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Abstract

In this paper we study analytically the existence of two families of periodic orbits using the averaging theory
of second order, and the finite and infinite equilibria of a generalized Hénon-Heiles Hamiltonian system
which includes the classical Hénon-Heiles Hamiltonian. Moreover we show that this generalized Hénon-
Heiles Hamiltonian system is not C'! integrable in the sense of Liouville-Arnol’d, i.e. it has not a second C*
first integral independent with the Hamiltonian. The techniques that we use for obtaining analytically the
periodic orbits and the non C! Liouville-Arnol’d integrability, can be applied to Hamiltonian systems with
an arbitrary number of degrees of freedom.
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1. Introduction and statement of results

The classical Hénon-Heiles Hamiltonian consist of a two dimensional harmonic potential plus two cubic
terms,i.e.
L 9 2 2 2 2 Y
H=g(pa+py+2°+y°) +a7y - 5.
This Hamiltonian was introduced in 1964, it is a model for studying the existence of a third integral of
motion of a star in an rotating meridian plane of a galaxy in the neighborhood of a circular orbit [1].
The generalized Hénon-Heiles Hamiltonian system here studied is
Looy ov, Lo o 2 Y 6 4,3 | .4
H. = i(pz—kpy)—i—i(:c +y°)+x y— g +elaty+aty’ +aty
(1)
+a2y® + 22y — =

y' Y
7 5

1 1

where € > 0 is a small parameter. Of course, when ¢ = 0 the Hamiltonian Hy is the classical Hénon-Heiles
Hamiltonian. The Hamiltonian (1) was introduced in [2].
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The Hamiltonian system associated to the Hamiltonian (1) is

T= pg,
Y= py
Pr = —x— 22y — 5<6x5y + 4x3y3 + dady + 2xy° + 2293
vz + y2) + (22 +y2)2), (2)
py= —y—a?+y?— s(xﬁ + 324y + 2t + 52yt + 322y — b — ot

+y(@® +y*) + y(z® + y2)2)7

here the dot denotes derivative with respect to the time t.

The equilibrium points of the generalized Hénon-Heiles Hamiltonian system are analyzed in section 2.
As we shall see are the four equilibrium points of the classical Hénon-Heiles Hamiltonian system slightly
perturbed.

In general to study the orbits which go or come from the infinity of a differential system defined in R* is
a difficult task, but when the differential system is polynomial as system (2), Poincaré in [3] and its gener-
alization in [4], provided a tool for doing this study. This tool is now called the Poincaré compactification.
Here we will describe the Poincaré compactification for a polynomial differential system in R*, because the
domain of definition of system (2) is R%.

Roughly speaking the Poincaré compactification consists in identifying R* with the interior of the unit
closed ball B of R* centered at the origin of coordinates. Then the boundary of this ball, the 5-dimensional
sphere S3, is identified with the infinity of R%, because in R* we can go to infinity in as many as directions
as points has the sphere S3. There is a technique which extend a polynomial differential system from the
interior of the ball B* to its boundary in an analytic way, in such a way that the boundary S? is invariant by
the extended flow, i.e. if an orbit of the extended differential system has a point in the sphere S? the whole
orbit remains on S?. Then studying the dynamics of the extended differential system on S* we understand
the dynamics in a neighborhood of the infinity of the initial polynomial differential system defined in R%.
For instance, if the extended differential system has an equilibrium point on S® which is a local attractor,
then we know that there is a set of dimension 4 of orbits of the polynomial differential system which escapes
to infinity in the direction defined by this equilibrium point.

In section 3 we provide the explicit equations of the Poincaré compactification in R*. Using this com-
pactification we shall prove that the classical and the generalized Hénon-Heiles Hamiltonian systems has no
infinite equilibrium points, i.e. equilibrium point in the sphere S3.

After the equilibrium points the periodic orbits are the most simple interesting orbits of a differential
system. This is due mainly to the following two facts. First the periodic orbits provide information on the
motion in their neighborhoods studying their type of stability. Moreover, if there are isolated periodic orbits
having some multiplier distinct from 1 in the energy levels of the Hamiltonian system (2) this orbit prevents
the existence of a second C! first integral independent with the Hamiltonian, see details in section 6.

In section 4 we present a brief introduction to the averaging theory of second order. Using this theory
we shall compute two families of periodic orbits of the classical and generalized Hénon—Heiles Hamiltonian
system (2), and we obtain the following result.

Theorem 1. The generalized Hamiltonian system for € sufficiently small in each Hamiltonian level H =
€2h > 0 has two periodic solutions of the form

(m(t,a),y(t, 5),pm(t,€),py(t,€)) =
(evVhcost + O(e?), 2evhsint + O(e?), —eVhsint + O(e?), evh cost + O(e?)).

Theorem 1 is proved in section 5.



Theorem 2. The generalized Hamiltonian system for e sufficiently small in each Hamiltonian level H =
e2h > 0 satisfies

(a) either it is Liouville-Arnol’d integrable and the gradients of the two constants of motion are linearly
dependent on some points of the two periodic orbits found in Theorem 1,

(b) or it is not Liouville-Arnol’d integrable with any second C* first integral.
Theorem 2 is proved in section 6. At the beginning of this section we recall the notion of Liouville-Arnol’d
integrability.
2. The finite equilibria
The classical Hénon-Heiles Hamiltonian system has four finite equilibria (, y, pz, py), namely
-3 1 3 1
P = (070707 0),]72 = (07 1707 O)ap3 = (;[7 27070> yPa = <\2[a 2,07(]) ;

The eigenvalues of the linear part of the Hamiltonian system at p; are +i with multiplicity two, and the
corresponding eigenvalues at p; for j = 2,3,4 are £1 and ++/3 1.
For € > 0 sufficiently small the equilibria of the Hamiltonian system (2) are

pl(é) = (0,0,0,0), P2(5) = (Oa 17070)7
p3(5) = (.133(6),3/(5),0,0), p4(€) = (m(a),y(a),0,0),

where 25(e) = — VERY 2585V/3¢% | 144335/3c®  149836699v/3¢* 0().
2 256 1024 65536
ra(e) = V3 Ve 4 2585V/3¢?  144335V/3¢®  149836699v/3¢* 0()
2 256 1024 65536 ’
1 15 1233¢2  138483¢%  18018531¢* 5
VO =5t 95 T Tias o aoa1 - s TOE)

The eigenvalues of the linear part of the Hamiltonian system at p;(e) are again +i with multiplicity two.
The corresponding eigenvalues at pa(e) are £+/1 + 2¢ and £+/3(1 + 2¢)i. While the eigenvalues of p;(e) for
7 =3,4 are

j:65536 + 268288¢ — 30976642 + 48298085¢3 4O (64)
65536 ’
and
V/3(65536 — 14336 + 2732802 — 4085287¢3) ;
65536

In short we have proved the following proposition.

+

+0 (g4).

Proposition 3. For ¢ > 0 sufficiently small the generalized Hénon-Heiles Hamiltonian system has four
finite singular points, namely p,(e) for j =1,2,3,4 given in (3).
3. The infinite equilibria:

3.1. The Poincaré compactification in R*

In R* we consider a polynomial differential system
& = Py(x1, 22,23, 24), for k=1,2,3,4,
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or equivalently its associated polynomial vector field X = (P, P», P5, Py). The degree n of X is defined as
n = max{deg(P;) : i =1,2,3,4}.
We have that S* = {y = (y1, 2,3, v4,v5) € R® : ||y|| = 1}, and let

Sy ={yeS*:ys >0} and S_={yeS':y; <0}

be the northern and southern hemispheres of the sphere S*, respectively. The tangent space to S* at the
point y is denoted by TyS4. Then the tangent hyperplane

T(o,o,o,o,l)S4 = {($1,5U2,$37$47 1) eR®: (551,7562@3,964) € R4}

is identified with R*.
We consider the central projections

fr R*=Tpo001S" =Sy and [ :R'=Tg0001S" =S,

defined by
er(iL'): Aix(xlax%xl’nmﬁbl) and f*(w):_%‘x(mlam%x&xﬁl?l)a
1/2
where Ax = (1 + 2?21 x%) . Through these central projections, R* can be identified with the northern
and the southern hemispheres, respectively. The equator of S* is S* = {y € §* : y5 = 0}. Clearly S® can be
identified with the infinity of R%.

The maps f; and f_ define two copies of X, one Df, o X in the northern hemisphere and the other
Df_ o X in the southern one. Denote by X the vector field on S*\ S* =S, US_ which restricted to S,
coincides with D f, o X and restricted to sss_ coincides with Df_ o X.

In what follows we shall work with the orthogonal projection of the closed northern hemisphere to y5 = 0.
Note that this projection is the closed ball B* of radius one centered at the origin of coordinates, whose
interior is diffeomorphic to R* and whose boundary S? corresponds to the infinity of R*. We shall extend
analytically the polynomial vector field X defined on S, US_ to its boundary S?, in such a way that the
flow on the boundary be invariant. This new vector field on B* will be called the Poincaré compactification
of the vector field X', and BS will be called the Poincaré ball. Poincaré [3] introduced this compactification
for polynomial vector fields in R?, and its extension to R™ can be found in [4].

Now we can extend analytically the vector field X (y) to the whole sphere S* defining the new vector
field

p(X)(y) = y2 ' X (y).

This extended vector field p(X) is called the Poincaré compactification of X.

As S* is a differentiable manifold, to compute the expression for p(X) we can consider the ten local
charts (U;, F;), (Vi,G;) where U; = {y € S* 1 y; > 0}, and V; = {y € S* : y; < 0} for i = 1,...,5; the
diffeomorphisms F; : U; — R* and G; : V; — R* for i = 1,...,5 the inverses of the central projections from
the origin to the tangent planes at the points (£1,0,0,0,0), (0,%+1,0,0,0),...,(0,0,0,0,£1), respectively.

We now determine the expression of the extended vector field p(X) on the local chart U;. Suppose that
the origin (0,0,0,0,0), the point (y1,...,ys) € S* and the point (1,2, ..., 2;) in the tangent plane to S* at
(1,0,0,0,0) are collinear, then we have

1 z1 z9 z3 zZ4

hn Y2 Y3 Ya Ys

)

and consequently

Fl(y) = <y27 ij y4y5) = (Z17227237Z4)
Yr Y1 1 n

defines the coordinates on U;.



—v2/y; 1/yn O 0 0

—ys/yt O Ly 00

DF; =

W= 0 0 ym o

~ys/yi 0 0 0 1/y
n—1
and y2 ' = (%) . Then the analytical vector field p(X) in the local chart U; becomes
ZTL
W(*Zﬁpl+P2,*22P1+P3,*23P1+P4,*Z4P1), (4)

where P; = P; (1/z4, 21/ 24, 22/ 24, 23/ 24).
In a similar way we can deduce the expressions of p(X) in the local charts Uy for k = 2,3,4,5. These
are
&2

W (=z1Py + Py, —29 Py + P3, —23P2 + Py, —24Ps), (5)

where P; = P; (21/24,1/24, 22/ 24, 23/ 24) in Us,
2y

W (—21P3 + Py, —29P5 + P, —23P3 + Py, —24P3) , (6)

where P! = P (21/24,22/24,1/24,23/24) in Us,
% (—Z1P4 +P1,—2’2P4 +P2,—23P4 +P3,—Z4P4) y (7)
(Az)"
where P’ = P (z21/z4, 22/ 24, 23/ 24,1/ 24) in Uy. The expression of p(X) in Us is ZZH (P, Py, P3, Py) where
the component P; = P; (21, 22, 23, 24).
The expression of p(X) in the local chart V; is the same as in U; multiplied by (—1)"~1.
When we shall work with the expression of the compactified vector field p(X) in the local charts we shall
omit the factor 1/(Az)"~!. We can do that through a rescaling of the time.
We remark that all the points on the sphere at infinity in the coordinates of any local chart have z4 = 0.

3.2. The Poincaré compactification of system (2) in the local chart Uy
In this chart from (4) system (2) writes

21 = —(22 — 2’3)2’2,

Zo= —2§(221 + 24 + 2324) + e(—621 — 423 — 220 — 24 — 2232
—2tzg — 4223 — 22322 — 25 — 2223),

Z3= —2f(1 — 22 4+ 2124 + 202324) + £(—1 — 322 — 5zf + 2§
—z124 — 22324 — 2324 — 23 — 32322 + 2122 — 2125 — 2323),

2'74 = —2,’22’2.

This system has no infinite equilibria (21, 22, 23, 0).



3.3. The Poincaré compactification of system (2) in the local chart Us
In this chart from (5) system (2) writes

2= (22— 2123)25,
Zo= —2§(221 + 2124 + 202324) — £21(2 + 422 + 627 + 24 + 22324

+2izg + 223 + 42322 + 25 + 2223), @®
i3 = —24( 1+zl—|—,z4+2324)+€(1—5,z1 32f — 28 — 24

2 .3 _ 2.3
—22224 — 2ty + 22 — 32223 — 2322 — 23 — 2223),

2:'4 = 72’322.

In system (8) we must look for the infinite equilibria of the form (0, z2, 23,0), because if there were infinite
equilibria with z; # 0 these would be appear in the local chart U;. But system (8) has no equilibria of the
form (0, zg, 23,0).

3.4. The Poincaré compactification of system (2) in the local chart Us
In this chart from (6) system (2) writes

1= 2z (2z1 29+ 24 —|— 2224) + €z1 2(62122 + 42’1 22 + 225 + 2tz
12222224 + 2524 + 4222022 + 22322 + 2223 + 2223),

Zo= 2z (2,21,22 + 2129724 + z3Z4) +e2129 (6,21 29 + 427 22 —I— 223
d2fzg + 2222224 + 2524 + 4222022 4+ 22322 + 2323 + 2223),

Z3= —2(2% — 23 — 2212023 + 2024 — 212324) + &(—2% — 32122

—52228 + 2§ + 6202023 + 423253 23 + 2212523 — 212024 (9)
92,3, .5 5 953 52 4 4.2
12524 — 2524 + 272324 + 227252324 + 21252324 — 212}
—3222223 + 2522 + 423 202322 + 221252323 — 2P p2l — 2323
‘232325 + 21252323),
24 = 2124 2220 + z4) + 62:12:4(62’1 22 —|— 4z1 23 + 225 + 2tzg + 223232

t252y + 42229027 + 22322 + 2223 + 2223).

In system (9) we must look for the infinite equilibria of the form (0,0, z3,0), because if there were infinite
equilibria with 2z + 25 # 0 these would be appear in the local charts U; U Us. But system (9) has no
equilibria of the form (0,0, z3,0).

3.5. The Poincaré compactification of system (2) in the local chart Uy
In this chart from (7) system (2) writes

5= 25(23 — 2123 + 212024 + 2324) +e21 (20 + 32122 —I— 5212'2 — 28
t2tzozg + 2222324 + 2524 + 2323 + 3222223 — 2523 4+ 222
3.3
+Z2z4)7
9= 2;(ZPz — 25 + 24 + 2524) — £20(—2% — 32122 52122 + 2§
—2tzgny — 222282y — 252y — 222 — 3222222 + 2527 — 22 zp2d
3.3
—2372}),
3= 2;(—2z129 —|— 2223 — 22z3 — 2124 —l— 292324) + €(—62029 — 42323 (10)

—2z1z2 + 2§ 23 + 3212323 + 5z1 2523 — 2823 — 2224 — 2232224
7212224 + 2fz0z324 + 223232324 + 252324 — 4212224 2212523

+2t2322 + 322232323 — 252322 — 2323 — 212523 + 22202323

3, .3
+252323),
i = zi’(zf — 25+ 2224) + 524(21 + 3222 + 52122 — 2§ + 2izazy

2222824 + 2524 + 2323 + 3222223 — 2523 4 2222 + 2323).
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In system (10) we must look for the infinite equilibria of the form (0,0, 0,0), because if there were infinite
equilibria with 27 + 22 + 22 # 0 these would be appear in the local charts U; U Uy U Us. But the point
(0,0,0,0) is not an equilibrium point for system (10).

In short we have proved the following proposition.

Proposition 4. The generalized Hénon-Heiles Hamiltonian system has no infinite singular points.

4. The averaging theory of first and second order

Here we summarize the averaging theory of order two for finding periodic orbits. See the paper [5] the
proofs of the results presented in his section.

Theorem 5. We assume that the non-autonomous differential system
i(t) = eFy(t,x) + 2 Fy(t,x) + 2 R(t, x, €), (11)

being F1, Fo :Rx D - R", R:Rx D x (—¢5,e5) = R" continuous functions, T-periodic in the t variable,
and D is an open subset of R™, satisfies the following assumptions.

(i) The functions Fy(t,-) € CY1(D) for allt € R, Fy, F», R and D, Fy are locally Lipschitz with respect to
x, and R is differentiable with respect to €. We define f1, fo : D — R"™ as

T
f1(2) :/0 Fi(s, z)ds,
T s
fa(2) :/0 [DZFl(s,z)/O Fi(t, z)dt + Fs(s, z)]ds.

(11) There exists an open and bounded set V. C D such that for each ¢ € (—ey,e5)\{0}, there isa € V
verifying fi(a) + efa(a) = 0 and the Brouwer degree dg(f1 + €f2)(a) of the function fi + cfs at its
fized point a is not zero.

Then for |e| > 0 small enough, there exists a T—periodic solution x(-,&) of system (11) wverifying that
x(0,e) = a when € — 0.

We recall that if the Jacobian of a function f at its fixed point a is non—zero, then the Brouwer degree
dg(f1 +f2)(a) in non-zero, see [6].

When the function f; # 0, then for £ small enough the zeros of fi; + €fs are essentially the zeros of fi.
In this case Theorem 5 provides the averaging theory of first order.

When the function f; = 0 and fy # 0, then the zeros of fy are the zeros of f; + e€f2, and Theorem 5
provides the averaging theory of second order.

In the following section we will show that after adequate changes of variables, we can apply Theorem 5
to the classical and generalized Hénon—Heiles Hamiltonian systems (2). And consequently we can prove the
existence of two families of periodic orbits for these systems.

5. Proof of Theorem 1

It is well known that for Hamiltonian system with more than one degree of freedom their periodic orbits
generically live on cylinders filled of periodic orbits. Hence it is not possible to apply directly Theorem 5
to a Hamiltonian system, because then the Jacobian of the function f; + ¢fs at its fixed point a will be
always zero. Therefore Theorem 5 must be applied to every fixed Hamiltonian level where generically the
periodic orbits appear isolated. Remember that in the sense of Liouville~Arnol’d Theorem the integrable
Hamiltonian systems are non—generic, see [7].

From the statement of Theorem 5 it follows that in order to apply it the differential system needs to
be periodic in the independent variable. Therefore in the Hamiltonian system (2) we change the variables

7



(@, Y, Pz, Dy) to (1,0, p,a) given by (rcosb, pcos(d + a),rsiné, psin(d + «)), and later on we will take as the
new independent variable the 6. In these new variables system (2) becomes

7= —prsin(20) cos(a + 6) — ersinf cos 0(;)2 cos?(a + 6)

(2p° cos®(a + 0) + p? cos? (o + 6) + 2pcos(a + 6) + 1)
+rtcos? 0(6p cos(a + 6) + 1) + r? cos? 6(4p? cos® (a + 0)

+2p% cos?(a + 0) + 4pcos(a + 0) + 1)),

0= —1—2pcos?fcos(a+0) —ecos? 9<p2 cos?(a + 6)

(1 +2p° cos®(a + 0) + p? cos? (v + 6) + 2p cos(a + 6))
+rt cos* 6(6pcos(a + 0) + 1) + r? cos® 6(1 + 4p> cos®(a + 6)

+2p? cos?(a + 0) + 4pcos(a + 0))),
p= sin(a+0) (p?cos*(a+6) —r?cos?d) — esin(a + 0)
(p3 cos(a+ 0) (1 — p3 cos®(a + ) + p? cos®(ar + )

—pcos(a+0)) + 7% cos® 6 + r* cos* 6(3p? cos® (o + 6) (12)
+pcos(a+0) + 1) + pr? cos? 0 cos(a + 0) (5p3 cos® (o + 6)
+2p? cos?(a + 0) + 3pcos(a + 6) + 1)),
. cos(a+0) (p? cos(2(ax + 6)) + 3p* — cos(20)(r? — 2p?) — r?)
&= 1 %
+e— (p3 cos?(a + 0) (p? cos®(a + 0) — p* cos® (o + 6)
p
+pcos(a+0) — 1) + 12 cos* 6(p + p(2p* — %) cos?(a + 0)
—(r? — 4p?) cos(a + 0) + (4p* — 3p*r?) cos®(a + 0))
+pcos? 0 cos?(a + 0) (p* + (2p® — 3pr?) cos(a + 6)
+(2p° = 5p372) cos®(a + 0) + (p* — 2p?r?) cos*(a + 0) — %)
—r* cos® 0((r* — 6p*) cos(a + 0) — p))
This system is not Hamiltonian but it has the first integral
%(p2 (3 —2pcos(a+0)) + 3r? cos? 0(2p cos(a + 0) + 1) + 3r? sin” §)
1
+e(mp4 cos*(a + ) (105 — 2p cos(a + 0)(5p cos(a + 6) (6p cos(a + 6)
1 1
—7) +42)) + 67“6 cos® 0(6p cos(a + 0) + 1) + ZA cos? 0(2p cos(ar + ) (13)

(pcos(a+0)(2pcos(a+0)+1)+2)+1) + %p2r2 cos? 0 cos?(a + )
(2pcos(a+ 0) + 1)(p? cos?(a + 0) + 1))

In order to apply Theorem 5 we also need a small parameter in front of the vector field associated to the
differential system, so we will do the rescaling (r, p) = (R, o) using the parameter €, and we take 6 as the



new independent variable. Hence the differential system (12) becomes

R' = ¢eRosin(20) cos(a + 0) — e22Ro? sin(26) cos? 0 cos? (a + 0)
+0(e%),

o' = 5(R2 cos? Osin(a + 0) — o? sin(a + 0) cos?(a + 9))
+&2 (20’3 cos? fsin(a + 0) cos®(a + 0) — 2R%0 cos* §sin(a + )
cos(a+0)> +O0(?), (14)

o = ;—; cos(a + ) <02 cos(2(a + 0)) — cos(26) (R?* — 20?) — R* + 302)
+¢e2 cos? 0 cos? (o + 0) <02 cos(2(a + 6)) — cos(26) (R? — 20?) — R?

+302) +O(),
here the prime denotes derivative with respect to the variable . Of course, system (14) is 2m-periodic in

the variable 6.
System (14) has the first integral (13) which in the variables (R, p, @) writes

1 1
H= 52§(R2 +0?) + &3 (RZO‘ cos? 0 cos(a + 6) — 503 cos® (o + 9)) +0(eh). (15)

We fix the value of the first integral H at 2k > 0 in order that the averaging theory can provide information
about the periodic orbits of system (14). Computing o from equation (15) we obtain

o=+2h—-R2+ g (2h cos®(a+ 0) — R? cos®(a + 6) — 3R” cos® B cos(a + 0)) + O(g?).

Now substituting o in system (14), this differential system reduces to

R' = eRvV2h — R?sin(26) cos(a + 0) + %Rsin(%) cos?(a + 6)
((2h — R?)cos(2(a + 0)) + 3 (R? — 4h) cos(26) + 2(R?* — 5h))

+0(e%),
_ ecos(a+0) o . 2
o — = ((R2 — 22h) cos(92(oz +0)) + (3R* — 4h) cos(20) (16)
6+ 4R?) + % (3cos?0((8h2 — 6hR? + RY)

cos(2(a+0)) + (16h? — 16hR? + 5R*) cos(20) + 24h? — 22hR?
+6R*Y) + (2h — R?) cos?(a + 0) ((R? — 2h) cos(2(a + 0))
+(R? — 4h) cos(20) — 6h + 232)) +O(eY).

Now system (16) satisfies all the assumptions for applying Theorem 5, i.e. it has the form (11) with
Tr = (R, O’), t= 0, T= 271’, F1 = (Fll,F12> and FQ = (F217F22), where

Fy1 = RV2h — R?sin(20) cos(a + 0),
cos(a + )

Fp, = 2@ TY)
29 oh - k2

((32 — 2h) cos(2(ar + 0)) + (3R? — 4h) cos(20) — 6h + 4R2),



and
Fy = éRsin(%) cos?(a + 6) ((Qh — R?) cos(2(a + 0)) + 3 (R? — 4h) cos(26)
+2(R? - 5h)),

2 2

0
% (3cos? 0((8h? — 612 + RY) cos(2(a +0)) + (1652
—16hR? + 5R*) cos(20) + 24h? — 22hR? + 6R*) + (2h — R?)

cos?(av + 0) ((R? — 2h) cos(2(a + 0)) + (R2 — 4h) cos(26) — 6h + 232)).

Iy =

The averaging theory of first order does not provide any information about the periodic solutions of system
(16), because the average functions of Fi; and Fjs in the period becomes zero, i.e.

27
fi(R,a) = / (Fh1, Fi2) d6 = (0,0).

0

As the averaged function f; of Theorem 5 is identically zero, we compute the function fy; by applying
the second order averaging theory. We have that

2
2(R,0) = /0 (Do Fy(6, R, 0).an (6, R, ) + Fa(0, R, ) db,

where .
(0, Rya) = / Fu(t R, ) di.
0

and the Jacobian matrix is

DyaFi(0,7,0) = B(Z 2 6201‘2
or Oo

The two components of the vector y; are

0
Y11 = / Fll(t7R, a) dt
0
= éR\/ 2h — R?(—3 cos(a — 0) — cos(a + 36) + 4 cos(av)),
0
Y12 = / Flg(t,R, Oé) dt
0
- Wﬁ (12hsin(a — §) — 42hsin(a + 0) — 2hsin(3(a + 0))
+(3R? — 4h) sin(a + 30) + sin(«)(34h — 21 R?) + sin(3a)(2h — R?)

—9R?sin(a — 0) + 27R?sin(a + 0) + R? sin(3(ar + 9))).

Now we calculate the averaged function of second order fo = (fa1, fo2) defined in Theorem 5 and we
have

fo1 = —%rRsin(?a) (R? —2h),
14
foo = _EW sin? (h — R2) .
We must comput the zeros (R*, a*) of fo(R, ), and to verify that the Jacobian determinant

|DR,of2(R*, )| # 0. (17)
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Solving the system f3(R, ) = 0 of two equations and two unknowns R and « we get six solutions (R*, a*)
with R* > 0, namely

(0,0), (0,7), (V2h,0), (V2h,7), (Vh,7/2), Vh,—7/2). (18)

The first four solutions are not good, because for them the Jacobian (18) vanishes, but for the last
two solution the Jacobian (18) is 196h27%/9 # 0. So, by Theorem 5 these two solutions provide two
periodic solutions (R (6,¢),a1(0,¢)) of the differential system (16) with e sufficiently small such that
(R+(0,¢),a+(0,¢)) = (v/h,£m/2) when € — 0.

Going back to the differential system (14) we get for this system with e sufficiently small two periodic
solutions (R (0,¢),04(6,¢),a+(f,e)) such that (R+(0,¢),04(0,¢), ax(0,€)) = (Vh,Vh, £7/2) when ¢ —
0.

Again going back to the differential system (12) we obtain for this system with e sufficiently small two
periodic solutions (1 (t,€),0(t,€), p+(t,€),ax(t,€)) = (eVh+O(e?), =t + O(e),evVh + O(e?), £7/2 + O(e)).

Finally going back to the initial Hamiltonian system (2) we have for this system with ¢ sufficiently small
two periodic solutions

(x(t,€),y(t,e), palt, ), py(t,€)) =
(ev/hcost + O(e?), £evhsint + O(e?), —eVhsint 4+ O(e2), evhcost + O(e?)),

in each positive Hamiltonian level H = £2h. This completes the proof of Theorem 1.
In the next section we will use the existence of these two periodic orbits with multipliers different from
1 to study the non—integrability of the Hamiltonian system (2).

6. Periodic orbits and the Liouville-Arnol’d integrability

First we present some results on the Liouville-Arnol’d integrability of the Hamiltonian systems, and
also on the periodic orbits of the differential equations, see more details in [8, 9] and the subsection 7.1.2
of [9], respectively. We restrict our attention to the Hamiltonian systems with two degrees of freedom like
our generalized Hénon-Heiles Hamiltonian system, but we remark that these results work in Hamiltonian
systems with an arbitrary number of degrees of freedom.

It is well known that a Hamiltonian system with Hamiltonian H of two degrees of freedom is integrable in
the sense of Liouville-Arnol’d if it has a second first integral C' independent with H (i.e. the gradient vectors
of H and C are independent in all the points of the phase space except perhaps in a set of zero Lebesgue
measure), and in involution with H (i.e. the parenthesis of Poisson of H and C' is zero). For Hamiltonian
systems with two degrees of freedom the involution condition is redundant, because the fact that C' is a first
integral of the Hamiltonian system, implies that the mentioned Poisson parenthesis is always zero. A flow
defined on a subspace of the phase space is complete if its solutions are defined for all time ¢ € R.

The Liouville-Arnol’d Theorem restricted to Hamiltonian systems of two degrees of freedom is:

Theorem 6. Consider a Hamiltonian system with two degrees of freedom defined on the phase space M
with Hamiltonian H and having a second first integral C independent with H. Let In. = {p € M : H(p) =
h and C(p) = c} £ 0 be. If (h,c) is a regular value of the map (H,C), then the following statements hold.

(a) I is a two dimensional submanifold of M invariant under the flow of the Hamiltonian system.

(b) If the flow on a connected component I}, of In. is complete, then I} is diffeomorphic either to the
torus S' x S, or to the cylinder S' x R, or to the plane R?. If I}, is compact, then the flow on it is
always complete and I}, ~ S* x S.

Cc naer € assumptions oj statemen e Jtow on 15 conjugare 0 a ltnear jtow on ewvher X B
Under th ti tat t (b) th Ir i jugated to a li ther S x S*
or on S' x R, or on R2.
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The main result of this theorem states that the connected components of the invariant sets associated
with the two independent first integrals in involution are generically submanifolds of the phase space, and
if the flow on them is complete then they are diffeomorphic to a torus, a cylinder or a plane, where the flow
is conjugated to a linear one.

Using the notation of Theorem 6 when a connected component I} is diffeomorphic to a torus, either
all orbits on this torus are periodic if the rotation number associated to this torus is rational, or they are
quasi-periodic (i.e. every orbit is dense in the torus) if the rotation number associated to this torus is not
rational.

Consider the autonomous differential system

where f: U — R"™ is C?, and U is an open subset of R". We write its general solution as ¢(t,zo) with
#(0,20) = 29 € U and t belonging to its maximal interval of definition.

We say that ¢(t, zo) is T-periodic with T' > 0 if and only if ¢(T,xg) = ¢ and ¢(t,xg) # o for t € (0,T).
The periodic orbit associated to the periodic solution ¢(t,xg) is v = {¢(¢,x0),t € [0,T]}. The variational
equation associated to the T-periodic solution ¢(t, ) is

ox

where M is an n x n matrix. The monodromy matriz associated to the T-periodic solution ¢(t,xg) is
the solution M (T, xzo) of (19) satisfying that M(0,xg) is the identity matrix. The eigenvalues A\ of the
monodromy matrix associated to the periodic solution ¢(t,xg) are called the multipliers of the periodic
orbit.

For an autonomous differential system, one of the multipliers is always 1, and its corresponding eigen-
vector is tangent to the periodic orbit.

A periodic solution of an autonomous Hamiltonian system always has two multipliers equal to one. One
multiplier is 1 because the Hamiltonian system is autonomous, and the other 1 is due to the existence of
the first integral given by the Hamiltonian.

Theorem 7. If a Hamiltonian system with two degrees of freedom and Hamiltonian H is Liouville-Arnol’d
integrable, and C is a second first integral such that the gradients of H and C' are linearly independent at
each point of a periodic orbit of the system, then all the multipliers of this periodic orbit are equal to 1.

Theorem 7 is due to Poincaré [3], section 36, see also [10]. It provides a tool for studying the non
Liouville-Arnol’d integrability, independently of the class of differentiability of the second first integral. The
main problem for applying this theorem is to find periodic orbits having multipliers different from 1.

Proof of Theorem 2. Consider the two periodic solutions stated in Theorem 1. Their corresponding Jacobian
196h272 /9 # 1 playing with the energy level h. Since this Jacobian is the product of the four multipliers of
these periodic solutions with two of them always equal to 1, the remainder two multipliers cannot be equal
to 1. Hence, by Theorem 7, either the Hénon—Heiles systems cannot be Liouville-Arnol’d integrable with
any second first integral C, or the system is Liouville-Arnol’d integrable and the differentials of H and C
are linearly dependent on some points of these periodic orbits. Therefore the theorem is proved. O
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