = A
<y(6y z )ay+z( + Z)8z> .
Hence after some computations we get (56). O

Remark 23. Propositions 16,17, 18, 19, 20, 21 and 22 illustrate the possibilities of
the method which we propose to determine the complementary first integral in the
Jacobi Theorem. To determine the final expression for Hs it is necessary to solve
a partial differential equation, which in general is a non trivial problem.

5.5. On the Clebsch vector fields. In physics and mathematics the vector field

0 0 0
58 X=X1—+Xo——+X5—
( ) 18301 + 281‘2 + 38I3
is called solenoidal if there exists a function J such that (2) holds. Any solenoidal

vector field can be expressed as curl of some other vector field Y = A% + B 6% +
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CQ (see for instance [17]), i.e.

0z
(59) JX = curl(Y),
or equivalently
0B 0oC oC  0A A OB
R A VA T P T

In physics and mathematics the Clebsch representation of the three-dimensional
vector field Y is

(61) Y = grady + pugrady,

where the functions ¢ = ¢(z,y, 2), p = p(x,y,2) and ¥ = (x,y, z) are known as
Clebsch potentials (see for instance [6]).

Proposition 24. The 3-dimensional solenoidal vector field (58) satisfying (59)
with p and ¥ independent functions is completely integrable if and only if Y is a
Clebsch vector field.

Proof. Clearly if (61) holds then JX = curl(Y) = gradu A grady), where a A b is
the cross product of the vectors a and b. Hence

_ O, O 4 x, 00
_ 9 i AN
JX(@) - J<X18SE+X23’L[/+X38Z> =0,

then p and 1 are independent first integrals, i.e. differential system (58) for N =3
is completely integrable.

The reciprocity is obtained as follows. Assume that (58) is completely integrable
with first integral Hy and Hs, i.e. admits the representation (18) for N = 3, and
(29) holds. By considering that

O0H, 0H, 0H, OH, 9 OH,\ 0 OH1\ IX
Oy 0Oz 0z Oy 02\ 0y oy\ oz ) 00
OH, 0Hy 0H; 0H» 0 0H, 0 0H,

- R e a0 e R
0z Oz Jx 0z ox 0z 0z Ox
0OH, 0Hy 0H; 0H» 7] 0H; 0 0H,

— = — 22— | — — 2o—— | = .]X3
or Oy oy Ox y ox ox dy

Consequently from (60) we get that the functions A, B and C are such that

1 1
o 9 <c1> - 2H1H2) o, ) <<I>+ 2H1H2)
N Yoz ox B 2 ox ox ’

1 1
— P <<1> - 2H1H2> o, P <<I>+ 2H1H2>
- Ty Oy Ty Oy ’

1 1
0 <<I> — H1H2) 0 <<I> + H1H2>

OH 2 OH 2

C= H—>+ = —Hy >+

Ox Ox Ox Ox ’
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where Hy and Hs are independent first integrals, and ® = ®(z,y, ) is an arbitrary
function. Hence the vector field ) becomes

y

1
Hs grad H, + grad <<I> — 2H1H2>

1
—H, grad H, + grad <<I> + 2H1H2> .

Thus the vector field ) is a Clebsh vector field with Clebsh potentials Ho (or -Hj,)
1 1
H; (or Hy) and ®— §H1H2 (or <I>+§H1H2). In short the proposition is proved. [

Example 25. The vector field X = x(y — Z)f% + y(z — x)(,% + z(z — y)% is

solenoidal. The vector field YV in this case is Y = xyzgrad(z +y + z) + grady,
where ¢ is an arbitrary C function. It is easy to show that vyz and x +y + z are
first integral of X .
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